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A choice function C is rational iff: if it allows a path through a sequence of decisions with a particular 

outcome, then that outcome is amongst the ones that C would have chosen from amongst all the possible 

outcomes of the sequence. This implies, and it is the strongest definition that implies, that anyone who 

is irrational could be talked out of their own preferences. It also implies weak but non-vacuous 

constraints on choices over ends. These do not include alpha or beta. 

 

A person can be said to binary prefer 𝐴 to 𝐵 if she chooses, or is disposed to choose, 𝐴 when 

𝐵 is the only alternative. I binary prefer apples to oranges if I choose apples when oranges are 

the only alternative. More generally we can say that for a given person, 𝐴 is preferred from a 

set 𝑆 of options if 𝐴 belongs to the set of things in 𝑆 that she would choose from a menu 

consisting of all elements of 𝑆. Apples are preferred from a menu consisting of apples, oranges 

and pears if I am prepared to choose apples from that menu. 

 What preferences are rational? A traditional view of rationality is that it relates means 

to ends but puts no constraints on the ends themselves. Given your preferences over final 

outcomes – i.e. given what I’ll call your tastes – it is rational to prefer means that you think 

conducive to the preferred ends. It is irrational to prefer means that in your own estimation 

frustrate those ends. But almost any ends are rationally permissible. ‘It is not contrary to reason 

to prefer the destruction of the whole world to the scratching of my finger’; but what would 

then be irrational is scratching my finger to save the world.  

 This essay has two aims. The first is to define means-end rationality in a way that 

explains its normative force. ‘Why be rational?’ ought to have an answer that people with 

irrational preferences would find persuasive; but many definitions of rationality violate the 

condition. The definition offered here is constructed to satisfy it. Anyone who is irrational in 

my sense could be argued out of their preferences. Anyone who is rational in my sense could 

not be argued out of their preferences. Note that I am not looking for a definition that respects 

all our intuitions about either ‘rationality’ or rationality. Rather, I am looking for a definition 

that captures this one feature of the everyday concept in terms that are both general and precise.      

 The second aim is to show that on this definition, some tastes are irrational, in the sense 

that anyone whose preferences include them could be argued out of their preferences. In outline 

this result may seem surprisingly strong. One might expect that if rationality is just instrumental 

or means-end rationality then de gustibus non est disputandum. But there is plenty of room for 

arguing over taste, because some tastes are structured in such a way that no preferences that 

include them could be means-end rational.  

But in detail the constraints on taste are surprisingly weak. For instance, many 

philosophers and economists have thought that rationality demands transitivity of binary 

preference over outcomes: if you choose A when B is the only alternative, and if you choose 

B when C is the only alternative, then you choose A when C is the only alternative. It turns out 

that rational binary preference need not be transitive. 

The plan is as follows: §1 states my definition of rationality (1.1) informally and then 

(1.2) more formally. The definition covers only the case of sequential choice under conditions 

of certainty. §2 explains why the definition makes rationality both (2.1) necessary and (2.2) 

sufficient for the dialectical stability that makes it normatively compelling. §3 argues (3.1) that 

the definition constrains one’s tastes as well as one’s preferences over the means for achieving 

them; but (3.2) that these constraints are consistent with violations of intuitive conditions like 

transitivity. §4 compares the present definition with four existing approaches to rationality: 

(4.1) rationality = intuitive rationality; (4.2) rationality = availability of reasons; (4.3) 

rationality = immunity to a money pump; (4.4) rationality = Hammond-type consequentialist 

rationality. In the appendix I sketch an extension of the theory to cover rational choice under 

uncertainty. 
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1 Means-end rationality 

This section states my definition of rationality (1.1) informally and then (1.2) more formally 

as applied to the simplest, deterministic case of choice under conditions od certainty. 

 

1.1 Informal definition 

Tonight you will visit one of two restaurants 𝐴 and 𝐵. 𝐴 offers egg sandwiches, ham 

sandwiches and tuna sandwiches. 𝐵 offers salad, ham sandwiches, and tuna sandwiches. At 

either restaurant you get to pick one thing on the menu. You therefore have two choices – a 

choice of restaurant and a choice from its menu – that interact to determine the outcome in 

ways that this decision tree straightforwardly illustrates: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1 

 

In this tree the boxes with arrows coming out of them are choice nodes, representing decision 

points. Reading from left to right, the first node represents the decision between restaurants 

and the second and third (labelled A and B) each represents a decision from some menu.  

Here, and for simplicity throughout this essay, I’ll be considering decision problems 

which, like this one, are deterministic: there is no uncertainty about any state of the world that 

is relevant to anything that matters to you, so that as far as you are concerned the outcome 

depends solely on the choices that you make. §5.1 sketches one obvious way to extend the ideas 

presented here to cover this case.  

For instance, you might choose (a) to go up at the first node, and (b) to go up at the 

second node: that is, you choose restaurant 𝐴 and egg sandwiches, the latter also being the 

outcome. If so, your choices reflect a preference for 𝐴 when the alternative is 𝐵, and a 

preference for egg sandwiches when the alternatives are ham sandwiches and tuna sandwiches. 

 Nothing about this combination of preferences is irrational. But we do find irrationality 

if in addition (c) you prefer (would be prepared to choose) salad given a straight choice between 

it and all available outcomes – i.e. egg sandwiches, ham sandwiches, tuna sandwiches – and 

(d) dis-prefer (would not be prepared to choose) any of those other outcomes given a straight 

choice between all of them and salad.  

A 

B 

Ham sandwich 

Tuna sandwich 

Salad 

Egg sandwich 

Ham sandwich 

Tuna sandwich 
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Anyone who combines all of (a)-(d) finds himself in the following position: his 

preferences over the means to getting a salad or a sandwich (that is, his preferences over the 

restaurants) prevent him from realizing his preferences over the ends (the salad itself) to which 

those means are directed. By choosing restaurant 𝐴 he prevents himself from getting the one 

outcome that he would have chosen from all of the outcomes (egg sandwich, ham sandwich, 

tuna sandwich, salad) that were available.  

 My definition of means-end rationality is that it is just the absence of the kind of self-

frustration that (a)-(d) jointly involve. Informally, preferences, over means and ends taken 

together, are rational if and only if nobody with those preferences could face a sequential 

decision situation in which the preferences for means frustrate attainment of the preferred ends.  

 The idea behind this definition is that anyone who is irrational in my sense can in 

principle see that his preferences are unsatisfactory by his own lights. To get him to see this, 

we show him a decision tree that witnesses this irrationality. Given his preferences over ends 

– over the set of possible outcomes of the tree – he can see that his own preferences over means 

– over the options at each node of the tree – frustrate the attainment of those ends. Somebody 

whose preferences are irrational in my sense can therefore be brought to see what is wrong 

with his preferences.  

In this respect rationality as I’ll define it resembles Gilboa’s conception of rationality 

as a stability condition:  

 

An irrational mode of behaviour is one that I can hope to change by talking to the 

decision maker, by explaining the theory to him, and so forth. A rational mode of 

behaviour is one that is likely to remain in the data despite my preaching and teaching.1   

 

But the extension of the concept differs sharply from what either Gilboa (in this work) or other 

writers on rationality have taken it to be. This should become clear following the formal 

exposition. 

 

 

1.2 Formal definition 

The technical notions behind the basic approach are very simple and familiar. Here I’ll divide 

them into three categories: outcomes, decision trees and choice functions.  

 

1.2.1 Outcomes. Let there be a finite set 𝑍 of possible outcomes or ‘prizes’. Let there be a 

distinguished subset 𝑌 of the power set of 𝑍 i.e. a set of subsets of 𝑍 representing all possible 

choices from outcomes that the agent might face. I’ll call 𝑌 the set of menus. I’ll focus mainly 

on the case where 𝑌 is the full power set of 𝑍. For instance, suppose 𝑍 is the set of all possible 

lunch options: bacon sandwich, cheese sandwich, egg sandwich etc. Then 𝑌 is the set of all 

lunch menus that I might face. For instance, at a restaurant which offers only cheese sandwiches 

and egg sandwiches I face the menu 𝑦1 ∈ 𝑌, where 𝑦1 = {Cheese sandwich, Egg sandwich}.  

  

1.2.2 Decision trees Define the level 𝐿 of an element of 𝑍 or a non-empty set 𝑆 as follows:  

 

(i) 𝐿(𝑧) = 0 ≡def. 𝑧 ∈ 𝑍 

(ii) If all elements of 𝑆 have finite level, 𝐿(𝑆) = 1 + max {𝐿(𝑆′)|𝑆′ ∈ 𝑆}  

(iii) Nothing else has a level.  

 

 
1 Gilboa 2010: 5.  
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A deterministic decision tree is a set 𝑇 of finite level. A node of a tree 𝑇 is any tree 𝑇′ such 

that 𝑇′ ∈∗ 𝑇, where for any relation 𝑅 I write 𝑅∗ for the ancestral of 𝑅. So 𝑧 ∈∗ 𝑇 means that 

either 𝑧 is an element of 𝑇, or it is an element of an element of 𝑇, or it is an element of an 

element of an element of 𝑇, or… A terminal node of a tree is any node of that tree of level 0. 

If 𝑍′ is a set of possible outcomes then a decision tree over 𝒁′ is a decision tree 𝑇 such that the 

set of its terminal nodes is 𝑍′. If 𝑇 is any tree then I’ll write 𝑻∗ for the set 𝑍′ ⊆ 𝑍 that it is a tree 

over i.e. the set of its terminal nodes. In other words, 𝑇∗ = {𝑧 ∈ 𝑍|𝑧 ∈∗ 𝑇}. For a given set 𝑍 

of outcomes I’ll write 𝚫(𝒁) for the set of all deterministic decision trees over non-empty 

subsets of 𝑍.  

 In effect this definition treats each non-terminal node of a decision tree as a set whose 

elements are its successor nodes, and each terminal choice node as an element of 𝑌. Any 

element of a node is itself a tree as well as a node. I shall say that the elements of any node are 

the available actions at that node.  

For instance, suppose that one day you can choose whether to dine at restaurant A, 

where the menu is egg sandwiches, ham sandwiches and tuna sandwiches, which we can write 

as 𝐴 = {𝑒, ℎ, 𝑡}, or at restaurant B where the menu is salad, ham sandwiches and tuna 

sandwiches, which we can write as  𝐵 = {𝑠, ℎ, 𝑡}. So initially, you are facing a decision tree 

over {𝑠, 𝑒, ℎ, 𝑡} of level 2: this is the tree 𝑇1 = {𝐴, 𝐵}. We can write this out in full as the set:  

 

𝑇1 = {{𝑒, ℎ, 𝑡}, {𝑠, ℎ, 𝑡}} 

 

Let me emphasize that this definition of decision trees only covers trees in which all 

non-terminal nodes are choice nodes. There are no chance nodes. Confining attention to this 

simplest type of case helps me to convey the central idea as clearly as I can; in §5.1 I’ll sketch 

how the model of rationality presented here might naturally extent to cover trees at some nodes 

of which nature reveals something relevant about its state. 

 

1.2.3 Choice function. A choice function 𝐶 on Δ(𝑍) is any function taking non-empty elements 

of Δ(𝑍) – non-empty deterministic trees – to non-empty subsets of themselves. If 𝑇 ∈ ∆(𝑍) 

then 𝐶(𝑇) is the set of all elements of 𝑇 that the choice function permits you to select from 𝑇. 

If 𝑎 and 𝑏 are (possibly identical) elements of 𝑇 = {𝑎, 𝑏} then: 

 

• 𝑪 weakly prefers 𝒂 to 𝒃, written 𝒂 ≿𝑪 𝒃 if 𝑎 ∈ 𝐶(𝑇) 

• 𝑪 strictly prefers 𝒂 to 𝒃, written 𝒂 ≻𝑪 𝒃, if 𝐶 doesn’t weakly prefer 𝑏 to 𝑎 

• 𝑪 is indifferent between 𝒂 and 𝒃, written 𝒂~𝑪𝒃, if 𝐶 weakly prefers 𝑎 to 𝑏 and 

weakly prefers 𝑏 to 𝑎.  

 

In particular, the definitions apply when 𝑇 is a subset of 𝑍, and when restricted to all such 

cases, they define the subset of 𝐶 that constitutes the choice function, and the subset of ≿ that 

constitutes the weak preference relation, over outcomes or ends. But the full definition of weak 

and strict preference puts trees of level >1, as well as those of level 1, in the fields of these 

relations. Finally, writing 𝑻 →𝑪 𝑻′ for 𝑇′ ∈ 𝐶(𝑇), we can define the set of outcomes that 𝑪 

permits in 𝑻 to be 𝑪∗(𝑻) = {𝑧 ∈ 𝑍 ∩ 𝐶(𝑋)|𝑇 →𝐶
∗ 𝑋}. Informally, 𝐶∗(𝑇) defines the outcomes 

that one is liable to reach by applying the choice function 𝐶 to the tree 𝑇. 

 Continuing the previous example (see also Figure 1), suppose that you always choose 

to go north when the only alternative is going south, that you choose at random between any 

two restaurants, and that you always choose ham sandwiches if salad is available and tuna 

sandwiches if salad is not available. This means that applying your choice function 𝐶 to the 

tree 𝑇1 and to its nodes gives the following results: 
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𝐶(𝑇1) = {𝐴, 𝐵} 

𝐶(𝐴) = {𝑡} 

𝐶(𝐵) = {ℎ} 

𝐶∗(𝑇1) = {𝑡, ℎ} 

 

We can now state in formal terms the difference between choice functions over trees that are 

rational and those that are not.  

 

1.2.4 Rational choice function. The formal definition is very simple: if 𝐶 is a choice function 

defined on a set Δ(𝑍) of trees over a set 𝑍 of possible prizes then rationality imposes on 𝐶 

exactly the following constraint:  

 

Means-end rationality: 𝐶 is a rational choice function over 𝑍 if and only if for any 

𝑇 ∈ Δ(𝑍), 𝐶∗(𝑇) ⊆ 𝐶(𝑇∗).  

 

Informally and as already indicated, what this definition says is that if you let your choice 

function 𝐶 guide you through any tree 𝑇, you are guaranteed to end up with something that you 

would have been prepared to choose (i.e. that your choice function permits) from all of the 

outcomes that were available at the outset.    

   

 

 

2 Dialectical stability 

This section explains why the definition makes means-end rationality (as I’ll call it) both 

necessary (2.1) and sufficient (2.2) for the dialectical stability that makes it normatively 

compelling. The discussion here will be more informal than elsewhere, in part because the 

notion of dialectical stability is informal: a choice function is said to be dialectically stable if 

someone in the grip of it cannot be persuaded that anything is wrong with it.  

 

2.1 Dialectical stability implies means-end rationality 

Suppose that an agent’s choice function 𝐶 is in my sense irrational: that is, there is a tree to 

which applying the choice function is liable to yield an outcome that would not have been 

chosen from all those available at the outset i.e. there is a 𝑇 such that 𝑧 ∈ 𝐶∗(𝑇) − 𝐶(𝑇∗) for 

some 𝑧 ∈ 𝑇∗.  

 We can then explain things to the agent as follows. The only thing about this tree that 

matter to you are the outcomes: for any given outcome, what matters is that you achieve it, not 

how you achieve it. The outcomes that you want from this tree 𝑇∗ are just the elements of 

𝐶(𝑇∗), everything else in 𝑇∗ being an outcome that you want to avoid. So in particular 𝑧 is an 

outcome that you want to avoid, because 𝑧 ∉ 𝐶(𝑇∗). And nothing is stopping you from 

avoiding it: the outcome that you get from this tree depends entirely on the choices that you 

make at each node. And yet your own choices are liable to issue in 𝑧 when applied to this tree, 

because 𝑧 ∈ 𝐶(𝑇∗). So clearly your choice function is unsatisfactory by your own lights.  

 The agent cannot be indifferent to this argument if its conclusion is true; nor can she 

resist any step on the way to it. It just does follow from my definition of irrationality that there 

are situations in which an irrational choice function is liable to lead the agent into outcomes 

that she wants to avoid. There are therefore situations in which the agent herself will, if she is 

minimally foresighted, prefer to abandon her own choice function: given a choice between 

following her own choice function down a tree and being forced to take one of the options that 

she would like, she will prefer the latter i.e. abrogation of her own power of choice.    
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  We can put this slightly more formally. Call 𝐶 foresighted if 𝐶(𝑇) ⊆
{𝑇′ ∈ 𝑇|𝐶∗(𝑇′) ⊆ 𝐶(𝑇∗)} whenever the latter is non-empty. A foresighted choice function 

chooses at any node 𝑛 those successor nodes, if any, to which its own application would result 

in outcomes that it wanted from those available at 𝑛. Now suppose that 𝐶 is foresighted and 

irrational i.e. there is a tree 𝑇 such that 𝑧 ∈ 𝐶∗(𝑇) − 𝐶(𝑇∗) for some 𝑧 ∈ 𝑇∗ and choose some 

𝑧∗ ∈ 𝐶(𝑇∗). Now let 𝑆 = {𝑇, {𝑧∗}}: this corresponds to a choice between following one’s own 

choice function along 𝑇 and being forced to take one of the outcomes 𝑧∗. It follows from 𝑧∗ ∈
𝑇∗ that 𝑆∗ = 𝑇∗; therefore 𝐶(𝑆∗) = 𝐶(𝑇∗) so 𝑧∗ ∈ 𝐶(𝑆∗). Therefore 𝐶∗({𝑧}) ⊆ 𝐶(𝑆∗). Given 

that 𝑇 witnesses the irrationality of 𝐶 it must be the case that 𝐶∗(𝑇) ⊈ 𝐶(𝑇∗) and therefore 

𝐶∗(𝑇) ⊈ 𝐶(𝑆∗). It follows from the foresightedness of 𝐶 that 𝐶(𝑆) = {{𝑧∗}}, so that {𝑧∗} ≻𝐶 𝑇. 

In English: the foresighted agent whose choice function is irrational will strictly prefer being 

forced into an option over letting her own choice function select via some sequence of choices 

from amongst it and others. This is the sense in which rationality as defined here is normatively 

attractive, or equally in which irrationality is normatively repulsive. 

 Suppose for instance that when offered a binary choice between more or fewer glasses 

of wine, you always take more; but from all the available amounts of wine you most want to 

take just one glass. Imagine now that you are attending a party at which you are first offered a 

glass of wine and then if you accept are offered a second glass. If we write 𝑧𝑖 for the outcome 

in which you take 𝑖 glasses of wine in total, then we can represent this situation as a tree 𝑇 =
{𝑧0, {𝑧1, 𝑧2}}. See Figure 2.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

 

The fact that your optimal consumption is one glass implies that your choice function satisfies 

𝐶(𝑇∗) = {𝑧1}. But the fact that you always prefer more wine to less implies that if you ever get 

to the point in this tree where one glass is an option, you will always choose two glasses instead. 

So by applying your choice function 𝐶 you get either no wine or two glasses, but either way it 

isn’t the outcome that 𝐶 itself regards as optimal out of those available, so that 𝐶∗(𝑇) ⊈ 𝐶(𝑇∗). 

So your choice function is irrational on the present definition.  

Now suppose that in advance of the party the host offers a self-binding option. If you 

choose this option, then when you get to the party you will get exactly one glass of wine. This 

option doesn’t make available to you an outcome that wasn’t already available to you. (Nothing 

was stopping you from having just one glass of wine when you got to the party). But it does 

inevitably lead to that outcome, whereas trusting your own choice function when you get to the 

party inevitably leads away from it. So the only way for you to get the outcome that your choice 

function regards as optimal is to acquiesce in the restriction of that choice function, and if you 

are (i.e. your choice function is) foresighted then that is what you (or it) will choose to do.  

 
𝑧1: 1 glass 

𝑧2:2 glasses 

𝑧0: no glasses 
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I believe that this definition of rationality accounts for its normative grip: that is, it 

answers the question ‘Why be rational?’ that would appeal even to the irrational. More 

precisely, the definition guarantees that to any person equipped with an irrational choice 

function we can present an argument for abandoning it that is compelling by his own lights. 

Exactly what the argument is will vary from one irrational 𝐶 to another, because the tree 𝑇 

satisfying 𝐶∗(𝑇) ⊈ 𝐶(𝑇∗) will vary from one such 𝐶 to another: but the definition of 

irrationality guarantees that some such argument can always be found. Means-end irrationality 

in my sense is therefore incompatible with dialectical stability; equivalently, means-end 

rationality is necessary for it.   

 

2.2 Means-end rationality implies dialectical stability 

Suppose that an agent’s choice function is in my sense rational: there is no tree to which 

applying the choice function is liable to yield an outcome that would not have been chosen 

from all those available at the outset i.e. every 𝑇 satisfies 𝐶∗(𝑇) ⊆ 𝐶(𝑇∗). Then by definition 

it is impossible to confront its bearer with any hypothetical decision sequence – e.g. any ‘money 

pump’ – through which 𝐶 might generate any outcome that she would consider sub-optimal. 

Whether we consider it sub-optimal is beside the point: she can always shrug her shoulders at 

such devices. ‘By following my own choices I might end up with an outcome that seems bad 

to you; but I’ll always end up with something that satisfies me.’ 

 To illustrate, consider a choice function 𝐶 that violates transitivity of binary preference, 

because you are willing to accept small increments of pain for a small monetary compensation 

but not willing to accept big increments of pain for a big monetary compensation. Specifically: 

let the set 𝑍 of outcomes include all vectors (𝑥, 𝑦), where 𝑥 specifies a monetary holding, 𝑦 

specifies a level of pain, 𝑥 and 𝑦 both integers in [0, 𝑁] for some large positive 𝑁. And suppose 

your choice function weakly prefers (𝑥2, 𝑦2) to (𝑥1, 𝑦1) just in case 𝑥2 − 𝑥1 ≥ (𝑦2 − 𝑦1)3. 

(Recall that a choice function weakly prefers 𝑎 to 𝑏 if and only if 𝑎 ∈ 𝐶({𝑎, 𝑏}).) Then this 

choice function induces intransitive preferences, as follows if we consider these three vectors: 

 

• 𝑧0 = (0,0) 

• 𝑧1 = (2,1) 

• 𝑧2 = (4,2) 

 

It follows from the definition of weak preference that this choice function induces a cycle of 

strict preference over these vectors (i.e. 𝑧2 ≻𝐶 𝑧1 ≻𝐶 𝑧0 ≻𝐶 𝑧2); and the failure of transitivity 

of both strict and weak preference is a straightforward consequence of this.  

Now imagine a decision situation in which you start with zero units of money and zero 

units of pain and are twice offered two units of money in exchange for an increment of one unit 

of pain. You therefore face the tree 𝑇 = {{𝑧0, 𝑧1}, {𝑧1, 𝑧2}}. See Figure 3. 
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Given your preferences you will inevitably end up with either 𝑧1 or 𝑧2. Both outcomes are 

consistent with your preferences as described, because which one you reach will depend not 

only on your preferences between 𝑧0 and 𝑧1 and between 𝑧1 and 𝑧2, but also on your preference 

between {𝑧0, 𝑧1} and {𝑧1, 𝑧2}, which I have so far left unspecified.2 But whatever that other 

preference is, you will end up with an outcome to which you strictly binary prefer some 

alternative: if you end up with 𝑧1 then you strictly binary prefer 𝑧2 to what you get, and if you 

end up with 𝑧2 you strictly binary prefer 𝑧0.  

But it doesn’t follow that you have any reason for concern at how your choice function 

deals with 𝑇. That all depends on what you – what your choice function – wanted to get out of 

𝑇 in the first place: that is, on what is in 𝐶(𝑇∗). Suppose e.g. that 𝐶(𝑇∗) = 𝑇∗ i.e. that you 

regard all the possible outcomes of 𝑇 as acceptable outcomes from that field. Then the fact that 

you end up with 𝑧1 (or 𝑧2) needn’t disturb you at all. Applying your choice function to this tree 

will leave you with an outcome that you fund acceptable.  

Having a means-end rational choice function implies that there is no possible tree to 

which the application of your choice function is liable to eventuate in something that you would 

not have found acceptable at the outset. Therefore, there is no tree the contemplation of which 

generates any dialectical pressure on you to abandon, to alter, or to attempt to restrict the 

application of your own choice function. Rationality implies dialectical stability.  

 

 

3 Rational taste 

Means-end rationality might seem not to constrain preferences over ends, or tastes, as opposed 

to preferences over the means to achieve them. If rationality is just a matter of choosing means 

that suit our ends, it can look as though any set of ends is as rational as any other. But even if 

rationality is just a matter of suiting means to ends ,there may still be grounds for criticism of 

ends from this perspective. A combination of ends can irrational if there is no way to select 

means that could relate to them in the way that rationality demands. As I’ll now argue, it turns 

out that means-end rationality, although explicitly a constraint on the relation of means (choices 

over nodes) to ends (choices over outcomes), does rule out some ends as irrational by 

themselves. 

 

3.1 Rational tastes 

The intuitive idea is that one’s ends are rationally permissible when they form part of a means-

end rational choice function. Anyone whose ends are irrational in this sense therefore does not 

have a rational choice function. Irrational ends by themselves imply that one’s means, whatever 

they are, are ill-suited to them. 

 To formalize this idea we use the topological concept of a cover. A cover of a set 𝑥 is 

just a collection of sets that between them include all the elements of 𝑥. An exact cover of a 

set 𝑥 is just a collection of sets that between them include all and only the elements of 𝑥. More 

formally, if 𝑌 is a set of menus and 𝑚 is a menu then 𝑌 is a cover of 𝑚 if 𝑚 ⊆ ⋃ 𝑌. And 𝑌 is 

an exact cover of 𝑚 iff ⋃ 𝑌 = 𝑚. For instance, suppose: 

 

 
2 ‘Sophisticated choice’ implies that if 𝑧2 ≻ 𝑧1 ≻ 𝑧0 then {𝑧1, 𝑧2} ≻ {𝑧0, 𝑧1}: at the first node, you treat your choice 

from {{𝑧0, 𝑧1}, {𝑧1, 𝑧2}} as if it were between the things that your choice function would select from each of {𝑧0, 𝑧1} 

and {𝑧1, 𝑧2} if you were to select it. But rationality as defined here does not imply sophistication: any method of 

selection amongst nodes can be rational so long as it never yields an outcome that it would not have chosen at the 

outset. Nor does foresight imply sophistication, the difference being that a foresighted choice function 𝐶 chooses 

at a node 𝑛 only those options that 𝐶 itself takes to outcomes that are optimal from amongst all those available at 

𝑛, whereas a sophisticated choice function chooses those options that 𝐶 takes to outcomes that are optimal from 

amongst all those that 𝐶 could reach from 𝑛. See further §4.3.   
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𝑚 = {Cheese sandwich, Egg sandwich, Ham sandwich} 

𝑦1 = {Cheese sandwich, Egg sandwich} 

𝑦2 = {Cheese sandwich, Ham sandwich} 

 

Then if 𝑌 = {𝑦1, 𝑦2} then 𝑌′ is an exact cover of 𝑚. In what follows, 𝐾(𝑌, 𝑚) will mean that 

𝑌 is an exact cover of 𝑚.  

The idea behind the definition of rational tastes (rational choices over outcomes) is as 

follows. Suppose that we have a set 𝑚 of outcomes. Suppose there is some way of dividing 𝑚 

into possibly overlapping subsets 𝑚1, 𝑚2, … , 𝑚𝑛 from each of which 𝐶 permits the choice of 

something that it would not have chosen from the overall set 𝑚 itself. Then whatever your 

choice function over nodes, it is possible to structure your choices over 𝑚 in such a way that 

you are liable not to end up with anything that you wanted from 𝑚, namely by confronting you 

with the tree {𝑚1, 𝑚2, … , 𝑚𝑛}. So this pattern of choices over outcomes enough to show that 

your overall choice function is means-end irrational. Ruling out such a pattern should therefore 

be a necessary condition on rationality of choices over outcomes. As we shall see it is also 

sufficient. 

Now for the formal definition. For any choice function 𝐶 let 𝐶 = 𝐶 ↾ ℘(𝑍) i.e. the 

restriction of that choice function to sets of outcomes – informally, the corresponding set of 

tastes. Then we define: 

 

Rationality of ends: 𝐶 is outcome-rational if: for any 𝑍′ ⊆ 𝑍 and any perfect cover 𝐾 

of 𝑍′, ∃𝑘 ∈ 𝐾 (𝐶(𝑘) ⊆ 𝐶(𝑍′)) 3 

 

As we just saw, the justification for this definition is that anyone whose choices over 

ends are not outcome-rational must have an irrational choice function i.e. if 𝐶 is outcome-

irrational then 𝐶 is means-end irrational. Equivalently, if 𝐶 is outcome-irrational then any 

choice function 𝐷 such that 𝐷 = 𝐶 is means-end irrational. That is, if your ends are outcome-

irrational then it is not always possible to choose means that will achieve an available outcome 

that you want.     

But the converse is also true: if 𝐶 is outcome-rational then some choice function 𝐷 is 

such that 𝐷 = 𝐶 is means-end rational. That is, if your ends are outcome-rational then it is 

always possible (in a deterministic setting) to choose means that will achieve an available 

outcome that you want.  

 The formal statement of this connection is as follows:  

 

Rationality and outcome-rationality: If 𝐶 is means-end rational then 𝐶 is outcome-

rational. Conversely, any 𝐶 that is outcome-rational has a rational extension i.e. there 

is some means-end rational 𝐷 s.t. 𝐶 = 𝐷. 

 

The proof is in a footnote.4  

 
3 Cf. Hammond’s definition of metastatic consistency (1977: 344). In the present terminology, Hammond’s 

condition is that  𝐶 is metastatically consistent if: for any 𝑍′ ⊆ 𝑍 and any perfect cover 𝐾 of 𝑍′, ∀𝑘 ∈

𝐾 (𝐶(𝑘) = 𝐶(𝑍′)). Metastatic consistency strengthens outcome-rationality in just the way that Hammond’s 

better-known consequentialist consistency requirement strengthens means-end rationality. For further discussion 

see also n. 9 and §4.4. 
4 First, suppose 𝐶 is outcome-irrational. Then there is a perfect cover 𝐾 of some 𝑍′ ⊆ 𝑍 such that ∀𝑘 ∈

𝐾 (𝐶(𝑘) ⊈ 𝐶(𝑍′)). But 𝐾 is a tree of level 2 s.t. 𝐾∗ = 𝑍′, and for some 𝑘 ∈ 𝐾, 𝐶(𝑘) ⊆ 𝐶∗(𝐾). Therefore 𝐶∗(𝐾) ⊈
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Outcome-rationality is therefore as normatively compelling as means-end rationality. 

Anyone whose preferences 𝐶 over outcomes are outcome-irrational can be brought to see that 

her chosen means are inadequate to her own ends (because 𝐶 is means-end irrational). 

Moreover, she cannot fix this defect by adjusting her means to those ends, because for any 

choice function 𝐷 such that 𝐷 = 𝐶, 𝐷 is also means-end irrational. In contrast, anyone whose 

preferences 𝐶 over outcomes are outcome-rational either cannot be brought to see that her 

means are inadequate to her ends (because they never are), or if she can be brought to see this 

then she can get around the difficulty by adjusting her means, because if 𝐶 is outcome-rational 

then there is some means-end rational 𝐷 such that 𝐶 = 𝐷. 

 This definition of rational taste is somewhat abstract. It doesn’t tell us explicitly 

whether a person with rational tastes must satisfy any substantive conditions, by which I mean 

constraints like transitivity of binary preference over ends (if you prefer 𝑧1 to 𝑧2 and you prefer 

𝑧2to 𝑧3 then you prefer 𝑧1 to 𝑧3) or 𝛼 (if you choose 𝑧 from 𝐴 then you choose 𝑧 from any 

subset of 𝐴 that also contains 𝑧). It turns out that rationality of taste demands surprisingly little 

– or so I now argue. 

 

3.2 What rational taste demands 

Economists and others have devised a large class of constraints on the choice function for 

various descriptive or normative purposes. In particular many people think that if 𝐶 is rational 

then the following two principles hold for any menus 𝐴, 𝐵: 

 

 (𝛼): if 𝐴 ⊆ 𝐵 and 𝑥 ∈ 𝐴 ∩ 𝐶(𝐵) then 𝑥 ∈ 𝐶(𝐴) 

 

 (𝛽): if 𝐴 ⊆ 𝐵, 𝑥, 𝑦 ∈ 𝐶(𝐴) and 𝑦 ∈ 𝐶(𝐵) then 𝑥 ∈ 𝐶(𝐵)5 

 

But outcome-rationality as defined here (and therefore also means-end rationality) is consistent 

with violation of 𝛼 and 𝛽. Overall the situation is as follows: outcome-rationality neither entails 

nor is entailed by 𝛼. It neither entails nor is entailed by 𝛽. It doesn’t even entail their disjunction 

𝛼 ∨ 𝛽. But it does follow from their conjunction 𝛼𝛽.  

This table sets out and justifies the foregoing non-entailment claims (for the proof of 

the entailment claim see this footnote6). There are choice functions 𝐶1, 𝐶2… whose outputs, 

 
𝐶(𝑍′) = 𝐶(𝐾∗) so 𝐶 is not rational. Conversely, suppose 𝐶 is outcome-rational. Define 𝐷 as follows. If 𝐿(𝑇) =

1, 𝐷(𝑇) =def. 𝐶(𝑇) (so 𝐷(𝑇) = 𝐶(𝑇)). If 𝐿(𝑇) ≥ 2, 𝐷(𝑇) =def. {𝑆 ∈ 𝑇|𝐷∗(𝑆) ⊆ 𝐶(𝑇∗)}. Plainly for every tree 𝑇 

we have 𝐷∗(𝑇) ⊆ 𝐶(𝑇∗) = 𝐷(𝑇∗). So if 𝐷(𝑇) is non-empty for every non-empty tree 𝑇 then 𝐷 is a rational choice 

function. It remains to show that for any (finite) tree 𝑇, if 𝑇 is non-empty then so is 𝐷(𝑇). Proof by induction on 

𝐿(𝑇). The base step is straightforward: if 𝐿(𝑇) = 1 then 𝐷(𝑇) = 𝐶(𝑇) and this is non-empty. Inductive step: 

suppose that if 𝐿(𝑇) < 𝑛 then if 𝑇 is non-empty then 𝐷(𝑇) is non-empty. We now have to consider two cases: (i) 

the case where 𝑛 = 2 (ii) the case where 𝑛 > 2. (i) Suppose 𝐿(𝑇) = 2 and let 𝑇 = {𝑆1 … 𝑆𝑚}. So 𝑇 itself is a 

perfect cover of 𝑇∗. By outcome-rationality of 𝐶, there is some 𝑆𝑗 ∈ 𝑇 s.t. 𝐶(𝑆𝑗) ⊆ 𝐶(𝑇∗). Since 𝐿(𝑆𝑗) = 1 it 

follows from the definition of the choice function 𝐷 that 𝐷(𝑆𝑗) ⊆ 𝐶(𝑇∗) and trivially from this that 𝐷∗(𝑆𝑗) ⊆

𝐶(𝑇∗). So 𝑆𝑗 ∈ 𝐷(𝑇) i.e. 𝐷(𝑇) is non-empty. (ii) Now suppose 𝐿(𝑇) = 𝑛 > 2 and let 𝑇 = {𝑆1 … 𝑆𝑚}. So {𝑆𝑖
∗}𝑖=1

𝑚  

is a perfect cover of 𝑇∗. By outcome-rationality of 𝐶, there is some 𝑆𝑗 ∈ 𝑇 s.t. 𝐶(𝑆𝑗
∗) ⊆ 𝐶(𝑇∗). Moreover 𝐿(𝑆𝑗) <

𝑛 so by the inductive hypothesis 𝐷(𝑆𝑗) is non-empty i.e. 𝐷∗(𝑅) ⊆ 𝐶(𝑆𝑗
∗) for some 𝑅 ∈ 𝑆𝑗 and (by the definition 

of 𝐷) for all 𝑅 ∈ 𝐷(𝑆𝑗). Hence 𝐷∗(𝑆𝑗) ⊆ 𝐶(𝑆𝑗
∗). Therefore 𝐷∗(𝑆𝑗) ⊆ 𝐶(𝑇∗), so 𝐷(𝑇) is non-empty. 

5 See Sen 1971. 𝛼 is sometimes also called the Chernoff Axiom or contraction consistency.  
6 Suppose 𝐶 is outcome-irrational. So some cover 𝐾 of some set of outcomes 𝑍′ is such that for every 𝑘 ∈ 𝐾, 

𝐶(𝑘) ⊈ 𝐶(𝑍′). So for every 𝑘 ∈ 𝐾, 𝑘 ⊈ 𝐶(𝑍′). But since 𝐾 is a perfect cover of 𝑍, there must be some 𝑘 ∈ 𝐾 

such that 𝑘 ∩ 𝐶(𝑍′) is non-empty. Choose one: then either 𝐶(𝑘) ∩ 𝐶(𝑍′) is empty or it is not. If it is empty then 
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when applied to subsets 𝑋 of a set 𝑍 of outcomes 𝑎, 𝑏 and 𝑐, are defined in the table. For 

instance, the choice function 𝐶1 selects either of 𝑎 and 𝑏 when choosing from {𝑎, 𝑏, 𝑐}.7 

 

𝑿 𝑪𝟏(𝑿) 𝑪𝟐(𝑿) 𝑪𝟑(𝑿) 𝑪𝟒(𝑿) 𝑪𝟓(𝑿) 

𝑎, 𝑏, 𝑐 𝑎, 𝑏 𝑎, 𝑏 𝑎, 𝑏 𝑎 𝑎 

𝑎, 𝑏 𝑎 𝑎, 𝑏 𝑎 𝑎 𝑎, 𝑏 

𝑎, 𝑐 𝑐 𝑎, 𝑐 𝑎, 𝑐 𝑐 𝑎 

𝑏, 𝑐 𝑏 𝑏 𝑏 𝑏 𝑏 

𝜶 No Yes No No Yes 

𝜷 Yes No No Yes No 

Rational Yes Yes Yes No No 

   Table 1 

 

We can now see e.g. that 𝐶1 violates 𝛼 but is outcome-rational. It violates 𝛼 because although 

it permits the selection of 𝑎 and of 𝑏 from {𝑎, 𝑏, 𝑐}, it only permits the selection of 𝑎 from 𝑎 

and 𝑏. (You can think of 𝐶1 as permitting the choice of an element from any set iff it is preferred 

to some element in that set.) But it is, or rather its restriction 𝐶1 is, outcome-rational: any perfect 

cover 𝐾 of any subset 𝑋 of 𝑍 = {𝑎, 𝑏, 𝑐} has an element 𝑘 from which 𝐶1 chooses only elements 

that it would have chosen from the full set 𝑋 of available outcomes. For instance, suppose 𝑋 =
𝑍 = {𝑎, 𝑏, 𝑐}. It follows that if 𝐾 is a perfect cover of 𝑋 then one of its elements must be a 

subset of 𝑋 containing 𝑏. So one of its elements is {𝑏}, or {𝑎, 𝑏}, or {𝑏, 𝑐}, or {𝑎, 𝑏, 𝑐}. But (as 

we can see from the first column in the body of the table), given any of these sets 𝐶1 always 

selects only items that it would select from 𝑍 itself. So 𝐶1 is outcome-rational; and that means 

that there is a rational choice function that agrees with 𝐶1 over ends, that is, over subsets of 𝑍. 

 But isn’t there something intuitively irrational about selecting 𝑏 from {𝑎, 𝑏, 𝑐} but not 

from {𝑎, 𝑏}, as any extension of 𝐶1 does? After all, it would be strange if you were willing to 

take (say) either fruit or ice cream from a desert menu that also included cheese, but suddenly 

became averse to ice cream once cheese was off the menu. What does the presence or absence 

of cheese from the menu have to do with whether you prefer fruit to ice cream?  

But although such a pattern of choice behaviour is unusual there is nothing irrational 

about it. What can we say that might convince you to try to change it, or to consent to be forced 

out of it, or at least see that something is wrong with it by your own lights? There may be no 

sequential-choice situation in which your own choices ever lead you to an outcome that you 

would not have wanted from that situation. And, if your choice function is means-end rational 

in my sense, then there could be no such situation. For any tree whose terminal points are 

exactly 𝑎, 𝑏 and 𝑐, following this rational extension of 𝐶1 leads to the outcome 𝑎 or 𝑏  So why 

 
there is some 𝑎 ∈ 𝑘 that is not chosen from 𝑘 but is chosen from 𝑍′; but 𝑘 ⊆ 𝑍′ so this violates 𝛼. On the other 

hand, if 𝑘 ∩ 𝐶(𝑍′) is non-empty then there is some 𝑎 ∈ 𝑘 that is chosen from 𝑘 and from 𝑍′. But since 𝐶 is 

outcome-irrational there is some 𝑏 ∈ 𝑘 that is chosen from 𝑘 and is not chosen from 𝑍′. This violates 𝛽. So if 𝐶 

is outcome-irrational, then it violates either 𝛼 or 𝛽.  
7 Note also that given any singleton e.g. {𝑎} as input each choice function returns that set as output.  
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should you change it?8 The same points apply mutatis mutandis to any intuitive objections to 

𝐶2 and 𝐶3 on grounds that they violate 𝛽.9  

 It would be possible to say much more about the relationship between outcome-

rationality and the many other conditions on choice functions that philosophers and economists 

have studied, such as 𝛾, the Nash Axiom and various kinds of ‘path-independence’.10 For 

instance, it is clear that outcome-rationality entails the 𝛾 axiom (sometimes called expansion-

consistency), which says that if 𝑎 ∈ ⋂ 𝐶(𝑋𝑖)𝑖∈𝐼  then 𝑎 ∈ 𝐶(⋃ 𝑋𝑖𝑖∈𝐼 ), but the converse is false, 

since (e.g.) 𝐶4 in Table 1 satisfies the 𝛾 axiom but is not outcome-rational.11  

But I hope to have said enough to make the point. If constraints on choice are rational 

if and only if normatively compelling, then rationality is much less demanding than it appears 

on the standard picture. Even so widely accepted a principle as 𝛼 isn’t a demand of rationality, 

because there are ways of violating it according to which you means are by your own lights 

unimprovably suited to your ends, and from which therefore you could not be persuaded to 

diverge without coercion. On the other hand, neither is the notion of choice-functional 

rationality completely empty: there are some conditions, like 𝛾, that make legitimate demands 

on the harmonization of means and ends.   

 

 

4 Existing theories of rationality 

There are four main ways to think about choice-functional rationality. (i) rational preferences 

are those that intuition classes as rational. (ii) Rational preferences are those for which one can 

give, or for which there exist, good reasons. (iii) Rational preferences are those that avoid the 

possibility of a money pump. (iv) Rational preferences are those that are consequentialist in 

Hammond’s sense. I don’t intend to reject these approaches; and indeed the third and fourth 

are closely related to mean-end rationality. But I will argue that none of them do what I have 

sought to do, namely, to isolate constraints on choice that exert a normative grip.  

 

4.1 Intuitive constraints on rationality 

Philosophers often defend some putative norm of rational choice on the grounds that it is 

‘intuitive’, by which is meant something like this: it seems pre-reflectively reasonable. For 

 
8 Of course if you think that rational choice must in a fairly strong sense maximize something then violation of 𝛼 

is obviously irrational. There is a long tradition particularly in economics that a rational chooser does maximize: 

she chooses what is in some sense best (Simon 1978: 2). But nothing in the concept of rationality demands 

maximization, in the sense that there are ways of choosing (e.g. in accordance with 𝐶1) that (a) do not involve the 

maximizing of anything but (b) are normatively stable in the sense that failure to be talked out of them needn’t 

involve any intellectual deficiency. Note also that one might violate 𝛼 whilst being in some weaker sense a 

‘maximizer’ – for discussion see Sen 1993: 500f. 
9 Note also that 𝐶1, 𝐶2 and 𝐶3 are also all metastatically inconsistent in the sense of Hammond 1977 (see n. 3 

above). Since (for reasons given in the text) they are all rationally defensible, I believe that this shows that 

metastatic consistency is too strong as a criterion of rationality of a choice function over 𝑍. 
10 Suzumura 1983 ch. 2 discusses these and other principles of choice. It is also worth mentioning the principles 

of rationality that Cantwell identifies in a paper that attempts, like this one, to spell out the connection between 

normative force and internal coherence (2003). He actually identifies two principles: ‘strong coherence’, which is 

essentially equivalent to 𝛼, and ‘weak coherence’ which says (in my terms) that if 𝑋 is a non-empty subset of 𝑍, 

some 𝑎 ∈ 𝐶(𝑋) is such that 𝑎 ∈ 𝐶(𝑌) for every 𝑌 ⊆ 𝑋 s.t. 𝑎 ∈ 𝑌. Neither of these conditions (a) entails or (b) is 

entailed by outcome-rationality. Proof: (a) 𝐶1 is outcome-rational but neither strongly nor weakly coherent; (b) 𝐶5 

is outcome-irrational but both weakly and strongly coherent. And clearly there is something wrong with 𝐶5: 

anyone whose choice-function it is can see that when faced with the tree {{𝑎, 𝑏}, {𝑏, 𝑐}}, 𝐶5 is liable to eventuate 

in an outcome (𝑏) that it would not have chosen from those available at the outset.  
11 Proof that outcome-irrationality entails 𝛾: suppose 𝐶 outcome-rational and that 𝑎 ∈ ⋂ 𝐶(𝑋𝑖)𝑖∈𝐼  for some 

collection {𝑋𝑖}𝑖∈𝐼 of subsets of 𝑍. Plainly {𝑋𝑖}𝑖∈𝐼 is a perfect cover of ⋃ 𝑋𝑖𝑖∈𝐼 . Therefore since 𝐶 is outcome 

rational, 𝐶(𝑋𝑗) ⊆ 𝐶(⋃ 𝑋𝑖𝑖∈𝐼 ) for some 𝑗 ∈ 𝐼. Since 𝑎 ∈ ⋂ 𝐶(𝑋𝑖)𝑖∈𝐼 , also 𝑎 ∈ 𝐶(𝑋𝑗), therefore 𝑎 ∈ 𝐶(⋃ 𝑋𝑖𝑖∈𝐼 ). 
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example, Egan’s basic case against ‘Causal Decision Theory’ consists of two examples: The 

Murder Lesion, in which Causal Decision Theory recommends an option of ‘shooting’; and 

The Psychopath Button, in which it recommends an option of ‘pressing’ (a button). The 

argument that Causal Decision Theory is wrong is the assertion that these recommendations 

are intuitively irrational. He adds: ‘Some people lack the clear intuition of irrationality for The 

Murder Lesion case. Pretty much everyone seems to have the requisite intuition for The 

Psychopath Button, however. That’s enough for my purposes.’12 Egan is clearly presupposing 

that we settle questions of rationality not by measuring this or that choice or preference against 

some pre-defined technical notion but rather that we do so by measuring it against our intuitions 

about what is rationally acceptable.13 

 This characterization of rationality lacks any normative grip, by which I mean that there 

is nothing that we can say to persuade anyone who diverges from it. Suppose that I consciously 

follow Causal Decision Theory and so endorse the ‘pressing’ option in Egan’s Psychopath 

Button. Suppose that you, or Egan, then upbraids me for ‘irrationality’ in the sense of violating 

people’s intuitions about what to do in this example. My reply is that yes, it is indeed irrational 

in that sense, but why should I care about being irrational in that sense? If I have a choice 

between the option that seems sensible to the vast majority of people, and the option that has 

optimal effects (by my lights and in my expectation) then as a follower of Causal Decision 

Theory I’ll always choose the latter. It isn’t clear what more one might say to object to this.  

 Of course intuition does play an important role if we are engaging in conceptual 

analysis – trying to give an account of the word ‘rationality’, in terms of necessary conditions, 

paradigms or anything else, that tracks its actual everyday uses. In that case there is some point 

in respecting the endoxa; or at least there would be, if – as I doubt – all or most of our uses of 

that word correspond to just one concept.  

But if my project could be described as conceptual anything then it is not conceptual 

analysis but conceptual refinement. I am taking one feature that we often associate with 

rationality, namely its normative compulsion, and asking what it demands of choice behaviour. 

It is hardly surprising that the outcome, means-end rationality, is a purified concept that 

diverges in many places from our diverse, unsystematic, historically contingent and frequently 

contestable intuitions about ‘rationality’. 

 

4.2 The existence of reasons  

The second approach identifies rational preferences with those for which one has or can find 

some sort of reason.  

To illustrate what this rules out, consider what Street calls the Future-Tuesday 

Indifferent: a person who on any day cares equally about his welfare on that day and on all 

future days except for future Tuesdays. He is completely indifferent to any fortune or suffering 

that he might incur on any future Tuesday.  

For instance, if he is scheduled for a dental operation on a Monday, then he may 

willingly pay the dentist in advance to ensure that anaesthetic is used during the operation. But 

if the operation is scheduled for a Tuesday, then he will not put down any money now, however 

painful he expects the operation to be and however inexpensive the anaesthetic is.14  

 
12 Egan 2007: 97. 
13 For other examples of the ‘intuitive’ approach see e.g.: Savage’s discussion of the Allais paradox, which 

emphasizes internal ‘reflection’ over deductive reasoning (1972: 101-3); Lewis’s defence of Causal against 

Evidential Decision Theory, which simply takes a stand on one side of a debate that he regards as deadlocked 

(1980: 309ff.); Suzumura’s endorsement of the Strong and Weak Congruence Axioms (1983: 25); and Peterson’s 

endorsement of Egan’s judgment about the cases discussed in the main text (2017: 212). 
14 For this example, and for illuminating discussion of Future-Tuesday Indifference from a slightly different 

perspective, see Street 2009: 284ff.  
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Parfit, who invented the example, comments:  

 

This man’s pattern of concern is irrational. Why does he prefer agony on Tuesday to 

mild pain on any other day? Simply because the agony will be on a Tuesday. This is no 

reason. If someone must choose between suffering agony on Tuesday or mild pain on 

Wednesday, the fact that the agony will be on a Tuesday is no reason for preferring it. 

Preferring the worse of two pains, for no reason, is irrational.15 

 

The definition of rationality in this essay is far more relaxed than what Parfit seems to 

mean, because it allows that preferences can be rational even if you can’t give any reasons for 

holding them. There is, on my definition, nothing irrational about your preference (say) for a 

pain tomorrow over a qualitatively identical pain today, even though you can’t point to any 

difference between them that could rationalize it. All that is required is that this preference not 

belong to an overall profile of preferences, over nodes and over outcomes, that could in some 

tree frustrate its own ends i.e. its own preferences over outcomes.  

But there is nothing normatively compelling about choice functions for which one has 

reasons (or ‘good’ reasons). Equivalently, there is nothing normatively repellent per se about 

choice functions that lack them. When it comes to matters of what we call taste, we often do 

tolerate variations in preference for which nobody has a reason. As a matter of basic preference 

I choose avocado over broccoli or cauliflower, and similarly you choose broccoli over avocado 

or cauliflower. More to the point, pointing out to you or me that there is no reason for preferring 

one of these over the others will not change anyone’s mind: that is just what is meant by saying 

that these are matters of taste. Perhaps Parfit will say that the timing of one’s own future pain 

ought not to be a matter of taste; but then this is a sense of ‘ought’ that one can stably violate. 

Lacking a reason for holding onto this choice function isn’t the same thing as having a reason 

for switching to another one. Thus e.g., if I don’t care about Tuesdays but I do care equally 

about all other days, it isn’t clear how Parfit could show me how I have gone wrong by my 

own lights: that is, how my means are maladjusted to my ends.16 

 
15 Parfit 1984: 124. Similarly, Anscombe seems to think that one can only want things that there is some intelligible 

reason for wanting (2000: 70-1). Buchak appears to identify preferences that a reasonable person might have with 

those that have a consistent rationale (2013: 10).  
16 Although Parfit doesn’t say this, one might think that if on Tuesdays this character is neutral between present 

and all future pains, then he is in fact open to a kind of exploitation; and foreseeing this fact might be a way to 

talk him out of his preferences.  

The argument for this is as follows. If the subject in a given week is facing 5 units of pain on Tuesday 

afternoon and 5 on Wednesday, we first offer on Monday to exchange 1 unit of pain on Wednesday afternoon for 

an additional 1+2 on Tuesday afternoon, so that he is then facing 6+2 on Tuesday afternoon and 4 on 

Wednesday. And then on Tuesday morning we offer to exchange 1+ on Tuesday afternoon for an additional 1+ 

on Wednesday. He will accept both offers for a final consumption schedule of 5+ on Tuesday afternoon and 5+ 

on Wednesday, which by his own lights on any day is a deterioration.  

It therefore looks as though Parfit’s character is irrational according to my formal definition. Moreover, 

one might think that pointing this out to the subject will persuade him both that something is wrong with his choice 

function and also that it would be a good idea to bind (or to pay someone else to bind) his future choices in 

advance.  

I have two points to make in response. (a) What this argument shows to be irrational (if anything) is not 

any one choice function but a combination of two choice functions: one (which he has now) prefers any good on 

any future non-Tuesday to the same good next Tuesday, and one (which he has next Tuesday) that is indifferent 

between them. One might perhaps say on that this ‘pain pump’ shows the subject to be irrational, but it does not 

reveal any irrationality in the choice function that gives no weight to Tuesdays – what Street (2009: 285) calls 

Consistent Tuesday Indifference. Indeed if the subject were to adhere to it consistently – if on all days, including 

Tuesdays themselves, he were indifferent to everything that happened on any Tuesday – there would be no 

possibility of exploitation. (b) Besides, this argument could not vindicate Parfit’s idea that it is a lack of reasons 

that makes a choice function irrational, because the source of the exploitability that it reveals is not any lack of 
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The two approaches described here are both at odds with the spirit of the present 

proposal. I turn now to two other definitions of rationality to which it owes much more, namely 

(4.3) rationality as immunity to money pumps and (4.4) rationality as consequentialism.  

 

4.3 Money pumps 

The third approach identifies rational preferences with the unavailability of a money pump for 

those preferences, where this is standardly taken to mean: a sequence of choices that lead to an 

outcome that is either (a) objectively worse than, or (b) binary dis-preferred to, some available 

outcome, when those preferences are applied to it.17 Note that on this way of understanding 

‘money pumps’, the supposedly disastrous outcome need not involve a literal loss of money, 

although it is common to describe it in such terms.18   

For instance, a money pump that has been alleged to affect the cyclic preference 

structure 𝐴 ≻ 𝐵 ≻ 𝐶 ≻ 𝐴 is the Rabinowicz Money Pump (RMP). This works as follows19: the 

agent (call her Alice) starts with 𝐴 and an arbitrary endowment of money. But this time we 

repeatedly offer her the following trade: 

 

  (*) I will give you C for A, B for C or A for B at a charge of 1¢ 

 

Imagine that we display (*) in our shop window, so Alice sees it every morning on her way to 

work. Alice knows that this morning (Monday), and the next two mornings, she has an 

opportunity to take up the offer. For instance, she might refuse the offer today, but then take it 

up on Tuesday and Wednesday. In that case she ends up with B (swapping A for C on Tuesday, 

and C for B on Wednesday) but is 2¢ worse off. Or she might refuse all three offers. In that 

case she ends up with her original A and her original wealth. We can represent her choices as 

follows:  

 

 

 

 

 

 

 

 

 

 

 
 

 
reasons for indifference to any future Tuesdays but rather (what is quite different) the inconsistency between this 

and his concern for present Tuesdays.    

Defining irrationality in terms of money pumps is similar idea to the definition of rationality as means-

end rationality (certainly they are closer than either is to Parfit’s approach); but see §4.3 for some indication of 

the differences and for my reservations about the ‘money pump’ approach.  
17 Objectively worse: Cubitt and Sugden 2001. Binary dis-preferred: McClennen 1988: 89-90. 
18 See e.g. the classic account of Davidson, McKinsey and Suppes 1955: 145-6.  There may be a particular problem 

with using money in the present context, because almost nobody apart from Scrooge treats the accumulation of 

money as an end in itself: rather, people want more money because it expands the range of options. But it may 

not be unquestionable that one should want a larger range of options. It is plausible if one’s choice function is 

maximizing i.e. if one’s weak preference relation is transitive and complete, but of course the rationality of 

transitive preference is among the things that the money-pump argument was supposed to establish. Having said 

all that, one could easily replace monetary losses with some other good (for instance, seconds of pain) the 

avoidance of which could be taken as a plausible end.    
19 Rabinowicz 2000. 
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Figure 4: Rabinowicz Money Pump (RMP) 

 

In Figure 4, an upward arrow means ‘accept’ and a downward arrow means ‘reject’. For 

instance, if Alice accepts (*) on Monday morning and rejects it on Tuesday morning (‘up’ then 

‘down’) then just before Wednesday she has the same holding as if she had rejected (*) on 

Monday morning and accepted it on Tuesday (*), namely 𝐶 − 1¢ (note that ‘𝐴 − 3¢’ denotes a 

final outcome in which Alice pays 3¢ for 𝐴, and similarly for ‘𝐵 − 2¢’ and ‘𝐶 − 1¢’. 

 What will Alice do? Assume that she only cares about her final holding (i.e. on 

Wednesday afternoon) and that throughout the procedure the addition or subtraction of a cent 

makes no difference to her cyclic preferences, so that she has these preferences: 𝐴 − 3¢ ≻ 𝐵 −
2¢ ≻ 𝐶 − 1¢ ≻ 𝐴. Then a very simple backwards induction argument shows that she accepts 

all three offers and ends up with 𝐴 − 3¢. I won’t go into the formal details of that, but Figure 

5 – in which I have marked in bold the choices that she foreseeably makes if in a position to 

make them – conveys the basic idea: 
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Fig. 5: Alice’s choices in RMP   

 

 

For instance, at R4 she will go up because she prefers 𝐴 − 3 to 𝐵 − 2, and at R5 she will go up 

because she prefers 𝐵 − 2 to 𝐶 − 1 (from now on I omit the  omit the ‘¢’ sign). Foreseeing this, 

she chooses to go up at R2 because she prefers 𝐴 − 3 to 𝐵 − 2. This and similar reasonings 

motivate her to go up at every stage, for a final outcome 𝐴 − 3, which she certainly binary dis-

prefers to an available alternative 𝐴. The fact that this arrangement leads Alice to this outcome 

is supposed to be grounds on which to find the cyclic pattern 𝐴 ≻ 𝐵 ≻ 𝐶 ≻ 𝐴 irrational. 

 There are two main objections to the use of money-pumps as criteria of rationality. The 

first concerns the normative force of the criterion. Knowing that they will lead her to an 

outcome that is either (a) in some sense objectively worse than, or (b) strictly dis-preferred to, 

an available alternative, need not convince an agent that there is anything wrong with her choice 

dispositions. (a) If her attitude towards the relevant kind of objective goodness is like that of 

Milton’s Satan towards the moral kind of objective goodness, then she will recognize but 

simply not care that her choices lead to an outcome that is objectively worse.20 (b) She might 

even acknowledge that she strictly binary prefers another outcome to the one that her 

preferences realize but insist that it does not follow, from the fact that she has a strict binary 

preference for e.g. 𝐴 over 𝐴 − 3, that 𝐴 − 3 is not choice-worthy from a set of options that 

includes 𝐴, 𝐴 − 3 and other things. Why should she, unless she already accepts 𝛼?  

 The right response to these concerns is to amend the definition of what a money pump 

does. What a pump leads its victim to achieve is not an outcome that she binary dis-prefers to 

some available alternative, but rather one that she would not have chosen from the set of all 

available alternatives. Vulnerability to such a pump does have a normative grip on its victim. 

Seeing that her own choice function leads her through the structure of the pump to an outcome 

that she would not have chosen ex ante, she sees that that choice function is in this case 

frustrating its own ends. And this gives her a reason to change it. 

 
20 Cf. Railton’s (1986: 167-8) discussion of the ‘Sensible Knave’. Of course this is no objection to the use of 

objective notions in Cubitt and Sugden’s paper on money pumps, because that paper uses money pumps for 

predictive not normative ends.  
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 The second criticism is that money pump arguments purport to show the irrationality 

of some choice function over outcomes. For instance, the RMP purports to show the 

irrationality of any choice function that involves the cyclic preferences 𝐴 ≻ 𝐵 ≻ 𝐶 ≻ 𝐴. But 

all that it really shows is the irrationality of a choice function that includes not only these 

preference over outcomes, but also the preferences over nodes that lead to the ex ante dis-

preferred or unchosen outcomes. In the RMP, reaching the supposedly disastrous outcome 𝐴 −
3 involves not only the cyclic preferences that are the supposed target but also the preferences 

𝑅4 ≻ 𝑅5 and 𝑅2 ≻ 𝑅3: it is only this total package of preferences that leads to disaster. 

 What tends to obscure this point is that those other preferences, namely 𝑅4 ≻ 𝑅5 and 

𝑅2 ≻ 𝑅3, are supposed to be unquestionably rational given 𝐴 ≻ 𝐵 ≻ 𝐶 ≻ 𝐴, because they 

emerge from the ‘sophisticated’ or backwards-inductive reasoning as summarized in Figure 5; 

and sophisticated reasoning itself is supposed to be normatively compelling.  

But sophisticated reasoning lacks normative grip. Somebody might make 

unsophisticated choices over the nodes of a sequential decision problem; and yet it would be 

impossible to persuade her that there is anything wrong with this by her own lights.  

 For instance, suppose Alice’s preferences are 𝐴 ≻ 𝐵 ≻ 𝐶 ≻ 𝐴 and that the addition or 

subtraction of a cent makes no difference to these preferences, but also that her choice function 

𝐶 has these properties: 

 

(i) 𝐶({𝐴, 𝐵 − 2, 𝐶 − 1, 𝐴 − 3}) = {𝐴, 𝐵 − 2, 𝐶 − 1} 

(ii) 𝐶({𝐴, 𝐵 − 2, 𝐶 − 1}) = {𝐴, 𝐵 − 2, 𝐶 − 1} 

(iii) 𝐶({𝐵 − 2, 𝐶 − 1, 𝐴 − 3}) = {𝐵 − 2, 𝐶 − 1, 𝐴 − 3} 

 

As we saw, ‘sophisticated’ choice demands that at 𝑅1 she prefers 𝑅2 to 𝑅3. But she may instead 

have the opposite preference, on the following grounds: ‘Looking at all the outcomes that 

remain possible, I’d be happy with any of them except 𝐴 − 3. If I go up at this point I am liable 

to end up with 𝐴 − 3 (because when I’m at 𝑅2 I’ll be indifferent between 𝑅4 and 𝑅5, because 

of (iii)). If I go down at this point I’ll certainly avoid it. So I’ll go down.’  

This ‘holistic’ consequentialist reasoning leads to different outcomes from 

‘sophisticated’ reasoning in this case. But what makes sophisticated reasoning more 

compelling? If Alice, at 𝑅1, proposes to reason holistically, what can we say to persuade her 

out of it? A crudely consequentialist perspective would validate holistic reasoning, because it 

leads to an outcome that Alice finds acceptable, whereas sophisticated reasoning does not.  

I suppose what makes sophisticated reasoning plausible is that if going up leads to an 

outcome that you binary prefer to the outcome that you will get by going down, then it seems 

that you should go up.  

But why not say instead that rather than comparing these outcomes as if they were the 

only two possibilities, you should instead ask whether either of them is choice-worthy given 

the full field of possible outcomes? For instance at 𝑅2, Alice should ask not whether she binary 

prefers 𝐴 − 3 (which she will get if she now goes up) to 𝐵 − 2 (which she will get if she now 

goes down). She should instead ask which of those outcomes is choice-worthy from the whole 

set of outcomes available at 𝑅2 i.e. from {𝐴 − 3, 𝐵 − 2, 𝐶 − 1}.  

There is a reason it is intuitively hard to distinguish these questions.  If Alice satisfies 

both 𝛼 and 𝛽, then any outcome that is choice-worthy from the set of all outcomes available at 

𝑅2 will be strictly binary preferred to any that is not. And any such outcome that is strictly 

binary dis-preferred to some other is not choice-worthy from the set of all available outcomes.21 

 
21 Let 𝑅2

∗ be the set of all outcomes that are available at 𝑅2. Suppose that 𝑥, 𝑦 ∈ 𝑅2
∗ and 𝑥 ≻ 𝑦. Then by 𝛼, 𝑦 ∉

𝐶(𝑅2
∗). Conversely, suppose that 𝑥 ∈ 𝐶(𝑅2

∗) and 𝑦 ∉ 𝐶(𝑅2
∗). Then by 𝛽, 𝑦 ∉ 𝐶({𝑥, 𝑦}) i.e. 𝑥 ≻ 𝑦.  
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So given 𝛼 and 𝛽, sophisticated reasoning would seem to rule out the same choices, at any 

node, as holistic reasoning.  

But if, as here, Alice violates at least one of these principles, then sophisticated and 

holistic reasoning come apart, and it is not clear why the sophisticated methods have any special 

claim to rationality. Certainly from a purely consequentialist perspective they don’t, because 

as this example shows their use leads Alice to the one outcome that everyone agrees to be sub-

optimal i.e. 𝐴 − 3. So it is hardly clear that there is anything mandatory about ‘sophisticated’ 

choice at non-terminal nodes.  

Therefore, it is hardly clear that if anyone is vulnerable to a money pump then what this 

shows to be irrational is their preferences or choice-dispositions over outcomes rather than the 

total package of preferences, including preferences over nodes, that leads to this outcome. 

So I propose to modify the standard interpretation of money pumps. A money-pump 

establishes the irrationality of a choice function as a whole, not its restriction to outcomes. We 

can then define irrationality of choice functions over outcomes in terms of the notion of a 

perfect cover, as at §3.1. These modifications, in conjunction with the amendment necessary 

to cover the preceding objection, the result is therefore exactly the definition of rationality 

defended in this essay. Means-end and outcome rationality could therefore be interpreted as 

improvements on the ‘money pump’ approach with which they share an essentially pragmatist 

spirit.       

 

4.4 Consequentialist rationality 

The final approach to rationality is Hammond’s notion of consequentialist rationality. The 

basic idea is that a rational consequentialist ought to care only about the outcomes of one’s 

choices and not about the route through which one reached those outcomes. Therefore as 

applied to any tree 𝑇, the outcomes that a consequentialist choice function 𝐶 permits should 

depend only on the total set of outcomes of the tree and not on its shape. The outcomes that 𝐶 

permits from any tree should be the same as the outcomes that 𝐶 permits from any other tree 

with the same outcomes, in particular from the tree consisting of a single straight choice 

between all of them. 

We can state this idea using the present formalism as follows: 

 

Consequentialist rationality: 𝐶 is a consequentialist choice function over 𝑍 if and only 

if for any 𝑇 ∈ Δ(𝑍), 𝐶∗(𝑇) = 𝐶(𝑇∗).22 

 

 The difference between consequentialist rationality, and the means-end rationality 

defended here, is therefore very simple. Means-end rationality requires that in application to 

any tree your choice function permits only outcomes that you might have chosen, given a 

straight choice from amongst the outcomes. Consequentialist rationality is more demanding: it 

requires that in application to any tree your choice function permits all and only outcomes that 

you might have chosen, given a straight choice from amongst the outcomes.  

 
22 Here is how Hammond puts it. Let 𝛽 be a norm on behaviour – that is, something that determines permissible 

choices at any point in a tree. Let the function Φ𝛽  specify the outcomes that 𝛽 allows: that is, for any tree 𝑇, 

Φ𝛽(𝑇) is the set of outcomes of tree 𝑇 that 𝛽 permits. Also let 𝐹(𝑇) be the set of all possible outcomes of the tree 

𝑇. The key consequentialist thesis is that ‘whenever two decision trees 𝑇, 𝑇′ are consequentially equivalent in the 

sense that 𝐹(𝑇) = 𝐹(𝑇′), then behaviour in the two trees must also be consequentially equivalent, in the sense 

that Φ𝛽(𝑇) = Φ𝛽(𝑇′). Thus the structure of the decision tree must be irrelevant to the consequences of acceptable 

or recommended behaviour’ (1988: 38). Note also that Hammond introduces further parameters to represent 

uncertainty about the state of nature and about the outcomes of chance processes, whereas here I am dealing only 

with the simplest case of ‘deterministic’ choice.   
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 I do not see why consequentialist rationality is normatively gripping: I don’t see why 

anyone whose choice function is means-end rational but not consequentialist, will care that it 

fails to be consequentialist.  

For instance, suppose that the set of possible outcomes is 𝑍 = {𝑎, 𝑏, 𝑐} and consider the 

choice function 𝐶 on Δ(𝑍) defined as follows:  

 

• If 𝑌 ⊆ 𝑍 then 𝐶(𝑌) = 𝑌.  

• If 𝑌 is a tree of level ≥ 1 then 𝐶(𝑌) = {𝑦 ∈ 𝑌|𝑐 ∉ 𝑦∗} if the latter is non-empty; 

• Failing that, 𝐶(𝑌) = {𝑦 ∈ 𝑌|𝑏 ∉ 𝑦∗} if the latter is non-empty;  

• Failing that, 𝐶(𝑌) = 𝑌  

 

This choice function doesn’t care which of 𝑎, 𝑏 and 𝑐 is selected in a straight choice between 

any of them; but given the option to eliminate one of these, it will always eliminate the 

alphabetically last of the remaining possible outcomes.  

Making this a little bit more concrete: suppose that we are selecting candidates for a 

job, and we have just one aim: to appoint a suitable candidate. As it happens there are three 

suitable candidates. We could just appoint one at random; but the HR Department insists that 

selection proceeds by two stages of elimination. So the following decision tree is the one that 

HR has imposed upon us: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 

 

 

Suppose that we approach this tree, call it 𝑇, in accordance with 𝐶: at the first stage we 

eliminate the candidate that comes last in an alphabetical list, and at the second stage we choose 

at random. This means that we go down at the first node and then choose either 𝑎 or 𝑏. Since 

all three candidates were in the running at the outset, we have 𝑇∗ = {𝑎, 𝑏, 𝑐}; since in a straight 

choice we choose any of these at random, we also have 𝐶(𝑇∗) = {𝑎, 𝑏, 𝑐}. But since 𝐶 dictates 

going up at the initial node of 𝑇, and allows any choice from 𝑎 and 𝑏, we also have 𝐶∗(𝑇) =
{𝑎, 𝑏}. So 𝐶∗(𝑇) ≠ 𝐶(𝑇∗). In other words, the choice function 𝐶 does not satisfy 

consequentialist rationality, because this way of structuring choices makes a difference to the 

outcome. But it does satisfy means-end rationality, because it follows from the definition of 𝐶 
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that 𝐶(𝑇∗) = 𝑇∗ and therefore 𝐶∗(𝑇) ⊆ 𝐶(𝑇∗) for any 𝑇 ∈ ∆(𝑍). So if my definition of 

rationality is an illegitimate weakening of the consequentialist definition then it ought to be 

possible to talk us out of 𝐶. 

 But on what grounds could anyone do that? You, or the HR representative, might say 

that the elimination procedure is unfair to 𝑐: after all, his being last in the alphabetical list has 

nothing to do with his suitability for the position. – Well, maybe it is unfair. But ex hypothesi 

all we cared about was appointing the best-qualified person, whether by a fair or by an unfair 

procedure. And we have done that. Appeals to fairness are not going to show us that we are 

getting anything wrong by our own lights. 

 An alternative complaint is that our approach is inconsistent. At the outset, we regard 

𝑐 as an optimal choice from among the three remaining candidates. But it is implicit in our 

elimination procedure that he is not optimal, because that procedure prefers 𝑎 and 𝑏 to 𝑐. So is 

𝑐 optimal or not? – Answer: 𝑐 is optimal, but why should that imply that our elimination 

procedure never eliminates him? All that matters is that the procedure eliminates any candidate 

who is not optimal – as long as we do that, it simply doesn’t matter that we also eliminate some 

optimal candidates. Almost every appointment committee on which I have sat has failed to 

appoint candidates who were perfectly appointable. What matters is that non-optimality is 

sufficient for elimination, not that it is necessary. 

 This point leads on to the most basic and obvious reason that the means-end criterion 

of rationality is preferable to the consequentialist criterion, at least from a normative 

perspective: the means-end criterion can be regarded as reflecting a more thoroughgoing 

consequentialism than the consequentialist criterion itself. The means-end criterion cares about 

‘more’ than the consequences, in the sense that a means-end rational choice function needn’t 

always return the same outcomes when confronted with the same consequences. But it 

prioritizes the consequences: any means-end rational choice function 𝐶 can be seen as 

subordinating any other principles of choice by restricting them to operating on a selection 

from the chosen consequences of any tree 𝑇, i.e. from a selection from 𝐶(𝑇∗). In other words, 

the difference between means-end rationality and consequentialist rationality is that the former 

treats consequentialism as a side-constraint upon choice, whereas the latter treats it as the sole 

determinant of choice.      

 But consequentialism if it is thoroughgoing should regard itself as a side-constraint. For 

as the example shows, the consequences of treating consequentialism as a side-constraint 

cannot be any less acceptable than the consequences of admitting no other determinant of 

choice. Someone who ranks (say) welfare policy decisions solely by the number of quality-

adjusted life years that they save (in expectation), cannot object to a government that always 

maximizes this quantity, but in case of a tie always chooses the policy that most benefits the 

materially worst-off.   

So I believe that by treating consequentialism as more than a side-constraint, 

‘consequentialist rationality’ is an imperfect expression of consequentialism. When we correct 

for this error, the upshot is the means-end conception of rationality that this essay has tried to 

defend.  

The situation is therefore like that in §4.3. There we saw that the ‘money-pump’ 

criterion of rationality as initially presented was a flawed expression of the idea behind it; and 

when we correct for these flaws, the result is means-end rationality. And it is interesting that 

both lines of thought – one starting from money pumps, the other starting from 

consequentialism – converge on the means-end definition of rationality. But it is no part of my 

case for the means-end definition. My case for it is just this: it is the only definition of 

rationality on which there is an answer to the question ‘Why be rational?’ that not only satisfies 

those who already are but also moves those who are not. 
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5 Conclusion 

The obvious next steps are (a) to extend the definition of rationality offered here to cover choice 

under uncertainty; and (b) to apply the definition to various puzzles and disputes in rational 

choice. The appendix makes a start on (a).  

As for (b): a thorough treatment of any one of these cases would probably double the 

length of this essay. But I can at least mention one problem on which means-end rationality 

promises to shed some light. This is Quinn’s famous puzzle of the self-torturer.23  

The case involves a person who, once a week for the next 100 weeks, has an option to 

accept an indiscernible increment of pain in exchange for $10,000. After 100 weeks he is a 

millionaire but in unendurable agony. Where did he go wrong? We can write the possible final 

outcomes as 𝑍𝑖, where 𝑖 = 0,1 … 100 and 𝑍𝑖 indicates an increment of pain of 𝑖 units and an 

increment of wealth of $10,000𝑖. Then the self-torturer’s problem is that his choice function 

𝐶 satisfies these constraints: (i) for each 𝑖 < 100, 𝑍𝑖+1 ≻𝐶 𝑍𝑖, because he is always willing to 

accept an indiscernible increment of pain in exchange for an additional $10,000; but also (ii) 

𝑍100 ∉ 𝐶({𝑍𝑖|𝑖 = 0,1 … 100}), because he regards 𝑍100 as an unacceptable outcome. 

According to the standard view, the self-torturer is irrational, because 𝐶 violates 𝛼; but 

𝐶 may be outcome-rational in the sense defined at 3.1. That is, it is consistent with (i) and (ii) 

that for any set of preferences over all sets of 𝑍𝑖’s, such that for any set 𝜁 of 𝑍𝑖’s and any cover 

𝐾 of 𝜁, some 𝑘 ∈ 𝐾 is such that 𝐶(𝑘) ⊆ 𝐶(𝜁). It follows that there is some means-end rational 

extension of 𝐶 that gives sound advice about how to tackle the decision tree that Quinn 

describes. Comparing all such extensions with what the self-torturer would also tell us 

everything there is to know about where he went wrong. 

 Developing this inquiry is obviously a matter for further work. I also believe that 

means-end rationality has fruitful applications to other choice-theoretic puzzles, including the 

problems of supererogation and incommensurability, the dispute between Causal and 

Evidential Decision Theory and perhaps also Sen’s argument concerning the possibility of a 

Paretian liberal. Independently of these possible applications though, the main advertisement 

for means-end rationality is that it does what we were looking for: a definition of what it means 

to choose rationally that makes clear to everyone by their own lights why they should.    

  

 

Appendix: Rational choice under uncertainty 

The definition of rationality defended here is only applicable to choices in deterministic 

scenarios i.e. where the agent suffers from no relevant ignorance about the state of the world. 

I don’t think that this makes it uninteresting. It’s obviously interesting that 𝛼 and 𝛽 are not, but 

𝛾 is, a legitimate demand of rationality in such a setting. Still, the obvious next move would be 

to ask whether introducing uncertainty somehow brings those two other principles into the 

picture. It would take too much space to do that properly here, but §5.1 at least sketches an 

extended definition of means-end rationality that covers these cases. 

Extending the definition of rationality requires an extension of the space of outcomes 

and of the set of trees that can be built upon them. To this end, let there be a set Ω of possible 

worlds namely those that the agent has not ruled out at the outset. And let there be a set 𝑍 of 

prizes. Call any subset 𝐸 of Ω an event. Now we can define terminal nodes, choice nodes, 

natural nodes and a height function that applies to all of them: 

 

 
23 Quinn 1990. 
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(i) A terminal node is an ordered pair (𝑛, 𝐸) such that 𝐸 ⊆ Ω and 𝑛 ∈ 𝑍𝐸 . If (𝑛, 𝐸) 

is a terminal node then its height is 𝐻((𝑛, 𝐸)) = 0. 

(ii) A choice node is an ordered pair (𝑛, 𝐸) s.t. 𝐸 and 𝑛 is a set of ordered pairs 

(𝑛′, 𝐸) of finite height. If (𝑛, 𝐸) is a choice node then its height is 𝐻((𝑛, 𝐸)) =

1 + max{𝐻((𝑛′, 𝐸))|(𝑛′, 𝐸) ∈ 𝑛}. 

(iii) A natural node is an ordered pair (𝑛, 𝐸) s.t. 𝐸 is an event and 𝑛 is a set of ordered 

pairs (𝑛′, 𝐸′) of finite height such that (a) {𝐸′|(𝑛′, 𝐸′) ∈ 𝑛} partitions 𝐸; (b) if 
(𝑛1, 𝐸′) ∈ 𝑛 and (𝑛2, 𝐸′) ∈ 𝑛 then 𝑛1 = 𝑛2. If (𝑛, 𝐸) is a natural node its height 

is 𝐻((𝑛, 𝐸)) = 1 + max{𝐻((𝑛′, 𝐸′))|(𝑛′, 𝐸′) ∈ 𝑛}. 

(iv) Nothing else is a node; nothing else has a height. 

 

Intuitively, we can think of the ordered pair (𝑛, 𝐸) as carrying two pieces of information: 𝑛 

specifies where the agent is in a tree-like structure, and 𝐸 expresses her knowledge: that is, 𝐸 

is just the set of worlds that might (for all she knows) be actual. At a terminal node (𝑛, 𝐸), 𝑛 is 

a function from the set 𝐸 of possible worlds to the set 𝑍 of possible prizes: in other words it is 

a gamble that returns the prize 𝑛(𝑤) ∈ 𝑍 if the actual world is 𝑤 ∈ Ω. At a choice node (𝑛, 𝐸), 

the agent has a choice between nodes (𝑛′, 𝐸) at which his state of information is still 𝐸. These 

nodes are the analogues of the non-terminal nodes in a deterministic tree. At a natural node 
(𝑛, 𝐸), nature has a choice between nodes (𝑛′, 𝐸′) at which the agent learns that the actual 

world belongs to some cell 𝐸′ of some partition of 𝐸. These nodes are not analogous to anything 

in the deterministic case: they are meant to model the evolution of the agent’s knowledge over 

the course of the decision procedure. We define a decision tree with uncertainty as a node of 

finite height of the form (𝑛, Ω).24   

 A choice function under uncertainty is any function that takes any choice node (𝑛, 𝐸) 

to a non-empty subset of 𝑛. Because the prize that a choice function 𝐶 realizes in a tree 𝑇 

depends on the state of nature, the outcomes that 𝐶 permits in 𝑇 are not themselves prizes but 

gambles over prizes, that is, functions from Ω to 𝑍. We shall also be concerned with partial 

gambles, that is, with functions from 𝐸 to 𝑍 for arbitrary 𝐸 ⊆ 𝑍 (which include e.g. all terminal 

nodes). We can now give a recursive definition of the outcomes that 𝐶 permits at an arbitrary 

node (𝑛, 𝐸): 

 

(i) If (𝑛, 𝐸) is a terminal node then 𝐶∗((𝑛, 𝐸)) = {𝑛} 

(ii) If (𝑛, 𝐸) is a choice node and 𝑔 ∈ 𝑍𝐸 then 𝑔 ∈ 𝐶∗((𝑛, 𝐸)) iff 𝑔 ∈ 𝐶∗((𝑛′, 𝐸)) 

for some (𝑛′, 𝐸) ∈ 𝐶(𝑛) 

(iii) If (𝑛, 𝐸) is a natural node and 𝑔 ∈ 𝑍𝐸  then 𝑔 ∈ 𝐶∗((𝑛, 𝐸)) iff: there are 𝐸1 … 𝐸𝑘 

that partition 𝐸 and 𝑛1 … 𝑛𝑘 s.t. 𝑛 = {(𝑛𝑖, 𝐸𝑖)|1 ≤ 𝑖 ≤ 𝑘}, and 𝑔1 … 𝑔𝑘 s.t. for 

each 𝑖 = 1, … 𝑘, 𝑔𝑖 ∈ 𝑍𝐸𝑖 and 𝑔𝑖 ∈ 𝐶∗((𝑛𝑖, 𝐸𝑖)), and for any world 𝑤 ∈ 𝐸, if 

𝑤 ∈ 𝐸𝑖 then 𝑔(𝑤) = 𝑔𝑖(𝑤).    

(iv) If 𝑇 is a tree with uncertainty then the set of outcomes that 𝐶 permits at 𝑇 is 

𝐶∗(𝑇) ⊆ 𝑍Ω. 

 

 
24 This definition of the relevant class of trees is somewhat simpler than Hammond’s classic treatment (1988: 31-

2), which includes a class of chance nodes to model processes that are genuinely indeterministic. In Hammond’s 

model therefore, the agent’s choice function ranges over objective gambles over subjective gambles in the manner 

of Anscombe and Aumann, whereas on the present approach all gambles are subjective in the manner of Savage. 

This makes a difference to the details of constructing a utility function given a fully consequentialist rational 

choice function but not (as far as I can see) to the prior issue of whether consequentialist rationality has normative 

grip.    
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Informally, the effect of this definition is that a choice function when applied to a tree permits 

as outcomes a range of gambles over prizes, depending on which state of nature is actual. For 

example, consider Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 

 

In this diagram, boxes with arrows going out are choice nodes, circles are natural node, and 

boxes with no arrows going out are terminal nodes. The labelling of the nodes indicates that 
{𝐸1, 𝐸2} is a partition of Ω and that {𝐸21, 𝐸22} is a partition of 𝐸2. Let the choice function 𝐶 

make the selections that I have indicated in bold: so 𝐶((𝑛1, Ω)) = {(𝑛2, Ω), (𝑛3, Ω)} etc. Then 

the outcomes that 𝐶 permits at 𝑇 = (𝑛1, Ω) are the gambles 𝑔, ℎ defined as follows: 

 

• 𝑔(𝑤) = {
𝑛6(𝑤) if 𝑤 ∈ 𝐸1

𝑛8(𝑤) if 𝑤 ∈ 𝐸2
 

 

(𝑛1, Ω) 

(𝑛2, Ω) 

(𝑛3, Ω)  

(𝑛4, 𝐸1) (𝑛7, 𝐸1) 

(𝑛6, 𝐸1) 

(𝑛8, 𝐸2) 

(𝑛9, 𝐸1) 

(𝑛5, 𝐸2) (𝑛10, 𝐸21) 

(𝑛11, 𝐸22) 
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• ℎ(𝑤) = {

𝑛9(𝑤) if 𝑤 ∈ 𝐸1

𝑛10(𝑤) if 𝑤 ∈ 𝐸21

𝑛11(𝑤) if 𝑤 ∈ 𝐸22

 

 

(These definitions make sense because 𝑛6, 𝑛8, 𝑛9, 𝑛10 and 𝑛11 are all themselves gambles i.e. 

functions from possible worlds to prizes.) So in this example, 𝐶∗(𝑛1, Ω) = {𝑔, ℎ}.  

 Which outcomes of a tree are available? In contrast with the deterministic case, one 

cannot simply collect all the terminal nodes, since which terminal nodes are available will 

depend on which possible worlds is actual. For instance, if the actual world does not belong to 

𝐸1in fig. 7 then the terminal node (𝑛6, 𝐸1) cannot be reached through any sequence of choices.  

What is always available, whichever world is actual, is any gamble over all worlds that 

is available from some sequence of choices. This motivates the following recursive definition: 

 

(i) If (𝑛, 𝐸) is a terminal node then (𝑛, 𝐸)∗ = {𝑛} 

(ii) If (𝑛, 𝐸) is a choice node and 𝑔 ∈ 𝑍𝐸 then 𝑔 ∈ (𝑛, 𝐸)∗ iff 𝑔 ∈ (𝑛′, 𝐸)∗ for some 
(𝑛′, 𝐸) ∈ 𝑛 

(iii) If (𝑛, 𝐸) is a natural node and 𝑔 ∈ 𝑍𝐸  then 𝑔 ∈ (𝑛, 𝐸)∗ iff: there are 𝐸1 … 𝐸𝑘 

that partition 𝐸 and 𝑛1 … 𝑛𝑘 s.t. 𝑛 = {(𝑛𝑖, 𝐸𝑖)|1 ≤ 𝑖 ≤ 𝑘}, and 𝑔1 … 𝑔𝑘 s.t. for 

each 𝑖 = 1, … 𝑘, 𝑔𝑖 ∈ 𝑍𝐸𝑖 and 𝑔𝑖 ∈ 𝐶∗((𝑛𝑖, 𝐸𝑖)), and for any world 𝑤 ∈ 𝐸, if 

𝑤 ∈ 𝐸𝑖 then 𝑔(𝑤) = 𝑔𝑖(𝑤).    

(iv) If 𝑇 is a tree with uncertainty then the set of outcomes available at 𝑇 is 𝑇∗ ⊆
𝑍Ω. 

 

For instance, if we consider the tree in fig. 7, we can see that in addition to 𝑔 and ℎ there is 

available one other gamble, corresponding to the option of going down at the choice node 
(𝑛4, 𝐸1). This is the gamble:  

 

• 𝑓(𝑤) = {
𝑛7(𝑤) if 𝑤 ∈ 𝐸1

𝑛8(𝑤) if 𝑤 ∈ 𝐸2
 

 

So the set of gambles available at the tree 𝑇 = (𝑛1, Ω) is 𝑇∗ = (𝑓, 𝑔, ℎ).  

We can now define means-end rationality for choice functions under uncertainty just as 

we defined it in the deterministic case. A choice function is irrational just in case there are trees 

from which it is liable to select gambles which it itself would not choose, in advance, from all 

the available gambles. In other words, the condition for means-end rationality can be written 

in the same way as before: 𝐶∗(𝑇) ⊆ 𝐶(𝑇∗) for any tree 𝑇. We can then also apply the definition 

of rational tastes in terms of perfect covers, with tastes defined as preferences over outcomes 

in the sense of gambles i.e. functions from Ω to 𝑍.    

The obvious next step is to identify which ‘standard’ principles of choice under 

uncertainty, if any, turn out to be means-end rational. For instance, consider the following four 

gambles, where 𝐸1 ∪ 𝐸2 = Ω and 𝑧1, … 𝑧4 are possible prizes.  

 

 𝑬𝟏 𝑬𝟐 

𝒇 𝑧1 𝑧3 

𝒈 𝑧1 𝑧4 

𝒉 𝑧2 𝑧3 

𝒌 𝑧2 𝑧4 

Table 2 
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Suppose that the choice function 𝐶 satisfies 𝑓 ≻𝐶 𝑔 and 𝑘 ≻𝐶 ℎ. Then consider the following 

two trees: 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 8A 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8B 

 

Note that the choice node (𝑚3, 𝐸2) appears in both trees, so that 𝐶 must permit the same options 

at that point in each case. The terminal nodes are labelled 𝑧1, … 𝑧4 to abbreviate gambles that 

return that prize for certain (given what one knows at that point about the state of nature).  

Now it is easy to see that (𝑚1, Ω)∗ = {𝑓, 𝑔} and (𝑛1, Ω)∗ = {ℎ, 𝑘}; so given 𝑓 ≻𝐶 𝑔 and 

𝑘 ≻𝐶 ℎ it follows that 𝐶((𝑚1, Ω)∗) = {𝑓} and 𝐶((𝑛1, Ω)∗) = {𝑓}. But (using our 

abbreviations) either 𝑧3 ∈ 𝐶((𝑛3, 𝐸2)) or 𝑧4 ∈ 𝐶((𝑛3, 𝐸2)). In the first case, ℎ ∈ 𝐶∗((𝑛1, Ω)) 

so 𝐶∗((𝑛1, Ω)) ⊈ 𝐶((𝑛1, Ω)∗). In the second case 𝐶∗((𝑚1, Ω)) ⊈ 𝐶((𝑚1, Ω)∗). Either way, 𝐶 

violates means-end irrationality. So it turns out that a principle very like Savage’s P2 is a 

requirement of means-end rationality under conditions of uncertainty.25  

It is interesting that something as non-obvious as P2 is a requirement of rational choice 

under uncertainty, whereas an ‘obvious’ principle like transitivity of preference is apparently 

not. Clearly there is much more to be said about what else rationality requires when the state 

of nature is both relevant and uncertain, but this is probably not the place to do it.  

 

 

 
25 Savage 1972: 23. Cf. the proof of Samuelson’s ‘Independence’ principle in the consequentialist theory: 

Hammond 1988: 42-4. 

(𝑚1, Ω) 

(𝑚2, 𝐸1)   

(𝑚3, 𝐸2) 

𝑧1 

𝑧3 

𝑧4 

(𝑛1, Ω) 

(𝑛2, 𝐸1)   

(𝑚3, 𝐸2) 

𝑧2 

𝑧3 

𝑧4 
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