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Chapter 1

Argumentation in Mathematical Practice

Andrew Aberdein and Zoe Ashton

Abstract Formal logic has often been seen as uniquely placed to analyse math-

ematical argumentation. While formal logic is certainly necessary for a complete

understanding of mathematical practice, it is not sufficient. Important aspects of

mathematical reasoning closely resemble patterns of reasoning in non-mathematical

domains. Hence the tools developed to understand informal reasoning, collectively

known as argumentation theory, are also applicable to much mathematical argumen-

tation. This chapter investigates some of the details of that application. Considera-

tion is given to the many contrasting meanings of the word ‘argument’; to some of

the specific argumentation-theoretic tools that have been applied to mathematics,

notably Toulmin layouts and argumentation schemes; to some of the different ways

that argumentation is implicated in mathematical practices; and to the social aspects

of mathematical argumentation.

1.1 Introduction

Since logic developed the tools to adequately represent formal derivations, many

philosophers of mathematics have been tempted to conclude that formal derivation

suffices to account for all interesting features of mathematical practice. However,

there have always been other philosophers who perceived the shortcomings of such

a reduction. Here, for example, is Henri Poincaré:

If you are present at a game of chess, it will not suffice, for the understanding of the game, to

know the rules for moving the pieces. That will only enable you to recognize that each move
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has been made conformably to these rules, and this knowledge will truly have very little

value. Yet this is what the reader of a book on mathematics would do if he were a logician

only. To understand the game is wholly another matter; it is to know why the player moves

this piece rather than that other which he could have moved without breaking the rules of

the game. It is to perceive the inward reason which makes of this series of successive moves

a sort of organized whole. This faculty is still more necessary for the player himself, that is,

for the inventor (Poincaré, 1913, 218).

One response to this limitation of formal logic is to recognise an analogy with a sim-

ilar limitation in another domain: formal logic is also an imperfect tool for under-

standing everyday reasoning. Solutions have been proposed for that problem: sys-

tems of informal logic, argumentation theory, or dialectic have been devised since

antiquity to address ordinary reasoning (van Eemeren et al., 2014). Hence some

philosophers of mathematical practice have reasoned that these theories might also

lend themselves to the understanding of mathematical reasoning (Aberdein, 2009).

This chapter surveys the uses to which argumentation theory has been put in

order to understand mathematical practice. Section 1.2 addresses the many ambi-

guities implicit in the word ‘argument’—and how they are specifically related to

mathematics. Section 1.3 discusses two prominent proposals for the application of

particular tools from argumentation theory to mathematics: Toulmin layouts and

argumentation schemes. Section 1.4 considers the argumentative aspects of mathe-

matical practices beyond proof and section 1.5 focuses on the contribution of com-

munities of mathematical practice to such argumentation.

1.2 What is an argument?

Several overlapping distinctions may be drawn in our understanding of arguments.

• Argument-that/argument-about A sequence of statements, whereby premises

offer support for a conclusion, is an argument. But an exchange of conflicting

views held by different people is also an argument. We may refer to the former

as an argument-that and to the latter as an argument-about. Arguments-that

are also known as arguments1 and arguments-about as arguments2 (O’Keefe,

1977). As Michael Gilbert helpfully glosses the distinction, “one person makes

an argument1 and [at least] two people have an argument2” (Gilbert, 2014, 21).

Although the most familiar mathematical arguments tend to be arguments-that,

arguments-about arise in mathematics too, such as priority disputes, contested

axioms or principles, or debates over the legitimacy of a technique or the admis-

sibility of a proof. A salient recent example is the contested status of Shinichi

Mochizuki’s claimed proof of the abc conjecture (Aberdein, 2023).

• Process/product Arguments-that are sometimes represented as products of the

argument-about process, but this is arguably a mischaracterization: “If, as part

of organizing the domain of argumentation theory, we merely want to distin-

guish acts of arguing from arguments-as-objects, we should not use the mis-

leading process/product labels to do so. At the very least such labels imply a
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relationship that does not exist and so distort our perceptions of the domain of

study” (Goddu, 2011, 87). Nonetheless, we may usefully distinguish between

an argument understood as an act of arguing and the informational trace that

act leaves behind (a transcript, a recording,. . . ), also often called an argument

(Sundholm, 2012, 948). This distinction straightforwardly applies to mathemat-

ics. (For further reflection on proofs as acts of proving or proof-events, see

Goguen, 2001; Stefaneas and Vandoulakis, 2014, 2015.)

• Monologue/dialogue/polylogue The number of participants in an argument

may vary considerably. Most attention has traditionally been paid to mono-

logues and dialogues: arguments-that are characteristically presented as mono-

logues; arguments-about as dialogues. If dialogues are understood loosely, as

also covering argumentation with more than two participants, that distinction

would exhaust the options. However, some authors have made a case for dif-

ferentiating the two-participant dialogue from the many-participant polylogue

(Lewiński, 2014). The Polymath Project, a series of crowd-sourced proofs of

open conjectures, is a rich source for research on mathematical polylogues (Allo

et al., 2021).

• Small scale/large scale Arguments can vary significantly in scale. The scale of

an argument may be measured in several conceptually distinct ways. The dura-

tion of an argument may range from arguments that take seconds to arguments

which last for hundreds of years. The size of an argument may range from a

few inferences expressed in short sentences about a simple issue to inferentially

complex structures involving a great many very long sentences. Likewise, math-

ematical proofs can vary in length from a few lines to tens or even hundreds of

pages. In exceptional cases, proofs can be so long as to defy the capacity of

any single mathematician to survey the whole (Coleman, 2009). This can arise

in proofs achieved by traditional means, such as that of the classification of

finite simple groups, the components of which comprised thousands of pages

in several hundred articles by dozens of mathematicians (Steingart, 2012). It is

even more acute in the case of computer assisted proofs, such as that of the four

colour theorem or the Kepler conjecture, or indeed the subsequent computer

verification of these proofs (Gonthier, 2008; Hales et al., 2017).

• Static/dynamic Static arguments have achieved a final and definite form; dy-

namic arguments are fluid and ongoing. In general, the evolution of knowledge

may be understood as the product of dynamic argumentation. Dynamic argu-

ments are common in everyday life—but they are also central to the develop-

ment of scientific thought. A well-known and influential analysis of a dynamic

argument in mathematics is Imre Lakatos’s Proofs and Refutations. Lakatos

shows how the protracted search for a proof of the Descartes–Euler conjecture,

which relates the quantities of vertices, edges, and faces of convex polyhedra,

involved significant redefinition of most of the concepts used in that conjec-

ture (Lakatos, 1976). (For further discussion, see Section 1.4.3 below or Reyes,

2021.)

• Centralized/distributed Arguments may be either centralized or distributed

with respect to several factors including time, people, space, and media. A
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highly centralized argument may be restricted to what one person communi-

cates in one place at one time in one mode of expression. But arguments may

involve a varying cast of arguers and be drawn out over long periods, in multiple

locations and media. Large scale arguments are characteristically distributed:

as a mathematical example, the classification of finite simple groups involved

many years of work by a large, geographically widespread collective of mathe-

maticians (Steingart, 2012).

• Sequential/parallel Logic, whether formal or informal, tends to reconstruct ar-

guments as a linear sequence of premises from which intermediate statements

are derived, culminating in a final conclusion. (Some logical systems prefer to

invert this sequence.) However, argumentation in natural contexts often occurs

in a more parallel fashion: several strands of argument may be developed si-

multaneously, the conclusion may be derived from initial premises and then re-

inforced by subsequent subarguments, and so forth. Parallel arguments are also

more likely to arise in projects with many participants, whether by accident or

design: “To permit a large collaboration, . . . long proofs have been broken up

into series of shorter lemmas” (Hales et al., 2017, 11). The educationists Chris-

tine Knipping and David Reid have proposed more fine-grained subdivisions of

parallel arguments in mathematics (Knipping and Reid, 2019; for further dis-

cussion, see Section 1.3.1 below.)

The seven overlapping distinctions addressed so far have received unequal inter-

est in the philosophy of mathematics. The formal logical approach mentioned in the

introduction best coheres with a small scale, static, centralized, sequential product

like a published proof. Much recent work in the philosophy of mathematical prac-

tice focuses on mathematical arguments along the other dimensions. Some further

distinctions arise from consideration of the goals of the arguers:

• Persuasive/directive/polemic/. . . That arguments may be distinguished by their

objective is an ancient idea: Aristotle distinguished forensic arguments (con-

cerned with past acts), display arguments (concerned with present circum-

stances), and deliberative arguments (concerned with future acts) (Aristotle,

1991, 1358b). Erik C. W. Krabbe and Jan Albert van Laar propose an updated

distinction between three different functions of reasoning: persuasive (to con-

vince the other party), directive (to get the other party to act), and polemic

(to intimidate the other party) (Krabbe and van Laar, 2007, 29 f.). They con-

trast these “inherently argumentative” functions with three further functions of

reasoning: explanatory (to enhance understanding), explorative (to investigate

connections between statements), and probative (to establish new knowledge).

• Adversarial/non-adversarial On a strict interpretation, all arguments begin in

conflict: a difference in belief, or concerning how to act, or of some other kind.

On a broader interpretation, arguments need not be strictly adversarial, hence

they may proceed from other situations, including shared uncertainty or one

party knowing what another does not.

These nine different dimensions of comparison interact in important ways.

Firstly, they are not pairwise independent. For example, as the scale of an argu-
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Is there a conflict?

YES

Is resolution the goal?

YES

PERSUASION

NO

Is settlement the goal?

YES

NEGOTIATION

NO

ERISTICS

NO

Is there a common problem to be solved?

YES

Is this a theoretical problem?

YES

INQUIRY

NO

DELIBERATION

NO

INFORMATION SEEKING

Fig. 1.1 Determining the type of dialogue (after Walton and Krabbe, 1995, 81)

ment increases, we may tentatively expect both the number of participants and the

number of different objectives to increase, but the likelihood of the argument being

either static, centralized, or sequential to tend to zero. Secondly, the last two dimen-

sions combine to produce what Douglas Walton calls dialogue types (see Fig. 1.1,

adapted from Walton and Krabbe, 1995, 81). Further complicating this picture, Wal-

ton and Krabbe observe that dialogues can shift from one type to another (for ex-

ample, an inquiry might turn into a persuasion dialogue if one inquirer becomes an

advocate for a particular result) or be embedded in a dialogue of a different type (a

deliberation over which course of action to pursue might contain an inquiry into the

merits of one action, say). Walton maintains that arguments may arise in any dia-

logue type (Walton, 1998); Krabbe is more conservative and regards argumentation

as restricted to adversarial contexts (the lefthand fork of Fig. 1.1) (Krabbe and van

Laar, 2007, 33).

How do these distinctions apply to argumentation in mathematics? The most

widely discussed case is that of mathematical proof, which many authors have main-

tained is intrinsically argumentative. But even here, we may distinguish multiple dis-

tinct activities which give rise to arguments of different kinds. For example, Krabbe

observes the following distinct stages:

1. thinking up a proof to convince oneself of the truth of some theorem;

2. thinking up a proof in dialogue with other people (inquiry dialogue; probative func-

tions of reasoning);

3. presenting a proof to one’s fellow discussants in an inquiry dialogue (persuasion dia-

logue embedded in inquiry dialogue; persuasive and probative functions of reasoning);

4. presenting a proof to other mathematicians, e.g. by publishing it in a journal (persua-

sion dialogue; persuasive and probative functions of reasoning)

5. presenting a proof when teaching (information-seeking and persuasion dialogue; ex-

planatory, persuasive, and probative functions of reasoning) (Krabbe, 2008, 457).
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Table 1.1 Some mathematical dialogue types

Dialogue Type
Initial

Situation
Main Goal

Goal of

Proponent

Goal of

Respondent

Inquiry
Open-

mindedness

Prove or

disprove

conjecture

Contribute to

main goal

Obtain

knowledge

Persuasion
Difference of

opinion

Resolve

difference of

opinion with

rigour

Persuade

respondent

Persuade

proponent

Pedagogical

Information-

Seeking

Respondent

lacks

information

Transfer of

knowledge

Disseminate

knowledge of

results and

methods

Obtain

knowledge

Oracular

Information-

Seeking

Proponent lacks

information

Transfer of

knowledge

Obtain

information
Inscrutable

Deliberation
Open-

mindedness

Reach a

provisional

conclusion

Contribute to

main goal

Obtain

warranted

belief

Negotiation
Difference of

opinion

Exchange

resources for a

provisional

conclusion

Contribute to

main goal

Maximize

value of

exchange

Eristic
Personal

conflict

Reveal deeper

conflict

Win in the eyes

of onlookers

Win in the eyes

of onlookers

This sequence is familiar from many mathematicians’ descriptions of the proving

process, although in actual examples some steps may be repeated as proof attempts

come unstuck.

In deference to his intrinsically adversarial conception of argument, Krabbe only

considers three dialogue types as hospitable to proofs. In other work, one of us has

suggested that proofs (or other mathematical arguments) may be found in other dia-

logue types too (see Table 1.1, from Aberdein, 2021, 165; see also Aberdein, 2007b,

148). “Oracular” information-seeking owes its inspiration to an influential aside of

Alan Turing concerning a machine “supplied with some unspecified means of solv-

ing number-theoretic problems; a kind of oracle as it were” (Turing, 1939, 172). An

oracle is a “black box”—it supplies answers but not explanations. For some sceptics

of computer-assisted proofs, this is a compelling analogy for the role that the com-

puter plays in such proofs (e.g. Tymoczko, 1979). Deliberation differs from inquiry

in seeking only a provisional conclusion. Mathematicians aspire to more perma-

nent stability for their results. Nonetheless, there are circumstances where they are

obliged to settle for less than they would wish, despite the rigour of their arguments.
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These include the “architectural conjectures” upon which many mathematical re-

search programmes depend (Mazur, 1997, 198). Negotiation characteristically adds

resource sensitivity to the provisional outcome typical of deliberation. While ideal-

ized accounts of mathematical practice disregard such factors, they are unavoidable

in some contexts, especially in applied mathematics. (And it has been controver-

sially suggested that “semi-rigorous” proofs might come with price tickets, costing

the computational resources necessary for certainty (Zeilberger, 1993).) Even eris-

tic dialogues can be the context for mathematical reasoning, as demonstrated in the

mathematically inventive quarrels of early modern mathematicians such as Giro-

lamo Cardano and Niccolò Tartaglia (Toscano, 2020).

A final distinction amongst the different senses of argument cuts across most of

those discussed above and arises not from argumentation theory but directly from

mathematical practice. Here it is presented by Joel David Hamkins:

• Hard/soft “A hard argument is one that is technically difficult; perhaps it in-

volves a laborious construction or a difficult calculation; perhaps it involves

bringing disparate fine details together in just the right combination in order to

succeed; or perhaps it involves proving various specific facts about a compara-

tively abstract construction, perhaps relating disparate levels of abstraction. A

soft argument, in contrast, is one that appeals only to very general abstract fea-

tures of the situation, and one needs hardly to construct or compute anything at

all” (Hamkins, 2020, 166).

Hamkins’s use of ‘hard’ and ‘soft’ echoes G. H. Hardy’s division of analysis into

“the ‘hard, sharp, narrow’ kind as opposed to the ‘soft, large, vague’ kind” (Hardy,

1929, 64). It also owes something to Alexander Grothendieck’s celebrated analogy

between two strategies for solving mathematical problems and two ways of open-

ing a nut: cracking it with a hammer or softening it in water until it opens with

light pressure (McLarty, 2007, 301). Grothendieck favoured the latter strategy, of

immersing problems in a much wider theory from which a solution could (even-

tually) be readily inferred. This in turn is suggestive of Freeman Dyson’s division

of mathematicians into birds and frogs: “Birds fly high in the air and survey broad

vistas of mathematics out to the far horizon. They delight in concepts that unify our

thinking and bring together diverse problems from different parts of the landscape.

Frogs live in the mud below and see only the flowers that grow nearby. They delight

in the details of particular objects, and they solve problems one at a time” (Dyson,

2009, 212). Hard arguments play to the tightly focused strengths of the frogs; soft

arguments require the birds’ sweeping perspective.

1.3 Proof as Argumentation

The view mentioned in Section 1.1, that formal derivation suffices to account for all

interesting features of mathematical practice, squarely focuses on the role of math-

ematical proof. Pure mathematicians trade in proofs. But, even in the domain of
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CD
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(a) Basic Layout

QD C

R

W

B

(b) Full Layout

Fig. 1.2 Toulmin layouts

mathematical proof, formal logic does not capture all there is of interest. Toulmin

layouts and argumentation schemes, as we will see below, are useful methods of

examining mathematical proofs. But, notably, such techniques tease apart the de-

scriptive and normative aspects of (apparent) proof. Whereas a formal derivation is

either correct or not, strictly speaking, a derivation at all, the methods of argumen-

tation theory provide the means to describe proofs independently of whether they

succeed as proofs.

1.3.1 Toulmin layouts

One of the most influential treatments of informal argumentation is that of Stephen

Toulmin (1958). His ‘layout’ can represent deductive inference, but encompasses

many other species of argument besides. In its simplest form, shown in Fig. 2(a),

the layout represents the derivation of a Claim (C), from Data (D), in accordance

with a Warrant (W ). This DWC pattern resembles a deductive inference rule, such

as modus ponens, but it can be used to represent looser inferential steps. The dif-

ferences between the types of inference which the layout may represent are made

explicit by the additional elements of the full layout shown in Fig. 2(b). The warrant

is justified by its dependence on Backing (B), possible exceptions or Rebuttals (R)

are allowed for, and the resultant force of the argument is stated in the Qualifier

(Q). Hence the full layout may be understood as ‘Given that D, we can Q claim

that C, since W (on account of B), unless R’. In a frequently cited example (de-

rived from Toulmin, 1958, 104), ‘Given that HARRY WAS BORN IN BERMUDA, we

can PRESUMABLY claim that HE IS BRITISH, since ANYONE BORN IN BERMUDA

WILL GENERALLY BE BRITISH (on account of VARIOUS STATUTES . . . ), unless

HIS PARENTS WERE ALIENS, SAY.’

Toulmin wrote The Uses of Argument in England in the 1950s as a critique of

what he perceived as a formalizing trend in contemporary philosophy; the Toul-
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min layout was subsequently adopted by communication theorists in America in the

1960s and 70s; from there it seems to have passed to mathematics educationists in

Germany in the 1990s. (Although Toulmin himself briefly considers a mathemati-

cal example, Theaetetus’s proof that there are exactly five platonic solids (Toulmin

et al., 1979, 89). For discussion, see (Aberdein, 2005, 290 ff.).) In particular, Götz

Krummheuer is usually credited with the first sustained application of the Toulmin

layout to mathematical argumentation (Krummheuer, 1995; for a recent survey, see

Krummheuer, 2015).

Toulmin draws a distinction between analytic and substantial arguments depend-

ing on whether the claim is already at least implicit in the backing. This may sug-

gest that only analytic arguments occur in mathematics. But that overlooks the em-

phasis Toulmin places on how out of the ordinary analytic arguments are: “it be-

gins to be a little doubtful whether any genuine, practical argument could ever be

properly analytic” (Toulmin, 1958, 127). Granted, immediately after this passage,

Toulmin places arguments in (pure) mathematics amongst the analytic arguments.

However, the philosophers and educationists who have applied Toulmin’s work to

mathematics endorsed his account of argument, not his philosophy of mathemat-

ics. They have typically treated (at least some) mathematical arguments as substan-

tial rather than analytic. For example, “It is the substantial argumentation that is

seen here as more adequate for the reconstruction” of mathematics classroom situ-

ations (Krummheuer, 1995, 236). In other words, the part of Toulmin’s work that

we should apply to many mathematical arguments is what he has to say about non-

mathematical arguments.

Much subsequent work applying the Toulmin layout to mathematical reasoning

has concerned ways in which it may be extended to cover cases that he does not di-

rectly address—including many of the less favoured sides of the distinctions drawn

in Section 1.2 above. Toulmin’s own later work discusses how more than one lay-

out may be chained together to represent a multi-step argument (Toulmin et al.,

1979, 79). Other authors have shown how more complicated structures, including

linked and convergent arguments, may be represented by combinations of layouts

(Aberdein, 2006, 214). Christine Knipping and David Reid have paid particular at-

tention to larger scale structures of parallel argument, distinguishing source-like

argumentation structure, where “arguments and ideas arise from a variety of ori-

gins, like water welling up from many springs”, from “reservoir structure”, wherein

arguments “flow towards intermediate target-conclusions that structure the whole

argumentation into parts that are distinct and self-contained”, and spiral argumenta-

tion structure in which “the final conclusion is proven in many ways” (Knipping and

Reid, 2019, 18 ff.). And Matthew Inglis and colleagues have argued persuasively for

the relevance of the full Toulmin model to mathematical arguments, rather than the

simplified DWC or DWBC versions that have found widest application amongst

mathematics educationists (Inglis et al., 2007). In particular, they observe that non-

deductive warrants can play an essential role in mathematical argumentation, just

so long as this is signalled by the use of appropriate qualifiers. Work has also been

done to explore the connections between the Toulmin layout and other models of

argument applicable to mathematics (Pease and Aberdein, 2011); or to link it to
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broader conceptual analyses of mathematical cognition, such as the “ck¢-enriched”

Toulmin model (Pedemonte and Balacheff, 2016).

1.3.2 Argumentation schemes

Argumentation schemes are stereotypical patterns of reasoning. Although their ori-

gins lie in the topoi of classical rhetoric, they have lately found extensive application

in the analysis and evaluation of argumentation. This revival is substantially due to

the work of the argumentation theorist Douglas Walton. Most attention has been

paid to defeasible schemes typical of informal reasoning, although deductive in-

ference rules can also be considered special cases of argumentation schemes. The

defeasible nature of the reasoning is not made explicit amongst the premisses, but

captured by an additional device, critical questions, which point to possible excep-

tions. Many of the defeasible schemes may ultimately be understood as more or less

specialized instances of the very general scheme of Defeasible Modus Ponens (Wal-

ton et al., 2008, 366). In Scheme 1 we have presented it in a way designed to bring

out its similarities to the Toulmin layout:

Argumentation Scheme 1 Defeasible Modus Ponens

Data P.

Warrant As a rule, if P, then Q.

Therefore, . . .

Qualifier presumably, . . .

Conclusion . . . Q.

Critical Questions

1. Backing: What reason is there to accept that, as a rule, if P, then Q?

2. Rebuttal: Is the present case an exception to the rule that if P, then Q?

The strength of the argumentation scheme approach lies in its heterogeneity: an

influential (but not exhaustive) survey identifies over one hundred different schemes

(Walton et al., 2008, 308 ff.). Hence schemes are typically presented with much

greater specificity than Scheme 1. For example, Scheme 2 is a scheme for Argument

from Analogy:

Argumentation Scheme 2 Argument from Analogy

Similarity Premise Generally, case C1 is similar to case C2.

Base Premise A is true (false) in case C1.

Conclusion A is true (false) in case C2.

Critical Questions

1. Are there differences between C1 and C2 that would tend to undermine the force

of the similarity cited?
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2. Is A true (false) in C1?

3. Is there some other case C3 that is also similar to C1, but in which A is false

(true)? (Walton et al., 2008, 315)

Analogies in mathematics can be formal and thereby capable of rigorous proof

(for a specific example and further discussion of this scheme, see Aberdein, 2013b,

373). They can also be informal heuristics, for example the “strong analogy between

the pluralist nature of set theory and what has emerged as an established plurality

in the foundations of geometry” (Hamkins, 2020, 296; for further discussion of this

analogy, see Berry, 2020). Analogical reasoning has been a topic of wide interest

and mathematical analogies in particular have been the subject of focussed discus-

sion (Schlimm, 2008; Bartha, 2013; Priestley, 2013).

In more recent work, Walton proposed a partial taxonomy of schemes (Walton

and Macagno, 2015, 22), although he acknowledged that some schemes remained

outside this classification. Many of these schemes have been applied to mathemat-

ical arguments: Table 1.2 is based on (Walton and Macagno, 2015, 22, Table 1),

but adds references to prior work in which such applications have been developed.

Just as Walton’s classification of schemes is incomplete, so is their application to

mathematics. Some of these schemes may be of limited usefulness in the analysis

of specifically mathematical argumentation, but others have direct application.

By varying which schemes are treated as admissible, it is possible to capture

different conceptions of mathematical rigour. To this end, one of us has proposed

a threefold distinction among the ways schemes may be employed in mathematical

reasoning (Aberdein, 2013b, 366 f.):

• A-schemes correspond directly to derivation rules. (Equivalently, we could

think in terms of a single A-scheme, the ‘pointing scheme’ which picks out

a derivation whose premisses and conclusion are formal counterparts of its data

and claim.)

• B-schemes are exclusively mathematical arguments: high-level algorithms or

macros. Their instantiations correspond to substructures of derivations rather

than individual derivations (and they may appeal to additional formally verified

propositions).

• C-schemes are even looser in their relationship to derivations, since the link

between their data and claim need not be deductive. Specific instantiations may

still correspond to derivations, but there will be no guarantee that this is so and

no procedure that will always yield the required structure even when it exists.

Thus, where the qualifier of A- and B-schemes will always indicate deductive

certainty, the qualifiers of C-schemes may exhibit more diversity. Indeed, dif-

ferent instantiations of the same scheme may have different qualifiers.

B-schemes are essentially what Saunders Mac Lane calls “processes of proof”

or general rules, algorithmic procedures that are ultimately reducible to elementary

logical inferences although not necessarily so analysed by the mathematicians who

routinely employ them: “whenever a group of elementary processes of proof occurs

repeatedly in the course of many proofs, it is desirable to formulate this group of

steps once for all as a new process” (Mac Lane, 1935, 123). Much more recently,
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• Argument from

gradualismc

• Precedent slippery slope

argument

• Sorites slippery slope

argument

1. Instrumental argument from

practical reasoning

• Argument from action to

motive

2. Argument from values

• Argument from fairness

3. Value-based argument from

practical reasoningg

a. Argument from positive or

negative consequencesc,i,j

• Argument from

waste

• Argument from

threat

• Argument from sunk

costs

1. Arguments from position to know

a. Argument from expert

opiniona,c,i

b. Argument from position to

knowc

• Argument from witness

testimony

2. Ad hominem arguments

a. Direct ad hominem

b. Circumstantial ad hominem

• Argument from

inconsistent commitment

• Arguments attacking

personal credibility

i. Arguments from

allegation of bias

ii. Poisoning the well

by alleging group

bias

3. Arguments from popular acceptance

• Argument from popular

opinionb

• Argument from popular

practiceb

Table 1.2 Walton & Macagno’s partial classification of schemes (adapted from Walton and Macagno, 2015, 22), with prior applications to mathematical

argumentation indicated.
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Yacin Hamami has used B-schemes, which he terms “hl-rules” or higher-level rules

of inference, to defend the “standard view” of mathematical rigour, that rigorous

proofs are those for which there is a routine translation into a formal derivation

(Hamami, 2022).

Hamami’s account of rigour has three components: a descriptive thesis; a nor-

mative thesis; and a philosophical thesis asserting the conformity of the other two

theses. Relative to some mathematical practice M , these theses may be stated as

follows. The descriptive thesis states that a mathematical proof P is rigorousD if and

only if for every mathematical inference I in P, there exist D ∈ D∗ and V1, . . . ,Vn ∈
V ∗ such that (1) D(I) = 〈I1, . . . , In〉 and (2) Vi(Ii) = valid for all i ∈ [1,n], where the

set D∗ consists of decomposition (or proof search) processes, whereby a mathemati-

cal inference may be rewritten as a sequence of immediate mathematical inferences,

and the set V ∗ consists of hl-rules, whereby immediate mathematical inferences are

judged valid if they correspond to instances of the hl-rules. The normative thesis

states that a mathematical proof P is rigorousN if and only if P can be routinely

translated into a formal proof. Hamami defines “routine translation” as the compo-

sition of three successive translations between proofs understood at four levels of

granularity: vernacular level proofs, comprised of inferences presented at the level

of formality normal to M ; higher-level proofs, comprised of inferences instantiat-

ing hl-rules in M ; intermediate-level proofs, comprised of inferences instantiating

primitive rules of inference in M ; and lower-level proofs, comprised of inferences

instantiating rules of inference in a purely formal system. The conformity thesis

states that if P is rigorousD then P is rigorousN. Hamami’s account of rigour corre-

sponds to one of four alternatives that one of us has discussed elsewhere (Aberdein,

2013b, 369). It may be contrasted with the more conservative policy of only admit-

ting A-schemes and thereby treating only formalized mathematics as truly rigorous

and more liberal options in which C-schemes are also admitted, thereby tolerating a

greater diversity of innovation in mathematical proof.

1.4 Mathematical Reasoning as Argumentative

In Section 1.3, we saw that to understand proof through the lens of argumentation

theory is to see it in the context of a greater diversity of types of mathematical

argument. While proofs are a vital component of modern mathematical practice, it

is not the only aspect of mathematical reasoning to which argumentation theory may

be applied. We now turn to these other aspects. Our discussion begins with general

claims about mathematical reasoning and rhetoric. We then turn to a number of

issues which surround proof including problem choice, reasoning about refutations,

and presentation of mathematical information.



14 Andrew Aberdein and Zoe Ashton

1.4.1 Mathematics & Rhetoric

A first connection between mathematical reasoning and argumentation theory in-

volves rhetoric. Rhetoric, the study of the art of persuasive argument, has long been

set in opposition to mathematics. It was thought that mathematics, as an objective,

rational, and atemporal field, has little to do with the study of persuasion. But a

number of authors have challenged this idea. An early paper by Philip J. Davis and

Reuben Hersh identified two areas where mathematics and rhetoric intersect (Davis

and Hersh, 1986). The first involves importing or applying mathematics to theo-

ries in the social sciences, such as psychodynamics and economics. Such appeals to

mathematiziation are rhetorical and argumentative moves, but they are not argumen-

tation within mathematical reasoning. However, as Davis and Hersh point out, there

is rhetoric in mathematics too, since “all proofs are incomplete, from the viewpoint

of formal logic” (Davis and Hersh, 1986, 66). Each proof requires rhetorical ele-

ments to convince the intended audience that the result is true. The mathematician

relies on the audience’s background knowledge or intuition to patch up gaps in the

proof and understand the intentions of the prover.

Like Davis and Hersh, Edward Schiappa discusses multiple ways in which math-

ematical reasoning can be rhetorical. The first intersection, again, is the rhetorical

use of mathematics. Mathematical methods can be used to persuade in a variety of

arguments. Schiappa cites examples ranging from mundane advertisement—“four

out of five dentists agree”—to the discovery of Neptune to argue that mathematical

reasoning plays a role in lending credibility to arguments outside its purview (Schi-

appa, 2021). The second intersection is the role of rhetoric within mathematics: the

argumentative and stylistic modes of persuasion in mathematical arguments. Each

aspect of mathematical practice historically required a social and persuasive com-

ponent. Acceptance of axioms and stipulated definitions depends on the audience

one aims to persuade. Even the available concepts which mathematicians reason

about can be the result of rhetoric. For example, G. Mitchell Reyes argues that,

since there was no empirical or geometric verification for infinitesimals, their sub-

stance was found in the rhetorical argumentation which surrounded them (Reyes,

2004). Schiappa also argues that the language of mathematics is rhetorical since

it is human-made. Symbols and concepts like the infinitesimal or the number zero

were additions where “social acceptance was not assured, meaning was contested,

and alternatives competed” (Schiappa, 2021, 49). Relatedly, in this collection, Reyes

examines the relationship between rhetoric and mathematics in Lakatos’s Proofs and

Refutations (Reyes, 2021).

1.4.2 Problem Choice

In addition to the rhetorical components pervasive in non-proof, there is room for

argumentation in the process around proofs. Perhaps the most fundamental part of

solving a problem, and of proving a theorem, is selecting a problem. Problem choice
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in mathematics has frequently been associated with the beauty and intrinsic worth

of problems. Under this view, there is a special sensibility mathematicians employ

when choosing a subject. According to Jacques Hadamard, mathematicians “feel

that such a direction of investigation is worth following; [they] feel that the question

in itself deserves interest . . . everybody is free to call or not to call that a feeling of

beauty” (Hadamard, 1945, 127). This approach to problem choice has been supple-

mented in recent years. Morten Misfeldt and Mikkel Willum Johansen interviewed

research mathematicians about the factors which influence problem choice (Mis-

feldt and Johansen, 2015). In line with Hadamard’s claims, certain external factors,

like funding, were not very influential on problem choice. Misfeldt and Johansen

found that problem choice was largely motivated by personal interest, perceived

ability to solve the problem, and the values of the community. It was not enough

for mathematicians to be interested in the problem, they had to be assured that the

mathematical community would be interested. Mathematicians expressed “the need

to have an audience—the right audience—for their work” (Misfeldt and Johansen,

2015, 368). This connection between an audience and an arguer is an area which

argumentation is primed to explore.

Elsewhere, one of us has looked at problem choice through an argumentative lens

by applying Chaı̈m Perelman and Lucie Olbrechts-Tyteca’s notion of the contact of

minds to problem choice in mathematics (Ashton, 2018). The contact of minds is

a set of conditions which must be met before argumentation can occur. Contact

of minds requires four things: the arguer must attach importance to the audience,

the speaker must not be beyond question, the audience must be willing to consider

being convinced, and they must share a common language. Contact of minds is

a prerequisite of any argumentation and mathematical arguments are no different.

Ashton argues that it is an audience-based factor that influences problem choice

alongside traditional considerations of beauty, intrinsic worth, and practical bene-

fits. But the contact of minds was not originally meant to be applied to mathematics:

Perelman and Olbrechts-Tyteca specifically oppose their study of argumentation to

the mathematical sciences. Argumentation, they claimed, was distinct from math-

ematics since argumentation was both social and the conclusions were probable

(Perelman and Olbrechts-Tyteca, 1969). But barring mathematical practice from the

domain of argumentation is inapproporiately limiting (Dufour, 2013; Ashton, 2018,

2021). Misfeldt and Johansen’s interviews indicate that mathematicians consider

the interest of other mathematicians while choosing problems. Given that problem

choice is broader than merely the structure of proof, a choice about what to research

is a choice of what to argue about. In this way, the process of choosing a problem

to research is distinctly social and related to the mathematical community (Ashton,

2018; discussed further in Section 1.5).
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1.4.3 Reasoning about Refutations

The influential informal logician Ralph Johnson (2000) follows the rhetoricians

Perelman and Olbrechts-Tyteca (1969) in denying that proofs can be arguments be-

cause there are features of proof, such as necessity, that are incompatible with the

social dimension of arguments. For Perelman and Olbrechts-Tyteca, mathematics

deals in demonstrations which are mechanically checkable and result in certainty,

regardless of the audience. Mathematical reasoning, for them, does not involve un-

certainty or controversy. Likewise, Johnson viewed proofs as lacking a dialectical

tier. For Johnson, arguments have two components. The first component of argu-

ment is the illative core which is a discursive structure where reasons support the

conclusion. But this logical aspect alone is not a full argument. A dialectical tier

must supplement the illative core. Dialectical tiers are where arguers discharge their

dialectical obligations by responding to objections, criticisms, or implications of

their view. According to Johnson, proofs don’t have dialectical tiers since they are

conclusive and anyone trained in the field must recognize that they are conclusive.

But refutations are a natural part of mathematical reasoning. Reasoning about pur-

ported refutations may best be understood in terms of argumentation.

In an idealized view of proof, one in which proof cannot be an argument, the

reader of a proof is an expert who “needs nobody to grasp a proof, otherwise she

is not an expert” (Dufour, 2013, 69). Such a view, according to Dufour, ignores the

important role of checking a proof for correctness. There may still be legitimate

room for refutations at this stage. As Fallis (2003) notes, proofs have many inten-

tional gaps. The gaps are purportedly something a reader could fill in, with enough

time and background knowledge. Verifying that a proof is correct requires checking

these gaps. If the gaps cannot be traversed by either the reader or author, the proof

itself may be refuted. Sometimes large gaps may result in the apparent refutation of

otherwise good proofs. According to Dufour, Galois experienced such problems of

communication (Dufour, 2013, 71). Galois’s exaggerated brevity led his audience to

believe that the mathematics itself was insufficiently developed. Proofs may be re-

futed because of unintelligible or untraversable gaps. These gaps, and their relation-

ships to audience understanding, are evidence that reasoning about the correctness

of proofs, and their refutations, involves argumentation.

Contra Johnson, Ian Dove has argued that proofs do have dialectical tiers (Dove,

2007). In particular, Dove argues that the method of monster barring seen in

Lakatos’s Proofs and Refutations is part of a dialectical tier (Lakatos, 1976). Lakatos

reconstructs a series of purported proofs of Euler’s formula. Cauchy’s proof of Eu-

ler’s formula for polyhedra is considered and then counterexamples are raised which

are not convex and not simply connected. Dove argues that there is a dialectical tier

for Cauchy’s proof of Euler’s formula since (a) objections are raised to the proof

and (b) the objections receive responses in the proof. The method of response is to

bar exceptions to the formula so that Euler’s formula holds for simply connected,

convex polyhedra. In other words, monster barring to improve a conjecture is one

way a proof can have a dialectical tier.
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Both Dove and Dufour found that reasoning about refutations is an argumen-

tative practice. Purported proofs are not always uncontroversial and incorporating

refutations involves filling out a dialectical tier or considering a relevant audience.

1.4.4 Presenting Reasoning

After a problem has been chosen and its solution has been verified, mathematical

reasoning must be disseminated to a larger public. There is much work to be done to

discover how mathematicians incorporate audience consideration while presenting

their solutions. But Line Edslev Andersen’s interviews with working mathemati-

cians indicate that audience consideration does feature into how papers are revised.

Andersen’s interviews provide insight into how mathematicians write for mathe-

maticians (Andersen et al., 2021), how peer reviewers receive and evaluate papers

(Andersen, 2017), and how mathematicians choose which gaps to include in their

papers (Andersen, 2020). Additionally, mathematical results must be translated to

students in a pedagogical setting. Results also often need to be communicated to

scientists or mathematicians in other fields. In each of these cases, it is common to

reword or recast a proof to aid in communication. All “strategic rewordings belong

to the field of mathematical argumentation” (Dufour, 2013, 73). Some of these re-

wordings may even be usefully cast within Johnson’s concept of a dialectical tier.

This is a rich area for further research, but, as Dufour points out, one must first

admit mathematical proofs into the realm of argumentation. Section 1.5 examines

how communities play a role in mathematical practice broadly, not just in presenting

reasoning.

1.5 Mathematical Communities as Argumentative

Throughout this chapter we have looked at the different aspects of mathematical

practice that involve argumentation. Mathematicians present and produce argumen-

tations. Their choice of problems and reasoning while solving problems also in-

volved argumentation. But arguments are presented to, or developed with, an audi-

ence in mind. We now turn to mathematical audiences and communities. We argue

that mathematical audiences influence which investigations are undertaken and how

they are undertaken.

Given that the interest of this section is mathematical audiences, the receivers

of mathematical arguments, one might begin by asking what kind of interaction

mathematicians have with their audiences. Mathematics is often portrayed as an

isolated activity. The mathematician locks herself in an attic and spends days prov-

ing complicated conjectures alone. Indeed, stories of famous mathematicians seem

to support such an idea. Andrew Wiles did work on his proof of Fermat’s Last The-

orem in an attic. And mathematical advances can be so particular, as in the case of
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Mochizuki’s purported proof of the abc conjecture, that only a handful of people

can verify or understand them. But this isolated view is not an accurate portrayal of

mathematical practice.

Without an appropriate community, or engagement with that community, math-

ematical investigations can falter. Besides the obvious importance of mentors or

co-authors, there needs to be a certain level of engagement with a larger community

of mathematicians. Take, for example, William Thurston’s discussion in “On Proof

and Progress in Mathematics” (Thurston, 1994). According to Thurston, mathemati-

cians tend to follow fads. Fad-following is in line with his claim that there is a vital

social component to mathematical progress. He drew this conclusion from his own

experiences. When Thurston first entered the field of foliations, he rapidly solved

a number of open problems. But the field seemed to empty out within a few years

of his entrance and Thurston lost interest soon after. In response to this experience,

he tried to develop and present infrastructure instead of theorem-proving. He writes

that:

I have put a lot of effort into non-credit-producing activities that I value just as I value prov-

ing theorems: mathematical politics, revision of my notes into a book with a high standard

of communication, exploration of computing in mathematics, mathematical education, de-

velopment of new forms for communication of mathematics . . . I think that what I have

done has not maximized my “credits” . . . I do think that my actions have done well in

stimulating mathematics. (Thurston, 1994, 177)

We can see that, for Thurston, the health of the mathematical community is invalu-

able to retaining mathematicians who are interested in that area. This is part of their

tendency to ‘follow fads’ to newly exciting communities.

Audience and community involvement seem important, but what exactly does

argumentation theory have to offer in this area? As one of us has argued, Thurston’s

story exemplifies a broader issue namely that problem choice in mathematics rests

on the assurance that there exists a ‘contact of minds’ between the audience and

the mathematician (Ashton, 2018). As we can see, the interest and activity of a

mathematical community is vital to successful mathematical practice.

In addition to the role that communities play in problem choice, they play an

important role in the ongoing dialectic involved in problem solving. The method of

proofs and refutations described by Lakatos relies heavily on community involve-

ment in problem-solving. A first ‘proof’ is suggested to show that, for polyhedra,

V −E +F = 2, where V is the number of vertices, E the number of edges, and F

the number of faces of the polyhedron. The proof faces a number of global and lo-

cal counterexamples, that is counterexamples to the conjecture and to specific proof

steps, respectively. Accommodating these counterexamples requires a reconceptual-

ization of the definition of polyhedron. In Section 1.4, we saw that reasoning about

those refutations involved filling out a dialectical tier. It is also important that com-

munity involvement plays an essential role in the reasoning. The history of the proof

is recounted using the story of a class attempting to solve the problem. But it is clear

that the refinements of definition, the counterexamples, and the resulting proofs are

all products of dialectical engagement between the initial prover and an audience.
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This community involvement plays out on a historical scale, as in (Lakatos,

1976), but also in other collaborative problem-solving. For example, communities

play a key role in crowdsourced mathematics such as Mathoverflow and (Mini-

)Polymath. These activities have been studied by Ursula Martin and Alison Pease

who connect the activities undertaken to the method of proofs and refutations (Mar-

tin and Pease, 2013a,b). Building on these data sets, in later work with Joseph Cor-

neli and other colleagues, they model mathematical arguments by analyzing how the

discourse unfolds (Corneli et al., 2019). They use what they call Inference Anchor-

ing Theory + Content to further understand how these dialogues introduce and track

salient features of mathematical progress. This is done by examining the dialogue

within a community of mathematicians.

So far we have considered the role that an external audience plays in problem

choice. We have also looked at how we could identify communities in terms of the

argument schemes that they allow or even disavow. But the final role of mathemati-

cal audiences is best described as an internal one. The core idea is that mathematical

audiences play an important role in the development of proofs and other mathemati-

cal arguments. Valentin Bazhanov, for example, has argued that proofs are an appeal

to a scientific community (Bazhanov, 2012). A new result is offered to the commu-

nity as a purported proof. To become a proof, the community must be persuaded that

the argument is reliable and reproducible. This decision is borne out in dialogue.

Catarina Dutilh Novaes argues for a dialogical conception of proof (Dutilh No-

vaes, 2021). According to the dialogical conception, the concept of proof is an

embodiment of a semi-adversarial dialogue between two people: Prover and Scep-

tic. Sceptic grants certain premises to Prover. Prover then puts forward statements

claimed to follow from the premises. At each move, or inference, Sceptic has three

potential moves. He brings up objections, counterexamples, and requests for clarifi-

cation. If all of the steps are indefeasible, that is without counterexample, the proof

is a winning strategy for Prover. Of course proofs are not usually dialogues be-

tween two interlocutors following Prover-Sceptic rules. Dutilh Novaes argues that

the Sceptic is actually internalized into the method itself. In this sense, Sceptic, who

is a particular kind of audience, plays a vital role in what constitutes proof.

In addition to the internalized sceptic, one of us has argued that the audience

under consideration in a proof is actually a universal audience (Ashton, 2021). This

is a concept drawn from Perelman and Olbrechts-Tyteca: an argument to the uni-

versal audience is one that is meant to convince all people. The universal audience

itself is an imagined audience—an arguer can never stand before all people and

ask whether or not they assent to his argument. Rather, the universal audience is an

abstraction from experiences with real audiences that the arguer has encountered.

The account applies also to mathematics: mathematicians encounter real audiences

in their education and practice. In addition, they learn what certain groups of real

audiences react to—knot theorists accept inferential moves involving diagrams that

certain algebraists might not. By considering all these different, real audiences, the

mathematician constructs an internalized audience which reflects the standards of

reasonableness found within each audience. In this way, the mathematician con-

structs his own universal audience.
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According to both Dutilh Novaes and Ashton, there is an internalized audience

which, through experience with real audiences, is vital to proof development. In one

case, a proof is an argument to an internalized sceptic. In the other, it’s an argument

to an internalized standard of reasonableness. Whether the mathematician aims to

convince the adversarial sceptic or ‘all reasonable people,’ there is clearly a role for

the audience in standards of proof. In other words, proofs should be examined in

terms of the audiences which could have influenced them.

Communities, conceived of as audiences to mathematical arguments, are a vital

component of the practice on a number of levels. The assurance of an interested

audience and the contact of minds can influence research programmes and problem

choice. The ongoing dialogue between provers and the mathematical community

helps to verify results, introduce new methods, and clear hidden assumptions. In

addition to these explicit, external roles, the internalized audience plays an impor-

tant role in proof development and the associated normativity. Given all this, it’s

clear that no account of argumentation in the philosophy of mathematics could be

complete without a thorough discussion of the role of these audiences.
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