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Abstract Disagreements that resist rational resolution, often termed “deep disagree-
ments”, have been the focus of much work in epistemology and informal logic. In
this paper, I argue that they also deserve the attention of philosophers of mathemat-
ics. I link the question of whether there can be deep disagreements in mathematics
to a more familiar debate over whether there can be revolutions in mathematics. I
propose an affirmative answer to both questions, using the controversy over Shinichi
Mochizuki’s work on the abc conjecture as a potential example of both phenomena.
I conclude by investigating the prospects for the resolution of mathematical deep dis-
agreements in virtue-theoretic approaches to informal logic and mathematical prac-
tice.

1 Mathematical Revolutions

Perhaps the earliest “fully modern and explicit statement concerning a revolution
in mathematics” was made in 1720 by Bernard de Fontenelle, permanent secretary
of the Académie Royale des Sciences (Cohen 1985, 90). In his eulogy for Michel
Rolle, Fontenelle characterized the innovations of the infinitesimal calculus as “une
révolution bien marquée” (quoted in Cohen 1985, 214). Bernard Cohen identifies
many subsequent mathematicians and philosophers who have spoken in terms that
imply the occurrence of mathematical revolutions, including Immanuel Kant, William
Kingdon Clifford, Georg Cantor, Gösta Mittag-Leffler, Morris Kline, and Benoı̂t
Mandelbrot (Cohen 1985, 490 f.; see also François and Van Bendegem 2010, 110).
However, as Cohen also notes, other distinguished authorities have come to a con-
trary conclusion. Indeed, Michael Crowe declared as a “law” that “Revolutions never
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occur in mathematics”, citing Joseph Fourier, Hermann Hankel, and Clifford Trues-
dell in support of a perspective on mathematical knowledge as inherently cumula-
tive (Crowe 1975, 165). Raymond Wilder offered a slightly more nuanced version
of Crowe’s “law”, that “Revolutions may occur in the metaphysics, symbolism and
methodology of mathematics, but not in the core of mathematics” (Wilder 1981, 142).

Despite Crowe’s initial disavowal of mathematical revolutions, he subsequently
characterized the proposition that “mathematics is cumulative” as a “misconception”
and eventually concluded that the “question of whether revolutions occur in mathe-
matics is in substantial measure definitional” (Crowe 1988, 263; Crowe 1992, 316).
Crowe could thereby continue to deny the existence of mathematical revolutions,
but only if “a necessary characteristic of a revolution is that some previously exist-
ing entity (be it king, constitution, or theory) must be overthrown and irrevocably
discarded” (Crowe 1975, 165). Such support as he later offered mathematical revolu-
tions would remain subject to this qualification:

Massive areas of mathematics have, for all practical purposes, been aban-
doned. The nineteenth-century mathematicians who extended two millennia
of research on conic section theory have now been forgotten; invariant theory,
so popular in the nineteenth century, fell from favor. Of the hundreds of proofs
of the Pythagorean theorem, nearly all are now nothing more than curiosities.
In short, although many previous areas, proofs, and concepts in mathematics
have persisted, others are now abandoned. Scattered over the landscape of the
past of mathematics are numerous citadels, once proudly erected, but which,
although never attacked, are now left unoccupied by active mathematicians
(Crowe 1988, 263).

In other words, there are mathematical revolutions, but they are revolutions of a
special sort. In the natural sciences, revolution sweeps away the old concepts—
phlogiston is gone and so much the worse for Priestley; Lavoisier invoked funda-
mentally different theoretical posits to make sense of his experiments. Mathemati-
cians are seldom in that situation, or so it would seem. Instead, they move on. What
had been an area of widespread fascination becomes deserted. Crowe’s abandoned
citadels were never attacked, whereas phlogiston was roundly attacked and irrevoca-
bly discarded. Nothing like that happened to conic sections, yet nobody has regarded
them as an active area of research in 150 years. Hence mathematical revolutions are
unlike other revolutions—or so it is argued.

In my earlier treatment of revolutions in logic I framed this distinction as be-
tween glorious and inglorious revolutions, by allusion to the Glorious Revolution of
1688 (Aberdein and Read 2009, 618 f.). The defeat of the Jacobites and the ascent of
William and Mary was consequential with respect to the balance of power, but Britain
remained a monarchy with a parliament throughout. The crucial shift was in the rel-
ative significance of these different components, not the loss of a crucial component
or the introduction of an unprecedented new component.1 I also proposed the con-
cept of a paraglorious revolution: this adds something which is not commensurable

1 Donald Gillies draws a similar distinction using different historical examples: Franco-British revolu-
tions in Gillies’ terms are my glorious revolutions, whereas his Russian is my inglorious revolution (Gillies
1992, 5).
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with what went before. The paraglorious revolution thereby resembles an inglorious
revolution with the arrow of time reversed.

Another of the misconceptions that Crowe diagnoses in the historiography of
mathematics is that “the methodology of mathematics is radically different from the
methodology of science” (Crowe 1988, 271). If we accept a methodological continu-
ity between mathematics and science we should also expect not only that both fields
should exhibit revolutions but also that both sorts of revolution should be amenable to
similar analysis. The study of scientific revolutions has become irresistibly linked to
the work of Thomas Kuhn, for whom they are paradigm shifts or transitions between
incommensurable scientific theories. Kuhn says many things about incommensurabil-
ity and fitting them together is a complicated task. Here is one significant distinction
which Kuhn does not make entirely explicit:

Methodological Incommensurability (MI) There are no objective criteria of
theory evaluation. The familiar criteria of evaluation, such as simplicity
and fruitfulness, are not a fixed set of rules. Rather, they vary with the
currently dominant paradigm.

Taxonomic Incommensurability (TI) Periods of scientific change (in partic-
ular, revolutionary change) that exhibit TI are scientific developments in
which existing concepts are replaced with new concepts that are incom-
patible with the older concepts. The new concepts are incompatible with
the old concepts in the following sense: two competing scientific theories
are conceptually incompatible (or incommensurable) just in case they do
not share the same “lexical taxonomy”. A lexical taxonomy contains the
structures and vocabulary that are used to state a theory (Mizrahi 2015,
362, internal citations omitted).

How do these two understandings of incommensurability fit the mathematical case?
Methodological incommensurability is perhaps the more familiar. Here, for exam-
ple, is Yehuda Rav discussing the diversity of mathematical practices: “because of
the historical and methodological wealth of mathematical proof practices (plural),
any attempt to encapsulate such multifarious practices in a unique and uniform one-
block perspective is bound to be defective” (Rav 2007, 299, emphasis in original).
As examples, he notes the differences between “(a) historical epochs; (b) different
(and at times opposing) acceptability criteria of logical reasoning in mathematics;
and (c) distinct admissibility criteria of types of proof in different branches of math-
ematics” (ibid.). This looks like methodological incommensurability: no objective
criteria common across every domain. However, Rav is not claiming that any of
these differences suffice for a revolution (although some revolutions may exhibit such
methodological changes). As we shall see, taxonomic incommensurability is a closer
match to the discontinuity characteristic of mathematical revolutions. For example,
Ken Manders describes what he calls domain extension by existential closure and
model completion, a process whereby a theory is supplemented with new elements,
strictly incompatible with the existing elements, such as adding a square root of −1
to the real numbers, and thereby ensuring that all algebraic equations have solutions.
As Manders explains, “Model completion relates an established theoretical context to
a new one, intimately connected: we retain individuals and certain of their relation-
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ships and properties in the original domain. But some issues about the original context
become more understandable in the model-completed one” (Manders 1989, 557). In-
novations of this sort transformed mathematics in the nineteenth century (Gray 1992;
see also Cantù 2013; Bellomo 2021).

To give these ideas a little more precision let us make some definitions. We shall
assume without further analysis that we are comparing theories which are comprised
of multiple components (concepts, ideas, techniques,. . . ), some of which are of key
significance to the practitioners of that theory; that is, their absence would alter the
theory in some fundamental way, at least in the eyes of its practitioners. We may then
define some relationships between sets of key components and thereby between the
respective theories:

Definition 1 (Isomorphism) Two sets of key components Ki and K j are isomorphic
(Ki ∼= K j) when there exists a correspondence between their elements that preserves
meaning for the practitioners of the theories of which Ki and K j are a part.

Definition 2 (Isomorphic embedding) Ki embeds isomorphically in K j (Ki ↪→ K j)
if and only if there exists some proper subset of K j, K′j, such that Ki ∼= K′j.

With these definitions in place, we may now give a somewhat more precise account
of the distinction drawn above between different types of revolution:

Definition 3 (Revolutions) Where Ki are the key components of theory Ti, succes-
sion from theory Tn to theory Tn+1 is a null revolution when Kn =Kn+1; a glorious rev-
olution when Kn 6= Kn+1 and Kn ∼= Kn+1; a paraglorious revolution when Kn � Kn+1
and Kn ↪→ Kn+1; and an inglorious revolution when Kn � Kn+1 and Kn 6↪→ Kn+1.

As a special case of inglorious revolution, we can consider revolutions which simply
restrict the set of key terms, such that Kn←↩Kn+1, and are thereby dual to paraglorious
revolutions. More generally, inglorious revolutions both add and remove key terms,
such that there is some common set K′n, not necessarily itself the subject of a seriously
defended theory, such that Kn←↩ K′n ↪→ Kn+1.

These definitions raise several additional questions, which I have pursued at greater
length elsewhere (Aberdein and Read 2009, 619 ff.; Aberdein 2018, 136 f.). Firstly,
the definitions turn on what the practitioners of the theories at issue take to be key
and what they consider to have been preserved in moving from one theory to another.
A full accounting of these matters for any such transition is potentially a delicate and
substantial task. Fortunately, there is often room for consensus between adherents of
pre- and post-revolutionary theories: Priestley and Lavoisier could presumably agree
that phlogiston was key to Priestley’s theory and not preserved in Lavoisier’s. Further
complicating this question is the issue of lexical drift: the meaning of persistent ter-
minology can change beyond recognition and new terminology can be used to refer to
old concepts. Thus lexical taxonomy cannot be merely lexical; it must accommodate
such potentially distracting shifts in the lexicon. Detailed historical studies must be
sensitive to all these factors (see, for example, Barany 2018). A further question con-
cerns the status of a sequence of consecutive revolutions: if they are all of the same
type, can they be treated as a single revolution of that type? Clearly not in general,
as a pair of inglorious revolutions might in theory cancel each other out. Moreover,
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some sequences of individually glorious (or paraglorious) revolutions might be plau-
sibly treated as collectively inglorious, for example if a sorites-like series of small
changes in the meaning of key components adds up to a bigger change.

As we have seen, many mathematicians, and philosophers or historians of math-
ematics, have denied that there can be revolutions in mathematics. Some, such as
(the later) Crowe and Gillies, have admitted what I have defined as glorious rev-
olutions. My contention is that inglorious and paraglorious revolutions are also to
be found. What examples of such mathematical revolutions are there? One problem
for the identification of revolutions in mathematics is that of scale. While revolu-
tions of Copernican magnitude may be found in many natural sciences, mathematical
revolutions with such sweeping effects are harder to identify. This has been taken—
erroneously, I would argue—as evidence that mathematics lacks true revolutions. In
the first place, this criticism rests on a narrow reading of Kuhn’s characterization of
revolution, as implicitly excluding “small-scale ‘micro-revolutions’ ” (Toulmin 1970,
47). Without engaging the vexed questions of Kuhnian exegesis, I wish to endorse
his view that such shifts are indeed revolutions: “a little studied type of conceptual
change which occurs frequently in science and is fundamental to its advance” (Kuhn
1970, 249 f., my emphasis). Kuhn later gave an indication of the scale of such concep-
tual changes in defining a paradigm as “what the members of a scientific community
and they alone share”, where such communities may comprise “perhaps 100 mem-
bers, sometimes significantly fewer” (Kuhn 1974, 460; 462). Mathematical research
communities are typically at the low end of this range, but certainly within it: “a few
dozen (at most a few hundred)” (Davis and Hersh 1980, 35).2 Secondly, there have
been large-scale mathematical revolutions. Bruce Pourciau has argued that Brouwe-
rian intuitionism, which, if adopted, would have required wholesale revision of results
treated as certain by prior mathematicians, is a (failed) Kuhnian revolution (Pourciau
2000). In my earlier treatment of mathematical revolutions I proposed several fur-
ther putative cases of mathematical revolution (Aberdein 2018, 140 ff.). The shift in
antiquity from rational to real numbers—the original case of incommensurability—
is at least a paraglorious revolution and perhaps also inglorious. Other examples of
substantial mathematical revolutions proposed by historians include non-Euclidean
geometry (Ashkenazi and Lotker 2014) and the origins of algebraic geometry (Oaks
2018).

Examples of smaller scale revolutions arise from the wide-ranging, so-called ar-
chitectural conjectures that structure much of contemporary mathematics (see Mazur
1997). When a whole research programme is based on a conjecture that turns out
to be false, then the eventual failure of that conjecture must be a strictly inglorious
revolution. Such collapsing conjectures are proofs by contradiction writ large; they
describe “things that seem to exist but that, when we study them deeply enough, turn
out not to exist after all” (Propp 2019, 18). In such cases, the failure of the conjec-

2 The activity of such communities is, of course, the “normal science” which Kuhn contrasts with
scientific revolutions. Understanding the normal science of mathematical research communities is a key
task of the philosophy of mathematical practice, but complementary to the focus of the present paper. For
one specific such project, see (Petersen and Zenker 2014).
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ture requires the exclusion of elements of the set of key components.3 Conversely,
shifts resulting from a rapid advance in key conceptual content are paraglorious rev-
olutions (if they succeed; if they do not they are also failed architectural conjectures).
Lastly, the shift from modern to contemporary mathematics has involved numerous
conceptual innovations, such as transference, reflection, and gluing (Zalamea 2012,
27). Each of these steps proceeds by strictly augmenting the store of key concepts
and techniques, and may therefore be seen as paraglorious revolutions. Moreover, as
the older concepts and techniques fall into desuetude in the manner of Crowe’s aban-
doned citadels, they may be expected to steadily lose their key status. Thus, taken
collectively, the transformation of mathematics over the last couple of centuries may
be seen as a large-scale revolution that is locally paraglorious and globally inglorious.

2 Deep Disagreement

What is deep disagreement? As a term of art, it originates with Robert Fogelin (1985).
He stresses that deep disagreement is an epistemic consideration, unrelated to strength
of feeling. The resistance to resolution is not just a contingent feature of the individual
circumstances of the dispute:

A disagreement can be intense without being deep. A disagreement can also
be unresolvable without being deep. I can argue myself blue in the face try-
ing to convince you of something without succeeding. The explanation might
be that one of us is dense or pig-headed. And this is a matter that could be
established beyond doubt to, say, an impartial spectator. But we get a very
different sort of disagreement when it proceeds from a clash in underlying
principles. Under these circumstances, the parties may be unbiased, free of
prejudice, consistent, coherent, precise and rigorous, yet still disagree. And
disagree profoundly, not just marginally (Fogelin 1985, 5).

Fogelin invokes Putnam and Wittgenstein to link his “underlying principles” to their
rules or framework propositions. Others have made “hinge commitments” the basis
of contention (Pritchard 2021). Michael Lynch has focussed instead on epistemic
principles. He offers a fourfold set of criteria for when a disagreement is deep:

1. Commonality: The parties to the disagreement share common epistemic
goal(s).

2. Competition: If the parties affirm distinct principles with regard to a given
domain, those principles
(a) pronounce different methods to be the most reliable in a given do-

main; and
(b) these methods are capable of producing incompatible beliefs about

that domain.
3 For example, consider the collapse of the “world without end hypothesis”, which posited the existence

of a certain type of map, termed θ j , between higher-dimensional spheres for all dimensions 2 j+1−2. The
proof that no such maps exist for j ≥ 7 demolished an elaborate structure of conjectures comprising a
theory for which the θ j for j ≥ 7 were key components. For further discussion, see (Aberdein 2018, 143
ff.).
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3. Non-arbitration: There is no further epistemic principle, accepted by both
parties, which would settle the disagreement.

4. Mutual Circularity: The epistemic principle(s) in question can be justified
only by means of an epistemically circular argument (Lynch 2010, 265).

These criteria presume that the disagreement is over an epistemic principle, in other
words a direct deep disagreement. But disagreements can also be indirectly deep,
when the parties ostensibly disagree over something other than an epistemic prin-
ciple, but their disagreement commits them to also disagreeing directly (whether
or not they appreciate this) (Ranalli 2021, 988). For a disagreement to be deep on
Lynch’s account, all four conditions must be met. If the parties are trying to do differ-
ent things or are actually talking about different stuff, they are not in disagreement;
and if there is a further epistemic principle they can appeal to to resolve the issue or
a non-question-begging justification for one or other epistemic principle, their dis-
agreement is not deep.

In place of epistemic principles, framework propositions, or hinge commitments,
it is also plausible to see deep disagreement in Kuhnian terms as a clash of incom-
mensurable paradigms. Recall the distinction drawn in the previous section between
methodological and taxonomic incommensurability. On a methodological approach
to incommensurability, any criteria you might use for theory appraisal will be relative
to context, so there is no higher authority that can arbitrate disputes. On a taxonomic
approach to incommensurability, paradigms are incompatible because they employ
different vocabularies.

So how do deep disagreements connect to the account of mathematical revolu-
tions outlined in the previous section? My proposal is that agents that disagree with
each other are in deep disagreement if they endorse theories with sets of key compo-
nents that are not isomorphic. Maybe there are other ways of being in deep disagree-
ment; I claim only that this is sufficient for a deep disagreement.

Definition 4 (Deep Disagreement) Agents Si and S j are in deep disagreement about
some subject matter if they endorse theories Ti and Tj of that subject matter such that
Ki � K j.

Does this definition satisfy Lynch’s criteria? Let us take them in turn. (1) By defini-
tion, Ti and Tj concern the same phenomena, satisfying Commonality. (2) If Ki � K j,
then Ti and Tj necessarily contain incompatible beliefs. Competition also requires that
these incompatible beliefs be mediated by a difference of method, which could be
taken to require that Ti and Tj are not just taxonomically incommensurable, but also
methodologically incommensurable. These forms of incommensurability are concep-
tually independent (even though they mostly coincide). Thus Definition 4 could be
strengthened to ensure that Ti and Tj are methodologically incommensurable too,
thereby fully satisfying Competition. However, without seeking to settle this issue,
I will employ the weaker form of Definition 4. (3) Any further epistemic principle,
common to both Ki and K j which could arbitrate the dispute between them, would
thereby demonstrate that Ki ∼= K j, hence Definition 4 implies Non-arbitration. (4) We
would not expect every element of Ki or K j to be justified only by means of epistem-
ically circular arguments; many of them will be justified by other key components.
But, nor is every deep disagreement directly deep. Suppose Ki �K j by virtue of some
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unique key component, say k ∈ Ki, such that k does not correspond to any element of
K j. If k has a non-question-begging justification, that justification must also appeal
to a key component, that is some other element of Ki, say k′. If k′ has a counterpart
in K j, then the disagreement is not deep. But it would now appear that, contrary to
our hypothesis, Ki ∼= K j, since the sole obstacle to preservation of meaning can be
explained in terms common to both theories. So, if k is sufficient to establish Ki �K j,
then it must lack an independent justification within Ti, meeting the Mutual Circular-
ity condition.

What are some examples of deep disagreements in mathematics? Silvia Jonas
helpfully catalogues “some of the most important fundamental disagreements in cur-
rent foundational mathematics” (Jonas 2020, 304). These include the disagreement
between classicists and intuitionists as to the appropriate rules for logic (discussed
above as an example of a revolution) and disagreements amongst set theorists over
the choice of axioms and whether axioms supplementary to ZFC are required. Ax-
ioms and rules of logic are clearly key components of any theory that depends upon
them. Although Jonas’s concern is not with deep disagreement as such, each of these
disputes may plausibly be seen as an example thereof. Certainly it is uncontroversial
that the competing key components—logical principles or axioms—are epistemic
principles. However, all of these disagreements occur in the foundations of mathe-
matics, which is remote from the working practice of most mathematicians. Do deep
disagreements arise elsewhere in mathematics? To address this question, I will turn
to an extended example.

3 Inter-Universal Teichmüller Theory

Inter-universal Teichmüller theory (IUT or IUTeich, for short) is the work of the emi-
nent mathematician Shinichi Mochizuki and has recently been the focus of substantial
attention in the mathematical world and beyond. The conjecture which provoked it,
the abc conjecture, is relatively simple to state:

Conjecture 1 (Oesterlé–Masser, 1985) For every ε > 0, there are only finitely many
triples (a,b,c) of co-prime positive integers where a+ b = c, such that c > d1+ε ,
where d denotes the product of the distinct prime factors of abc.

Suppose you have a set of three natural numbers {a,b,c}, with no prime factors in
common (hence they are co-prime), such that the third is the sum of the first two.
Generally it is not the case that the third, the sum, will be greater than d, the product
of their distinct prime factors. As an arbitrary example, take a and b as 15 and 28,
and therefore c as 43. They are co-prime, but d = 2×3×5×7×43 = 9030, which
is, of course, a great deal larger than 43. So those numbers do not work. But if you
take, say, 1 and 63, their sum is 64 but the product of the prime factors of all three
numbers is 42, which is less than 64. That was a carefully chosen case: the abc con-
jecture states that such cases are not just scarce, they are finite in number. Despite
the simplicity of this statement, it resists simple proof. It is also of wide-ranging and
profound significance for very fundamental aspects of mathematics. As the number
theorist Michel Waldschmidt puts it, the conjecture “describes a kind of balance or
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Table 1 Timeline of the path to publication of Mochizuki’s IUT papers

August 2012 IUT preprints appear and are submitted to “a certain mathematics
journal” (Mochizuki 2020).

December 2013 & 2014 Mochizuki posts end of year progress reports on the verification pro-
cess (Mochizuki 2013, 2014).

December 7–11, 2015 Oxford workshop on IUT. A report from Brian Conrad appears
shortly afterwards (Conrad 2015).

May 2016 Journal responds: IUT papers accepted with minor corrections; cor-
rected mss returned shortly afterwards (Mochizuki 2020).

September 2017 Journal requests final production corrections (Mochizuki 2020).
December 16, 2017 Japanese press reports that IUT papers are to be accepted at PRIMS:

“a decision could be made to publish them . . . as early as January”
(Ishikura 2017). Widespread online discussion ensues, mostly as-
suming IUT papers have been accepted at PRIMS (e.g. Woit 2017).
PRIMS issues statement that IUT papers “have not yet been accepted
in a journal”.

December 21, 2017 Peter Scholze first(?) publicly suggests that the proof of Corollary
3.12 contains an inferential gap, in a comment on Frank Calegari’s
blog (Calegari 2017). Brian Conrad replies that his December 2015
account of the Oxford IUT meeting provoked “three independent
unsolicited emails”, all indicating a gap at Corollary 3.12.

March 15–20, 2018 Discussion, primarily of Corollary 3.12, between Mochizuki,
Yuichiro Hoshi, Scholze, and Jakob Stix takes place in Kyoto.

May/August 2018 Scholze and Stix’s “Why abc is still a conjecture” appears (Scholze
and Stix 2018), together with responses from Mochizuki (Mochizuki
2018b,a).

January 5, 2020 Mochizuki publishes “whistleblower” blog post complaining of
“a miserable black hole emerging in the mathematical world”
(Mochizuki 2020).

February 5, 2020 Acceptance of IUT papers in PRIMS (Mochizuki 2021, 4).
April 3, 2020 Acceptance publicly announced.
March 5, 2021 IUT papers appear in PRIMS, with a brief preface.

tension between addition and multiplication, formalizing the observation that when
two numbers a and b are divisible by large powers of small primes, a+ b tends to
be divisible by small powers of large primes” (quoted in Fesenko 2016). As such, it
has many significant consequences—not least Fermat’s Last Theorem (Granville and
Tucker 2002, 1227).

3.1 The news from Kyoto

In August 2012, Mochizuki uploaded a 500 page sequence of four papers to his web-
site, entitled Inter-Universal Teichmüller Theory I through IV. These papers contain
(what purports to be) a proof of the abc conjecture. Mochizuki is a highly respected
mathematician with a track record of major results, so although he did not publicize
the papers, they swiftly attracted attention within the mathematical world. Further
investigation posed a severe challenge, not just because of the papers’ length and de-
pendence on an even greater volume of earlier work, but also because of the intrinsic
difficulty of the material. The initial impression of the mathematical community was
bafflement. It took a long time before any sort of consensus began to emerge—if it
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has. Table 1 provides a timeline of some of the main incidents in the IUT papers’ path
to publication. By early 2017, the process of verification of IUT had been ongoing
for about five years. Mochizuki had succeeded in convincing a small circle of other
mathematicians, some of them colleagues of his in Kyoto, but also including a num-
ber of international visitors. Several conferences had been organized in an attempt
to disseminate understanding of IUT more widely, with mixed results. Although the
papers remained unpublished, it was understood that they were going through peer
review, a process that can take many years even in much less exceptional cases. One
mathematician I spoke to at this time expressed concern that the results were “losing
freshness”, and more overt scepticism may well have circulated privately, but most
public comment was circumspect. This began to change in December 2017, initially
with what seemed like a very favourable development.

A rumour, apparently arising from a story in a Japanese newspaper, rapidly spread
that Mochizuki’s papers had been accepted at Publications of the Research Insti-
tute for Mathematical Sciences (PRIMS). However, this development was seen as
controversial for two reasons. Firstly, Mochizuki is the Editor-in-Chief of PRIMS,
which is the in-house journal of the Research Institute for Mathematical Sciences at
Kyoto, where he has spent most of his career. Nonetheless, PRIMS is an eminently
respectable journal, it is not unknown for major results to be published in local jour-
nals,4 and there are procedures by which editors may publish in their own journals
while allaying suspicions of impropriety.5 The second concern was rather more se-
rious: several mathematicians were aware of criticisms that had been communicated
to Mochizuki and to which the most recently available revisions of his paper made
no apparent reply. Specifically, more than one mathematician independently reported
finding a gap in the proof of Corollary 3.12 of the third paper. One such person was
Peter Scholze, a significantly younger, but also very distinguished mathematician,
indeed a 2018 Fields medalist. Corollary 3.12 is several hundred pages in, but most
of those pages are spent introducing a complex network of novel concepts and set-
ting things up for subsequent theorems which are then stated and given very brief
proofs appealing to this vast apparatus of definitions. Corollary 3.12 links the re-
sults gleaned from this formidable endeavour back to more familiar mathematics. It
sets up the fourth paper in which the abc conjecture itself is derived from this result.
Scholze professed that there was an unbridgeable gap at Corollary 3.12 and Scholze’s
subsequent interactions with Mochizuki have not convinced him otherwise.

It is important to clarify what is meant by the accusation that Mochizuki’s proof
of Corollary 3.12 contains a gap. Most proofs contain gaps of some sort and most
of those gaps are harmless and understood as such by the mathematical community.
Don Fallis draws a very useful distinction between unintentional inferential gaps and

4 For example, the two papers comprising the computer-assisted proof of the Four Colour Theorem were
published in the Illinois Journal of Mathematics, apparently “to ensure expert refereeing” (MacKenzie
1999, 38). Indeed, Mochizuki has offered a similar rationale, that PRIMS is “by far the most [and indeed
perhaps the only truly] technically qualified” journal (Mochizuki 2021, 4, parenthesis and emphasis in
original). Of course, when the definition of expert is itself at stake, such arguments may appear double-
edged: see §3.4 below for further discussion.

5 Procedures which were followed in this case: “the Editorial Board . . . form[ed] a special committee
to handle it, excluding him [Mochizuki] and with an Editor-in-Chief substituting for him” (Kashiwara and
Tamagawa 2021, 1).
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intentional enthymematic or untraversed gaps. Intentional gaps are generally innocu-
ous, although edge cases can be controversial. Enthymematic gaps arise when the
mathematician has worked through the proof in detail, but chosen to omit some steps
from the presentation, presuming that the missing steps will be unnecessary for the
intended audience. Such “skipping” (Davis 1972, 259) is a presentational choice. Of
course, it would be a bad choice if the audience find the proof impossible to fol-
low. This sort of misjudgment may be more likely in cutting edge work (such as the
examples in §3.2 below). Untraversed gaps occur when a mathematician does not at-
tempt to verify every step of the proof. In some cases, this can be consistent with the
acceptance of the proof by the mathematical community. In exceptional cases, even
“universally untraversed gaps”, unverified by any mathematician have been admitted
in proofs (Fallis 2003, 59). Subsequent interview-based research with mathematicians
bears out Fallis’s impression: “universally untraversed gaps in published proofs are,
while not necessarily few, quite innocent” (Andersen 2020, 246). However, an infer-
ential gap is always a mistake. It occurs when “the mathematical proposition that the
mathematician was trying to prove does not follow by basic mathematical inferences
in the manner that the mathematician had in mind” (Fallis 2003, 51). This is the sort
of gap which Scholze diagnosed in the proof of Corollary 3.12.

Accompanied by a colleague, Jakob Stix, Scholze travelled to Kyoto in 2018 in an
attempt to resolve the concerns with Corollary 3.12 in conversation with Mochizuki
and his colleagues. However, Scholze and Stix came away convinced that there was
no proof: “the suggested proof has a problem . . . so severe that in our opinion small
modifications will not rescue the proof strategy”, as they write in their report of the
meeting (Scholze and Stix 2018, 1). This relatively brief manuscript contains a fairly
devastating indictment. Mochizuki’s replies are much lengthier, but have not con-
vinced either Scholze and Stix or much of the rest of the international mathemati-
cal community (Mochizuki 2018b,a, 2021). Scholze and Stix do stress that they are
making “certain radical simplifications, and it might be argued that such simplifica-
tions strip away all the interesting mathematics that forms the core of Mochizuki’s
proof” (Scholze and Stix 2018, 4). Their approach is to try and find a way of recon-
structing Mochizuki’s reasoning that does without much of his taxonomy: a simpli-
fication which Scholze and Stix claim (but Mochizuki denies) captures all the key
points of Mochizuki’s argument. Ultimately they produce a diagram of relations be-
tween various entities and assert that this must be inconsistent, which thereby vitiates
Mochizuki’s whole project: “Mochizuki wanted to introduce scalars of j2 somewhere
on the left part of this diagram . . . However, it is clear that this will result in the whole
diagram having monodromy j2, i.e., being inconsistent” (Scholze and Stix 2018, 10).
At that point things collapse—at least on Scholze and Stix’s version of Mochizuki’s
argument.

In his reply, Mochizuki strongly rejects that conclusion:

In some sense, the main assertion of SS underlying this argument in §2.2
concerning identifications of copies of R is the following:

(Lin) the relationship between any two of these copies ofR is a simple, straight-
forward linear relationship, given by multiplication by some scalar, i.e.,
multiplication by some positive real number.
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Here, it should be stated clearly that this assertion (Lin), which underlies the
argument of §2.2, is completely false (Mochizuki 2018a, 4; all emphases
original in this and subsequent quotations from Mochizuki).

So Mochizuki strongly denies that Scholze and Stix have successfully linked their
simplified version of his argument to his work. As he puts it elsewhere:

at numerous points in the March discussions, I was often tempted to issue
a response of the following form to various assertions of SS (but typically
refrained from doing so!): Yes! Yes! Of course, I completely agree that the
theory that you are discussing is completely absurd and meaningless, but that
theory is completely different from IUTch! (Mochizuki 2018b, 39).

Mochizuki later complains that “adherents of the RCS”, that is the Redundant Copies
School, or mathematicians who accept the simplification of Scholze and Stix, are
criticizing “logically unrelated fabricated versions of inter-universal Teichmüller the-
ory in which the crucial logical AND “∧” relation satisfied by the Θ-link of inter-
universal Teichmüller theory is replaced by a logical OR “∨” relation or, alterna-
tively, by a logical XOR “∨̇” relation” (Mochizuki 2021, 23).

Scholze remained unpersuaded. Although he and Stix did not produce a further
manuscript responding to Mochizuki’s reply, he has made more informal public com-
ments expanding on his criticisms, such as this:

I may have not expressed this clearly enough in my manuscript with Stix,
but there is just no way that anything like what Mochizuki does can work. (I
would not make this claim as strong as I am making it if I had not discussed
this . . . with Mochizuki in Kyoto for a whole week; the following point is
extremely basic, and Mochizuki could not convince me that one dot of it is
misguided, during that whole week.) . . . The reason it cannot work is a theo-
rem of Mochizuki himself. This states that a hyperbolic curve X over a p-adic
field K (maybe with some assumptions, all of which are always satisfied in all
cases relevant to IUT) is determined up to isomorphism by its fundamental
group π1(X), and in fact automorphisms of X are bijective with outer auto-
morphisms of π1(X). Thus, the data of X is completely equivalent to the data
of π1(X) as a profinite group up to conjugation. In IUT, Mochizuki always
considers the latter type of data, but of course up to equivalence of groupoids
this makes no difference (Scholze 2020).

Thus we arrive at a point where Scholze accuses Mochizuki of not perceiving the im-
plications of his own results and Mochizuki accuses Scholze of failing to distinguish
“and” from “or”. As Wittgenstein comments of what we now call deep disagreements,
“Where two principles really do meet which cannot be reconciled with one another,
then each man declares the other a fool and heretic” (Wittgenstein 1972, §611).

The false alarm in 2017, when it was rumoured that Mochizuki’s papers had been
accepted, did correctly reveal that they were under consideration at PRIMS. In April
2020, their acceptance at PRIMS was duly announced, and the four papers appeared
in print the following year. However, it would seem that Scholze’s intervention and
his subsequent impasse with Mochizuki may have delayed the process. As the Asahi
Shinbun reported in its account of the papers’ acceptance:
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In late 2017, it appeared that the articles would be published, but mathemati-
cians in the West pointed out what they considered inappropriate leaps in logic
in a core portion of the articles. That led the journal editorial board to continue
with their assessment. A number of other outside experts were consulted and
it was only in February that Mochizuki’s proof was considered to no longer
have any problems (Ishikura 2020).

Understandably, Mochizuki seems to have found this delay frustrating, complaining
of “a miserable black hole emerging in the mathematical world” (Mochizuki 2020).
Nonetheless, the papers were eventually published with, as far as I can determine,
only incidental corrections from how they had appeared on Mochizuki’s website. In
particular, the proof of Corollary 3.12, which Scholze and Stix claim to contain an
unbridgeable gap, is broadly unchanged.

Scholze was invited to review Mochizuki’s papers for one of the two major venues
for post-publication review in mathematics, zbMath.6 He makes it very clear in his
review that his opinion has not changed. Referring to (Scholze and Stix 2018), he
asserts that “The concerns expressed in this manuscript have not been addressed in the
published version” (Scholze 2021). As he summarizes the problem, “at some point
in the proof of Corollary 3.12, things are so obfuscated that it is completely unclear
whether some object refers to the q-values or the Θ-values, as it is somehow claimed
to be definitionally equal to both of them, up to some blurring of course, and hence
you get the desired result” (Scholze 2021). Hence “the argument given for Corollary
3.12 is not a proof, and the theory built in these papers is clearly insufficient to prove
the ABC conjecture” (Scholze 2021). The other major review journal, Mathematical
Reviews, commissioned their review of the IUT papers from Mohamed Saı̈di, an ally
of Mochizuki’s and frequent visitor to Kyoto (Saı̈di 2022). He makes no mention of
Scholze’s concerns.

So the mathematical world seems to be in what the American number theorist
Frank Calegari anticipated as “the ridiculous situation where ABC is a theorem in
Kyoto but a conjecture everywhere else” (Calegari 2017). Certainly, the news from
Kyoto is that this is now unequivocally a theorem. Popular treatments of Mochizuki’s
work published in Japanese bear out this interpretation. For example, even before
the official acceptance of Mochizuki’s papers, Fumiharu Kato, a mathematics pro-
fessor and popular writer on mathematics, published a book in Japanese with the
English title: Mathematics that Bridges Universes: The Shock of IUT Theory. This
promises, optimistically one might think, “that IUT theory is rooted in a natural way
of thinking that can be understood by ordinary people who are not mathematicians”
(Kato 2019). Another popular treatment, this time of just the abc conjecture rather
than Mochizuki’s results, although clearly inspired by that work, refers to it as “a
super-difficult problem in mathematics whose proof has been confirmed after the
2020 peer review” (Koyama and Nagahara 2021). So, as far as the Japanese public
is concerned, it would seem that the abc conjecture has been proved by their man.
Indeed, Scholze’s comments bemoan that his disagreement with Mochizuki seems to
have become a matter of national chauvinism: “I’m really frustrated with the current

6 The erstwhile Zentralblatt für Mathematik und ihre Grenzgebiete. Its rival is Mathematical Reviews.
For further details of this history, see (Barany 2018, 285 f.).
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situation . . . effectively arguing along national lines; again, this strikes deep into my
heart. I’m really quite surprised by the strong backing that Mochizuki gets from the
many eminent people (who I highly respect) at RIMS” (Scholze 2020).

Mochizuki does have some defenders outside Japan. One of the most outspoken
is Ivan Fesenko, a mathematics professor at the University of Nottingham in the UK,
who has responded to the criticisms of Scholze and others with some asperity:

Some, affected by negative emotions, broke professional rules of conduct and
made public their ignorant and sometimes intolerant opinions. Tellingly, the
only questions produced were shallow and misplaced . . . It should be further
analysed why has it become acceptable for some mathematicians to produce
public negative statements about the work of other mathematicians without
any concrete mathematical justification and what fundamental harm to pio-
neering research this unethical behaviour makes (Fesenko 2018, 5 f.).

Fesenko is also one of the very small number of mathematicians to have published a
survey article that attempts to clarify Mochizuki’s results (Fesenko 2015). However,
this paper does not claim to be a full recapitulation of the IUT papers, and the consen-
sus of the mathematical community is that much more work in this vein is required.
For example, Brian Conrad contrasts Mochizuki’s work with that of Scholze on per-
fectoid spaces: “the production of efficient survey articles and lectures getting right
to the point in a moderate amount of space and time occurred very soon after that
work was announced. Everything I understood during the week in Oxford supports
the widespread belief that there is no reason the same cannot be done for IUT, exactly
as for other prior great breakthroughs in mathematics” (Conrad 2015). While Con-
rad’s optimism now seems premature, there is ongoing work of the kind he suggests:
perhaps the most promising is the sequence of papers by Taylor Dupuy and Anton
Hilado (beginning with Dupuy and Hilado 2020).

3.2 Comparison with other results

Several aspects of the reception of Mochizuki’s IUT papers as outlined above may
initially arouse suspicion. In particular, that the reasoning is found hard to follow;
that the proof is believed by at least some of its critics to contain a gap; and that
widespread understanding of the result requires a comprehensive rewrite by later,
independent mathematicians. However, while these are perhaps uncommon features
amongst mathematical proofs in general, they echo the vicissitudes of many other
major mathematical results. (See Table 2.) For example, Kurt Heegner’s (1952) proof
that there are exactly nine complex quadratic fields of class-number one has been
described as “written in the most horrible style that you can think of” (Kolata 1983,
40); was presumed to inherit an inferential gap from earlier work by Heinrich Weber
known to contain errors; and the result was therefore reproved independently by other
mathematicians. But one of those mathematicians then reexamined Heegner’s proof
and concluded that the dependence on Weber could be easily avoided and “that there
is in fact only a very minor gap in Heegner’s proof” (Stark 1969, 16). A much more
prominent result with similar parallels is Michael Freedman’s (1982) proof of the
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four-dimensional Poincaré conjecture. In stark contrast with the protracted reviewing
process of the IUT papers, this proof was published with only minimal peer review.
After Freedman presented his proof at a conference, the paper was solicited by a jour-
nal which sent it to a close associate of Freedman’s; when the reviewer vouched for
the proof’s correctness but complained that a full report would take many weeks of
work (“each page in the paper . . . generated at least a page of notes, questions, correc-
tions, and typos”), the journal accepted the paper without corrections (Kirby 2020).
Perhaps as a result of this unorthodox path to publication, the paper has long been
seen as particularly difficult to follow, although Freedman’s personal explanations are
apparently much clearer (which may be why his proof has been generally accepted
as correct) (Hartnett 2021). This asymmetry eventually provoked the publication of a
lengthy, multiply authored book recasting Freedman’s arguments in accessible terms
(Behrens et al. 2021). Louis de Branges’s (1984) proof of the Bieberbach conjecture
exhibits a similar pattern:

[De Branges] completed a manuscript of 385 pages . . . As he tells it, he was
disappointed that the U.S. mathematicians to whom he had sent his manuscript
had not yet been able to verify his long proof. In Leningrad, de Branges pre-
sented his work to the members of the seminars in functional analysis and ge-
ometric function theory. In a large number of sessions, the proof was verified
and some inessential errors corrected. Finally, through hard work under de
Branges’ direction, a relatively short proof of the Lebedev-Milin conjecture
[the crucial step required to prove the Bieberbach conjecture] was distilled
from the original manuscript (Korevaar 1986, 513).

Several subsequent authors reworked de Branges’s proof into even shorter and sim-
pler forms, culminating in “a wallet-sized, high-school-level proof” (Krantz 2011,
165). Most conspicuous of all (but also perhaps most idiosyncratic) is Grigori Perel-
man’s (2002) proof of the three-dimensional Poincaré conjecture. Perelman never
submitted his preprints for publication, but they were independently vetted by two
teams of mathematicians. Nonetheless, the Chinese mathematician Shing-Tung Yau
controversially claimed that the proof was only completed in an article reconstructing
Perelman’s work (and written by two of Yau’s protégés) (Nasar and Gruber 2006).
A subsequent correction to this article withdrew the claim (Szpiro 2007, 244). As
we have seen, Mochizuki’s IUT papers have caused widespread bafflement and have
been explicitly accused of harbouring an inferential gap. Several mathematicians have
expressed the hope that the core ideas will eventually be rewritten by others in a more
accessible form, a project which is still in its very early stages. The point of this series
of comparisons is to stress that none of these factors should necessarily count against
Mochizuki’s work. Of course, neither are they evidence in its support.

Which, if any, of these earlier results are revolutionary or give rise to deep dis-
agreements? Freedman and Perelman’s work has often been characterized as rev-
olutionary and is marked by substantial conceptual innovations which ensure that
it meets the narrower definition set out in §1 above. Heegner, on the other hand,
was working within an established tradition. The same can probably be said of de
Branges’s proof, despite its higher profile. By contrast, few if any of these cases
could be said to give rise to a deep disagreement. Heegner died in obscurity before his
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Table 2 Comparison of the reception of several major mathematical results

Resists Suspected Rewritten Deep
understanding of gap(s) by others disagreement Revolution

Heegner (1952) X X X × ×
Freedman (1982) X × X × X
De Branges (1984) X ? X × ?
Perelman (2002) X X X × X
Mochizuki (2012) X X ongoing X X

work was rediscovered, so there was little opportunity for disagreement. Moreover,
the misperception of his proof as flawed turned on a relatively superficial confusion.
Freedman’s proof, although notoriously hard to follow, has generally been accepted
as correct since its inception. De Branges’s original manuscript seems to have been ig-
nored rather than critiqued; if its recipients suspected it of containing gaps, they may
have done so without reading it, making only for a very superficial disagreement. Yau
certainly accused Perelman’s preprints of containing substantial gaps, which entails
some sort of disagreement, even if the consensus of the mathematical community
has been against him. However, Yau accepted Perelman’s proof strategy and was not
claiming that the alleged gaps were irreparable—on the contrary, he asserted that
they had been subsequently filled. Essentially this disagreement concerned the level
of credit due the mathematicians who filled these gaps: that is a priority dispute, not
a deep disagreement.

3.3 IUT as revolutionary

We are now in a position to assess IUT’s claims to revolutionary status. Some of
Mochizuki’s defenders, such as Fesenko, have overtly (and repeatedly) ascribed a
revolutionary nature to his work: “This theory is so radically different from anything
that came before it that it is natural to ask whether it will induce a paradigm shift”
(Fesenko 2015, 436); “We had mathematics before Mochizuki’s work—and now we
have mathematics after Mochizuki’s work” (quoted in Castelvecchi 2015, 181); “IUT
is different in its philosophy and main ideas from anything we have known in con-
ventional number theory. It is already changing mathematics, and as more people
learn and develop IUT, this will continue” (Fesenko 2016). But most importantly, Fe-
senko has buttressed these claims by appeal to IUT’s taxonomic incommensurability
with other mathematical theories: it is “a highly novel exotic theory with a two-digit
number of new concepts” (Fesenko 2018). Other mathematicians have also ascribed
“revolutionary new ideas” to IUT (Jeffrey Lagarias, cited in Castelvecchi 2016, 14).
If this characterization is correct, IUT would meet the definition of (paraglorious)
revolution proposed in §1 above.

Fesenko has also stated that Mochizuki compares himself to Alexander Grothen-
dieck, a major twentieth-century mathematician whose work is widely seen as rev-
olutionary (Castelvecchi 2015, 181). This may be an immodest claim, but it is an
understandable one: Grothendieck’s work is an obvious and important influence on
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Mochizuki. His first major result proved an open conjecture made by Grothendieck,
his research is largely within fields which Grothendieck worked in (or indeed in-
vented), and Mochizuki’s expository style, at least within the IUT papers, clearly
echoes that of Grothendieck. The hundreds of pages of definitions and theorems with
brief proofs leading up to the fateful Corollary 3.12 at least stylistically resemble
Pierre Deligne’s description of “a typical Grothendieck proof as a long series of triv-
ial steps where ‘nothing seems to happen, and yet at the end a highly non-trivial
theorem is there’ ” (quoted in McLarty 2007, 302). On the other hand, for others,

the comparison between Mochizuki and Grothendieck is a poor one. Yes,
the Grothendieck revolution upended mathematics during the 1960’s ‘from
the ground up’. But . . . the success of the Grothendieck school is not mea-
sured in the theorems coming out of IHES in the ’60s but in how the ideas
completely changed how everyone in the subject (and surrounding subjects)
thought about algebraic geometry (Calegari 2017).

Mochizuki’s ideas have not yet had anything like this sort of influence. Even if we
take the peer-reviewed publication of his papers as establishing the cogency of his
arguments (an issue I return to below), the true revolutionary potential of his project
would turn on the wider application of his techniques. While his supporters insist that
this will follow, they have few such examples so far, even after nearly a decade.

Both of these arguments for the revolutionary character of IUT presume its suc-
cess. If it does succeed, Mochizuki’s approach exhibits taxonomic incommensurabil-
ity with prior work in algebraic geometry, and is thereby paragloriously revolutionary.
Even if IUT is eventually established beyond dispute to be fundamentally inconsis-
tent, I have argued elsewhere that the inter-universal Teichmüller theory paradigm
would, like other failed architectural conjectures, undergo a form of inglorious rev-
olution as it collapses (Aberdein 2018, 147). So there is some sort of revolution in-
volved one way or the other: a paraglorious revolution if it succeeds; or an inglorious
revolution if it fails. Which of these situations obtains remains, of course, the subject
of a substantial disagreement, which I address next.

3.4 IUT and deep disagreement

What are Mochizuki and Scholze disagreeing about and is their disagreement deep?
Most prominently, but also superficially, they disagree as to whether the IUT papers
comprise a proof of the abc conjecture. But, as we have seen, the disagreement is
more focussed: does Corollary 3.12 contain an inferential gap? That disagreement
turns on the legitimacy of Scholze’s so-called “redundant copies” reconstruction of
Mochizuki’s work (RCS-IUT, as the latter calls it). Mochizuki makes clear that he
agrees with Scholze that “RCS-IUT is indeed a meaningless and absurd theory that
leads immediately to a contradiction” (Mochizuki 2021, 5). For Mochizuki, the re-
dundant copies are not redundant: rather it is their subtle interplay on which his whole
proof relies. As the mathematician David Roberts cautiously observes,

It remains entirely possible that those radical simplifications engineered by
Scholze and Stix identified objects that are isomorphic only after some stage



18 Andrew Aberdein

of a tower of forgetful functors,7 but not at the earlier stage at which they were
meant to be considered. A system of objects may have been identified with a
different, simpler system of objects unnaturally, various necessary compati-
bility conditions violated (Roberts 2019).

That is what Mochizuki insists upon and what Scholze denies. Hence the substance
of their dispute concerns the exact nature of the relation between IUT and RCS-IUT:
are they interchangeable, as Scholze asserts, or fundamentally distinct, as Mochizuki
would have it? Of course, even if this dispute were settled in Mochizuki’s favour, his
proof of the abc conjecture might still fail for other reasons. As Roberts continues,

Even if Scholze and Stix’s analysis is flawed, and Mochizuki’s categorical
foibles are harmless, his papers may still have a gap, some innocuous assump-
tion unchecked, some existence statement unjustified—an abc-sized gap deep
in the proof of Theorem 3.11 or Corollary 3.12. This will only be found by
careful study and ideally a rewriting of Mochizuki’s papers into more standard
language (Roberts 2019).

The discovery of such a gap would render the Mochizuki–Scholze disagreement
moot. But, so far, neither party has produced anything likely to be seen as a watertight
proof of either side of the dilemma, hence the disagreement endures.

The relationship between IUT and RCS-IUT is ultimately a matter of fact, rather
than epistemic principle. However, as Michael Lynch observes, “debates over the ba-
sic facts can themselves turn into disagreements over whose sources and standards
for facts are trustworthy” (Lynch 2020, 149). Just such a shift has occurred in this
disagreement, at least on Mochizuki’s side. He attributes RCS-IUT (and what he
perceives as its misleading conflation with IUT) to “a growing collection of mathe-
maticians who have a somewhat inaccurate and incomplete—and indeed often quite
superficial—understanding of certain aspects of the theory” (Mochizuki 2021, 14).
Mochizuki asserts that “the number of professional mathematicians who have achieved
a sufficiently detailed understanding of inter-universal Teichmüller theory to make in-
dependent, well informed, definitive statements concerning the theory . . . is roughly
on the order of 10” (Mochizuki 2021, 11). This in turn justifies his choice of a local
journal as “by far the most [and indeed perhaps the only truly] technically qualified”
venue to referee the IUT papers (Mochizuki 2021, 4). Scholze and other sceptics of
IUT dispute the implication that anyone outside Mochizuki’s team of ten lacks suffi-
cient expertise to judge the papers.

As we saw in §3.3, IUT is widely seen as taxonomically incommensurable with
mainstream mathematics, which would ensure not only that it is revolutionary, but
also that a disagreement over its success meets the definition of deep disagreement
proposed in §2. We can also see that the Mochizuki–Scholze dispute meets Lynch’s
criteria for deep disagreement. The two parties have a common epistemic goal, to
determine whether the IUT papers constitute a proof of the abc conjecture, thereby
satisfying Commonality. The two parties affirm distinct epistemic principles, at least
in the sense that they disagree over who is an expert, which satisfies Competition.

7 In category theory, a forgetful functor maps a more complex to a less complex algebraic structure, by
“forgetting” some of that complexity.
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Non-arbitration requires further discussion: there are two candidate arbiters, but nei-
ther of them are helpful here. Firstly, proof is often taken to be reducible to formal
derivation, which is susceptible to purely mechanical (or even automated) checking.
This would seem to render any apparent disagreements over what counts as a proof
easily resolvable. However, this account is misleading: in practice few mathemati-
cal proofs have ever been successfully represented as formal derivations. Doing so
requires an exceptionally fine-grained grasp of every detail of the informal proof.
Resolving the IUT/RCS-IUT dilemma would thus be an essential step in any such
formalization of Mochizuki’s work. Formalization cannot be expected to arbitrate a
dispute that would have to be settled before the formalization could begin. A second,
more conventional, yardstick for settling disagreements about the status of proofs
is peer review. The IUT papers have now been published in a peer-reviewed journal.
However, this has not settled the disagreement either. As Calegari observed before the
papers were published, “whether the papers are accepted or not in a journal is pretty
much irrelevant here; it’s not good enough for people to attest that they have read the
argument and it is fine, someone has to be able to explain it” (Calegari 2017). Cale-
gari implicitly endorses the useful maxim that “Proof = Guarantee + Explanation”
(Robinson 2000; Brown 2017). Even if we were to grant that the peer review process
has provided the first component (which in turn would require endorsing something
like Mochizuki’s view on the scarcity of expertise in IUT), we would still be lacking
the second component:

[The referee process] forces the author(s) to bring the clarity of the writing
up to a reasonable standard for professionals to read it (so they don’t need to
take the same time duration that was required for the referees, amongst other
things). This latter aspect has been a complete failure, calling into question
both the quality of the referee work that was done and the judgement of the
editorial board at PRIMS to permit papers in such an unacceptable and widely
recognized state of opaqueness to be published (Calegari 2017).

As Calegari suggests, if the referees have not achieved one of the components, that
in turn undermines our trust that they have achieved either component. Thus peer
review has not resolved the dispute either. In the absence of any other candidate
arbiters, Lynch’s Non-arbitration criterion has been met. Lastly, Mutual Circularity
also appears to obtain. Mochizuki explicitly appeals to his own expertise and that of
his closest colleagues in support of his proof; much of the rest of the mathematical
world appeals to Scholze’s acknowledged expertise in the wider context of number
theory in support of his claim to have found a gap. If the dispute concerns who is a
suitably credentialed expert to judge the soundness of the IUT papers, such appeals
to expertise must appear circular.

4 A Virtuous Approach to Vicious Disagreements

I will conclude by turning to the intellectual virtues. I wish to show they can help
to provide a framework for understanding deep disagreements such as that between
Mochizuki and Scholze. In this task I am building on two prior bodies of work. Firstly,
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there has recently been a growing interest in the application of virtue epistemology
to questions in the philosophy of mathematics (as surveyed in Aberdein et al. 2021).
Secondly, in other work I have defended a virtue approach to argument and, more nar-
rowly, to deep disagreement. In particular, I have focussed on the vice of arrogance
and the virtue of courage (Aberdein 2020, 2021a). Although other virtues and vices
could profitably be discussed in this context, this choice was not arbitrary. Arrogance
and courage may be contrasted as the vice and virtue characteristic of the “steadfast”
view in the epistemology of disagreement; conversely, its polar opposite, the “equal
weight” view, may be thought to exemplify either humility or cowardice, depending
on one’s perspective (Frances and Matheson 2018, §5.2). If, when I learn of a dis-
agreement with my view, I respond by sticking to my guns, I exhibit courage but risk
arrogance. Conversely, if I respond to the disagreement by weakening my support for
my own view, I demonstrate humility but may be succumbing to cowardice.

As I have argued elsewhere, it is helpful in thinking about the role of courage in
disagreement to distinguish two species of courage (Aberdein 2021a, 1210). For Per
Bauhn “the courage of creativity (determination in the face of adversities, resource-
fulness under pressure) supports the courage of conviction (a sense of responsibil-
ity based on moral beliefs), while, simultaneously, creativity feeds on conviction”
(Bauhn 2003, 136). Both involve overcoming fear, whether the fear of failure in the
former case or the fear of harm, including social harm, in the latter. This distinction is
often framed as one between intellectual and moral courage. Virtue epistemologists
often define intellectual courage in terms of intellectual perseverance (Battaly 2017,
689). For example, for Jason Baehr, intellectual courage is “a disposition to persist
in or with a state or course of action aimed at an epistemically good end despite the
fact that doing so involves an apparent threat to one’s own well-being” (Baehr 2011,
177). Moral courage, on the other hand, involves overcoming some sort of danger,
specifically where the danger takes the form of “a threat to one’s social standing, fi-
nancial prospects, relations with one’s colleagues, approval of one’s constituents, and
so forth” (Walton 1986, 107). Saliently, Douglas Walton, whose characterization this
is, also notes that “The person of moral courage is open to persuasion and reasonable
discussion, but will not give in to pressures until convinced the path is right. Compro-
mise is therefore not intrinsically a sign of weakness or cowardice—it could in some
cases actually be a mark of courage” (Walton 1986, 128). This quality can be espe-
cially valuable in an arguer. Daniel Cohen describes as an “argument provocateur”
the sort of arguer who is willing to engage in argument to a fault, starting arguments
even with those with whom they agree. However irritating such behaviour can be,
it does exemplify moral courage in the face of the dangers of argument: “In some
circumstances, arguing is bad form. If we are too sensitive to that, we can become
(to resort to the notorious, but occasionally apt, war metaphor for arguments) gun shy
about arguing” (Cohen 2005, 64).

Reflection on the Mochizuki–Scholze dispute should convince us that both math-
ematicians have exhibited courage, although of different kinds. It should be uncon-
troversial that Mochizuki has at least shown intellectual courage in persevering with
IUT through its lengthy development and many subsequent tribulations. It should be
uncontroversial that Scholze has at least shown moral courage in acting on his con-
viction that IUT is vitiated by a fundamental error that the mathematical community
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risked ignoring. While we might hope for consensus in these two judgments, any
further assessment will turn on one’s perspective on the dispute. From Mochizuki’s
perspective, Scholze overestimates his own expertise with respect to IUT, in other
words he has not persevered sufficiently with its study, but given up too early and
nonetheless concluded that he is sufficiently knowledgable to diagnose irreparable
faults. This vice of deficiency with respect to intellectual courage has in turn led
him into a vice of excess with respect to moral courage, a morally reckless attack
on IUT. But from Scholze’s perspective, Mochizuki’s perseverance with IUT is itself
a vice of excess with respect to intellectual courage and has in turn led him into a
vice of deficiency with respect to moral courage, a refusal to admit his mistakes, de-
spite (what Scholze takes to be) overwhelming evidence that IUT does not achieve
what Mochizuki had hoped it would. Thus we arrive at a symmetrical impasse: each
disputant sees the other as manifesting vices that mirror those the other party is per-
ceiving in him.

What of arrogance and humility? Helpfully, Colin Rittberg has explored the role
of humility in understanding the IUT saga. He has discovered yet another symmetri-
cal impasse: “Mochizuki’s critics demand that he manifest more intellectual humility
by going further in owning the limitations of his communicative efforts to foster un-
derstanding of his abc-proof. Mochizuki counters by demanding that his critics man-
ifest more intellectual humility in their engagement with his proof” (Rittberg 2021,
5591). Lynch’s work suggests that focussing on arrogance, the corresponding vice,
may be more insightful. He notes that “deep epistemic disagreements may cause the
participants to perceive each other more negatively from the epistemic view, includ-
ing possibly seeing each other as arrogant” (Lynch 2020, 152). This follows from a
specific feature of his account of deep disagreement. As we have seen, Mutual Cir-
cularity is one of Lynch’s hallmarks of deep disagreement: parties to such disagree-
ments end up justifying their epistemic principles through circular reasoning, for want
of anything better. Such circular arguments may appear innocuous from the perspec-
tive of someone who implicitly accepts the epistemic principles in question, and have
been defended as such by some epistemologists. But, from an outside perspective,
that of someone who rejects the relevant epistemic principles, appealing to precisely
those principles in their own defence may well appear not only unsound, but arro-
gantly so. Something much like the situation Lynch describes seems to have arisen
with respect to IUT. As noted above, the dispute between Mochizuki and Scholze ex-
hibits Mutual Circularity, since each party seeks to buttress their position by appeal to
expertise, although that expertise is at the root of the deep disagreement. Each party
thereby argues in a fashion that seems quite reasonable from their own perspective,
but appears arrogantly circular to the other camp.

One of the limitations of vice epistemology, of which these reflections are a part,
is that accusations of epistemic vice can themselves be counterproductive and inflam-
matory. On Ian James Kidd’s account, “the efficacy of a vice-charge is contingent on
consensus between critic and target. There must be consensus, first, on the definition
of the vice being invoked . . . and, second, on whether the target does in fact exem-
plify that vice” (Kidd 2016, 192). When critic and target are in deep disagreement
it would appear vanishingly unlikely that they should arrive at such a consensus.
Moreover, vice charging can easily make matters worse, since a failed vice charge
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“reflects badly on the critic, especially if they are claiming the moral or epistemic
high ground” (Kidd 2016, 185). These considerations suggest that vice epistemology
will be of limited use to the parties to a deep disagreement, even if it is helpful to
philosophers attempting to analyse the dispute.

I have argued elsewhere that humility and courage can help to resolve deep dis-
agreements, or at least, that the corresponding vices of arrogance and cowardice can
make such resolutions harder to achieve (Aberdein 2020, 2021a). In part, this is be-
cause there are persuasive strategies that can help to resolve deadlocked arguments,
but which are open to abuse. Only when such strategies are pursued virtuously can
a satisfactory outcome ensue. However, such an approach may be of less use in the
IUT dispute, and in similar mathematical deep disagreements. That is because this
case and others like it lack the action-forcing constraints present in many deep dis-
agreements: there is no deadline by which some decision must be taken, some policy
adopted, or so forth. It may be an embarrassment to mathematics that so prominent
a peer-reviewed proof is so widely disputed, but it does not become any more of an
embarrassment by enduring. As such, there is little incentive for mathematicians to
seek an immediate resolution. More technically, the types of dialogue in which the
IUT papers and their path to acceptance belong are inquiry and persuasion dialogues,
not negotiation or deliberation dialogues (the distinction is due to Walton and Krabbe
1995; see Aberdein 2021b, 160 ff., for application to mathematics). The latter sort
of dialogues seek practical, short-term accommodations, not the sort of stable reso-
lutions to which mathematics aspires. Hence the proper attitude is one of patience:
perhaps the ongoing projects to clarify Mochizuki’s work or extend it to new results
will meet with general approval; perhaps Scholze’s critique will be reframed in even
more unignorable terms.

5 Conclusions

I have proposed criteria for recognising both revolutions and deep disagreements in
mathematics. We have seen that inter-universal Teichmüller theory, Mochizuki’s pro-
gramme, meets the criteria for a mathematical revolution, since it is not taxonomically
commensurable with the programme to which it is a successor. The exact nature of
that revolution turns on its eventual fate. It is paragloriously revolutionary if it suc-
ceeds and ingloriously revolutionary if it fails. In either case, the dispute over whether
IUT does succeed is a deep disagreement. It is thereby an example of a deep disagree-
ment arising in mathematical practice rather than in the foundations of mathematics.
I also touched on the relevance of some intellectual virtues to this dispute. Intellec-
tual courage is essential to the defence of unpopular views. Defending a position in
the face of technical difficulties and adverse attention takes a significant amount of
courage. But moral courage is also essential for acknowledgement of defeat. I have
argued elsewhere that disagreement amelioration strategies require close attention to
virtues of argument. However, such strategies find readiest application when there
is a pressing need to find even a temporary solution. Pure mathematics has the lux-
ury of longer horizons and seeks permanent outcomes. Although it often maintains
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a remarkable level of consensus, these priorities do mean that when that consensus
breaks down, as it must in a revolution, it may be very slow to heal.
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