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The 2021 Sveriges Riksbank Prize in Economic Sciences in Memory of Al-

fred Nobel was awarded in two halves. One half was awarded to David 

Card “for his empirical contributions to labour economics” (The Royal 

Swedish Academy of Sciences 2021, 1). The other half was awarded jointly 

to Joshua D. Angrist and Guido W. Imbens “for their methodological con-

tributions to the analysis of causal relationships” (1). In this article, I (a 

philosopher of science interested in causal inference in economics) reflect 

on the second half of the 2021 Nobel Prize, awarded to Angrist and Im-

bens. 

Two beautiful examples of causal inference in economics are Angrist 

(1990) and Angrist and Krueger (1991), published shortly after Joshua 

Angrist obtained his PhD in 1989. (His co-laureates David Card and Guido 

Imbens are his contemporaries, obtaining their PhDs in 1983 and 1991, 

respectively.) The 1990 study estimates the causal effect of veteran status 

on earnings 30 years later. It finds that white U.S. veterans from the Vi-

etnam War have approximately 15% lower earnings as a result of military 

service. The 1991 study finds that, in the U.S., having an additional year 

of compulsory schooling has a large effect on earnings later in life (An-

grist and Krueger 1991). 

At the time, other studies into both of these subjects struggled to find 

causal effects, as opposed to mere correlations. For example, when one 

finds a negative correlation between veteran status and earnings, it is un-

clear whether this is because veterans had a lower earning potential prior 

to being enlisted, or because lower earnings result from serving in the 

military. Angrist (1990) solved this problem using an instrumental varia-

ble approach. During the Vietnam War, men were drafted based on a lot-

tery that assigned numbers between 1 and 365 based on birth date. Only 

men below a certain lottery number were drafted. Since the draft lottery 
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number is randomly assigned, the causal effect of the lottery number on 

earnings can be identified from the observed data. Since an observational 

situation like this is similar to an experiment, such as a randomised con-

trolled trial (RCT), it is called a natural experiment. 

However, we are ultimately not interested in the effect of lottery num-

ber on earnings, but in the effect of military service. Lottery numbers are 

not a perfect substitute for enlistment because some people with low lot-

tery numbers did not enlist and some people with high numbers volun-

teered. To estimate the effect of military service itself, Angrist used the 

lottery number as an instrumental variable. (An instrumental variable has 

some effect on the explanatory variable of interest. It is used for its better 

inference properties—particularly unconfoundedness, discussed in sec-

tion 2 below.) An instrumental variable approach first estimates the effect 

of lottery number on earnings and the effect of lottery number on military 

enlistment. With some additional assumptions that might be controver-

sial, the two results can be combined to derive the effect of military ser-

vice on earnings. 

The draft lottery study has become a classic example of successful 

causal inference, but in 1990 Angrist was not yet convinced of its persua-

siveness. As he recalls in his Prize Lecture: “Guido and I soon began ask-

ing each other: What really do we learn from the draft eligibility and quar-

ter of birth natural experiments?” (Angrist 2021). It was only in the years 

that followed that Angrist and Imbens were able to answer this question 

with their ground-breaking methodological work, which includes classic 

papers such as “Identification and Estimation of Local Average Treatment 

Effects” (Imbens and Angrist 1994) and “Identification of Causal Effects 

Using Instrumental Variables” (Angrist, Imbens, and Rubin 1996). Later 

work added additional causal methods such as regression discontinuity 

approaches (Imbens and Lemieux 2008). It is in methodological studies 

such as these where the most important contributions of Angrist and Im-

bens lie. 

An uncontroversial way to characterise these contributions is to say 

that Angrist and Imbens developed clever methods of causal inference—

such as instrumental variable approaches and regression discontinuity—

which have allowed economists to produce more successful causal stud-

ies, such as the draft lottery and compulsory schooling studies. However, 

I shall argue that their contribution is more important. In the 1980s, econ-

ometrics was in a state of crisis. Edward Leamer put it well in his 1983 
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article titled, “Let’s Take the Con Out of Econometrics”, in which he pro-

nounced that econometric practice of the time was “decidedly unscien-

tific” (37). Even worse, everyone knew it: “Hardly anyone takes data anal-

yses seriously. Or perhaps more accurately, hardly anyone takes anyone 

else’s data analyses seriously” (37). (See also LaLonde 1986 and discus-

sions of the credibility crisis by Angrist and Pischke 2010; Imbens 2022.) 

Angrist and Imbens led the way out of this crisis by shifting the field’s 

attention toward causal research design. Three decades later, Joshua An-

grist and Jörn-Steffen Pischke (2010) declared that econometrics had 

made significant progress since Leamer’s critique. 

I agree. Advances in causal methodology made by Angrist, Imbens, 

and others have been especially important because they mark the first 

step out of the dark ages of econometrics. However, this process is still 

incomplete, and the legacy of Angrist and Imbens will grow larger still—

or at least, it should grow larger. This brings me to my second thesis. At 

present, the econometric methodology of the crisis era is still prevalent. 

Moreover, economists are divided on how to proceed, with heated debates 

over the causal framework to adopt. The framework championed by An-

grist and Imbens, the Rubin Causal Model, has limitations that I believe 

might hamper a more widespread adoption in the field. I will argue that 

the profession needs to prioritise the resolution of these problems so that 

it can put causal inference at the forefront of economic inquiry. 

 

I. THE IDENTIFICATION PROBLEM 

While it may not have been clear in 1991, the draft lottery and compulsory 

schooling studies were important achievements that marked the way out 

of the credibility crisis. But why was there a crisis in the first place, why 

were these instrumental variable studies so successful, and how did they 

contribute to resolving the crisis? In order to answer these questions, let 

me introduce the identification problem. 

In simple terms, the identification problem is that statistics is not 

causal inference. More precisely, exercises in pure statistics are never 

enough to discover a causal relation. (There are a variety of other defini-

tions of the identification problem in economics. Sometimes it refers to 

the more general problem that a parameter in a model cannot be esti-

mated from observations.) 

By pure statistics I mean mathematically describing data in the follow-

ing way. It is assumed that the data in one’s sample is drawn from a larger 

set of data called the population—which can be hypothetical and infinitely 
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large—either randomly or using some known or unknown procedure. The 

pure statistician uses the sample data to make inferences about the pop-

ulation data. Typically, one is interested in a number of mathematical pa-

rameters describing the population data, such as means, conditional 

means, and correlation coefficients. Often, the statistical parameters of 

interest figure as Greek letters in regression equations describing the 

population data, such as: 

 

 Yi = αAi + βBi + ϵi. 

 

(1) 

Here (Yi, Ai, Bi) is the i’th data point and α and β are population parameters 

that the statistician aims to estimate from the sample data, typically using 

a regression method such as ordinary least squares (OLS). 

The error term ϵi  is the deviation of Yi  from its expected value given 

(Ai, Bi), which is estimated by the regression residual. Equations such as 

(1) can be great for describing data statistically. In that case, they may 

also be valuable for predicting the values of new samples drawn from the 

same population. 

An entirely different interpretation of equation (1) is that it is a model 

that describes an underlying causal structure, in which case it is called a 

structural equation, structural model, or causal model. If (1) is a causal 

model, α is interpreted as a causal effect of A on Y, β as a causal effect of 

B on Y, and ϵi  as a combination of unobserved variables having a separate 

causal effect on Y. These are now causal parameters instead of statistical 

parameters. On this interpretation, the equation describes how the i’th 

individual’s outcome Yi  was causally determined based on the values of 

Ai, Bi,  and ϵi. It implies that individual 𝑖’s value of Yi  would have been as 

described by (1) if 𝑖’s values of Ai, Bi, and ϵi had been given any different 

value. Such counterfactual knowledge importantly allows the researcher 

to predict what will happen if the studied population changes, for exam-

ple, due to policy interventions. 

If (1) is a causal model, the researcher can still try to estimate the 

(causal) parameters with the methods of pure statistics, such as OLS. 

However, such an endeavour is usually unwarranted. A major problem is 

that the same data can always be generated by multiple different mecha-

nisms. Even if the data is well described by (1), there are many different 

models that could have generated the exact same data. If the pure statis-

tician would have estimated the parameters of another model, entirely 
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different causal parameters would have been ‘discovered’. Hence, statis-

tical estimates of α and β can be interpreted as causal effects only if we 

have good reasons to assume that the underlying causal structure is given 

by (1). 

This suffices to show that causal inference requires more than pure 

statistics. That said, it should be mentioned as an aside that the use of 

advanced statistical methods is extremely important for causal inference. 

Some important contributions that Angrist and Imbens have made to 

causal methodology are best classified as pure statistics. For example, 

Angrist, Imbens, and Krueger (1999) offer a solution to a problem of bias 

that occurs in two-stage-least-squares (2SLS) estimation, a statistical 

method essential for causal methods using instrumental variables. This 

solution, called Jackknife Instrumental Variables Estimation (JIVE), is then 

used to re-analyse the 1991 Angrist and Krueger study. 

There have been economists throughout the 20th century who under-

stood the identification problem and the difficulties with causal inference 

(e.g., Haavelmo 1943). Nevertheless, econometrics textbooks to this day—

while great at teaching pure statistics—are creating more confusion than 

clarity when it comes to causal inference, as several authors in the field 

now recognise (Heckman and Pinto 2022b; Angrist, Imbens, and Rubin 

1996).1 

When a typical textbook in econometrics introduces the OLS regres-

sion model, it informs the reader of a crucial assumption (e.g., Wooldridge 

2010; Greene 2018). The error term ϵi, as it appears for example in equa-

tion (1), must be uncorrelated with the other variables appearing on the 

right-hand side. This assumption is known as econometric exogeneity (or 

just exogeneity). If the error term does correlate with a regressor, called 

econometric endogeneity, then the regression estimates of the parameters 

α and β are said to be biased or non-causal. Once exogeneity is assumed, 

econometricians are able to apply powerful tools from pure statistics. 

However, exogeneity is an assumption about structure (causal or other-

wise) and needs a defence that goes beyond pure statistics. 

This is where the textbooks fall short. The exogeneity assumption as 

it typically appears in works of econometrics is “either meaningless or 

false”, as Pratt and Schlaifer (1984, 11) summarise it. Econometricians 

tend to define error terms as the combined effect of unobserved variables. 

However, the concept of ‘omitted variables’—without giving it a more pre-

cise definition—is so vague that the exogeneity assumption has no real 

 
1 See footnote 4 for the relevant quotes from these authors. 
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content. In any given regression an infinite number of variables have been 

omitted. Without specifying which unobserved variables are meant, the 

correlation between ϵi and the regressors is not defined. Depending on 

how ϵi is interpreted, the correlation with other variables can have any 

value. 

To see why this is so, consider the model Y = αX + ϵ1, where X is exog-

enous, i.e., Cov(X, ϵ1) = 0 and X and ϵ1  have mean 0. Now consider another 

variable, ϵ2 = βX + γϵ1. Then the model Y = αX + ϵ2 could describe the data 

just as well. However, in this model, X correlates with ϵ2. Without specify-

ing what a variable ϵ is, it could be ϵ1, ϵ2, or many other things. Which 

variable one should choose depends on the causal effect one wants to 

measure. For example, if the causal effect of X on Y is α, then the error 

term is ϵ2, and X is endogenous—so the causal effect cannot be identified 

with OLS. If the causal effect is β, then X  is exogenous and the causal 

effect identifiable. 

Hence, for the exogeneity assumption as it is typically invoked in 

econometric studies, it is impossible to check whether it is true or false. 

That said, if one assumes a particular causal structure, it is possible to 

give the error term a definition for which its correlation with other varia-

bles is defined (Pearl 2009, chapter 5). However, textbook econometrics 

is devoid of such causal assumptions. Under these circumstances, exoge-

neity is not a meaningful assumption. (These problems have long been 

understood. See the classic papers by Haavelmo 1943 and Pratt and 

Schlaifer 1984.) 

From my understanding, what was wrong with econometrics as prac-

tised in the 1980s was that researchers did not have a clear understanding 

of the above issues (this diagnosis is similar to Pearl 2009, chapter 5; Im-

bens 2022). In particular, the difference between pure statistics and 

causal inference was often obscured, with regression equations like (1) 

not having a clear interpretation as either describing data or causal struc-

ture. As Imbens (2022) observes, the term ‘causality’ was rarely used in 

econometrics between the 1960s and 1980s, until it was revived in the 

1990s—despite the fact that econometricians were often concerned with 

clearly causal questions. 

This lack of causal terminology can even be found in the very articles 

that identified the credibility crisis in the 1980s. Leamer (1983), while 

seemingly concerned that conventional regression estimates in economet-

rics do not match causal parameters, does not mention causality in the 
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paper. Another interesting paper is LaLonde (1986), which compares ex-

perimental and non-experimental methods using the same data. The data 

comes from an RCT designed to estimate the effect on trainee earnings 

of an employment program. Putting aside the control group, LaLonde ap-

plied state-of-the-art econometric techniques for use with observational 

data—and he was unable to replicate the results from the RCT. Like 

Leamer, LaLonde did not use words like ‘causality’. However, LaLonde did 

identify ‘model misspecification’ in observational methods as a problem. 

If a ‘model’ is a causal model, this was going in the right direction. How-

ever, to properly analyse and resolve the problems that econometricians 

became aware of in the 1980s, a more principled understanding of causa-

tion and methods of causal inference was needed. 

Given the clarity of causal reasoning found in the draft lottery and 

compulsory schooling papers (Angrist 1990; Angrist and Krueger 1991), I 

imagine that the authors had a clear understanding of the difficulties as-

sociated with causal inference. The semi-experimental methods they used 

were uncommon in economics at the time and would later lead the way 

out of the credibility crisis. However, the causal reasoning in these papers 

is not principled in the sense of being based on well-studied formal prin-

ciples of causal inference. Around 1990, causal reasoning in economics 

relied on intuitions rather than theory and was thus more of an art than 

a science. But this was about to change. 

 

II. THE RUBIN CAUSAL MODEL 

Causal inference, like statistics, must be done with the help of formal 

frameworks that assist the scientist in reasoning correctly and precisely. 

The problem in the 1980s was that economists had mastered well-devel-

oped and sophisticated tools of pure statistics, while their tools for causal 

inference were lagging behind. Fortunately, statisticians had already de-

veloped a framework for causal inference, known as the Rubin Causal 

Model (Rubin 1974) named after Donald Rubin by Holland (1986), but go-

ing back to Neyman ([1923] 1990) and Cox (1958). This section introduces 

the Rubin Causal Model (RCM) and illustrates how it improved econome-

tricians’ understanding of causal methods, using the example of instru-

mental variables. 

The strategy of RCM is to use the RCT as a foundation on which to 

build a framework which extends well beyond RCTs. As in an experiment, 

we imagine that each individual can be given the treatment (T = 1) or no 

treatment (T = 0). An individual’s outcome if treated is denoted Yi(0), and 



ACKERMANS / REFLECTIONS ON THE 2021 NOBEL MEMORIAL PRIZE 

VOLUME 16, ISSUE 1, SUMMER 2023 84 

an individual’s outcome if not treated is denoted Yi(1). These are called 

potential outcomes, of which at least one is counterfactual. The individual 

treatment effect for i is given by Yi(1) – Yi(0). 

It is a virtue of the RCM that it relates a causal effect so clearly to a 

counterfactual: the effect of i’s treatment is the difference between i’s 

outcome if i were treated and if i were not treated. Unfortunately, only 

one of these outcomes can be observed. Hence, we need clever strategies 

in order to learn something about causal effects without ever being able 

to observe them directly. 

As it turns out, various types of average treatment effects (ATEs) can 

sometimes be derived from statistical data. This is the case, for example, 

for an RCT with perfect compliance. (Perfect compliance means that all 

participants get the treatment if and only if they are assigned the treat-

ment). In the perfect RCT, due to the random assignment of treatment, 

the average observed difference between the treatment and control group 

is an estimate of the average counterfactual difference for all individuals. 

More precisely, one can show that 

 

E[Yi(1) – Yi(0)] = E[ Yi ∣∣ T = 1 ] – E[ Yi ∣∣ T = 0 ], 

 

where Yi  is i’s observed outcome. The expectation on the left is called the 

average treatment effect—which is an average of causal effects that is not 

directly observable. The expression on the right, on the other hand, can 

be estimated from the observed data with the techniques of pure statis-

tics. 

Unfortunately, observational data is never like an RCT with perfect 

compliance. But fortunately, there is now a large literature with methods 

to identify treatment effects with weaker assumptions, including assump-

tions that are sometimes satisfied in observational data. The important 

contributions from Angrist and Imbens lie mostly in this area. 

Their most influential achievement is perhaps a method for identify-

ing the local average treatment effect or LATE (Imbens and Angrist 1994; 

Angrist, Imbens, and Rubin 1996). The LATE is an average treatment ef-

fect for a subpopulation of the data: namely, those individuals whose 

treatment status always matches their assignment, called compliers. The 

LATE can be estimated in RCTs with imperfect compliance, but its great-

est success stems from the fact that it can sometimes be estimated from 
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purely observational data. This is the case when the data contains an in-

strumental variable—call it Zi—which has the properties of treatment as-

signment in an imperfect RCT. 

To illustrate the kind of assumptions required for causal inference 

within RCM, I will give a somewhat technical discussion of the LATE using 

RCM terminology. This will pay off in the next section, which compares 

the merits and problems of RCM with other frameworks. 

An instrumental variable Zi is an observable variable that has some 

causal influence on individuals’ treatment Ti(z) with z ∈ {0,1}. Here Ti(z) 

is the treatment that i would have if it were the case that Zi = z. The LATE 

is defined as 

 

E[ Yi(1) – Yi(0) ∣∣ Ti(1) = 1,Ti(0) = 0 ]. 

 

Angrist and Imbens showed that the LATE can be identified if three im-

portant assumptions are satisfied (as well as some others). First, the po-

tential outcomes Yi(t) are unaffected by Zi . More precisely, if Yi(z, t) is i’s 

potential outcome given Zi  = z and Ti  = t, then we have Yi(z, t) = Yi(t), for 

all z, t ∈ {0,1}. (A more intuitive formulation of this assumption may be 

that Yi  is unaffected by Zi  if the treatment Ti  is held fixed). This is called 

the exclusion restriction. Second, Zi  must have the properties of random 

assignment. In RCM terminology, this assumption states that Zi  is proba-

bilistically independent of the potential outcomes (Yi(0), Yi(1), Ti(0), 

Ti(1)). (That is, it is jointly independent of these four variables. I will ex-

plore this assumption in greater detail in the next section.) This assump-

tion is usually called unconfoundedness. Third, assignment to the treat-

ment must make treatment more likely for each individual. More pre-

cisely, there should be no defiers, individuals who do the opposite of their 

treatment assignments. Defiers are individuals such that Ti (1) = 0 and 

Ti (0) = 1. 

The LATE method showcases how RCM can be used to prove mathe-

matically that a causal effect can be identified from the data given these 

assumptions. This subsequently makes it possible for applied researchers 

to increase the credibility of their studies, provided that they can make it 

plausible that these assumptions are indeed satisfied. The assumptions 

contained in LATE and other RCM-based methods are certainly easier to 

defend than econometric exogeneity, by virtue of their rigorous explica-

tion. However, they are still not quite easy to defend—which brings me to 

one of RCM’s foremost shortcomings (see also Pearl 2009, 98–102). 
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Let us look at what these assumptions mean in the draft lottery study. 

In this study, the instrumental variable Zi is Zi = 1 if the individual has a 

low lottery number, such that he is eligible for the draft, Zi = 0 otherwise. 

For the treatment we have Ti (Zi) = 1 if the individual is enlisted, Ti (Zi) = 0 

if not. Finally, Yi = Yi (Ti ) is 𝑖’s observed income 30 years after the draft. 

The exclusion and no-defiers assumptions are relatively straightfor-

ward to defend. The no-defiers assumption says that there are no individ-

uals that would have volunteered for military service with a high lottery 

number but would not enlist with a low lottery number. It seems safe to 

assume that such individuals are rare enough to ignore. 

On the other hand, assessing unconfoundedness is a mental night-

mare. Unconfoundedness says that lottery number Zi is jointly independ-

ent of all the potential outcomes (Yi(0), Yi(1), Ti(0), Ti(1)). Assessing this 

assumption requires one to imagine population data which contains not 

only individuals’ actual treatment and outcome values but also the treat-

ment and outcomes that they would have under counterfactual condi-

tions. Without additional guidance, this assumption is very hard to as-

sess. Unfortunately, the causal framework RCM itself does not provide 

much help in assessing whether unconfoundedness is satisfied. 

Methods to test indirectly whether unconfoundedness is satisfied, 

based on RCM, do exist (see e.g., Imbens and Rubin 2015, chapter 21). The 

problem is that assessing unconfoundedness requires much more than 

some mathematical methods which a researcher can simply ‘run’. More 

importantly, it requires an informal understanding of the underlying 

causal structure and a way to translate this understanding into formal 

assumptions of probabilistic independencies. (Even the tests in Imbens 

and Rubin 2015 require informal input based on the researcher’s intui-

tions and theoretical knowledge.) 

It is my position that a causal framework is supposed to help the re-

searcher with this translation step from structural causal knowledge to 

methodological assumptions. RCM, however, is unsuited for this task by 

construction. Causal connections are not expressed in RCM, which instead 

focuses on independencies in imaginary population data that includes po-

tential outcomes. The result is that all assumptions in RCM are expressed 

in terms of imaginary data, without using any causal terms. To assess the 

assumptions, however, one needs to consult one’s causal knowledge. For 

example, knowledge of whether Zi has common causes with Ti or Yi 

should be used to assess unconfoundedness. Such knowledge comes in 

terms of causal connections, not imaginary population data. 
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However, proponents of RCM insist that they find these assumptions 

quite intuitive. For example, in response to a similar concern voiced by 

Pearl, Imbens (2020, 1164) replies: “I think that statement [from Pearl] 

misses the point. This setting, where the critical assumption is ignorabil-

ity or unconfoundedness, is so common and well studied that merely re-

ferring to its label is probably sufficient for researchers to understand 

what is being assumed”. 

Irrespective of its potential problems, RCM has been extremely im-

portant for the development of causal methods such as the LATE. Both 

Angrist and Imbens mention this importance in their prize lectures (An-

grist 2021; Imbens 2021). Nevertheless, RCM has not managed to replace 

the textbook approach to econometrics in most econometric research. 

Part of the problem is that there are several contenders aiming to replace 

textbook econometrics as a framework for causal reasoning. 

 

III. CONTENDING CAUSAL FRAMEWORKS 

Separately from the RCM developed by statisticians, computer scientists 

and philosophers developed another causal framework, which I will call 

the Pearl Causal Model (PCM) after its primary author Judea Pearl (Pearl 

and Verma 1991; Spirtes, Glymour, and Scheines 1993; Pearl 1995, 2009). 

The PCM makes extensive use of directed acyclic graphs (DAGs) to formu-

late assumptions about causal structure. James Heckman has defended 

another causal framework which he claims is closer to the traditional 

econometric framework (Heckman 2000, 2005; Heckman and Pinto 2015). 

Let us call this the Heckman Causal Model (HCM). In this section, I sum-

marise these frameworks and show how they can be used to shed light 

on the assumption of unconfoundedness. 

Both Heckman and Pearl are influenced by earlier economists’ work 

on structural equation modelling such as Frisch ([1938] 1995) and 

Haavelmo (1943, 1944). Moreover, in its most recent explication, HCM 

makes heavy use of DAGs to express structural causal assumptions 

graphically, as well as other tools from the PCM literature (Heckman and 

Pinto 2015, 2022b). Hence, the two approaches are spiritually and practi-

cally similar. RCM, on the other hand, eschews the use of structural equa-

tions. 

In both approaches, the foundation of causal inference is causal mod-

elling. Before one can reliably estimate causal effect sizes, one typically 

needs to have knowledge about causal structure—that is, knowledge 
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about how the variables in a system are causally connected. Causal mod-

els in HCM and PCM summarise such information using equations and 

graphs. For example, figure 1 represents the research design of an instru-

mental variable setup like the draft lottery study. The nodes in this graph 

represent causal variables, and the arcs represent causal connections. For 

example, Zi → Ti means that Zi is a cause of Ti. The unobserved variable 

Ui is responsible for individual differences in their response to the treat-

ment assignment, as represented by the arc Ui → Yi. 

HCM and PCM can express unconfoundedness both graphically and 

probabilistically. In what follows I illustrate how these frameworks give 

the researchers additional tools in understanding and assessing uncon-

foundedness. 

Consider again the model of an instrumental variable setup in figure 

1. The graphical unconfoundedness assumption states that Zi is causally 

connected with Yi only by causing it (via Ti, as in figure 1). In other words, 

there must not be a common cause Ci of Zi and Yi, that is, a path  

 

Zi ← Ci  → Yi. 

 

Graphical unconfoundedness implies probabilistic unconfoundedness 

under an assumption called the Causal Markov Condition. The Causal 

Markov Condition states that a causal variable is independent of its non-

descendents conditional on its parents, supposing that the DAG is a suf-

ficiently accurate representation of reality. For instance, in figure 1, the 

Causal Markov Condition implies that Yi is independent of Zi given (Ti, Ui). 

The Causal Markov Condition is a well-studied principle that is plausible 

in most circumstances, although objections exist (e.g., Cartwright 1999). 

Based on the Causal Markov Condition and a variety of rules for ma-

nipulating conditional independence relations (from Dawid 1979), a re-

searcher can quickly derive all conditional independencies implied by a 

DAG. To make a connection with the probabilistic unconfoundedness as-

sumption in the previous section, one can create ‘hypothetical versions’ 

of a graph in which treatment variables are replaced by counterfactual 

variables. In HCM, one creates a hypothetical model given counterfactual 

assignments of Zi as follows. First, add a counterfactual treatment assign-

ment variable 𝑍̂i to the graph. Then remove all outgoing arrows from Zi 

and instead assign them as outgoing arrows from 𝑍̂i. The resulting graph, 

depicted in figure 2, represents the causal model given counterfactual as-

signments 𝑍̂i. (PCM uses a slightly different procedure to create counter-

factual models.) By reading off independencies from the hypothetical 
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graph, the researcher can quickly observe that Zi is independent of Ti 

given counterfactual assignments 𝑍̂i. Similarly, figure 3 gives the hypo-

thetical graph given counterfactual assignments of Ti. From this graph, 

the researcher can observe that Zi is independent of Yi given counterfac-

tual assignments of 𝑇̂i. These results in turn can be shown to imply the 

probabilistic unconfoundedness assumption from the previous section.2 

 

 

Figure 1: Causal graph of an instrumental variable setup. 

 

  
 

 

 

 

 

 

Figure 2: Causal graph for counterfactual assignments of Zi. 

 

 

 

 

 

 

 
Figure 3: Causal graph for counterfactual assignments of Ti. 

 

The above illustrates how causal graphs can be used by researchers to 

use their theoretical knowledge of causal structure, as expressed in a 

DAG, to assess whether assumptions for causal methods are satisfied. 

 
2 See Heckman and Pinto (2022b) for a more detailed analysis. 
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While above I went through the reasoning from structure to independ-

ence assumptions explicitly, researchers do not typically need to do so 

themselves. Pearl’s book, and Heckman and Pinto’s recent articles, de-

scribe many causal methods based on assumptions that are expressed in 

graphical terms, such as Pearl’s back-door criterion and front-door crite-

rion (Pearl 2009). This allows researchers to immediately apply these 

methods once they have identified an accurate causal structure. 

The graphical approach of PCM and HCM shifts the researcher’s atten-

tion to an important precondition of causal inference: the identification 

of causal structure. As illustrated above, one needs detailed knowledge of 

causal structure before the assumptions required for causal methods can 

be verified. Graphical causal frameworks not only make it easier to ex-

press structural causal knowledge but also come with a rich literature 

that helps researchers to discover causal structure from data, including 

algorithms that search for causal relations in data (Spirtes, Glymour, and 

Scheines 2001). 

Hence, the graphical frameworks PCM and HCM supply the research-

ers with a more complete set of tools, including tools for estimating 

causal effect sizes, verifying structural assumptions, and discovering 

causal structure. All tools are part of the same graphical framework, al-

lowing scientists to combine them easily. 

 

IV. THE RECENT DEBATE: HECKMAN AND IMBENS 

The previous section showcases some of the benefits of adopting a graph-

ical approach to causal inference. Given these benefits, there is a good 

case to be made that economists should adopt HCM or PCM instead of 

RCM. However, not everyone agrees. Both Angrist and Imbens are vocal 

proponents of RCM and have written textbooks that exclusively rely on 

RCM (Angrist and Pischke 2009; Imbens and Rubin 2015). In an article 

published a year before he won the Nobel Prize, Guido Imbens criticises 

PCM (and indirectly, HCM), claiming that RCM is better suitable for empir-

ical practice in economics—while acknowledging that the graphical ap-

proach “has not had as much impact in economics as it should have” 

(2020, 1130). Given the similarities between HCM and PCM, many of Im-

bens’ criticisms of PCM apply to HCM as well. On the other hand, Heck-

man and Pinto (2022b) argue that HCM is a more suitable framework for 

economists than both RCM and PCM. This section summarises the debate 

and argues that the latest advances in Heckman’s camp give the graphical 

approach an edge over the others. 
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The 2020 article by Guido Imbens is a great overview of the arguments 

in support of RCM. First, contrary to what I have argued above, Imbens 

claims that the formulation of key assumptions is, in fact, more intuitive 

in RCM than in graphical frameworks. According to Imbens, the RCM for-

mulations “capture the way researchers think of causal relationships” 

(2020, 1130). Second, RCM is claimed to connect more easily to traditional 

economic models such as the supply and demand model. Interestingly, 

Heckman and Pinto make the exact opposite claim, arguing that RCM as 

well as PCM “have significant limitations when applied to the wide variety 

of problems that economists face” (2022b, 894). Third, while Imbens 

acknowledges that PCM is advantageous for complex models with many 

variables, he claims that such models “are not particularly popular in em-

pirical economics” (2020, 1155). Fourth, RCM is useful for dealing with 

the problem of treatment effect heterogeneity. Fifth, RCM is claimed to 

connect better with many practical questions of causal study design and 

the inference of causal effects. 

The sixth and most forceful reason for preferring RCM (in my opinion) 

is that it is better capable of capturing the assumptions required for some 

causal methods. By reasoning about probabilistic independencies di-

rectly—bypassing considerations of structure—RCM has undoubtedly al-

lowed methodologists to discover methods that would otherwise be over-

looked because they seem improbable if you have a graphical perspective. 

Instrumental variable methods—the LATE in particular—are an example 

of this. With causal structures as in figure 1, the effect of Ti on Yi can only 

be identified given additional non-graphical assumptions such as the no-

defiers assumption. This is recognised by the others in the debate as well 

(Pearl 2009, 90; Heckman and Pinto 2022b, 913). 

However, James Heckman and Rodrigo Pinto’s (2022b) recent work 

demonstrates that HCM is in fact extremely versatile. It is capable of for-

mulating the assumptions needed for instrumental variable methods 

such as LATE, as well as those needed for methods from PCM, such as 

front-door and back-door adjustment. Hence, the most apparent ad-

vantage of RCM, that it has a natural way of explicating assumptions 

needed for instrumental variable methods, may no longer be a relative 

advantage compared to HCM. At the same time, HCM has all the ad-

vantages of PCM by virtue of incorporating graphical models, as I illus-

trated in the previous section.  
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V. CONCLUSION: ALL ECONOMETRICIANS SHOULD ADOPT CAUSAL FRAMEWORKS 

Hence, based on the most recent developments, it seems to me that HCM 

has an edge over the other frameworks. It is versatile, suitable for many 

empirical methods in economics, and deeply rooted in economic tradi-

tion. However, Heckman and Pinto may go a bit too far when they say that 

the use of RCM and PCM by economists has been detrimental: 

 

Many econometricians and applied economists now emulate what 

they read in statistics or computer science journals. They have forgot-

ten or never learned their own field’s foundational work to the detri-

ment of rigorous causal policy analysis.3 (Heckman and Pinto 2022a) 

 

The above claim is somewhat misleading, given the serious problems with 

the econometric approach as taught in textbooks and still practised to-

day. This tradition is responsible for the problems in econometrics that 

became apparent in the 1980s. Causal frameworks such as RCM, on the 

other hand, have greatly contributed to the development of sound causal 

methods in econometrics. Heckman and Pinto may mean that the field’s 

founders from which they draw inspiration, such as Haavelmo and Frisch, 

had a better (and causal) understanding of structural equation models 

than what is found in textbooks. They are right about that, but this older 

tradition was forgotten or corrupted in the later 20th century (see Pearl 

2009, section 5.1.2). Moreover, authors within PCM and RCM also claim to 

be inspired by Haavelmo’s work. It may be more accurate to say that all 

present-day causal frameworks draw on early 20th-century work, while 

none of the current causal frameworks can claim to stand in a continuous 

tradition from then until the present. 

Both the RCM and HCM sides of the debate now seem to agree that 

the textbook definition of econometric exogeneity is inadequate, prefer-

ring alternative concepts from the newer causal frameworks.4 While Heck-

man’s earlier causal framework still relies on econometric exogeneity 

(Heckman 2005), Heckman and Pinto’s recent version no longer makes 

 
3 The published version Heckman and Pinto (2022b) makes a similar point. 
4 Angrist, Imbens, and Rubin say about exogeneity: “Typically the researcher does not 
have a firm idea what these disturbances [error terms] really represent, and therefore 
it is difficult to draw realistic conclusions or communicate results based on their prop-
erties” (1996, 446). Imbens calls econometric exogeneity “inadequate” (1997, 93). Heck-
man and Pinto say: “Econometrics textbooks often discuss causality as a property of an 
estimator, usually ordinary least squares (OLS). This approach reverses the logic of 
causality. It also generates confusion, since the OLS model is described by statistical 
assumptions that are void of causality” (2022b, 896). 
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any references to econometric exogeneity (Heckman and Pinto 2015, 

2022b). This is a clear way in which all frameworks depart from the econ-

ometric tradition. It is also a good thing. Although econometric exogene-

ity when defined precisely and in structural terms can be a helpful con-

cept—as argued by Pearl (2009, 169–170)—economists on both sides are 

abandoning the ambiguous textbook definition of econometric exogene-

ity and replacing it with clearly defined causal assumptions. 

All of the causal frameworks on offer are a significant improvement 

to the field of econometrics. What is troubling, however, is that the text-

book approach to econometrics is largely unchanged. The typical econo-

metrics textbook has as its foundation the OLS regression model and the 

econometric exogeneity assumption, while RCM might be discussed much 

later as an afterthought (see e.g., Wooldridge 2010; Greene 2018). These 

textbooks have one important improvement compared to earlier days: 

they recognise that causal identification is the fundamental problem that 

economists are concerned with. For example, the first sentence of the in-

troduction in Wooldridge reads: “The goal of most empirical studies in 

economics and other social sciences is to determine whether a change in 

one variable, say w, causes a change in another variable, say y” (2010, 3). 

Hence, it is surprising that these textbooks take an approach that the 

leading experts on causal inference in the field—including Heckman, Im-

bens, and Angrist—recognise as inadequate. 

The textbook approach has consequences for econometric practice. 

For the world’s star economists, causal frameworks might not be abso-

lutely essential. After all, Angrist was able to produce interesting and 

credible causal studies in the early 1990s without relying on RCM. How-

ever, he was doing so at a time in which econometric research was widely 

believed to be incredible by its own practitioners. Causal frameworks are 

essential for the standardisation of credible causal methods and for 

bringing these methods to a larger group of researchers. 

Moreover, it can be shown that practising economists make mistakes 

as a direct result of the confusion created by the concept of econometric 

exogeneity, as I do in Ackermans (2022, appendix A). There I discuss a 

complicated type of sensitivity analysis invented by economists to esti-

mate the size of causal bias. However, the method is incapable of improv-

ing the estimate of causal bias already assumed by the researcher’s choice 

of parameters. These kinds of useless mathematical exercises can be 

avoided if modern causal frameworks are used as the foundation of train-

ing and practice in econometrics. 
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Why is progress in econometric education so slow? Perhaps the field 

simply needs more time. But one factor must be that economists cannot 

agree on which causal framework should be adopted. Without a consen-

sus on this matter, textbook authors have little incentive to overthrow the 

approach they have taken for decades and which is currently used more 

widely than any of the modern causal frameworks. 

Like many in the debate, I have strong views on the respective merits 

of the different frameworks. However, what is more important than which 

causal framework to adopt is that a causal framework is adopted—since 

PCM, HCM, and RCM are all big improvements over textbook economet-

rics. The profession should resolve the dispute about causal frameworks 

and update its graduate teaching. That is the only way to solidify the ad-

vances in causal methodology made by Angrist, Imbens, and others and 

assist future generations of economists in further advancing their work. 
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