
ESSAY 1

Observations on Sick Mathematics
Andrew Aberdein

And you claim to have
discovered this . . . from
observations on sick people?

(Freud 1990: 13)

This paper argues that new light may be shed on mathematical reason-
ing in its non-pathological forms by careful observation of its patholo-
gies. The first section explores the application to mathematics of recent
work on fallacy theory, specifically the concept of an ‘argumentation
scheme’: a characteristic pattern under which many similar inferential
steps may be subsumed. Fallacies may then be understood as argumen-
tation schemes used inappropriately. The next section demonstrates
how some specific mathematical fallacies may be characterized in terms
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of argumentation schemes. The third section considers the phenomenon
of correct answers which result from incorrect methods. This turns
out to pose some deep questions concerning the nature of mathematical
knowledge. In particular, it is argued that a satisfactory epistemology
for mathematical practice must address the role of luck. Otherwise, we
risk being unable to distinguish successful informal mathematical rea-
soning from chance. We shall see that argumentation schemes may play
a role in resolving this problem too.1

Mathematical errors occur in many different forms. In his classic
short treatment of the topic, E.A. Maxwell distinguished the simple
mistake, which may be caused by ‘a momentary aberration, a slip in
writing, or the misreading of earlier work,’ from the howler, ‘an error
which leads innocently to a correct result,’ and the fallacy, which
‘leads by guile to a wrong but plausible conclusion’ (Maxwell 1959:
9). We might gloss this preliminary typology of mathematical error as
correlating the (in)correctness of the result to the (un)soundness of the
method, as in Table 1.

True Result False Result
Sound Method Correct Fallacy

Unsound Method Howler Mistake

Table 1: A preliminary typology of mathematical error

However, there are a number of problems with this picture. Most sig-
nificantly, a truly sound method would never lead to a false conclusion.
This paper addresses these problems, and seeks to derive some general
lessons from the treatment of the fallacy, the howler, and related sources
of confusion.

1 Fallacies
It might be supposed that mathematical fallacies could be defined very
simply. If all mathematical reasoning is formal and deductive, then

1I am grateful to an anonymous referee for some of the phrasing in this paragraph.
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surely mathematical fallacies are merely invalid arguments? This defi-
nition has several shortcomings. Firstly, there are many invalid math-
ematical arguments which would not normally be described as mathe-
matical fallacies. Secondly, much reasoning in mathematics is conducted
informally. So a satisfactory account of mathematical fallacies must ex-
plain what is distinctive about formal fallacies, beyond their invalidity,
and also address informal fallacies.

Most logic textbooks contain a chapter on informal fallacies. But
this is typically no more than a catalogue of (not very) misleading argu-
ments, which endures through successive editions, much as Oliver Wen-
dell Holmes said of legal precedent, like ‘the clavicle in the cat [which]
only tells of the existence of some earlier creature to which a collar-bone
was useful’ (Holmes 1991: 35). No attempt is made to provide an under-
lying theory which might explain their significance, their application, or
their continued presence. However, in recent years fallacy theory has
been reinvigorated. We shall see whether this new lease of life may be
passed on to the study of the mathematical fallacy.

1.1 THE STANDARD TREATMENT

Most textbooks echo the ‘standard treatment’ of fallacy, as an argument
which ‘seems to be valid but is not so’ (Hamblin 1970: 12). This defini-
tion may be traced back to Aristotle, for whom ‘that some reasonings
are genuine, while others seem to be so but are not, is evident. This
happens with arguments as also elsewhere, through a certain likeness
between the genuine and the sham’ (Aristotle 1995: 164a). The prob-
lem with the standard treatment, which has brought it into disrepute,
is that we have no systematic account of the apparently subjective and
psychologistic concept of ‘seeming valid.’

This problem is perhaps especially acute for mathematics. As the
philosopher and novelist Rebecca Goldstein has her fictitious mathe-
matician Noam Himmel declare,

[I]n math things are exactly the way they seem. There’s no
room, no logical room, for deception. I don’t have to con-
sider the possibility that maybe seven isn’t really a prime,
that my mind conditions seven to appear a prime. One
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doesn’t—can’t—make the distinction between mathemati-
cal appearance and reality, as one can—must—make the
distinction between physical appearance and reality. The
mathematician can penetrate the essence of his objects in a
way the physicist never could, no matter how powerful his
theory. We’re the ones with our fists deep in the guts of
reality. (Goldstein 1983: 95)

On this account, Aristotle’s ‘likeness between the genuine and the sham’
could never arise, since there would be no sham. This would rule out the
possibility of mathematical fallacies, at least on the standard treatment.

However, the difference between appearance and reality which Him-
mel believes impossible is not that upon which the standard treatment
rests. Himmel is concerned with radical scepticism about mathematical
truth. He thinks it just could not happen that, despite our best efforts,
we were fundamentally wrong. His position is persuasive, although not
indisputable,2 but it still leaves room for a weaker, error-based distinc-
tion between appearance and reality. Students and researchers alike
frequently have the experience of some mathematical object appearing
to be other than it turns out really to be—because they do not yet un-
derstand the matter. Himmel’s argument might be paraphrased as the
thesis that mathematical understanding guarantees mathematical truth.
Once one understands the concept of prime number, one realizes that
seven must be prime. This is not true in natural science—understanding
the concepts of ether, caloric, or phlogiston does not make them real.
But in both cases, if understanding is absent, truth may well be also.
This leaves plenty of room for mathematical fallacies.

1.2 OTHER DISTINCTIONS

Before considering alternatives to the standard treatment we will ex-
amine some further distinctions which may be drawn amongst fallacies.
Many theorists distinguish the sophism, which is intended to deceive,
from the paralogism, an innocent mistake in reasoning. This distinc-
tion is sometimes made part of the definition of specific fallacies. But

2Descartes (1996: 14), for one, would dispute it. I am grateful to James Wood-
bridge for reminding me of this.
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that seems to miss the point. Since a fallacy is a sort of argument, if
the same argument is used, then the same fallacy should be committed.
The speaker’s intent should not make a difference. In fact, every fallacy
can occur as either a sophism or a paralogism, since any fallacy can be
used deliberately to deceive another, who, if he does not realize that he
has been deceived, may guilelessly, if negligently, repeat the fallacy to a
third party.

Dual to this distinction is one drawn by Francis Bacon:

For although in the more gross sort of fallacies it happeneth,
as Seneca maketh the comparison well, as in juggling feats,
which, though we know not how they are done, yet we know
well it is not as it seemeth to be; yet the more subtle sort of
them doth not only put a man beside his answer, but doth
many times abuse his judgment. (Bacon 1915: 131)

We may summarize this as a distinction between the gross fallacy,
in which something seems wrong (and is) and the subtle fallacy, in
which everything seems OK (but is not). Just as the distinction be-
tween sophism and paralogism is a distinction confined to the speaker’s
intent, with no necessary reflection in the form of the fallacy, so that
between gross and subtle fallacies is restricted to the auditor’s under-
standing. Again, the same fallacy could fulfill either role—the sharper
your judgment, the less likely it is to be abused. However, at least on
the standard treatment, which Bacon’s account explicitly echoes, the
auditor’s understanding, unlike the speaker’s intent, is a part of the def-
inition of fallacy, since it determines whether the fallacy seems valid to
the auditor.

Reflection on Bacon’s discussion may draw attention to a third case,
that of surprise, in which something seems wrong (but is not). This is
a common phenomenon in mathematics,3 and perhaps as great a source
of error as actual fallacy. A popular supposition is that ‘when the results
of reasoning and mathematics conflict with experience in the real world,
there is probably a fallacy of some sort involved’ (Bunch 1982: 2). This
is a plausible inference, but it can be profoundly misleading. Once
we outstrip the mathematics consonant with our experience of the real

3See Havil 2007 for some excellent examples.
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world, our everyday intuitions can no longer guide us. Wilfrid Hodges
attributes the frequency of attempted refutations of Cantor’s diagonal
argument to such reasoning. ‘Until Cantor first proved his theorem . . .
nothing like its conclusion was in anybody’s mind’s eye. And even now
we accept it because it is proved, not for any other reason’ (Hodges 1998:
3). As this is often the first such proof enthusiastic amateurs encounter,
prominent logicians and journal editors such as Hodges keep receiving
their attempted refutations.

The distinction between gross and subtle fallacies, and the existence
of surprises, demonstrate that it is not only the method of argument
which may seem to be one thing while actually being another. The
result of the argument is susceptible to similar confusion. Results which
conflict with our prior beliefs will seem to be false, irrespective of their
actual truth value. Conversely, results which reinforce those beliefs will
be much easier to accept, even when they lack sound justification.

1.3 ARGUMENTATION SCHEMES

Many alternative theories of fallacy have been suggested. One influen-
tial approach employs argumentation schemes: ‘forms of argument
that model stereotypical patterns of reasoning’ (Walton and Reed 2003:
195). The underlying idea has a venerable history. It can be traced
back to Aristotle’s Topics and its successive reappropriations in Cicero,
Boethius, and mediæval logic (Macagno and Walton 2006: 48). More
recently, the tradition has been revived in informal logic. Several subtly
different characterizations of the argumentation scheme (or argument
scheme) are in use. These have given rise to independent, but largely
overlapping classifications, one of the most extensive being that of Man-
fred Kienpointner, who distinguishes 58 different schemes (Kienpoint-
ner 1992). We shall be following what is perhaps the most influential
treatment, that of Douglas Walton and collaborators, which has been
defended in several books and articles since the early 1990s.4

Walton’s argumentation schemes are presented as schematic argu-
ments which are typically accompanied by critical questions. The
critical questions itemize known vulnerabilities in the argument, to which

4Added in proof: Most extensively in Walton et al. 2008, which subsumes and
expands many of their papers cited here.
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its proposer should be prepared to respond. In principle, they can always
be incorporated into the schematic argument as additional premises
(Walton and Reed 2003: 202). This move has advantages in formal im-
plementations of argumentation schemes, but at the cost of obscuring
the characteristic dialectical context in which the schemes are typically
employed. Many of the schematic arguments are special cases of modus
ponens in which the hypothetical premise lacks the force of a deductive
implication. Hence most of Walton’s argumentation schemes are pre-
sumptive or defeasible. But deductive inferences can also be understood
as argumentation schemes. However, there is a great deal of reasoning in
mathematical practice for which informal argumentation schemes would
be more appropriate.

A crucial question for the argumentation scheme approach is that of
normativity: What makes an instance of an argumentation scheme good
or bad? The answer must in part depend on the nature of the scheme.
If the scheme is deductive, then it is good precisely when it is valid,
as we would expect. Defeasible schemes obviously have less normative
force. There are several possible ways in which this might be captured.
Broadly, Walton’s approach is to say that a scheme is persuasive if all
of its critical questions (or at least those where the burden of proof
is on the proposer of the argument) receive satisfactory answers, and
otherwise not. Hence restating defeasible schemes to incorporate the
critical questions as additional premises will have the effect of converting
them into deductive schemes (Walton and Reed 2003: 210).

1.4 FROM ARGUMENTATION SCHEMES TO FALLACIES

Fallacies may be understood as argumentation schemes used inappro-
priately. This cashes out the troublesome concept of ‘seeming valid’
in the stereotypical character of the schemes. Essentially, they have
been chosen as representative of the sort of arguments generally found
convincing.

The use of an argumentation scheme can be fallacious in two distinct
ways. Firstly, some schemes are invariably bad. They are distinguished
from other invalid arguments by their tempting character, presumably
a consequence of their similarity to a valid scheme. This is typical of
formal fallacies, such as the quantifier shift fallacy. Secondly, argumen-
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tation schemes with legitimate instances can be used inappropriately,
characteristically when deployed in circumstances that preclude a sat-
isfactory answer to the critical questions. For example, the argumen-
tation scheme for Appeal to Expert Opinion is associated with a list
of questions addressing the expertise of the source of the opinion. The
traditional ad verecundiam fallacy arises when these questions are not
properly answered. One substantial attraction of the argumentation
scheme approach to fallacy theory is that it rehabilitates the conven-
tional lists of fallacies as defective examples of defeasible but sometimes
persuasive argumentation schemes.

Can all fallacies be analyzed in this way? Walton does not claim
this. Indeed, he lists several informal fallacies which he says cannot be
reduced to the misuse of a specific argumentation scheme:

(1) Equivocation;
(2) Amphiboly;
(3) Accent;
(4) Begging the Question;
(5) Many Questions;
(6) Ad Baculum;
(7) Ignoratio Elenchi (Irrelevance); and
(8) Secundum Quid (Neglecting Qualifications).

(Walton 1995: 200f)

Ad baculum seems out of place in this list, since it can be characterized
as a defective instance of Walton’s scheme for Argument from Threat,
which is sometimes admissible in negotiation, but never in persuasion.5

The other fallacies on this list are of two types. Equivocation, amphi-
boly, accent, and secundum quid are problems that can arise in many
different argumentation schemes, and so cannot be characterized by
any one scheme. Begging the question, many questions, and ignoratio
elenchi need extended sequences of argumentation to become manifest,
hence they are not associated with any single argumentation scheme
either.

5Walton does ask whether the fallacy should be drawn more broadly, to include
‘scaremongering tactics that do not involve a threat’ (Walton 1995: 41), but does
not answer his own question.
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Nevertheless, all of these fallacies are within the scope of a slightly
more broadly drawn argumentation scheme approach. The former kind,
equivocation, amphiboly, accent, and secundum quid, can certainly be
understood as arising from an inappropriately applied scheme, even if
there are several possible schemes which it might be. Moreover, since
they mostly seem to turn on definitions or verbal classifications which
are ambiguous, insufficiently qualified, or question begging, they might
be seen as characteristically besetting the Argument from Verbal Clas-
sification. (We shall discuss a question-begging definition as an example
of this scheme in the next section.) The latter sort, begging the question,
many questions, and ignoratio elenchi, require us to broaden our scope
from the individual scheme. But each fallacy might still be understood
as a pathology of inappropriately applied argumentation schemes, even
if we are unable to narrow the blame down to a single scheme.

Hence we have a means of restating the standard treatment without
appeal to subjective or psychologistic content. ‘Seems good’ may be
analysed as ‘employs argumentation schemes.’ We may thereby define
a fallacy as a defective instance of argumentation scheme(s) which may
or may not be invariably defective.

Since we now have defensible accounts both of how propositions may
seem true and of how arguments may seem sound we are in a position
to update the typology offered in Table 1. These qualifications are in-
corporated in Table 2. In this table the combination of a sound method
with a false result is labeled Ø, since we now have a rich enough classi-
fication to explicitly rule such cases out. If we concentrate on cases of
mathematical error which arise where the result is false, whether or not
it seems so, a simpler picture emerges, as displayed in Table 3.

1.5 APPLICABILITY TO MATHEMATICS

There are two approaches to the application of argumentation schemes
to mathematics. Firstly, we could develop specifically mathematical ar-
gumentation schemes which captured patterns of reasoning unlikely to
arise in any other domain. Secondly, we could explore the topic-neutral
aspects of mathematical reasoning by attempting to apply topic-neutral
argumentation schemes. We shall concentrate on the second approach,
which promises to help make explicit the connexions between mathe-



 · Andrew Aberdein

Method Result
Seems Is Seems Is Outcome

G G T T Proof
G G T F Ø
G G F T Surprise
G G F F Ø
G B T T Howler
G B T F Subtle Fallacy
G B F T Howler
G B F F Gross Fallacy
B G T T Surprise
B G T F Ø
B G F T Surprise
B G F F Ø
B B T T Howler
B B T F (Tempting) Mistake
B B F T Howler
B B F F Mistake

Table 2: A richer typology of mathematical error

matical practice and ordinary reasoning. However, the first approach is
also of considerable interest.

Specifically mathematical argumentation schemes have many an-
tecedents, both in argumentation theory and in mathematics. Finely
tuned argumentation schemes have been developed by proponents of
agent-based reasoning in the implementation of expert systems designed
to tackle very specific problems. For example, bespoke argumentation
schemes have been used to model decision making in the area of organ
donation and transplantation (Tolchinsky et al. 2006). In mathemat-
ics, several independent approaches have led to the study of a variety
of structures loosely comparable to argumentation schemes. In partic-
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Method� Result� Seems True Seems False
Seems Sound Subtle Fallacy Gross Fallacy

Seems Unsound (Tempting) Mistake Mistake

Table 3: Mathematical error where result is false

ular, the automated theorem-proving community has developed ‘proof
plans’ and other models of common fragments of mathematical reason-
ing (Bundy 1991). In philosophy of mathematics, the ‘inference pack-
ages’ introduced by Jody Azzouni (2005: 9) as ‘psychologically-bundled
ways of phenomenologically exploring the effect of several assumptions
at once’ might also be construed as specifically mathematical argumen-
tation schemes.

Many mathematical fallacies exemplify invariably bad argumenta-
tion schemes. This is true whether we look for topic-neutral schemes,
such as quantifier shift, or more specifically mathematical operations,
such as dividing by zero. Are there any mathematical fallacies in which
the argumentation scheme is not invariably bad? An historical example
of a fallacy manifesting as an inappropriate deployment of a specifically
mathematical argumentation scheme may be found in Isaac Newton’s
argument that the moment of a quantity ‘is equal to the moments of
each of the generating sides drawn into the indices of the powers of those
sides, and into their coefficients continually’:

Any rectangle as AB augmented by a perpetual flux, when,
as yet, there wanted of the sides A and B half their moments
1
2
a and 1

2
b, was A�

1
2
a into B�

1
2
b, or AB�

1
2
aB�

1
2
bA�

1
4
ab;

but as soon as the sides A and B are augmented by the other
half moments; the rectangle becomes A �

1
2
a into B �

1
2
b, or

AB �
1
2
aB �

1
2
bA �

1
4
ab; From this rectangle subduct the

former rectangle, and there will remain the excess aB � bA.
Therefore with the whole increments a and b of the sides, the
increment aB � bA of the rectangle is generated. Q.E.D.

(Newton 1729: Book II, Lemma II)

This is debunked by George Berkeley as follows:
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But it is plain that the direct and true method to obtain the
moment or increment of the rectangle AB, is to take the sides
as increased by their whole increments, and so multiply them
together A�a by B�b, the product whereof AB�aB�bA�ab
is the augmented rectangle; whence, if we subduct AB the
remainder aB � bA � ab will be the true increment of the
rectangle, exceeding that which was obtained by the former
illegitimate and indirect method by the quantity ab.

(Berkeley 1996: §9)

Newton employs an ingenious procedure, for which there may be plau-
sible applications, but as Berkeley correctly observes, this is not one of
them.

More generally, it is a familiar phenomenon in mathematics that
methods of widespread usefulness can produce paradoxical results in a
minority of cases (see, for example, Maxwell 1959: 51, or Barbeau 2000:
109f). We shall return to this issue in the discussion of howlers. But
first we will seek to illustrate by example the topic-neutral approach to
the application of argumentation schemes to mathematics.

2 Examples
There is no consensus on how best to classify argumentation schemes.
Part of the problem is that there are several mutually independent di-
mensions of similarity which we might hope that a classification should
respect. However, schemes may be loosely grouped in terms of the
nature of the conclusions they establish. These include particular and
general propositions to be accepted or rejected, actions to be performed,
assessments of other arguments, causal claims, rules to be followed or
ignored, and commitments to be ascribed to agents. Arguments of most
or all of these kinds may be found in mathematical reasoning. Practic-
ing mathematicians have long observed with J.J. Sylvester ‘how much
observation, divination, induction, experimental trial, and verification,
causation, too . . . have to do with the work of the mathematician’
(Sylvester 1956: 1762). Mathematics is not just the derivation of con-
clusions from axioms.

In this section we shall consider how some specific argumentation
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schemes may be applied to mathematics. Inevitably, the selection is
narrow and unrepresentative, but should give a flavour of the approach.6

2.1 ARGUMENT FROM VERBAL CLASSIFICATION

Individual Premise a has property F .

Classification Premise For all x, if x has property F , then
x can be classified as having property G.

Conclusion a has property G.

Critical Questions:

(1) What evidence is there that a definitely has prop-
erty F , as opposed to evidence indicating room for
doubt on whether it should be so classified?

(2) Is the verbal classification in the classification
premise based merely on a stipulative or biased def-
inition that is subject to doubt?

Table 4: Argumentation scheme for Argument from Verbal
Classification (Walton 2006: 129)

In many mathematical cases, the premises of the scheme for Argu-
ment from Verbal Classification (Table 4) will be provably true, and
thus the argument deductively sound. But in informal mathematical
reasoning this need not be the case. The classification premise might
be a hypothesis, well corroborated, but as yet unproven, or a hunch, or
even something known to have exceptions, but which seems plausible
enough in context. The classification premise could also be a definition.
This is harmless if the definition is uncontested, but can give rise to
abuse. In Dana Angluin’s widely circulated list of spurious proof types,
this is neatly characterized as ‘proof by semantic shift: Some of the stan-

6Some further examples have been considered elsewhere, including Appeal to
Expert Opinion (Aberdein 2007: 3ff) and Argument from Sign (Dove 2009: 143).
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dard but inconvenient definitions are changed for the statement of the
result’ (Angluin 1983: 17). Such stipulative definition clearly precludes
a satisfactory answer to the second critical question.

On the other hand, many mathematical fallacies turn on question-
begging definitions, which smuggle in improbable conclusions disguised
as innocuous classification premises. For example, consider Maxwell’s
‘Fallacy of the Empty Circle’ (Table 5). This can be translated into
the scheme for Argument from Verbal Classification as follows: a is the
arbitrary point P ; F is the property that there exists a point Q on
OP produced beyond P such that OP � OQ � r2; G is the property of
being on the circumference. The fallacy may now be clearly understood.
The classification premise is true and supported by the proof. But the
individual premise is false: F is not a property of arbitrary points,
but only of points on the circumference. Supposing otherwise is the
critical loss of generality on which the argument turns. The first critical
question will clearly receive an unsatisfactory answer.

2.2 ARGUMENT FROM POPULAR OPINION

There is an important distinction to be made between cases of Argument
from Popular Opinion (Table 6) where the opinion of the majority is con-
stitutive of the truth of A, and all other cases. Thus, when a plebiscite
was held to resolve the Schleswig–Holstein question, the opinion of the
populace as to whether they were German or Danish was constitutive
of the right answer. But a referendum over the moral status of abor-
tion, or indeed the value of π, cannot be defended in this fashion. The
popularity of the answer would be independent of its truth, a failure to
satisfactorily answer the second critical question.

Are all mathematical questions of the latter sort? No. Exceptions
include widely endorsed arbitrary conventions. Many of these, such
as axioms, have a claim to self-evidence (whatever that means) that
militates against their arbitrariness—they’re not true because everyone
says so, they’re true because they can’t but be true. So, not only do
we not have reason to doubt them, we have better reasons to believe
them than can be provided by this scheme. But there are cases where
this scheme may be as good as it gets. For example, the definition of
‘straight edge and compass construction.’ The impossibility of certain



Sick Mathematics · 

To prove that every point inside a circle lies on its cir-
cumference.

Given: A circle of centre O and radius r, and an arbitrary
point P inside it.

O P R Q

U

V

Required: To prove that P lies on the circumference.

Construction: Let Q be the point on OP produced be-
yond P such that OP �OQ � r2 and let the perpendicular
bisector of PQ cut the circle at U , V . Denote by R the
middle point of PQ.

Proof: OP � OR �RP

OQ � OR �RQ

� OR �RP �RQ � RP, construction�

OP �OQ � �OR �RP ��OR �RP �

� OR2
�RP 2

� �OU2
�RU2���PU2

�RU2� �Pythagoras�

� OU2
� PU2

� OP �OQ � PU2 �OP �OQ � r2
� OU2�


PU � 0


P is at U , on the circumference

Table 5: The Fallacy of the Empty Circle (Maxwell 1959: 18f; see
also Bradis et al. 1999: 25)
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General Acceptance Premise A is generally accepted as
true.

Presumption Premise If A is generally accepted as true,
that gives a reason in favor of A.

Conclusion There is a reason in favor of A.

Critical Questions:

(1) What evidence, such as a poll or an appeal to com-
mon knowledge, supports the claim that A is gen-
erally accepted as true?

(2) Even if A is generally accepted as true, are there
any good reasons for doubting it is true?

Table 6: Argumentation scheme for Argument from Popular Opinion
(Walton 2006: 91f)

constructions, such as trisecting an arbitrary angle, is a well-established
result. But angle trisectors still claim to have produced such construc-
tions, sometimes through sheer incompetence, but in the more adroit
cases through equivocation on ‘straight edge and compass construction.’
They produce a ‘construction,’ using a ‘straight edge’ and a ‘compass,’
but in a non-standard fashion, hence it is not a ‘straight edge and com-
pass construction’—a point they may find hard to accept. So, to say
that an arbitrary angle cannot be trisected invokes a convention on what
counts as a construction. If that’s given up, then an arbitrary angle can
be trisected, but that’s not the historically interesting problem. Why
not? Because it’s not what mathematicians generally accept. So the
best argument available in defence of the convention will be an instance
of this scheme.

Another example is provided by Hodges’s response to analogous at-
tempts to refute the diagonal argument:

Other authors, less coherently, suggested that Cantor had
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used the wrong positive integers. He should have allowed
integers which have infinite decimal expansions to the left,
like the p-adic integers. To these people I usually sent the
comment that they were quite right, the set of real numbers
does have the same cardinality as the set of natural numbers
in their sense of natural numbers; but the phrase ‘natural
number’ already has a meaning, and that meaning is not
theirs. (Hodges 1998: 4)

Here Hodges’s counter-argument is an instance of Argument from Popu-
lar Opinion, whereas the anti-diagonalization argument he is criticizing
is an instance of Angluin’s ‘proof by semantic shift,’ that is a defective
instance of Argument from Verbal Classification.

2.3 ARGUMENT FROM POPULAR PRACTICE

Premise A is a popular practice among those who are
familiar with what is acceptable or not with regard
to A.

Premise If A is a popular practice among those familiar
with what is acceptable or not with regard to A,
that gives a reason to think that A is acceptable.

Conclusion Therefore, A is acceptable in this case.

Critical Questions:

(1) What actions or other indications show that a large
majority accepts A?

(2) Even if a large majority accepts A as true, what
grounds might there be for thinking they are justi-
fied in accepting A?

Table 7: Argumentation scheme for Argument from Popular
Practice (Walton 2006: 93f)



 · Andrew Aberdein

This close relative of Argument from Popular Opinion, to which sim-
ilar considerations apply, arises when it is a practice not a proposition
that is at issue. As with that scheme, where majority practice is consti-
tutive of correctness, the scheme for Argument from Popular Practice
(Table 7) may be legitimately invoked against those whose practice de-
viates from the majority. An important example is the enforcement
of contemporary standards of rigour. Consider the dispute over Wu-
Yi Hsiang’s alleged proof of Kepler’s conjecture, which states that the
maximum density of a packing of congruent spheres in three dimensions
is πº

18
. In his review of the proof, Gábor Fejes Tóth employs Argument

from Popular Practice:

Hsiang might consider this objection ‘a dispute about subjec-
tive standards of how much detail a properly written math-
ematical proof has to contain’ . . . However, he has to bear
in mind that a mathematical proof is a social process: It is
only the acceptance by the mathematical community which
affirms the legitimacy of a proof. (Fejes Tóth 1995)

The remark which Fejes Tóth suggests to Hsiang may be understood
as an attempt to find a basis for challenging the argument along the
lines indicated by the second critical question. If the standards of proof
are ultimately subjective, or at least if Hsiang’s proof is within the
range of subjectively acceptable proof, then the views of the majority
are irrelevant. However, as the widespread rejection of Hsiang’s proof
indicates, this challenge did not succeed. Fejes Tóth is also right about
the broader point—mathematical rigour is a popular practice.

In other circumstances, Argument from Popular Practice is notably
weak, although it can still be useful, especially in resource-limited con-
texts. Following the crowd can be the simplest way to get where you
want to go. For example, it might be used in defence of time-honoured
‘tradecraft’: practical heuristics that have been found useful by genera-
tions of teachers, students, and professionals, such as the liate or ilate
rule for integration by parts. Of course, this scheme can only provide a
weak, and potentially misleading justification for such material. Where
the heuristic is genuinely useful, there must be a more robust rationale
for it. In some cases such practices can degenerate into ritual, precisely
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because they are warranted only by this scheme, the use of which has
obscured the absence of proper justification. Such behaviour would ex-
hibit what some mathematics educationalists have referred to as a ‘ritual
proof scheme.’ A proof scheme is not a scheme for any particular proof,
but a way of conceptualizing the concept of proof in general. In a ritual
proof scheme ‘doubts are removed by . . . the ritual of the argument
presentation’ (Harel and Sowder 1998: 245).

One might dispute whether Argument from Popular Opinion and
Argument from Popular Practice are truly distinct. Indeed, it should
be possible to restate each of them in terms of the other. However, at
least as far as mathematical practice is concerned, there is useful work
for the distinction to do. It is, for example, the distinction between
arguing over which practice ‘straight edge and compass construction’
should refer to, and which of those practices we should follow.

3 Howlers
Having addressed some of the questions raised by fallacies, we shall move
on to howlers. These are less immediately problematic, since there is
no contradiction in an unsound method leading to a correct conclusion.
However, we shall see that they lead to some fundamental questions
about mathematical knowledge.

3.1 A SHOPPING LIST AND OTHER HOWLERS

Maxwell introduces his discussion of the howler with the now rather
nostalgic example in Table 8. The ingenious schoolboy has discovered a
technique much simpler than his teacher’s, and which still gets him the
right answer. Unfortunately, it does so because of a peculiarity of the
formation of the question. Had the shopping list been slightly different
then his technique would have been unsuccessful.

Table 9 shows a case in which the implied technique holds greater
interest. As Maxwell observes, the perpetrator of this howler has in-
nocently stumbled on something fascinating. Although the technique
obviously does not work in general, every quadratic equation can be
expressed in a form for which this technique would work: �1� q �x��1�
p � x� � 1 � p � q, for an equation with roots p, q.
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To make out a bill:
1
4

lb. butter @ 2s. 10d. per lb.
2 1

2
lb. lard @ 10d. per lb.

3 lb. sugar @ 3 1
4
d. per lb.

6 boxes matches @ 7d. per dozen.
4 packets soap-flakes @ 2 1

2
d. per packet.

The solution is

8 1
2
d. � 2s. 1d. � 9 3

4
d. � 3 1

2
d. � 10d. � 4s. 8 3

4
d.

One boy, however, avoided the detailed calculations and
simply added all the prices on the right:

2s. 10d. � 10d. � 3 1
4
d. � 7d. � 2 1

2
d. � 4s. 8 3

4
d.

Table 8: A shopping list—in shillings and pence (Maxwell 1959: 9)

Not all of Maxwell’s howlers are of this sort. Some of those ‘per-
petrated innocently in the course of class study or of examination’
(Maxwell 1959: 88) defy the reconstruction of any underlying technique.
In the example in Table 10 one might suspect that the student, having
fortuitously struck upon the right answer, has constructed a sequence of
non sequiturs which superficially resembles proofs he has been taught.
Such rote adherence to the irrelevant features of a practice would be
another example of the ‘ritual proof scheme.’

Clearly there are several distinct phenomena that meet our original
characterization of the howler, that is that lead by an unsound method
to a correct result. Some of these are more epistemologically problem-
atic than others. Firstly, there are cases, such as that discussed last,
where there is no discernible method, or if there is a method, it is in-
herently spurious. This is a straightforward instance of unjustified true
belief, which must fall short of knowledge on any conventional defini-
tion. Secondly, there are cases where an explicit procedure is followed,
which happens to work in the specific case, but not generally. These



Sick Mathematics · 

To solve the equation

�x � 3��2 � x� � 4.

Either x � 3 � 4 
 x � 1,

Or 2 � x � 4 
 x � �2.

Correct.

Table 9: A quadratic howler (Maxwell 1959: 88)

pose somewhat more of a problem, since, although the more blatant
examples, such as those discussed above, might seem to be unjustified,
this becomes harder to maintain the more correct cases there are. We
might insist that unreliable procedures fall short of the standards of jus-
tification required for rigorous mathematical knowledge, but does that
mean that the result might still be known in some other, non-rigorous
way? Moreover, these cases differ only in degree from procedures that
work in all except a few specific cases. Provided that the case in ques-
tion was not one of these exceptions the result would be correct, but
would it still qualify as knowledge if the exceptions are not ruled out?
Applied mathematicians are frequently insouciant about such risks:

[M]any books dealing with Fourier’s series continually repeat
the condition that the function must not have an infinite
number of maxima and minima. We have generally omitted
specifying this condition, since no practical function ever
does behave in such a manner. Such behaviour is exclusively
confined to functions invented by mathematicians for the
sake of causing trouble.

(Eagle 1925, quoted in Barbeau 2000: 142).

Lastly, there are some procedures which always work, yet we cannot
explain why. This was Berkeley’s complaint about the calculus. ‘For
science it cannot be called, when you proceed blindfold, and arrive at
the truth not knowing how or by what means’ (Berkeley 1996: §22).
By Berkeley’s reckoning even these cases would fail to qualify as knowl-
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To solve the equation

x2
� �x � 4�2 � �x � 36�2.

[The student proceeds as follows:]

x2
� x2

� 42
� x2

� 362


x2
� x2

� 16 � x2
� 336


x2
� x2

� x2
� 336 � 16


x4
� 320


x � 80.

Correct.

Table 10: A howler defying reconstruction (Maxwell 1959: 93)

edge, but, despite the manifest shortcomings of Isaac Newton’s method,
it seems perverse to insist that he did not know that the derivative of
x2 is 2x. Most failures of rigour are less extreme than that of seven-
teenth century calculus, but thereby that much more difficult to see as
precluding knowledge.

3.2 MATHEMATICAL LUCK

One way of posing the questions raised at the end of the last section
is in terms of luck. Is all non-rigorous mathematics lucky? This would
include not only historical proofs that fall short of modern standards of
rigour, but also contemporary informal mathematical reasoning, unless a
rigorized version is readily available. Much of both sorts of mathematics
would generally be regarded as suasive, despite not exhibiting maximal
rigour, so it seems strange to say its results are obtained by luck. There
are several possible answers to this question.

We could just accept the characterization. Perhaps, at least in the
strictest sense, such results are lucky. If rigour is required for certainty,
and the argumentation in question is non-rigorous, its conclusions can-
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not be certain. Without certainty, there is always the possibility, how-
ever slight, of contradiction. That no such contradiction arises might
be regarded as luck—the ability of a conjecture to survive repeated
testing does not have the force in mathematics that it has in empir-
ical science. Long-standing conjectures have turned out not only to
have counterexamples, but to have no actual examples. Gian Francesco
Malfatti conjectured in 1802 that to maximize the sum of the areas of
three circles inscribed in a triangle, each circle must touch exactly two
sides of the triangle and both of the other circles. This was accepted
for well over a century, until a counterexample was found in the 1960s,
and in 1967 it was shown that an arrangement of greater area than any
complying with the Malfatti conjecture could be found for any triangle
(Aste and Weaire 2000: 126). Moreover, as we saw in §2.3 above, what
counts as rigour is at least in part socially determined and historically
contingent. As Roy Sorensen observes, a mathematician developing a
novel technique, as Cantor was with his diagonal argument, cannot al-
ways anticipate whether it will be accepted by the community (Sorensen
1998: 332). This makes the cogency of his proof partly a matter of luck.

Alternatively, the characterization could be resisted by a thorough-
going platonism. The platonist may argue that the proof on the page
is not the real proof, an abstract object of which it is a more or less
imperfect reflection. If the mathematician has genuinely apprehended
such an entity, then he can be certain of its results. That the proof he
writes down fails to capture every nuance of its platonic counterpart is a
comparatively minor, and in principle remediable, detail. However, this
degree of metaphysical extravagance poses its own well-known problems.

Another possibility might be to accept lower standards of rigour, so
that informal mathematics would count as rigorous. An example of this
strategy might be the ‘compensation of errors,’ whereby errors made
at different stages systematically cancel each other out, which Berke-
ley offered as an explanation for the success of the calculus. However,
Berkeley suggested that this approach might yet be formalized to yield
a (genuinely) rigorous foundation for the calculus, a proposal taken se-
riously by some subsequent mathematicians, notably Lazare Carnot,
although with little success (Grattan-Guinness 1980: 102). If such a
formalization were achieved without compromising the accepted stan-
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dards of rigour, then the problem of luck would no longer arise. But in
general, the proposal embodies a fundamental and dangerous confusion.
One may advocate the use of informal or defeasible systems of reason-
ing to capture non-rigorous inference in mathematics without remotely
suggesting that such systems might be substituted for deductive logic,
or obviate the need for mathematical rigour.

Perhaps the underlying difficulty is that we do not have a clear
enough understanding of what epistemic luck means, or why it is in-
consistent with knowledge.

3.3 EPISTEMIC LUCK

One recent influential treatment distinguishes between six different va-
rieties of epistemic luck (Pritchard 2005). As we shall see, at least four
of these are consistent with knowledge, but at least one of the others is
not. Is all mathematical epistemic luck of one of the benign varieties,
and if not, can it be safely isolated from mathematical knowledge?

Duncan Pritchard’s definitions require some preliminaries, not least
to explain how ‘lucky’ is to be understood. He offers the following:

(L1) If an event is lucky, then it is an event that occurs in the actual
world but which does not occur in a wide class of the nearest
possible worlds where the relevant initial conditions for that event
are the same as in the actual world.

(L2) If an event is lucky, then it is an event that is significant to the
agent concerned (or would be significant, were the agent to be
availed of the relevant facts). (Pritchard 2005: 128, 132)

The second condition is unproblematic, but the first complicates ap-
plication to mathematics, in which the propositions are necessary. We
shall consider how this might be remedied below. However, three of the
benign varieties of luck do not attribute luck to propositions directly.
We shall address these first.

Capacity Epistemic Luck

‘It is lucky that the agent is capable of knowledge’ (Pritchard 2005: 134)
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Capacity epistemic luck arises when the agent is only fortuitously in a
fit state to acquire knowledge, as for example when he narrowly avoids
a fatal accident. Clearly this does not make the knowledge he acquires
any less knowledge, whether or not it is mathematical in nature.

Evidential Epistemic Luck

‘It is lucky that the agent acquires the evidence she has in favour of her
belief’ (Pritchard 2005: 136)

Evidential epistemic luck turns on the lucky apprehension of the evi-
dence supporting the agent’s belief. This is also benign. If the evidence
provides sufficient justification, the belief is unproblematically knowl-
edge, no matter how lucky the agent was to acquire it. The precise
analogue for evidence in mathematical epistemology is open to dispute,
but however it is resolved, evidential epistemic luck would not become
pernicious. Serendipitous mathematical discoveries would be lucky in
this sense, as biographical accounts of mathematical discovery often
relate. Perhaps the discoverer combined essential experience of two re-
condite and unrelated fields, or made a breakthrough as the result of an
improbable chain of coincidences.

Doxastic Epistemic Luck

‘It is lucky that the agent believes the proposition’ (Pritchard 2005: 138)

Doxastic epistemic luck arises when the agent might in similar circum-
stances not have formed the belief, despite having all the same data at
his disposal. Again, this is consistent with knowledge. It also describes
a very familiar experience in mathematics, perhaps more familiar than
in everyday knowledge gathering—a novel insight can occur to a math-
ematician considering a problem which has frustrated dozens of equally
well-informed predecessors. Some cruder sorts of howler, where the
agent makes a dramatic inferential leap which takes him to the right
answer, but which he is wholly unable to explain, might be mistaken
for this phenomenon. The crucial difference is between having a com-
pelling proof but being unable to explain how you came by it, which



 · Andrew Aberdein

would be benign doxastic epistemic luck, and just gaining a true be-
lief in a flash of insight, which would be unjustified and therefore not
knowledge. Doxastic epistemic luck cannot account for cases of insuffi-
cient rigour, where the agent is following a familiar procedure, such that
his belief formation process is routine and predictable.

Content Epistemic Luck

‘It is lucky that the proposition is true’ (Pritchard 2005: 134)

This is the first of three varieties of epistemic luck in which the luck is
attached to the proposition, making the application of (L1) problematic
for mathematics. As it stands this constraint is trivial for necessary
propositions, since these are by definition true in all possible worlds,
and thus in all nearby ones. There are several possible avenues for
reinterpreting (L1), but, however this is achieved, content epistemic
luck is no obstacle to knowledge. The scenario envisaged here is that of
a highly unlikely truth, such as a far-fetched coincidence. Clearly if it is
true, its unlikelihood is no obstacle to its truth. A special case of content
epistemic luck arises in empirical science—it is the basis of the so-called
anthropic principle. One might dispute whether such propositions have
a place in mathematics, or whether apparent coincidences are merely
indications of our limited understanding. But they are not howlers.

We have now surveyed each of Pritchard’s uncontroversially harmless
varieties of luck, without adequately characterizing the howler. His
classification does not claim to be exhaustive—there could be other
varieties of benign epistemic luck which are the best fit for some sorts of
howler. However, as we shall see, some of the most problematic howlers
are well-represented amongst the pernicious forms of luck.

Veritic Epistemic Luck

‘It is a matter of luck that the agent’s belief is true’ (Pritchard 2005:
146)

The first of these pernicious forms, veritic epistemic luck, arises where
the agent has a true belief, for which he has some justification, but he
could have had that justification even if the belief were false. Hence,
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his belief is only true by luck. Much anxiety over insufficient rigour
would seem to be of this sort. The concern is that, despite the agent’s
best efforts, his beliefs may not be true. For example, the 1993 ver-
sion of Andrew Wiles’s proof of the Taniyama–Shimura conjecture for
semistable elliptic curves, and thereby of Fermat’s Last Theorem, turned
out to rest on a ‘construction [that] was incomplete and possibly flawed’
(Wiles 1995: 453). Hence his belief in the conjecture was lucky in this
sense. Although the conjecture is true, as Wiles would successfully prove
the following year, he did not in 1993 have the justification for it that
he thought he had. Was his belief unjustified, or merely inadequately
rigorous?

Further progress requires that we postpone no longer the reinter-
pretation of (L1). One option would be to restate the condition in
terms of impossible worlds, in which necessary propositions might be
false. This would avoid triviality, but generates its own substantial dif-
ficulties, including the characterization of ‘nearby’ in this context. A
more attractive approach might be to rewrite the condition without
appeal to worlds, possible or otherwise. We might focus instead on
variation in the statement of the situation. For example, the shopping
list howler would be veritic epistemic luck on this account, since the
method would produce the wrong total for most other lists. Similarly
the quadratic howler would not correctly factorize equations not of the
form �1 � q � x��1 � p � x� � 1 � p � q.

More generally, we want there to be a reliable procedure underpin-
ning the justification of a belief if luck is to be avoided. There are ways
of characterizing such a procedure in non-modal terms. For example,
we might characterize it as follows. Without too much loss of generality,
the derivation of the proposition may be seen as a directed acyclic graph
of which the proposition is the unique out-node. (This analysis may be
generalized to admit derivations of more complex structure.) For the
derivation to be reliable, we may then stipulate that all of the vertices
should be true propositions, all of the in-nodes should be uncontrover-
sially justified, and all of the edges should instantiate reliable inferences.
That, of course, leads immediately to the question of which inferences
are reliable. We might insist on formal derivation, but that would leave
no room for informal mathematics. Conversely, we could say that the
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inferences were reliable if each vertex was in the logical closure of its pre-
decessors. This might suffice for empirical cases, but would be too easily
satisfied in mathematics: Goldbach’s conjecture may well be within the
logical closure of the Peano axioms, but that doesn’t mean that we
know it. Alternatively, we might make further use of an approach to
informal mathematics already discussed in this paper, and identify the
reliable inferences as those which correspond to legitimate instances of
some agreed types of argumentation scheme. Variations in the level of
rigour may then be implemented by varying the set of admissible argu-
mentation schemes, and the threshold of legitimacy for answers to their
critical questions. At the strictest level, only constructive inference rules
would be admissible, then classically valid rules, and then varying lev-
els of plausible inference reflective of informal mathematical practice.
Wiles’s 1993 derivation of the restricted Taniyama–Shimura conjecture
passed through at least one inference that he was unable to establish to
contemporary standards of rigour for mathematical proof, and at least
one vertex that may not have been true. Hence, we may see that this
derivation would not support a knowledge claim.

Reflective Epistemic Luck

‘Given only what the agent is able to know by reflection alone, it is a
matter of luck that her belief is true’ (Pritchard 2005: 175)

Reflective epistemic luck is concerned with ‘knowledge’ obtained without
reflective awareness of the process underlying its acquisition. Whether
this form of luck is pernicious is a touchstone for the rival internal-
ist and externalist conceptions of knowledge. Internalism requires, as
externalism does not, that the knowledge process be reflectively acces-
sible, and hence beliefs which result from this sort of luck would not
qualify. The standard example is that of the ‘chicken-sexer’ who can
reliably distinguish male from female chicks, but cannot (accurately)
explain how. Externalists accept this as knowledge; internalists demur.
Azzouni (2009: 18f) considers but rejects an account of informal mathe-
matics as dependent on an analogous subdoxastic recognition of formal
derivations. Such an approach would make all informal mathematics
exhibit reflective epistemic luck, but presumably without accepting the
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internalist deprecation of such luck. Yet even from an internalist per-
spective, there are some putative examples of mathematical knowledge
whose contentiousness may be understood in terms of reflective epis-
temic luck. Beliefs obtained by infallible but inscrutable intuition, and
worries about computer-assisted proof are examples.

The sketch of a procedure sufficiently reliable to resist veritic epis-
temic luck may be adapted to preclude reflective epistemic luck. What
would be required is an additional stipulation that the vertices of the
graph should be known to the agent by reflection alone. In most exam-
ples of informal mathematical practice this condition would not repre-
sent much of an additional burden.

If the hope was that mathematical luck would prove to belong ex-
clusively to benign varieties of epistemic luck, then it has been dashed.
We have established that epistemic luck represents a genuine problem
for mathematical knowledge. However, we have also sketched a possible
way out of the problem, which comprises a further application of the
argumentation schemes discussed in the first two sections of this paper.

4 Conclusion
In conclusion, these observations on the pathologies of mathematical
reasoning have led to several significant theses:

– Sensitive treatment of fallacies and howlers brings to light a richer
typology of mathematical error.

– Mathematical fallacies may be better understood in terms of ar-
gumentation schemes. This is potentially an extremely powerful
device for the understanding of mathematical reasoning, whether
formal or informal.

– The howler is an instance of epistemic luck. As such it raises hard
questions for the epistemology of mathematics, which argumenta-
tion schemes may also help to resolve.

Each thesis opens up a path for future work.
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