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chapter 9

Mechanistic Social 
Probability: How 

Individual Choices and 
Varying Circumstances 
Produce Stable Social 

Patterns

Marshall Abrams

This chapter explores a philosophical hypothesis about the nature of (some) prob-
abilities encountered in social sciences. It should be of interest to those with philo-
sophical concerns about the foundations of probability, and to social scientists and 
philosophers of science who are somewhat puzzled by the nature of probability in 
social domains. As will become clear below, the chapter is not intended as a contri-
bution to an empirical methodology such as a particular way of applying statistics

9.1. I ntroduction

A relative of mine tells this story: While pulling on his overcoat after a day of inter-
views at an academic conference, a stranger walking past, noticing the name badge 
on his jacket, said “We’ve been looking for you!” The stranger and his colleagues 
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asked my relative to interview immediately, as they were to fly out in the morning. 
The relative eventually got the job and moved to a new city, remaining at the same 
university for over fifty years. Apparently, the subsequent course of his life depended 
in part on his pace and the speed with which he put on his coat in that moment. I’ll 
give reasons think that cases like this, with sensitive dependence of individual out-
comes on vagaries of individual circumstances, are the rule rather than the excep-
tion. I’ll also argue that even though such idiosyncratic sequences of events appear 
peripheral to much work in the social sciences, their commonality is in fact what 
allows that work to proceed as it does. More specifically, sensitive dependence of 
individual outcomes on circumstances helps produce enough stability in social phe-
nomena that they can be studied at all, allowing claims about probabilities of social 
phenomena to succeed. In the next sections I’ll provide further details about the 
questions this chapter is intended to address.

9.1.1. �S ocial probabilities
Social science research routinely makes claims about probabilities. These may be 
explicit claims that such and such outcome has a given probability, or may be repre-
sented by error terms or other terms, or may simply be implicit in assumptions. My 
interest here is in claims that one or another social outcome has (at least roughly) a 
certain probability. For example, consider the claim that among a group of ten- to 
twelve-year-olds living in a single-parent household in Seattle, there is a 25 percent 
probability of becoming a gang member by age 18 (cf. Hill et al. 1999). This is a claim 
about a relationship between two properties: living in a single-parent home during 
one period, and being a gang member during a later period. What is that relation-
ship? It is certainly mathematical, but it’s not merely mathematical, for social scien-
tists use such probabilities to predict, explain, or otherwise make sense of social 
phenomena. Further, social scientists seem to believe that this sort of probabilistic 
relationship can sometimes be manipulated. For example, it’s often thought that 
policy interventions and broad economic changes have the potential to alter such 
probabilistic relationships between antecedent conditions and outcomes; if suc-
cessful, such manipulations can affect overall patterns of outcomes in a society. If 
social scientists did not think that probabilities of outcomes could be affected by 
policy, there could be no reasonable debate, for example, about whether the drop in 
crime in New York City during the 1990s was due to government crime-prevention 
policies or the healthy US economy in the during that period. Whether one thinks 
this question has been resolved or not, few would argue that such debates are 
senseless.

If the probabilities mentioned by social scientists are not merely mathematical, 
what is their nature? This a version of a longstanding question in the philosophy of 
science: What is an appropriate interpretation of probability—in this case, for certain 
probabilities in social sciences? Note that claims about probability in social sciences 
are often closely connected to claims about frequencies of outcomes, usually in 
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populations of people. Indeed, it’s often claimed that the probabilities mentioned by 
social scientists just are frequencies. This is to adopt a frequency interpretation of 
probability for some contexts.1 Although I’ll give some of the (many) reasons that 
probabilities in social sciences should not be understood as frequencies, it’s clear 
that an interpretation of probability for some central cases in social sciences should 
have a close connection to frequencies. In particular, I’ll argue that social scientists 
frequently assume that frequencies of certain properties in populations are stable, 
which is to say that frequencies don’t fluctuate wildly, but remain roughly the same 
over moderately short periods, and change only gradually over long periods. I think 
social scientists are often right to assume this, for the data often supports such as-
sumptions. Why, though, should frequencies of outcomes for members of various 
social categories be stable? What explains that fact?

9.1.2. �I ndividualism and Social Structure
Jencks et al. (1973) argue that factors they measured—family background, occupa-
tional status, educational background, and cognitive skill—played only a small role 
in determining income. Income inequality among randomly chosen men was just 
12–15 percent greater than inequality between any of the categories studied. Jencks 
et al. suggest this result is not just due to the effects of unmeasured differences in 
ability:

Income also depends on luck: chance acquaintances who steer you to one line of 
work rather than another, the range of jobs that happen to be available in a 
particular community when you are job hunting, the amount of overtime work in 
your particular plant, whether bad weather destroys your strawberry crop, 
whether the new superhighway has an exit near your restaurant, and a hundred 
other unpredictable accidents. (Jencks et al. 1973, 227)

Consider, on the other hand, the view that certain factors themselves guarantee 
particular outcomes for people of particular types. Garfinkel (1981) describes a 
view inspired by Adam Smith, according to which those with given resources and 
ability who make certain choices will be rewarded by the free market in a way ap-
propriate to those factors. The market guarantees this outcome. This view assumes 
that there is no luck so bad, or so good, that it can prevent a person from achieving 
his or her appropriate end.2 Now, Garfinkel (1981) argues against the view that such 
individualistic properties are typically relevant to the kinds of outcomes studied by 
social scientists.3 Instead, structural factors such as the distribution of available 
jobs provide more appropriate explanations of social outcomes. Garfinkel never-
theless seems to suggest that given a set of structural factors, what happens to indi-
viduals sharing a set of relevant properties (e.g., educational background) is 
guaranteed.4 The view is not that other factors make no difference to a person’s life, 
but that those within a relevant social category will, one way or another, end up 
with a particular outcome. Again, this view assumes that there is no luck so good 
or so bad that an individual will not experience the outcome determined for her 
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kind by prevailing structural conditions. It is implausible, however, that either a 
simple individual property or membership in a certain social category by itself 
guarantees an outcome. At the very least, some participants in state lotteries will 
find their income bracket changed, but the phenomenon is more general: As the 
example of my job-seeking relative and the discussion of Jencks et al. above illus-
trate, much of what happens in an individual life, including events with major con-
sequences, can depend on idiosyncratic vagaries. I’ll argue for this point further 
below.5

Now, it may be that for any given person in her particular, detailed circum-
stances, there is no other way that things could turn out than how they do. Never-
theless, in the aggregate, outcomes for people in different categories seem to occur 
with certain frequencies. Even if the world is fundamentally indeterministic, this 
indeterminism seems usually to average out to something like determinism in the 
gross physical and physiological processes that underlie social interactions. Why, 
then, do outcomes for members of different social categories often fall into certain 
frequencies in the aggregate? This question has no simple answer, but I will never-
theless offer what I think is a plausible answer.

9.1.3. �S ummary
We can summarize point of the preceding discussion as follows:
 

	 •	 Membership in few if any categories used in social sciences guarantees any 
interesting outcome.

	 •	 Much, perhaps almost all of what happens to each particular individual is 
plausibly determined by the details of his/her circumstances in a roughly 
deterministic manner.

	 •	 Much of what happens to individuals is such that minor variations in 
circumstances could have given rise to other outcomes.

 

I’ll provide further support for these points below. If they are correct, how can it be 
that, for many categories used in social sciences, there are stable frequencies of out-
comes? And what is the nature of probabilities in claims about the world in the 
social sciences?

The goal of this chapter is to suggest an answer to these questions for some 
central sorts of cases, by explaining how to apply a new interpretation of probability, 
far flung frequency (FFF) mechanistic probability (Abrams, forthcoming), to cen-
tral cases in social sciences.6 (In what follows I’ll often abbreviate “FFF mechanistic 
probability” by dropping “FFF.” Context will make it clear when I intend “mecha-
nistic probability” in a more general sense.) More specifically, my goals are to:
 

	 1.	 Further explain and motivate the need for an interpretation of probability 
appropriate for some social science contexts (§<1>9.2).

	 2.	 Summarize the core ideas of mechanistic probability, which depends in 
part on sensitive dependence of outcomes to initial conditions. (§<1>9.3).
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	 3.	 Explain how FFF mechanistic probability could apply in some social 
science contexts, and argue that it’s plausible that it does so, in part because 
individual outcomes do exhibit the requisite sort of sensitive dependence 
(§<1>9.4).

	 4.	 Connect my proposal to some related ideas, and describe areas for further 
research (§<1>9.5).

 

Note that (2) and (3) together constitute a fairly modest goal: To make plausible 
a hypothesis that has potential to resolve what seem to be difficult philosophical 
puzzles about probability and frequencies in social sciences. However, part of task 
(1) will involve arguing that no alternative hypothesis is even on the horizon.7 Given 
the lack of alternatives, it will be significant if the hypothesis of social mechanistic 
probability can be made reasonably plausible.

9.2.  Puzzles about Probability

9.2.1. �S ocial Probability and Methodological Probability
I call probabilities such as those mentioned in the claim above about gang member-
ship social probabilities, and distinguish them from another use of probability which 
I’ll label by methodological probability; this distinction will be important here, even 
if it’s not one that social scientists routinely make explicit. Social probabilities relate 
social conditions to social outcomes. They are part of what social scientists seek to 
discover, understand, provide evidence for, and so on. Methodological probabil-
ities, on the other hand, arise from sources other than facts about social systems. 
For example, when a random-number generating algorithm is used to help sample 
members of a population, the probability of an individual being selected reflects, in 
part, the probability of the algorithm generating a number of a certain kind. The 
latter is a methodological probability. Similarly, when a Monte Carlo simulation is 
used to learn about a social system, the random numbers used to determine param-
eters on different simulation runs reflect methodological probabilities set by the 
researcher.8 Note that sampling and Monte Carlo methods are used to make infer-
ences about the world, and conclusions which these method help to justify may 
often concern social probabilities.9

Probabilities in error terms can reflect both methodological and social proba-
bilities. For example, one kind of error is due to the fact that a sample might not 
accurately represent a population. Some of this error has to do with the fact that the 
random numbers used to generate the sample need not be distributed precisely 
according to an algorithm’s underlying probability distribution (just as flipping a 
fair coin ten times need not produce five heads and five tails). However, the error 
might also reflect idiosyncrasies in the sample, as when it happens that there are 
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correlations between relevant properties of sampled individuals, which differ from 
correlations between the same properties in the population. The correlation in the 
sample then reflects probabilities in the population, as well as those generating the 
random choices of individuals. Although the distinction between social and meth-
odological probabilities raises subtle issues deserving of further discussion, I don’t 
need to address these issues here, as long as it is clear that some claims about social 
phenomena concern probabilities that are purely social. For example, my earlier 
claim about the probability of gang membership has nothing to do with random-
number generators or any other nonsocial source of probabilities, even if the evi-
dence for it might depend partly on methodological probabilities. In the rest of the 
chapter my focus will be on social probabilities.

9.2.2. � The Need for an Interpretation of Probability
First note that from the point of view of mathematics, a probability is any function 
P() which satisfies these axioms concerning subsets of a set Ω:10

 

	 1.	 Probabilities range from 0 to 1: 0≤P(A)≤1, for any subset A of Ω.
	 2.	 An outcome which is certain to occur has probability 1: P(Ω) = 1.
	 3.	 The probability of either A or B occurring, where A and B are mutually 

exclusive, is the sum of A’s and B’s probabilities: P(A∪B) = P(A)+P(B) for 
any two subsets A and B which have no elements in common.

 

A function satisfying these requirements is a probability measure, and the number it 
assigns to a set is the set’s measure.11 (This use of “measure” carries no implication 
that empirical measurement is involved.)

Now consider the question “What is the probability of the portion of the page 
above this printed sentence?” This is a perfectly reasonable question from the point 
of view of mathematics: If we divide the page up into a finite number of basic sub-
sets, proportion of area of the page satisfies the preceding axioms, and thus counts 
as probability in the mathematical sense. The question will no doubt sound odd to 
most readers, however, because the sense of probability used in science (and every-
day life) typically goes beyond what mathematics requires. Exactly how it does so 
depends, somewhat, on context. At the very least, probability in this sense:
 

	 1.	 Concerns situations, events, states, and so on, that might occur in the 
world.

	 2.	 Satisfies mathematical axioms of probability.
	 3.	 Satisfies other criteria that capture roles of probability in scientific contexts.
 

There is disagreement about what this last item should include. However, proba-
bility plays different roles in different contexts, so it seems implausible that a single 
set of criteria will be universally appropriate. At the very least, we can distinguish 
probabilities that in some sense capture facts about degrees of confidence, and 
probabilities that capture facts about relationships in the world. The former are 
called subjective or epistemic probabilities, the latter, objective probabilities. I’ll argue 
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that an objective interpretation of probability is needed to make sense of claims 
about social probabilities. In addition to satisfying probability axioms, I claim that 
the following somewhat loose criteria are important for many (objective) probabil-
ities in social sciences.12

 

	 1.	 Ascertainability: It should be possible, in principle, to determine the 
numerical values of probabilities.

	 2.	 Objectivity: Probabilities should be constituted only by facts about states of 
the world; epistemic factors such as belief or justification are not involved.

	 3.	 Explanation of frequencies: That an outcome A has the probability it does 
should help explain why frequencies of A are what they are.

	 4.	 Distinguishability of nomic regularities: Closely related to the preceding is 
that an interpretation of probability should be able to make at least a rough 
distinction between instances of nomic regularities, that is, cases in which 
frequencies are what they are for some systematic reason, and instances of 
accidental regularities, in which frequencies just happen to turn out the 
way they do for no particular reason (Strevens, 2011).

 

The importance of ascertainability should be obvious. A simple example will clarify 
the general ideas behind the other three criteria.

Consider these two procedures for generating a set of heads and tails from a 
coin dropped on a table 1,000 times.
 

	 1.	 I toss an evenly-weighted coin 1,000 times in the usual way; it comes up 
heads on 493 tosses.

	 2.	 I decide to stop strangers on the street, and get three people to give me a 
number between 0 and 9. This will produce a 3-digit number. I’ll then drop 
a coin from a small height onto a table 1000 times, doing so carefully in 
order make the number of heads equal whatever 3-digit number resulted 
from my street interviews. I follow the plan: The strangers give me the 
numbers 4, 9, and 3, in that order, so I drop the coin 1000 times from a 
centimeter above the table, producing exactly 493 heads.

 

It’s clear that the explanation of the frequency of .493 must be different in the two 
scenarios. The frequency of .493 fits a systematic pattern in the first instance in a 
way that it doesn’t in the second: There is something about the coin and the stan-
dard coin-tossing strategy that explains the fact that the frequency of heads is near 
.5 in the first scenario. In the second scenario, it’s not clear that there is any system-
atic explanation of the frequency of .493. At the very least, there doesn’t seem to be 
any particular reason that the frequency is near .5. Note that in either case, what 
explains the frequency concerns objective factors in the world, rather than facts 
about my subjective or epistemic state.13

Here I’ll briefly mention some well-known interpretations of probability. My 
goal is not to do justice to them, but merely to use some of their most obvious draw-
backs as a way to clarify the motivation for mechanistic probability.14 Note that my 
discussion in this section is largely independent of debates about Bayesian versus 
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frequentist statistics. Though these two schools of statistical methodology do draw 
their initial motivation from Bayesian and frequency interpretations of probability, 
in practice their use is not firmly tied to either interpretation.

First consider a simple finite frequency interpretation of probability, according 
to which probabilities in science are identified with frequencies of outcomes—for 
example, gang membership—in an actual set15 of occurrences—for example, the set 
of actual teenagers in Seattle during the 1990s. However, this interpretation implies 
that improbable combinations of outcomes cannot come to have a high frequency 
by chance—if they did, they would by definition not be improbable (Hájek, 1996). 
That is, finite frequency doesn’t distinguish nomic from accidental regularities, 
since whatever outcomes occur, for whatever reason, are treated identically. For ex-
ample, there is no difference between the two coin tossing scenarios above from the 
point of view of a simple finite frequency theory.

Long-run frequency interpretations define probability as frequency in large, 
counterfactual sets of events, or as the limit of frequencies in a counterfactual infi-
nite sequence. However, in addition to deep problems that I will pass over (Hájek, 
1996, 2009a), neither long-run frequency nor finite frequency interpretations can 
explain frequencies in actual events, since the sets of events whose frequencies these 
interpretations trade on merely contain the actual events to which probabilities are 
attributed. In the case of a simple finite frequency theory, a probability simply is the 
frequency in an actual set of events; it therefore can’t explain that same frequency in 
that same set of events. In the case of a long-run frequency theory, a set of actual 
events is supposed to be a subset of the full counterfactual sequence of events that 
define a probability. Putting aside problems about the explanatory power of such 
counterfactual frequencies, a frequency in a set or sequence of events will not explain 
a frequency in a proper subset of those events, without additional substantive 
assumptions—for example, assumptions about processes which sample from the 
larger set/sequence. Such assumptions would difficult to justify in the general case, 
and are not usually part of a long-run frequency interpretation of probability.16

Best System Analysis chance interpretations of probability (Lewis, 1980, 1994; 
Loewer, 2001, 2004; Hoefer, 2007) have some popularity among philosophers cur-
rently because they do a good job of addressing certain philosophical problems. 
These theories are too elaborate to summarize quickly. One core idea is, very roughly, 
that an objective chance exists whenever assuming its existence plays a simplifying 
role in an ideal, ultimate set of scientific theories—which are those that succeed well 
in summarizing all actual events in the universe, past, present, and future. What 
Best System theories don’t do well is allow probabilities to explain frequencies, for 
Best System chance probabilities are defined in terms of whatever states the actual 
world has. We then again end up explaining frequencies in terms of themselves.17

Bayesian interpretations define probabilities as degrees of belief or epistemic 
relations. Apart from the fact that these interpretations don’t satisfy objectivity, 
Bayesian probabilities can only reflect and track frequencies in the world; they don’t 
explain them. A researcher’s degree of confidence in an outcome for Seattle children 
will not explain that outcome, in general.
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Propensities are postulated indeterministic dispositions, modeled on determin-
istic dispositions.18 According to some common philosophical theories concerning 
causal properties, a lump of salt sitting in a salt shaker has deterministic disposition 
to dissolve when placed in water at room temperature, even if it is never placed in 
water. Propensity is a proposed extension of this notion of disposition. For example, 
some authors claim that an evenly weighted coin has an indeterministic disposition 
of strength 1/2 to produce the outcome heads when tossed in the usual way. Note 
that since propensities are supposed to be dispositions, and dispositions are sup-
posed to involve causal properties, propensities would have potential to provide 
causal explanations of outcomes and frequencies. However, because there’s not 
much more to propensity theories than what I have just said, many philosophers 
argue that propensity theories are too vague and unmotivated to have explanatory 
force. There are other objections to propensity theories as well (Eagle 2004). My 
view is that at the very least, attempting to give propensities a legitimate role outside 
of fundamental physical contexts requires an incoherent conception of causation, 
tantamount to allowing a single token event to simultaneously cause and fail to 
cause an effect (see Abrams, 2007, forthcoming).

9.2.3. �W hy are Social Frequencies Stable?
Social scientists often assume that although social conditions change, frequencies 
don’t usually fluctuate wildly. Sometimes there is evidence for such stability. For 
example, although per capita welfare caseloads in the United States between 1970 
and 2005 have fluctuated from year to year, with a precipitous drop between 1995 
and 2002, a graph of caseloads from year to year appears roughly continuous (figure 
9.1). There are no years in which the caseload shows a large drop or jump, and where 
there are large changes, they are usually followed or preceded by changes in the 
same direction. Even without data to prove that patterns at the level of populations 
don’t fluctuate wildly, social scientists regularly assume such stability, even if tacitly. 
For example, Hill et al. (1999) found correlational patterns between characteristics 
or circumstances of juveniles aged ten to twelve, and prevalence of gang member-
ship in the same cohort a few years later. The authors suggest possible interventions 
to reduce gang membership. It would make no sense, though, to consider interven-
tions on a system unless data collected earlier were likely to be somewhat represen-
tative of patterns at later periods of time. For that matter, it seems unlikely that most 
social science research on groups of individuals would have any interest at all, if we 
didn’t think that conclusions were in most cases roughly projectable into the past 
and the future. Further, when there are radical changes in frequencies from one 
time period to another, the response thought appropriate is usually to look for an 
explanation of the change, whether in social conditions, the physical environment 
(e.g., an earthquake), or in research methodology. The default assumption of rela-
tive stability is simply a precondition for much work in social sciences. It is an as-
sumption, moreover, which plausibly has borne fruit; to the extent that social science 
research has been successful, the stability assumption is empirically justified.
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That frequencies are stable is such a pervasive background assumption that it may 
seem that no explanation of stability is needed. But patterns in populations such as the 
one that Hill et al. studied are the result of numerous decisions by people with dif-
ferent characters, in circumstances that differ both in large and small ways. Notwith-
standing common intuitions, there’s no obvious, good reason that this should result in 
stable frequencies rather than wild, chaotic fluctuations. When pushed, I think the 
first explanation of stability that comes to mind, for many, is something like this:

(1) Some children and other people act in one manner, others act in another. At 
some level of description, there are no particular patterns to what people do or don’t 
do. As long as you aggregate a sufficient number of individuals, the average behav-
iors will remain stable over time, producing stable frequencies concerning gang 
membership.

This argument is incomplete at best. Why do the underlying behavioral causes of 
measured outcomes comport themselves so as to maintain stable frequencies? That 
there is no particular pattern does not imply that the underlying behavioral causes 
should manage to sort out, year after year, so as to keep frequencies of outcomes 
from changing radically. It would be different if there were a reason to think that 
there were stable patterns in the underlying behaviors producing the observable 
frequencies. For example, if there were objective probabilities that the underlying 
behaviors tended to follow for some principled reason, and the distribution was 
such that the effects of these behaviors would be stable, such probabilities could 
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explain stable frequencies.19 But the mere assumption that there are no particular 
patterns to the underlying behaviors doesn’t justify the claim that there are proba-
bilities governing those behaviors. “No particular pattern” is consistent with 
frequencies following an unsystematic chaotic pattern, or being stable, or anything 
in between.

This suggests another possible answer to the question of why social frequencies 
are often stable:

(2) Twelve-year-olds are like quantum phenomena: Each child in the same eco-
nomic class is fundamentally indeterministic, and has exactly the same tendency to 
join a gang as any other member of the class—independent of any of his/her char-
acteristics or any circumstances encountered. (If quantum mechanical probabilities 
are propensities, then the claim is that there is a determinate propensity for gang 
membership given being in a certain economic class.) That would be why the 
frequency of gang membership within each class is stable over time. On this view, 
once we determine the child’s economic class, there is nothing else to be learned 
which might be relevant to gang membership.

If this were true, economic class would be the only factor determining whether a 
child joined a gang or not. There would no point in investigating other factors such 
as race, number of parents, availability of drugs, quality of teachers, and so on. Nor 
could it be relevant to investigate the effects of early childhood trauma, fetal envi-
ronment, brain chemistry, or genetic influences. Individual circumstances would be 
irrelevant to individual outcomes as well. It could not make a difference, for ex-
ample, whether an existing gang member moved in next door, or whether a child 
was traumatized when an inadequately maintained bridge collapsed. Thus the pre-
sent view, according to which a particular social category gives rise to probabilities 
of outcomes all by itself, precludes any further scientific research of any kind, social 
or otherwise.

Consider, finally, this explanation of stable frequencies:
(3) The relationship between properties of children and later gang membership 

is deterministic, or effectively deterministic (i.e., fundamental indeterminism has 
almost no noticeable effect on outcomes). In principle, if we could learn enough 
about a given child, her genes, and the history of her interactions with the world, 
gang membership would be determined, or would at least have an irreducible prob-
ability very near 0 or 1. However, at some point in the past, initial conditions were 
such as to produce frequencies like those we see to day, and the entire social system 
is such as to roughly reproduce frequencies from year to year. That is, society has a 
causal structure that makes it carry forward frequencies from the recent past (cf. 
Millikan, 2000). Stable social frequencies are thus analogous to a distribution of 
rock sizes over a hillside during a landslide: The distribution of rock sizes across the 
hill at one level is roughly the same as that at a slightly higher level a moment earlier 
because the interaction with gravity and the underlying shape of the hillside pre-
serves, roughly, the ordering of rocks across the hillside. (This might not be true for 
balls dumped into the top of a pinball machine.)
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I don’t have a general theory about what kind of causal structures might have this 
property of carrying forward frequencies, and even if we did have such a theory for 
social systems, a mystery would remain: Why should the determinants of so many 
properties of so many social systems should have this kind of special, frequency-
preserving causal structure? I’ll argue instead that social systems in effect repeatedly 
recreate similar frequencies (except for important special cases, section 9.5.2).

Although I will assume below that social systems are effectively deterministic, 
I’ll argue that for the most part social frequencies are stable because social systems 
have a special causal structure, “bubbliness,” which I’ll describe below.20 This 
“bubbly” causal structure helps generate frequencies in a way that’s largely insensi-
tive to variations in recent conditions. That is, rather than stable frequencies being 
the result of a system that reproduces frequencies from the recent past, I’ll argue 
that many social systems have a causal structure which makes it difficult for any but 
a narrow range of frequencies to be produced over a wide range of initial condi-
tions. It is this causal structure that is at the core of the notion of FFF mechanistic 
probability (Abrams, forthcoming), and I’ll argue that FFF mechanistic probability 
is an appropriate interpretation of probability for many contexts in the social sci-
ences. As some propensity interpretations are supposed to do, FFF mechanistic 
probability is defined in terms objective aspects of the world and helps explain 
stable frequencies. FFF mechanistic probability is one of three closely related 
objective interpretations of probability that have recently been proposed, as men-
tioned above, including also Streven’s “microconstant probability” (Strevens, 2011) 
and Rosenthal’s “natural range” conception of probability (Rosenthal, 2010). I call 
all of these interpretations “mechanistic probability” interpretations, because they 
depend on the same causal structure, but there is no established term for such inter-
pretations at present.21

9.3.  Mechanistic Probability

In this section I’ll sketch the core concepts of mechanistic probability using the idea 
of a wheel of fortune. In the next major section I’ll explain how to apply mechanistic 
probability in common social science contexts.

9.3.1. �W hy Wheels of Fortune Generate Stable Frequencies
Consider a wheel of fortune, a simplified roulette wheel in which the outcome is 
indicated by the wedge nearest to a fixed pointer when the wheel stops. No ball is 
involved. If such a wheel is repeatedly given a fairly fast spin, the frequency of an 
outcome in a set of such spins will usually be close to the outcome’s proportion of 
the circumference of the wheel. This is so in general, no matter who the croupier is. 
Casinos depend for their livelihood on such facts. It’s natural to think there is in 
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some sense an objective probability of an outcome equal to its proportion of the 
circumference—even in unusual cases in which a run of good or bad “luck” pro-
duces a frequency that departs significantly from that probability. I want to explain 
why the wheel of fortune exhibits stable frequencies, and lay the groundwork for 
defining an interpretation of probability that will apply to the wheel of fortune and 
other systems.

The wheel of fortune is what I call a causal map device, an effectively determin-
istic device which, given an initial condition, produces an outcome. A croupier 
gives the wheel a spin—imparts an angular velocity to it—and Newtonian physical 
processes take over. The wheel then produces a particular outcome, red or black, 
depending on which wedge is nearest to the pointer when the wheel stops. Figures 
9.2(a) and (b) will help clarify what it means to say that the wheel of fortune is a 
causal map device.

Note that we can divide the set of initial conditions, consisting of angular veloc-
ities possible for human croupiers, into those regions which lead to the red out-
come, and those which lead to the black outcome; Figure 9.2(a) provides a schematic 
representation of this point. Velocities are represented on the horizontal axis, in-
creasing as we move from left to right. The velocities are divided into regions of 
velocities leading to red or to black (marked by “red” and “black” above the line); 
lines rise from the borders between regions, or intervals. For example, the leftmost 
interval marked on the horizontal axis represents a set of similar velocities, from 
lowest to highest. These are velocities that would cause the wheel to stop with the 
pointer indicating the red wedge near the top of the wheel (between 11:00 and 
12:00). The fact that the curved lines lead to the uppermost red wedge is intended to 
convey this relationship. Similarly, the endpoints of the next velocity interval to the 
right are starting points for curved lines that rise to the black wedge that’s adjacent 
and the left of the red wedge just mentioned (i.e., the black wedge between 9:00 and 
11:00). The idea is that initial velocities in this black region would cause the wheel to 
spin a little bit longer, so that the pointer will end up pointing at the next wedge after 
the uppermost red wedge, that is, at the black wedge next to it. This pattern con-
tinues as velocities increase along the horizontal axis. Velocities in the rightmost 
interval marked on the diagram cause the wheel to spin a full revolution further 
than do velocities in the leftmost interval, so that these greater velocities also pro-
duce a red outcome by causing the pointer to indicate the red wedge between 11:00 
and 12:00. Thus the curved lines from both the leftmost and rightmost velocity 
intervals lead to the edges of this same wedge.

Figure 9.2(b) is a general representation of the abstract structure of a causal 
map device. The oval on the right represents a space of possible output effects from 
a causal map device; these outputs are divided into three outcomes, A, B, and C. 
(For the wheel of fortune, particular locations on the wheel when it stops count as 
outputs, which are divided into only two outcomes, red and black.) On the left side 
of the diagram, a space of initial conditions is divided up into three sets A-1, B-1, and 
C-1, which are the sets of initial conditions which would cause outputs in A, B, and 
C, respectively.22 Recall that in the case of the wheel of fortune, different velocities 
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all produced the red outcome. Further, velocities in disjoint subsets—different 
intervals—caused outputs corresponding to points in distinct subsets of those out-
puts that counted as red outcomes; there the subsets were distinct red wedges. In the 
same way, figure 9.2(b) shows that initial conditions in different parts of A-1 (the 
three gray areas) produce outputs in different parts of the A outcome region. This is 
indicated by dark arrows leading from the three parts of A-1 to subsets of A divided 
by dashed lines.

The wheel of fortune is a “bubbly” causal map device: Its input space can be 
divided into many “bubbles”, small regions containing initial conditions leading to 
all outcomes—in this case, red and black.23 More specifically, consider any adjacent 
pair of intervals, one containing velocities leading only to red, and one containing 
velocities leading only to black. The union of those two intervals counts as a bubble, 
because it contains initial conditions, or inputs, leading to each outcome.24 For ex-
ample, the two leftmost intervals along the horizontal axis in figure 9.2(a) constitute 
a bubble. Intuitively, in a normal wheel of fortune, such a bubble is small, in that the 
distance between its smallest and largest velocity is a small fraction of the distance 

(a)

(b)

Figures 9.2  (a): Wheel of fortune: velocity-outcome mapping; (b): Causal map device: 
abstract structure
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from one end of the input space to the other. (This remark is only intended to be 
suggestive, though. I’ll give a fuller characterization of bubble size shortly. At this 
point an informal presentation with a few slightly inaccurate remarks will make it 
easier to follow the more systematic description of mechanistic probability below.)

For a given croupier, we can graph the number of spins she imparts at any given 
velocity. Figure 9.3(a) illustrates this idea for a croupier who spins the wheel many, 
many times, but who tends to give the wheel faster spins more often than slower 
ones. The height of the curve at each point reflects the number of spins the croupier 
gives at the velocity represented by that point on the horizontal axis. This curve is 
called a density curve, since it represents the “density” of spins at each velocity. (On 
the other hand, the graph in figure 9.3(a) represents the croupier as generating spins 
at every velocity possible for human croupiers; this is of course unrealistic. I’ll come 
back to this shortly.)

To summarize what’s to come: Very roughly, it can be proven that if bubbles are 
small and if the slope of a croupier’s density curve over inputs is not extremely steep 
in any region, the frequency of red will be close to the proportion of the input space 
occupied by points leading to red (Strevens, 2003; Abrams, forthcoming). The same 
claim holds for the black outcome. In other words—again very roughly—if the red 
and black intervals can be paired so that each pair (bubble) is small compared to the 
entire range of possible spin velocities, and if the height of the croupier’s density 
curve is roughly the same in both parts of each bubble, then the relative frequencies 
of outcomes will be close to the relative sizes of red and black wedges. The relevant 
proofs provide at least a partial explanation of what it is about the wheel of fortune 

(a)

(b)

Figures 9.3  (a): Hypothetical velocity distribution for a croupier (continuous); (b): 
Hypothetical velocity distribution for a croupier (discontinuous)
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that gives rise to the phenomenon of stable frequencies matching proportions of the 
input velocity space.

An understanding of the general idea of the proofs can be gotten from figure 
9.3(a). Notice that since the height of the curve at a particular velocity represents the 
number of spins at that velocity, we can think of the area of the region under the 
curve and above a particular interval as representing the total number of spins in 
that region of velocities, with larger areas containing more spins. Roughly, we mul-
tiply the width of a region by the average height of the curve over it to get the 
approximate number of spins at velocities in the region. (I’ll give a more careful 
account of this idea shortly.) Since in each pair of contiguous red and black regions, 
heights don’t differ much, the ratio between the number of spins in the two corre-
sponding velocity ranges is then close to the ratio between the widths of the two 
ranges. As this is true for each such pair—each bubble—the ratio between number 
of red and black outcomes will also be close to the ratio between the summed ve-
locity intervals leading to red and the summed intervals leading to black. In this 
case, that ratio is close to the ratios between sizes of red and black wedges. It can be 
argued that this sort of pattern is a large part of what explains the stable frequencies 
found in many mechanical casino games.25

9.3.2. � Mechanistic Probability: Preliminaries
Of course, no real croupier will ever spin a wheel of fortune at every point in a con-
tinuous interval of velocities. It makes more sense to replace figure 9.3(a) with a 
step-shaped curve, as in figure 9.3(b). Here the area of each rectangular region rep-
resents the number of spins in the velocity interval, which is represented as the 
lower edge of the rectangle. A more abstract version of this idea will be part of the 
characterization of FFF mechanistic probability, and will help illuminate the rea-
sons that wheels of fortune—and social systems, I’ll argue—exhibit stable outcomes 
frequencies. Let me first provide some background.

Recall that a mathematical probability measure is nothing more than a function 
which assigns numbers between 0 and 1 (inclusive) to sets in such a way that axioms 
like those given above are satisfied. This idea plays an essential role in the account 
of mechanistic probability, so a concrete illustration may be useful: One possible 
probability measure on the input space of the wheel of fortune uses the fact that 
velocities are represented by real numbers. Let’s call the minimum and maximum 
velocities possible for a human being v0 and v1. Suppose that our probability func-
tion P assigns 1 to the set containing all of the velocities possible for a human crou-
pier (P([v0, v1]) = 1). More generally, consider any interval containing all velocities 
lying between two real numbers, vi and vj, which lie between the minimum vo and 
maximum v1, where vj is larger than vi. One way to assign a probability to an interval 
of velocities is to take its probability be the ratio between the interval’s length and 
the length of the set of humanly possible velocities. In other worlds, let the proba-
bility of any interval within the range bounded by the minimum velocity vo and the 
maximum v1, be the difference between the interval’s largest and smallest velocities, 
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divided by the difference between the largest and smallest velocities which are hu-
manly possible:




1 0

P([ , ]) j i
i j

v v
v v

v v

This is the core idea of what’s called a “normalized Lebesgue measure” for the wheel’s 
input space.26 It corresponds to the intuitively natural way that we measured 
“widths” of velocity intervals above.

Although normalized Lebesgue measure is in some sense a natural way of 
thinking about probabilities for sets of initial velocities, I intend it mainly to illus-
trate the application of a mathematical probability measure to an input space. Many 
such mathematical probability measures could be assigned to the input space of a 
wheel of fortune. We might, for example, give higher probabilities to regions con-
taining large velocities, or regions that happen to lead to black outcomes. These are 
only some of the simplest examples. Whether any of these mathematical probability 
measures correspond to a probability measure in an objective sense—whether a 
particular mathematical function captures mathematical aspects of an objective 
probability function that satisfies the desiderata above—is a further question. Note, 
however, if a given mathematical probability measure did correspond to probabil-
ities of inputs to the wheel of fortune in some objective sense, it might be appro-
priate to define the probability of an outcome as the probability of those inputs 
which can produce it. Thus, suppose, for example, that a normalized Lebesgue 
measure on the wheel of fortune’s input space captured mathematical aspects of an 
objective probability measure concerning sets of possible initial conditions. Then 
there would be an objective probability of red equal to the total probability of the 
velocity intervals whose points could produce the red outcome.27 In figures 9.3(a) 
and (b) this probability would be proportional to the summed widths of the velocity 
intervals with red (i.e., gray) rectangles over them.

For now, let us assume—pretend, if you like—that we are given a mathemat-
ical probability measure P on the input space of initial conditions, for a causal 
map device such as a wheel of fortune. This assumption will help us get clear on 
ideas, though in the end I’ll dispense with it, and it doesn’t matter at this point 
which function the probability measure is. It might be normalized Lebesgue 
measure, or it might be some other mathematical probability measure. Note that 
whether or not there is an objective correlate to a given mathematical input prob-
ability measure, we can nevertheless define a derived mathematical probability 
measure on outcomes as we did in the preceding paragraph: That is, we can define 
the mathematical probability of an outcome as the probability of those inputs 
which can lead to it. The fact that this relationship mirrors a causal relationship 
between inputs and outcomes will be significant below, but at this stage the point 
is just that it provides a way of defining a mathematically legitimate probability 
measure over outcomes. (Shortly, I’ll explain how we can choose an appropriate 
input probability measure so that outcome probabilities will usually correspond 
to stable frequencies.)
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Now, assuming a given probability measure on the input space, the microcon-
stancy inequality theorem (see appendix to this chapter) says that for a given 
distribution of initial conditions, the difference between the relative frequency of out-
come A and the input measure of initial conditions which lead to A is constrained by 
bubble-deviations and bubble measures. I’ll explain what a bubble-deviation is in a 
moment, but first let me give the context in which they appear: What the theorem 
says, roughly, is that when bubble-deviations and bubble measures are small, outcome 
frequencies will usually be close to outcome probabilities which have been defined by 
an input measure in the way just considered. (That is, an outcome probability is the 
probability of inputs that could cause it.) This will mean that any input measure that 
can make bubble-deviations and bubble measures small for most real distributions of 
inputs, will also make outcome frequencies close to outcome probabilities defined in 
terms of that input measure. I’ll present these points in more detail below.

The notion of a bubble-deviation is a little bit abstract, but it can be viewed as 
an analogue of slope for a distribution of initial conditions. Bubble-deviation is 
defined in terms of an input measure of a bubble and a distribution of inputs—for 
example, of spins of a wheel at the possible velocities. Unlike slope, bubble-deviation 
doesn’t depend on using a real-numbered scale. (Velocities fall on a real-numbered 
scale, and we can use that fact to define probability measures such as Lebesgue 
measure, but bubble-deviation doesn’t depend on this fact.)

To understand the idea of a bubble-deviation, look at figure 9.4(a), which here 
represents part of a distribution over initial spin velocities for one particular crou-
pier. More specifically, 9.4(a) displays, in schematic form, one pair of black/red bars 
from figure 9.3(b). The bottom edges of the boxes represent two velocity intervals, 
making up one bubble. The bottom edge of the right-hand rectangle then represents 
a set a in the input space—a set of inputs that all would lead to one outcome, red. 
Thus a could be, for example, the rightmost interval along the horizontal axis in 
figure 9.2(a). The bottom edge of the left-hand rectangle (here ā) would then corre-
spond to the next interval to the left in 9.2(a).

In figure 9.4(a), width represents input measure, and the right-hand rectangle 
represents the croupier’s total number of inputs in a. The rectangle’s height repre-
sents the average number Ea of inputs in a, where this average is computed using the 
input measure pa; in other words, Ea = (number of inputs in a)/pa. Note this means 
that the average number of inputs in a, Ea, depends on a’s input measure: Given a 
fixed number of spins in the region a, if pa were greater, Ea would be smaller. (This is 
illustrated by comparison with 4(b), described below.) We can also consider a crou-
pier’s average number of inputs for the entire bubble, again defined as the number 
of inputs divided by the bubble’s measure: Eb = (number of inputs in bubble b)/pb.

28 A 
bubble-deviation for red over the red-black pair of velocity intervals in figure 9.4(a) 
is then the absolute difference between the height of the right-hand rectangle (the 
average number of inputs in the corresponding input region) and the average height 
over the entire bubble (the average number of inputs over the entire bubble) divided 
by the input probability of the bubble. Specifically, the bubble-deviation for red in  
a bubble b is defined, relative to an input probability measure, as the absolute value 
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of the difference between the expectation Eb of the number of inputs conditional on 
b and the expected number Ea of inputs conditional on the set of inputs in a, divided 

by b’s measure. The bubble-deviation is equal to: E E
p

b a

b

− .

Figures 9.4(a) and (b) together illustrate how bubble-deviation depends on 
input measure. Both diagrams represent one croupier’s distribution of spins over 
the same bubble: Numbers of spins in each region are the same: The area of the 
right-hand rectangle in (a) is equal to the area of the right-hand rectangle in (b), 
and similarly for the left-hand rectangles. However, because of the difference in 
input measures assigned to a (width in the two diagrams), (b) shows a smaller bub-
ble-deviation than does (a): The difference between the height of the right-hand 
rectangle, and the height of the dashed line representing average number of inputs 
in the bubble is smaller in (b).

As mentioned above, according to the microconstancy inequality theorem, the 
smaller bubbles’ measures are, and the smaller the bubble-deviations of a distribution 
are, the closer frequencies will be to the probabilities of outcomes defined by input 
probabilities. Figure (b) illustrates part of the idea: When an input measure sets prob-
abilities so that it makes the (probability-weighted) average number of inputs in spe-
cial subsets of bubbles close to the average number of inputs for the entire bubble (it 
makes bubble deviation small), the step-shaped curve of average numbers of inputs 
in a bubble will be close to flat. That means that the frequencies of outcomes in the 
subsets will be close to the sets’ measures according to the given probability measure.

9.3.3. � Mechanistic Probability
In order to describe mechanistic probability, it will help to extend the notation from 
the previous section slightly. Let A represent an outcome (e.g., red), and let a repre-
sent the set of initial conditions which can lead to A. Let b be a bubble in the input 
space—that is, a set containing possible inputs leading to both A and its negation 

(a)

(b)

Figure 9.4 I nitial condition distribution within a bubble. Width represents measure. 
4(a): First input measure; 4(b): Second input measure
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(or complement), Ā. Then P(a|b) is the probability of an input leading to A given 

that it occurs in bubble b. This probability is equal to P( & )
P( )
a b
b

, the probability that 

an input in bubble b would lead to outcome A divided by the probability that an 
input would fall in b.

So far we’ve simply assumed the existence of a probability measure that assigns 
values to subsets of the input space. Now we can work toward a way of defining an 
appropriate input measure. The following relationship will play a central role below. 
Given a set of collections of inputs to a bubbly device (e.g., a set of collections of 
spins by different croupiers), if there’s an input measure that
 

	 1.	 Makes maximum bubble size small, and
	 2.	 Makes bubble-deviations small for all (most) of the collections of inputs 

(i.e., makes the collections “macroperiodic” (Strevens, 2003)), and
	 3.	 Makes probability P(a|b) of A’s causes conditional on coming from b the 

same for all bubbles b (i.e., P is “microconstant” (Strevens, 2003)),
 

then the microconstancy inequality theorem implies that frequencies will be near 
probabilities in all (most) of the collections of inputs. The strategy for defining FFF 
mechanistic probability is to define an input measure which best satisfies conditions 
(1–3) relative to a special set of collections of actual initial conditions. If (1)–(3) are 
satisfied well enough by the resulting input measure—in the sense that bubble sizes 
(1) and bubble-deviations (2) are small for most collections of initial conditions, and 
(3) is true, then mechanistic probability will be well-defined and will exist—for ex-
ample, for a particular actual wheel of fortune. The special set of collections of ini-
tial conditions is specified in the next few paragraphs (for other details see the 
appendix to this chapter and Abrams, forthcoming).

In the case of some causal map devices, such as a particular wheel of fortune, it 
happens that there is a large set of actual collections of inputs to similar devices, 
where each collection is produced by a single device—a croupier, in this case—over 
a single interval of time. More specifically, there is a large set of actual collections of 
inputs to causal map devices whose input spaces are similar to that of the wheel of 
fortune in question (figure 9.5). Some of these collections contain spins of a partic-
ular wheel of fortune by a particular croupier. Some contain spins of a roulette 
wheel by a croupier. Some of the collections may contain spins of old mechanical 
one-armed bandit slot machines, in which vertical wheels were caused to turn by 
the pull of a lever. Note that in each case, what matters is that there is a set of inputs 
to a device whose input space is similar to that of the particular wheel of fortune of 
interest to us. In the case of the roulette wheels, we can ignore the tossed balls, since 
there is nevertheless a spin of the wheel each time. Similarly, the fact that the wheels 
in the one-armed bandits are vertical doesn’t change the fact that these wheels re-
alize a type of causal map device whose input space consists of angular velocities 
within a certain general range. (For that matter, there are both vertically and hori-
zontally mounted wheels of fortune.) Determining what all of these distributions 
are is impractical, though possible in principle.
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We can then define an input measure for a particular, concrete causal map 
device D (e.g., a wheel of fortune) relative to a large set of such “natural collections”, 
each containing a large number of inputs. These are those inputs to D and to other 
actual causal map devices D* which (a) exist in a large region of space and time 
around D, and (b) are similar to D in having roughly the same input space.29 In ad-
dition, (c) a natural collection must consist of events that are all and only those 
produced by a single concrete device (e.g., a croupier) in a single interval of time. 
(This rules out gerrymandered collections containing only red spins, for example, 
and some other problematic cases; see Abrams, forthcoming).

The FFF mechanistic probability of an outcome (e.g., red) from a particular 
causal map device (e.g., an actual wheel of fortune) is then equal to the input prob-
ability of initial conditions which can lead to that outcome, where the input proba-
bility measure is one which:

Figure 9.5 D istributions in a set of natural collections of inputs for one wheel of fortune, 
including spins of this wheel of fortune and others, roulette wheels, and mechanical slot 

machines
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	 •	 Makes the probability of the outcome (red) the same conditional on each 
member of a partition of inputs into bubbles (P(A|bi) = P(A|bj) for all 
bubbles bi and bj), and

	 •	 Minimizes bubble sizes and bubble-deviations relative to all members of the 
natural collections of inputs.

 

FFF mechanistic probability then exists if those bubble sizes and bubble-deviations 
are sufficiently small.30 Of course, since it’s impractical to determine what all of 
these natural collections might be, it’s impractical to completely verify that FFF 
mechanistic probability exists in a given case. Nevertheless, it’s possible to get evi-
dence for the existence of FFF mechanistic probability, and it’s often reasonable to 
assume its existence. The dearth of adequate alternative explanations of stable 
frequencies in cases such as the wheel of fortune provides one reason for taking the 
postulation of FFF mechanistic probability to be reasonable. (See Abrams, forth-
coming for further discussion.)

The definition of FFF mechanistic probability and the microconstancy in-
equality theorem have the following implications. (See (Abrams, forthcoming) for 
further discussion and defense of these points.)
 

	 •	 Frequencies in large sequences of trials will usually be close to mechanistic 
probabilities, because by definition, mechanistic probabilities are close to 
frequencies in most natural collections.

	 •	 Stable relative frequencies are explained by mechanistic probability. Bubbli-
ness as it were compresses the diversity of frequencies in collections of 
initial conditions into the regularity of outcome frequencies.

	 •	 Bubbliness buffers against certain kinds of counterfactual variation in 
natural collections: Nearby worlds in which natural collections differ in 
small ways are ones in which frequencies of outcomes will generally be 
similar to what they are in the actual world. (Truthmakers for mechanistic 
probability are in actual world, however.)

	 •	 Since the same set of natural collections should apply to just about any 
causal map device with the same input space, probabilities of outcomes for 
causal map devices with the same input space and the same outcomes will 
differ in outcome probabilities primarily because of differences in their 
internal causal structure, as in the case of two wheels of fortune with 
different red and black wedge size ratios.

	 •	 A related point is that we can manipulate frequencies by modifying the 
structure of the device so that larger or smaller sets of initial conditions are 
mapped to outcomes—by changing sizes of wedges on wheel of fortune, for 
example. Thus mechanistic probability at least causally influences 
frequencies.

 

The last two points will be particularly important in the application of mechanistic 
probability to social contexts.
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9.3.4. �C ausal Map Condition Categories
The following tale will help illustrate concepts which will be important for the ap-
plication of mechanistic probability in social sciences.

At the end of a dirt road in a remote area there is an old, run-down casino, Casino 
Ruota, in which several wheels of fortune are often visible. Though the ratio between 
red and black wedge sizes is uniform within each wheel, the ratio is not the same for 
all wheels, which are otherwise identical. Thus red has a different probability on 
different wheels. Sal, the only croupier, races from one wheel to the next, spinning 
the wheel and quickly collecting and paying out at each wheel. She must be quick, 
because by magic that only Sal understands, each wheel comes into existence when 
it is spun, disappearing soon after it stops. (Sal also believes she is able to change the 
percentage of wheels favoring red and black using esoteric procedures she calls 
“policy interventions.”)

The fantasy that wheels magically come in and out of existence will help convey the 
point that the concepts described next don’t depend on properties such as wheels’ 
physical persistence. Since such properties will usually have no analogs in social 
science applications of mechanistic probability, it’s important to see that they’re in-
essential to the strategy for applying FFF mechanistic probability explored in the 
rest of the chapter.

The properties of wheels of fortune in a collection such as Sal’s can be classified 
into four causal map device condition categories (cf. Abrams, 2009, section 3.3.2):
 

	 1.	 The wheels have a set of mutually exclusive outcomes, in this case, red and 
black.

	 2.	 All wheels in the set share common structuring conditions: for example, 
having a certain diameter.

	 3.	 Wheels differ in which of several mutually exclusive alternative structuring 
conditions they involve. For example, for wheels in which the common 
structuring conditions require only two colors, red and black, with 
uniformly-sized wedges for each color on an evenly-weighted wheel, the 
alternative structuring conditions are different possible ratios between 
wedge sizes.

	 4.	 The wheels have a set of circumstances of functioning—conditions which 
change from trial to trial and change during the course of a trial: These 
include initial conditions (velocities), aspects of the process of spinning and 
slowing down, relation between the pointer and the wedge it points to, and 
so on.

 

Each trial—each spin—corresponds to a realization of the common structuring con-
ditions, one consistent configuration from the set of alternative structuring condi-
tions, and a configuration of initial conditions, which then cause the other 
circumstances of functioning to unfold until an outcome is produced. Call causal 
map devices that share common structuring conditions and outcomes, but have dif-
ferent alternative structuring conditions alternative causal map devices (relative to a 
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specification of such common and possible alternative structuring conditions). Clas-
sifying a set of similar causal map devices in this way is useful when we want to 
compare the effects of different alternative structuring conditions on probabilities of 
outcomes, given an assumption that the other aspects of the devices will be held 
fixed. As I’ll explain below, this scheme will be useful in understanding the applica-
tion of mechanistic probability in social science contexts.

9.4. A pplication in Social Sciences

In this section I’ll outline a way in which the preceding interpretation of probability 
can be applied in some social science contexts. I’ll make repeated reference to the 
following illustration.

Hill et al. (1999) studied a sample of about eight hundred ten- to twelve-year-
olds in Seattle during the 1990s. They identified several factors which seemed to 
affect frequency of an individual joining a gang between the ages of thirteen and 
eighteen. For example, the frequency of gang membership (0.233) among those 
whose families had household income in the lowest quartile was about twice as 
large (vs. 0.127) as for those with incomes in the highest quartile.

Family income itself of course does not guarantee any outcome, and following 
arguments in Section 9.2, I’ll assume that lives of individuals in their physical and 
social context are deterministic. Thus given all of the details of an individual’s cir-
cumstances, probabilities for events in a particular individual’s life will be very close 
to 0 or 1. The relevant variables are too numerous and too fine-grained to measure 
in practice, but what happens to an individual is plausibly affected by details of her 
psychology, physiology, interactions with others (and their psychology and physi-
ology), media broadcasts, weather, and much more. From this point of view, a por-
tion of the world containing an individual has a certain very complex initial state at 
a time t0 (e.g., tenth birthday), and then everything just unfolds—the machine runs. 
Along the way, certain identifiable outcomes (e.g., joining a gang) are realized: A 
state which incorporates those outcomes—those properties—becomes actual.

9.4.1. �S ome Say the Heart is Just Like a Wheel
Casino Sociale takes up large parts of the city of Seattle (and aspects of the rest of 
the planet). The gambling devices are both overlapping and ephemeral. They are 
realized by aspects of the city and its surroundings, each device focused on the life of 
a particular individual. No gamblers come from outside to play the games of 
chance, yet, routinely, a very complex “spin”—i.e., a configuration of initial 
conditions—is fed into the machine. A life unfolds; outcomes determined by that 
“spin” eventually occur or fail to do so. As before, the croupier is the same for each 
gambling device. However, here the croupier is realized by the same system that 
realizes the devices.
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The heart isn’t like a wheel of fortune; however, a heart along with the context 
in which it’s embedded is.31 In the system studied by Hill et al. (1999), we can think 
of the life of a child, beginning from a specified time, as the focal element of a trial 
analogous to a spin of a wheel of fortune. However, since an outcome (e.g., gang 
membership by eighteen) is determined by the child’s interactions with the world 
around him/her, the relevant causal map device includes much of what goes on in 
the child’s nervous system and body, his/her neighborhood, the surrounding city, 
and to a lesser extent, events elsewhere on the planet. Call such a causal map device 
a “person-focused causal map device,” or more briefly, a “personal causal map 
device.” Not everything in the universe plays a role in such a device: Minute shifts in 
the molecular structure of a rock in Iowa usually won’t affect children’s lives, nor do 
subtle fluctuations in light reaching the earth from a distant pulsar. What does and 
does not count as part of the causal map device depends on the causal structure of 
the large system realizing it. (Note that “personal” is not meant to suggest that a 
personal causal map device belongs to or is associated with a particular individual; 
a personal causal map device is simply a device in which outcomes concern prop-
erties of the kind that persons realize individually.)

Different children are focal elements of different realizations of personal causal 
map devices. As with the ephemeral wheels of fortune in Casino Ruota, each trial—
each course of operation of a device embedded in Seattle and its broader context—
is a trial of a physically distinct device. Realizations of causal map devices relevant 
to Hill et al.’s (1999) study can be classified in terms of the four causal map device 
condition categories mentioned above. These devices have:
 

	 1.	 Outcomes: Properties such as joining or not joining a gang by a given age. 
(These are analogous to red and black outcomes for the wheel of fortune.)

	 2.	 A set of common structuring conditions shared by trials of the causal map 
devices, such as general properties of a person at age ten, general relations 
shared in virtue of living in Seattle, living in the United States in 1990. 
(These are analogous to the fact that it’s a wheel of a certain diameter and 
mass which is spun, with given friction coefficients, and so on.)

	 3.	 A set of mutually exclusive alternative structuring conditions. Each personal 
causal map device realizes exactly one of these conditions. A set of mutually 
exclusive ranges of family income levels is one possible set of alternative 
structuring conditions. Racial and ethnic categories present a different set of 
alternative conditions. Conditions can be conjoined/intersected to produce 
a more fine-grained set of alternative conditions, such as these, for example: 
African American and high income, African American and low income, 
white and high income, white and low income.32 (The difference between 
income levels or racial categories corresponds to the difference between 
wheels of fortune with wedges of different sizes. For example, if we treat the 
red outcome as analogous to eventually joining a gang, then a wheel with 
large red wedges corresponds to living in a low-income family, while a wheel 
with smaller red wedges corresponds to living in a higher-income family.)
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	 4.	 There are also circumstances of functioning, including a set of possible initial 
conditions at the beginning of a trial, along with everything else that varies 
in a child’s life, family, neighborhood, the city, and so on—until, say, the 
child reaches the age of eighteen, at which point one of the gang member/
not gang member outcomes has been realized. (Circumstances of func-
tioning in the case of a wheel of fortune are simpler, including, primarily, 
only the initial angular velocity and the position of the wheel at each 
moment until it stops.)

 

Such conditions define a personal causal map type. A trial or realization of such a 
causal map type occurs whenever a set of common structuring conditions and one 
member of the set of alternative structuring conditions is realized, along with a 
specific set of initial conditions. All other properties involved in the realization of a 
personal causal map type count as circumstances of functioning, beginning from 
initial conditions. These include states of the focal person other than those included 
in the structuring conditions, states of other people in his/her community, physical 
configurations of the person’s surroundings, and so on. Such trials take place re-
peatedly in Seattle and its broader context, just in Sal’s Casino Ruota.33

By deciding which conditions to study and estimate, a researcher implicitly 
selects a set of causal map types defined by conditions of the four kinds described 
above. For example, the researcher takes for granted certain background condi-
tions, such as the fact that the only people being studied are those living in Seattle 
in the 1990s who are of a certain age. These are part of what define the common 
structuring conditions. The researcher also selects independent variables, which 
define alternative structuring conditions, and dependent variables, which define 
outcomes. Most circumstances of functioning usually go unmeasured, as they 
would be difficult to study in any detail.

However, the fact that researchers choose which aspects of a society to study 
doesn’t imply that the causal relations connecting those aspects are themselves con-
stituted by researchers’ choices. Two researchers interested in different properties 
might (implicitly) select different sets of causal map types, which nevertheless might 
be realized by the exactly same persons in their physical and social contexts. What 
is a common structuring condition for one researcher (e.g., living in Seattle) might 
be an alternative structuring condition for another. (Suppose that city of residence 
is treated as an independent variable.) Moreover, what is a structuring condition for 
one researcher might be part of the circumstances of functioning for the other. 
(Suppose that individuals who relocate between cities during the period of study 
continue to be tracked. Note though that most circumstances of functioning will 
remain unmeasured by any researcher.34) The two researchers may simply be asking 
about causal and probabilistic relationships between different properties that 
happen to be coinstantiated by the same system at the same time. On the other 
hand, suppose that two researchers choose to focus on the same outcomes and 
common structuring conditions, but on different sets of alternative structuring con-
ditions. One researcher might focus on income while the other focuses on race. 
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These researchers are asking different questions: One asks about probabilities given 
various income properties, the other about probabilities given racial properties. 
Nothing I’ve said so far implies whether these questions have equally good answers, 
or whether one study might identify factors which are causally primary. Similarly, if 
one researcher takes for granted residence in Seattle and another doesn’t, the first 
may miss interesting relationships between living in Seattle and the outcomes that 
interest her.

So far, I’ve explained how to see alternative personal causal map devices, anal-
ogous to wheels of fortune with different wedge sizes, within parts of a social system. 
However, I haven’t yet argued that that other conditions required for the existence 
of mechanistic probability are satisfied by such causal map devices. In the next two 
sections I’ll argue that it’s plausible that many personal causal map devices are 
bubbly in a sense needed for mechanistic probability (in section 9.4.2) and that it’s 
reasonable to see actual initial conditions which are inputs to personal causal map 
devices, as forming natural collections of inputs in the way needed for mechanistic 
probability (in section 9.4.3).

9.4.2. �L ife is Like a Box of Chocolates
My momma always said, “Life was like a box of chocolates. You never know what 
you’re gonna get.”—Forrest Gump35

Individuals don’t know what they’re going to get, I’ll argue, in this sense: For the 
kinds of outcomes which social scientists study—such as achievement of various 
kinds, well-being, drug use, voting behavior, participation in various groups—the 
complexity of the processes which actually govern a particular individual’s life usu-
ally generates sensitive dependence of outcomes on initial conditions: Trivial differ-
ences in circumstances at one time routinely produce large differences in outcomes. 
Despite the fact that membership in a social category can make certain outcomes 
commonplace, it rarely guarantees any narrow set of outcomes. This point may 
seem obvious, but it will important to be clear about its implications here.

More importantly, I’ll argue that it’s plausible that the causal map devices real-
ized by individuals in their social circumstances are typically bubbly: It’s possible to 
partition the input space for a personal causal map device into many sets of similar 
circumstances, so that each set contains initial conditions leading to every outcome 
defined for the device. That is, it possible to partition the input space into bubbles.36 
A bubble of this kind will be a set of possible circumstances in individuals’ lives—
circumstances which probably all seem trivially similar to us—among which are 
variations, of an even more trivial character, which would lead to distinct social 
outcomes were they realized. (All of this is constrained by a choice of structuring 
conditions—see section 9.4.1). Individuals don’t know what they’re going to get, 
then, because they don’t know into which portion of some bubble the initial condi-
tions for their life fall. Causal paths between initial conditions and outcomes giving 
rise to the bubble structure are simply more complex than anyone can understand 
in practice.
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Since rigorous demonstration of these claims would require impractically 
detailed empirical studies, my goal in this section is to give informal arguments to 
make it plausible that personal causal map devices are bubbly—that is, that bubbles 
of certain kinds exist—even if, as a practical matter, we can’t usually identify partic-
ular bubbles. (As I noted at the end of section 9.1, the main goal of the chapter to 
make a certain hypothesis reasonably plausible. This is the claim that many proba-
bilities of social outcomes are mechanistic probabilities. Given arguments in sec-
tions 9.1 and 9.2 that there is a need for such a hypothesis, and that no alternative 
seems to be in the offing, merely making mechanistic probability plausible for social 
science contexts is significant.)

At various points in the chapter I’ve suggested that the complexity of human 
lives makes it plausible that there is sensitive dependence of outcomes on details of 
circumstances at every stage of life. The story of the importance of my relative’s 
pace and speed in putting on his coat (section 9.1) provided one illustration, and 
most people know of someone who got a job, chose their career path, or met a 
romantic partner as a result of what seemed to be a chance meeting between two 
people. Such events typically have other ramifications, both important and trivial. 
More prosaically, a delay in rounding a corner can lead to an encounter with a 
troubling or enlightening individual who would otherwise have been missed, 
which may in turn lead to missing a bus, being late for work, and so on. Or a slight 
puff of air in a small room can lead to an infection being transmitted. In a footnote 
to section 9.4.1, I mentioned that the circumstances of functioning for a causal  
map device can include circumstances such as who is in the same line in a shop, 
when a stop light changes, when a car turns into the street in front of a person, 
whether a new sidewalk fracture creates a puddle to be avoided, whether a strong 
wind slows one down, whether one is the target of a robbery which is or is not 
successful, whether a subtle insult is given at a moment when it is able to hit its 
target, vagaries of disease transmission and food nutrition, and so on. (Fiction 
sometimes uses small coincidences engineered by authors; that such events often 
seem uncontrived is some evidence of the ubiquity of small coincidences in real 
lives.37) My claim here is that the complexity of social, biological, and physical in-
teractions involved in human life means that even minor variations in factors like 
those just mentioned can ramify to produce divergent outcomes. The claim is not 
that human lives exhibit no robustness to minor variation in circumstances; I sus-
pect that not all variations in circumstances would make a difference to outcomes 
studied by social scientists (cf. section 9.5.1). (On the other hand, since a bubble is 
any small set containing inputs leading to every outcome, if all minute variations 
in circumstances did make a difference to outcomes, and we knew it, justifying 
claims about mechanistic probability would be, if anything, easier, since very small 
sets would count as bubbles.) What I want to make plausible is only that in general, 
among sets of very similar circumstances, there are variations that would, if real-
ized, produce each member of a wide range of outcomes that might be chosen for 
study within the social sciences. (Note that the very ubiquity of such sensitive 
dependence makes it hard to notice except in special cases. Part of the reason for 
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this is that the dependence on minor variation in circumstances in human lives is 
so common, and the ramifications of such variations so complex, that it would be 
impossible to trace the consequences of all such minor variations in practice.) If 
I’m right that in every small region of initial conditions for lives—that is, for a per-
sonal causal map device—there are small variations which lead to divergent out-
comes, then person-focused social causal map devices are bubbly. That is, it would 
be possible to partition the input space of such a device into many sets, each con-
taining some paths that lead to each outcome defined for the device.

A detailed, concrete illustration of the bubbliness of a personal causal map 
device would be helpful, but would be impractical, requiring description in minute 
detail of numerous possible lives. Figure 9.6 provides a schematic representation, 
analogous to Figures 9.2(a) and (b), of a division of the input space of a personal 
causal map device into initial conditions leading to two outcomes: Gang member-
ship (light gray) and lack thereof (dark gray). Similarity of conditions is represented 
by distance, probability is represented by area, and gang membership is less prob-
able. Descriptions of what might ensue from two individual points in the input 
space are attached to the diagram. Though the stories in figure 9.6 are made up, they 
should not sound implausible. That they lack sufficient detail to predict the sequence 
of events conveys the extent to which further details of circumstances might have 
led to different outcomes than those in each story. Notice that the input space in 
figure 9.6 is represented in such a way that it’s easy to divide it into many subsets of 
similar conditions containing initial conditions leading to both outcomes. That is, 
it’s easy to show that this causal map device is bubbly. Of course I’ve designed this 
schematic illustration that way. One should imagine a much more fine-grained di-
vision with many more dimensions, however. The fact that points leading to gang 
membership or lack of gang membership are clustered in discernible regions is not 
essential to the diagram.38

9.4.3. � The Input Measure
In the last two sections I argued that we can view lives of persons in context as real-
izations of causal map devices (section 9.4.1), and that these causal map devices are 
usually bubbly (section 9.4.2). In this section I’ll argue that it’s reasonable to think 
that an input measure of the kind required by FFF mechanistic probability exists for 
these devices. That is, I’ll argue that for many personal causal map devices, the social 
world distributes initial conditions across bubbles of the kind just described in a 
more or less even way. In particular, bubble-deviations will generally be very small 
relative to an input measure defined with respect to natural collections of those 
initial conditions. If this is correct, then the requirements for mechanistic proba-
bility would plausibly be met for many personal causal map devices.

First, as the story about Casino Sociale loosely suggests, the croupier for a social 
causal map device, for example, one focused on a child in Seattle, is the whole 
system in which that device is embedded. That is, different person-focused causal 
map devices, defined by different alternative structuring conditions (but identical 
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input spaces, outcomes, and common structuring conditions) are realized within a 
larger device, the city of Seattle, or North America, and so on. This larger determin-
istic system is what chooses initial conditions to feed into each person-focused 
causal map device. (For example, these initial conditions might include the state  
of a child at age ten as well as her circumstances.) It may seem odd that the very 

Figure 9.6 S chematic diagram of input space for personal causal map device for which 
gang membership (light gray) is less likely than avoiding it (dark gray). Events resulting 
from two points in input space are partially described. Distance represents similarity of 

initial conditions, and probability is represented by area.
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devices whose outcomes will end up having mechanistic probabilities, are them-
selves a part of the device that produces the inputs to each of these more limited 
devices. However, nothing in the logic of mechanistic probability rules out such a 
relationship between causal map devices and the devices that generate initial condi-
tions to them. In this case there is a single, large natural collection of inputs, each 
fed into a different realization of a causal map device, and all produced by the single 
concrete device that is the larger system.

Second, note that the larger system which is the social croupier has been and 
will be spinning the wheels of many personal causal map devices, one for each indi-
vidual in Seattle over a substantial period of time, at least.39 The extremely large 
sequence of initial conditions fed into these devices can be divided into a large 
number of large subsequences—that is, a large of set natural collections of inputs, as 
required by the definition of FFF mechanistic probability.

Finally, it seems plausible that the croupier—society, Seattle, and so on—
tends to distribute initial conditions in such a way that there are no particular, 
narrow, sets of conditions which are significantly more prevalent. It’s implausible 
that the idiosyncratic, detailed circumstances that vary from individual trial to 
individual trial would do so in any systematic way that would produce large con-
centrations of inputs in small regions of the initial condition space. That is, initial 
conditions should be very roughly evenly distributed across bubbles and across 
subsets of bubbles leading to different outcomes. (A very roughly even distribution 
is all that’s needed for FFF mechanistic probability—bubbliness then compresses 
the variation in the distribution of initial conditions into stable frequencies; cf. 
section 9.3.3.) Moreover, it’s reasonable to think that all of this would hold for 
most subsequences of the very large sequences of initial conditions produced by 
Seattle the croupier.

Thus, for personal causal maps such as those implicit in Hill et al.’s study (1999), 
it seems plausible that there is a bubble-partition and an input measure that:
 

	 1.	 Makes the maximum input probability measure of all bubbles small (as 
described in section 9.4.2).

	 2.	 Makes the most of the natural collection of inputs macroperiodic, that is, 
such that bubble-deviations are small: Changes in input-probability-
weighted average frequencies for gang membership, for example, and its 
complement within each bubble are small.

	 3.	 Makes the input probability measure P microconstant, that is, P(a|b) of A’s 
causes conditional on b is the same for all bubbles b. (This requires adjust-
ing the weights on portions of bubbles so that 1 and 2 aren’t violated.)

 

Note that the set of actual initial conditions that defines the input measure for any 
one of the alternative personal causal map devices is the set of actual inputs to all of 
them, and the probability measure defined in terms of these inputs is the same for 
each alternative causal map device. The probabilities of outcomes for these devices 
differ only because of differences in their internal causal structures, defined by the 
different social conditions that they reflect.
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As with the sensitive dependence of personal causal map devices, described 
above, illustrating the way in which initial conditions are distributed among bub-
bles for such devices would be difficult in practice, since it would require describing 
many actual situations in great detail. However, the more fine-grained the sensitive 
dependence is in a personal causal map device, the less plausible it seems that actual 
initial conditions would distribute themselves so as to favor any very small region in 
the input space containing outcomes leading to a single outcome, or that actual 
initial conditions would consistently favor one outcome over another across dispa-
rate portions of the input space. For example, it’s implausible that initial conditions 
would consistently produce one of the precise scenarios described in figure 9.6 
rather than others.

Thus it’s reasonable to think that social outcomes defined for person-focused 
causal map devices such as those implicit in Hill et al.’s (1999) study have mecha-
nistic probabilities: There is, plausibly, a bubble-partition and a probability 
measure over initial conditions to alternative causal map devices centered on ten-
year-old Seattle residents (defined, e.g., by alternative parental income levels), 
such that the probability of gang membership conditional on each bubble is the 
same, such that every bubble’s input measure is small, and such that the maximum 
bubble-deviation for the set of actual initial conditions over a long period of time 
is small.

If this is correct, then according to the microconstancy inequality theorem, 
when a particular causal map device, satisfying requirements for mechanistic prob-
ability, is repeatedly realized, frequencies of outcomes will usually be close to their 
mechanistic probabilities. These probabilities, I suggest, are often the probabilities, 
determined by the causal structure of social systems, that social scientists are in fact 
measuring, modeling, and estimating. (For example, on the present view, the 
frequency of joining a gang among children whose parents are in the lowest income 
quartile will probably be close to the mechanistic probability of gang membership 
for that condition.) More generally, I suggest that the reason that it can be useful to 
make predictions and develop policies based on social science research is that the 
system being studied is, underneath, a causal map device satisfying the require-
ments for FFF mechanistic probability.40

I have argued only that all of the parts of this story about social probabilities are 
plausible, at the same time pointing out the severe practical difficulties of rigorously 
supporting the proposal. On the other hand, there does not seem to be any other 
account of social probabilities that can explain stable social frequencies. That does 
not make FFF mechanistic probability a purely theoretical postulate, however.41 
Rather, FFF mechanistic probability is a complex explanatory hypothesis with plau-
sibility, and moreover, the only one available. It may be that some future mecha-
nistic probability interpretation other than FFF mechanistic probability—perhaps 
deriving from Strevens’s (2011) or Rosenthal’s (2010) work—will turn out to have 
more plausibility for social sciences. However, I’m unaware of any alternatives to 
mechanistic probability interpretations that could satisfy the desiderata specified 
above.42
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9.5. D iscussion

9.5.1. �I ndependent Social Variables: Comparisons  
and Analogies

According to the present picture, the difference between values of independent var-
iables—alternative structuring conditions such as high versus low family income—
is like the difference between different wedge sizes for wheels of fortune: Differences 
in family income bias the frequencies produced (relative to a common input prob-
ability measure) by these alternative causal map devices. James Garbarino makes a 
related point about psychological factors which could be viewed as defining a set of 
alternative structuring conditions:

Most children are like dandelions; they thrive if given half a chance. Some are 
more like orchids. They do fine while young enough to be nurtured by loving 
parents, but wilt as adolescents subjected to peer competition, bullying and 
rejection, particularly in big high schools. (Garbarino, 1999, 51)

I would put the point this way: A personal causal map type defined by a more resil-
ient, dandelion character biases probabilities—and frequencies—of better out-
comes, compared to that defined by an orchid character. Some events that would 
send an orchid individual into a path that would (probably) lead to a bad outcome, 
would (probably) lead to good outcomes in many circumstances when a dandelion 
is the focal individual. (The instances of “probably” concern mechanistic proba-
bility.43) In other words, compared to an orchid, a dandelion has larger—more prob-
able, that is—neutral spaces (Wagner, 2005) leading to positive outcomes, where 
neutral spaces are regions of the input space in which outcomes are robust to pos-
sible small modifications of a path through life.44 Similar points can be made about 
the effects of racial or economic differences and other factors on individual out-
comes. (It’s plausible, however, that when there’s an alternative causal map device 
with larger neutral spaces for a given outcome, the neutral spaces are not so large as 
to destroy bubbliness. Otherwise there would be large regions of the initial condi-
tion space in which no variation, no coincidences, could lead to an outcome other 
than the one which is probable in that region.)

Note that despite the effects of alternative structuring conditions on aggre-
gate effects, the outcome for any given individual is determined once the causal 
map device begins its operation, according to the present view. This point may 
be made clearer by considering an analogy with the motion of particles of dust 
in a liquid as they are affected by both Brownian motion and the underlying 
flow of the liquid. Although quantum mechanical indeterminism presumably 
affects these processes in real liquids, similar process would occur with 
deterministic molecular interactions, and simple models of Brownian reflect 
this assumption. On this view, a dust particle moves erratically because of vari-
ation in the numbers and forces of individual molecules impinging on it 
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deterministically. As a result, some dust particles may move against the flow for 
some time, but the average effect of the molecules buffeting dust particles will 
be such that average movement of particles is in the direction of the liquid’s 
flow. The path of each dust particle is nevertheless completely determined by 
the particular impacts on it. On the present picture of social phenomena, even 
individuals who realize social conditions that generate an average “flow” toward 
outcomes with high mechanistic probability, may be those buffeted by life’s 
deterministic “molecular” impacts so as to be pushed toward outcomes with low 
mechanistic probability.45

9.5.2. �C orrelations in Initial Conditions
In the United States, race is correlated with income. This is probably due in part 
to the structure of causal map devices with different racial categories as alterna-
tive structuring conditions. For example, if a significant proportion of em-
ployers are more willing to hire people perceived as white than people perceived 
as black, FFF mechanistic probabilities of various incomes will be different for 
personal causal map devices corresponding to white as opposed to black focal 
individuals.

The correlation between race and income could also be due in part to correla-
tions among initial conditions. For example, consider personal causal map devices 
whose input spaces consist of circumstances at the time of an individual’s birth. If 
there is a correlation between race and income among parents—a correlation in 
initial conditions for children—and if there’s a correlation between parents’ income 
and the educational opportunities of children, the observed correlation between 
race and income may be partly the result of patterns in initial conditions, rather 
than the causal structure of personal causal map devices alone. Obviously, this cor-
relation between race and parental income may be due to the causal structure of 
personal causal map devices focused on individuals in the parents’ generation. Thus 
discrimination in one generation can cause a correlation between race and income 
among parents of individuals in the next generation, which affects the pattern of 
initial conditions for the following generation. This correlation in initial conditions 
can contribute to a similar race-income correlation in this second generation. Thus 
it could well be that to some extent, the race/income correlation is not merely regen-
erated by discrimination in every generation, but persists because the structure of 
current personal causal map devices as it were passes on race/income correlations 
from one generation to the next. This is in contrast to the picture painted above, in 
which alternative causal map devices generate different mechanistic probabilities 
solely due to their internal differences of causal structure from the same input prob-
ability measure, and frequencies are supposed to differ for the same reason. That is, 
the picture given above assumed that alternative causal map devices were in effect 
subject to the same overall patterns of inputs, and as a result could be treated as 
having the same input measure. In the race/income scenario just described, though, 
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frequencies differ in part because of differences in the ways in which initial condi-
tions are distributed to causal map devices corresponding to black versus white 
children. It appears that personal causal maps for white children and for black chil-
dren should be given different input measures. Mechanistic probabilities in this case 
should reflect these different input measures as well as differences in the internal 
causal structure of the alternative causal maps due, for example, to discrimination. 
Of course, the historical root of the correlation in initial conditions many genera-
tions ago undoubtedly has to do with discrimination as well, but the framework I’ve 
set up in this chapter doesn’t have a clear role for the effects of discrimination which 
took place many generations ago.

Note, however, that if instead we define a set of alternative causal map devices 
in terms of race, parental income, and perhaps some other factors all at once, it can 
turn out that there are no remaining correlations in initial conditions that affect 
frequencies of outcomes differently in different alternative causal map devices. 
There may be more realizations of white plus high-income-parent causal map de-
vices than black plus high-income-parent devices, at present, but that doesn’t affect 
frequencies conditional on each device. I believe that with the right set of alternative 
structuring conditions, FFF mechanistic probability will apply in spite of correla-
tions in initial conditions for less specific causal map devices.

9.6. C onclusion

Probabilities in social sciences might have all been artifacts of models, or might 
have literally referred to population frequencies. When frequencies are stable, 
however, there would seem to be something systematic about the underlying 
social system that produces that stability. Since such systematic facts would gen-
erate stable frequencies, it’s reasonable to view them as playing a role in consti-
tuting objective probabilities inhering in the social system. Since we are interested 
not just in whatever frequencies in social systems happen to be, but also in ma-
nipulating these frequencies, it appears as if we do think that there are such 
probabilities. However, we have not had a good account of what it is about social 
systems that could count as this kind of probability; we have not had an interpre-
tation of probability that can play the role of explaining stable frequencies. FFF 
mechanistic probability can play this role. The evidence for FFF mechanistic 
probability in social contexts is not as strong as one would like, however. I can 
only argue that it’s plausible that certain conditions for the existence of FFF mech-
anistic probability are satisfied in social systems. However, given that there does 
not seem to be a good alternative, FFF mechanistic probability should be taken 
seriously as an account of the kind of probability to which many claims in social 
sciences implicitly refer.
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Appendix: Mechanistic probability: 
technical aspects

As mentioned above, the bubble-deviation of a bubble b is defined relative to an input prob-
ability measure as the absolute value of the difference between the expectation Eb of the 
number of inputs conditional on b and the expected number Ea of inputs conditional on the 

set of inputs leading to A (i.e. “A-1”) within b, divided by b’s measure: E E
p

b a

b

−  (See figure 

9.4(a)). The microconstancy inequality theorem A-1 (Abrams, forthcoming) says that the 

difference between the relative frequency of outcome A and the input measure of (the set 
initial conditions which lead to A) is constrained by bubble-deviations and bubble measures:
Theorem 1 The difference between the relative frequency R(A) of A outcomes and the proba-
bility P(A) of A is less than the product of the maximum bubble-deviation S, the square of the 
maximum bubble size π, and the number of bubbles n:

 2 P( ) R( )nS A A

(Abrams, forthcoming)
Mechanistic Probability exists if and only if (Abrams, forthcoming):

 

	 1.	 There’s a large set of natural collections (all inputs produced by single 
process in single interval of time) of inputs—a set containing all and only 
those collections of inputs to actual devices D∗ such that:

	 a.	 The inputs are all and only those produced by a single physical device;
	 b.	 D∗ has approximately the same input space as D;
	 c.	 D∗ occurs somewhere in a large spatiotemporal region around the 

location and time of D;
	 2.	 (a) D is bubbly: There is a bubble partition for D with a large number of 

bubbles, and this bubble partition is such that:
	 b.	 A microconstant input measure (i.e., such that within-bubble out-

come probabilities are uniform across bubbles), constructed through 
minimization of the sum of squares of bubble-deviations for all 
members of the set of natural collections, makes most of the collec-
tions macroperiodic relative to this input space and the device’s 
bubble partition. (Or: Most collections generate a small maximum 
bubble-deviation.)

	 c.	 Moderately expanding or contracting the spatial or temporal range 
across which natural collections are defined doesn’t affect whether 
condition is satisfied for outcome probabilities.

 

See (Abrams, forthcoming) for clarification and discussion of details.
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Notes

	 1.	 Frequency interpretations are widely taken to be the foundation of so-called 
frequentist statistical methods, but what these methods actually require is just an interpre-
tation of probability that satisfies the assumptions of the methods. My view is that FFF 
mechanistic probability, described in this chapter, roughly satisfies those assumptions, and 
that it can be modeled by mathematical probabilities that precisely satisfy them.

	 2.	 Compare the popular advice to “follow your dreams, no matter what, and you will 
succeed.”

	 3.	 Garfinkel (1981, 91ff) comments directly on the previously quoted passage from 
(Jencks et al. 1973).

	 4.	 Garfinkel (1981) repeatedly compares social processes to his view that a rabbit 
about to be eaten by a fox would nevertheless still have been eaten, had circumstances been 
slightly different. He takes this illustration as a good analogy for the correct way to think 
about many explanations in social sciences. I’ll note that I think the story about the fox and 
the rabbit is implausible, especially if we consider subtle alterations in circumstances 
leading up to the moment of predation. Natural selection usually pushes organisms to the 
limits of their capabilities in one dimension or another; otherwise, there is room for 
selection to improve until some such limits are reached. Prey are often difficult to catch, 
and no doubt some prey are only just barely caught. In the usual highly complex environ-
ments, circumstances that can make a difference to outcomes are likely to be subtle, a point 
I will discuss elsewhere.

	 5.	 Garfinkel (1981) eventually seems to argue (in his chapter 6) that social science 
(and science in general) can’t proceed where there is sensitive dependence of outcomes on 
subtle variations in initial conditions. What Garfinkel fails to emphasize is the extent to 
which social science only makes probabilistic claims about aggregate outcomes, which 
often do not exhibit pernicious sensitive dependence.

	 6.	 FFF mechanistic probability is closely related to other recently proposed interpre-
tations of probability (Strevens, 2011; Rosenthal, 2010; Myrvold, 2012), but I believe it is 
more appropriate for understanding probabilities in social sciences.
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	 7.	 Except, possibly, proposals similar to the one I describe here, as remarks I make 
below about Strevens’s and Rosenthal’s interpretations of probability suggest.

	 8.	 Sometimes methodological probabilities are alluded to without being explicitly 
described, as in “a total of 10,000 individuals were drawn from the national population 
database in a random procedure which was stratified by age, gender, and county of 
residence” (Wenzel, Øren, and Bakken 2008).

	 9.	 Bayesian statistical methods require that researchers choose a prior probability 
distribution or a class of such distributions. Is this an instance of social probability or 
methodological probability? I suggest the following: If the prior distribution is chosen 
arbitrarily, because it will wash out—because the choice of prior distribution has little 
influence on the inferences made in the end—then the priors are methodological probabil-
ities. If, on the other hand, a prior distribution is tailored to facts about social systems, it 
may be that it is, at least in part, an estimate of a social probability.

	10.	 The set of subsets must be closed under finite unions.
	11.	 (3) is often replaced with a stronger requirement which generalizes it to infinite 

sums:   P P( ).j j j jA A   if distinct Aj’s can have no members in common. This is usually 
paired with a requirement that the set of subsets is closed under infinite unions. Mecha-
nistic probability will only satisfy the finite additivity requirement in (3) rather than this 
stronger requirement of countable additivity. It can nevertheless be mathematically 
convenient to model mechanistic probabilities with countably additive probabilities. Most 
mathematical treatments of probability as a measure require countable additivity, though if 
Ω is given only a finite number of subsets, finite additivity implies countable additivity.

	12.	 See, e.g., Hájek, 2009b and Williamson, 2010 for other sets of criteria and further 
discussion.

	13.	 There are ways to argue, concerning either scenario, that a rational subjective or 
epistemic probability assignment would make a frequency near .5 probable in this sense. 
However, common notions of subjective or epistemic probability won’t capture the 
difference between these scenarios.

	14.	 See, e.g., Gillies, 2000 and Hájek, 2009b for more thorough surveys of interpreta-
tions of probability and their advantages and disadvantages.

	15.	 Known as a “reference class”—a class with reference to which frequencies are to be 
calculated.

	16.	 Nor could frequencies in one set of events explain frequencies in another sets of 
events without additional, substantive assumptions (for example, that there are causal 
connections between the two sets of events).

	17.	 This is true of Hoefer’s (2007) theory despite his emphasis on what he calls 
statistical nomological machines (SNMs), such the wheel of fortunes I describe below. The 
problem is that Hoefer also defines chances in in term of frequencies alone when no such 
SNMs exist.

	18.	 The notion of a propensity was originally proposed by Popper (1957). This notion 
is not related to propensity scores or any other statistical or methodological principles 
involving the same term.

	19.	 The assumption that underlying causes are governed by probabilities is part of 
what’s needed, for example, to justify a claim that errors in observation of a single physical 
state will have a Gaussian distribution.

	20.	 It isn’t difficult to modify this picture if some causes of behavior are indeterminis-
tic (cf. Strevens, 2003, chapter 2).

	21.	 I believe that it’s clearer how to apply FFF mechanistic probability in social 
sciences than it is to apply the other two interpretations, in part because FFF mechanistic 
probability was originally developed with the special sciences in mind, while Strevens’s and 
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Rosenthal’s interpretations apply more naturally in physical sciences. However, ideas 
developed in (Strevens, 2003, 2005) might be used to apply Strevens’s or Rosenthal’s 
interpretations in social sciences. I discuss the relationship between an aspect of Strevens’s 
interpretation and mine in (Abrams, forthcoming).

	22.	 The -1 notation for the set of elements that is mapped to a given set is common in 
mathematics. The set A-1 is the result of the inverse of the function from inputs to outputs, 
somewhat in the way that applying -1 to x produces, x-1 the inverse of x.

	23.	 “Bubble” was suggested by the fact that a soap bubble reflects its surroundings in 
miniature; similarly, an input space bubble reflects the outcome space “in miniature”.

	24.	 In figure 9.2(b) the small rectangle in the input space is a bubble, in this case for a 
causal map device with three outcomes.

	25.	 In addition to Strevens (2003), cf. Poincaré (1912, 1952 [1903], 1952 [1908]) and 
works by other authors on the method of arbitrary functions cited in von Plato (1994), as 
well as more recent work by Keller (1986) and Engel (1992).

	26.	 Lebesgue measure generalizes summed lengths, areas or volumes to an arbitrary 
number of dimensions, while avoiding some technical problems with mathematical 
refinements that won’t concern us here.

	27.	 Recall that one of the axioms says that the probability of the union of two nonin-
tersecting sets is the sum of their individual probabilities.

	28.	 It makes sense to use average numbers of inputs, e.g., in the set a, rather than 
counting the croupier’s numbers of inputs at each velocity in the input space, since it’s 
likely that there is no more than one spin at any particular velocity, with no spins at all at 
most velocities. Tracking numbers of spins at particular velocities would make it difficult to 
see an overall pattern to a croupier’s spins such as that illustrated in figure 9.3(b). It’s such 
patterns that are the key to understanding mechanistic probability. Averaging over the 
input measure of a set in this way allows mechanistic probability to use an input measure 
that has been adjusted to reflect evidence of general tendencies to produce certain stable 
frequencies.

	29.	 Other criteria might be required; see below for further discussion of this point for 
social science contexts.

	30.	 See the appendix to this chapter and Abrams (forthcoming) for discussion the 
appropriate sense of minimization and what “sufficiently small” means. Abrams (forth-
coming) discusses what is important concerning the number and size of the natural 
collections.

	31.	 The title of this section is from Anna McGarrigle’s song “Heart Like a Wheel” 
(McGarrigle, 2010).

	32.	 Neither alternative structuring conditions nor common structuring conditions 
need correspond to what social scientists call “structural conditions.”

	33.	 Abrams, (2009) fleshes out some aspects of this picture in a biological context, 
using what I call “organism-environment history spaces.” The framework described there is 
applicable to many social contexts with minimal modification.

	34.	 These circumstances of functioning include, at various moments in time, e.g., who 
is in the same line in a shop, when a stop light changes, when a car turns into the street in 
front of a person, whether a new sidewalk fracture creates a puddle to be avoided, whether 
a strong wind slows one down, whether one is the target of a robbery which is or is not 
successful, whether a subtle insult is given at a moment when it is able to hit its target, 
vagaries of disease transmission and food nutrition, etc.

	35.	 From the movie Forrest Gump (1994) directed by Robert Zemeckis, and written by 
Winston Groom and Eric Roth.
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	36.	 Technically, bubbliness is not independent of other requirements for mechanistic 
probability: The partition into bubbles must be one that allows satisfaction of the other 
conditions required for mechanistic probability. A consequence of this fact is that my use 
of “similar” in this paragraph is inessential, though useful for conveying the idea I have in 
mind. See appendix to this chapter and Abrams (forthcoming).

	37.	 My favorite illustration is the 1998 film Run, Lola, Run by Tom Tykwer, in which 
differences between three counterfactual scenarios seem to depend in large part on small 
differences in timing in an initial sequence of events common to all three scenarios.

	38.	 A similar diagram with intermixed gray and black dots would illustrate the idea 
just as well, if not better, but would make it difficult to see which outcome had greater 
probability.

	39.	 A question remains about whether circumstances of ten-year-olds in other cities 
also should be viewed as helping to determine the input probability measure causal map 
devices relevant for Hill et al.’s study (1999). It may be that inputs to personal causal map 
devices for children in other cities, where the devices have the same input and output 
spaces, are relevant whenever patterns of correlations in initial conditions are similar to 
those in Seattle.

	40.	 In some situations we are not only interested in probabilities and frequencies for 
trials of a given kind—e.g., of a given wheel of fortune or lives of children—but also in 
whether individual trials are probabilistically independent. Some statistical methods 
depend on such independence assumptions. To ask whether two trials or realizations of a 
single causal map device are independent is to ask a question about a complex device 
defined by two distinct trials of a simpler device. Thus, the wheel of fortune device 
discussed above is defined by an input space of angular velocities and an outcome space of 
red and black. We can also define a causal map device in which the input space consists of 
pairs of angular velocities for successive spins, and whose outcomes are pairs of red/black 
outcomes. In a more complex device such as this one, we can ask whether the outcome 
A-on-trial-one is independent of A-on-trial-two. Similarly, a question about independence 
of outcomes of two realizations of a given personal causal map device is really a question 
about a causal map device composed of two such devices. (In order to represent the 
outcomes of two trials together, we need to consider an outcome space that can represent 
both trials’ outcomes. We are able to make claims about probabilities of such joint out-
comes only given probabilities of outcomes on one trial given the outcome of the other 
trial. This is exactly what an assumption of probabilistic independence of trials gives us, for 
example: We assume that the probability of A on one trial is equal to A probability on that 
trial given the outcome of the other. However, the outcome space of a simple causal map 
device doesn’t include joint outcomes. For example, the outcome space of a wheel of 
fortune device consists only of red and black, and FFF mechanistic probabilities for that 
device concern only those outcomes. Since mechanistic probabilities are defined only 
relative to a particular kind of causal map device, we have to consider a device whose 
outcome space includes joint outcomes of distinct trials in order to have mechanistic 
probabilities which give probabilities of one kind of outcome conditional on the other.) 
Questions about independence in a multi-trial causal map device in social contexts can be 
less clear than in the case of a wheel of fortune: Some realizations of the same personal 
causal map device may even involve direct interactions between the focal individuals. 
(Consider realizations corresponding to two children in the same family.) Nevertheless, 
there are reasons to think that bubbliness can often allow probabilistic independence even 
when there are causal interactions between realizations of different simple causal map 
devices. Strevens (2003, chapter 3) argues for this point.
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	41.	 An example of the latter would be Sober’s (2005) “no-theory” theory of proba-
bility, which claims that objective probabilities are purely theoretical postulations; their 
theoretical role in particular sciences is all there is to no-theory probabilities.

	42.	 Explaining why I think that Strevens’s (2011) and Rosenthal’s (2010) interpreta-
tions are unsuitable for probabilities in social sciences would require a long digression, but 
I’ll mention that their interpretations depend on an input measure defined in terms of 
purely physical properties, which—I would argue—would usually be unsuitable as a basis 
for probabilities in social sciences. (Abrams [forthcoming, section 4.1] includes one general 
criticism of Strevens’s [2011] way of defining an input measure.)

	43.	 More specifically, I view the probabilities underlying the two instances of “prob-
ably” in this sentence as mechanistic probabilities conditional on a particular event type 
(e.g. on being an act of rejection), occurring during the functioning of possible realizations 
of a causal map type. See Abrams (2009) for a conception of an organism (e.g., person) in 
its environment consistent with the present conception of mechanistic probability, which 
allows a clear way of understanding such conditional probabilities.

	44.	 See Wimsatt (2007) for related discussions of robustness in a variety of contexts.
	45.	 William Upski Wimsatt (1994) wrote that life as a white American is like riding a 

bicycle with the wind at one’s back: It helps one along but its effects are typically unnoticed. 
The effects of the wind are harder to miss when one has to ride into it. My metaphor would 
fit Wimsatt’s if air molecules were very large.
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