
Tableaux-based decision method for single-agent linear time
synchronous temporal epistemic logics with interacting time

and knowledge
(Technical report?)

Mai Ajspur1 and Valentin Goranko2

1 Roskilde University, ajspur@ruc.dk,
2 Technical University of Denmark and University of Johannesburg, vfgo@imm.dtu.dk

Abstract. Temporal epistemic logics are known, from results of Halpern and Vardi, to have a
wide range of complexities of the satisfiability problem: from PSPACE, through non-elementary,
to highly undecidable. These complexities depend on the choice of some key parameters specify-
ing, inter alia, possible interactions between time and knowledge, such as synchrony and agents’
abilities for learning and recall. In this work we develop practically implementable tableau-based
decision procedures for deciding satisfiability in single-agent synchronous temporal-epistemic
logics with interactions between time and knowledge. We discuss some complications that occur,
even in the single-agent case, when interactions between time and knowledge are assumed and
show how the method of incremental tableaux can be adapted to work in EXPSPACE, respec-
tively 2EXPTIME, for these logics, thereby also matching the upper bounds obtained for them
by Halpern and Vardi.

1 Introduction

Knowledge and time are among the most important aspects of agency. Various temporal-
epistemic logics, proposed as logical frameworks for reasoning about these aspects of single-
and multi-agent systems were actively studied in a number of publications during the 1980’s,
eventually summarized and uniformly presented in a comprehensive study by Halpern and
Vardi [4]. In [4], the authors considered several essential characteristics of temporal-epistemic
logics: one vs. several agents, synchrony vs. asynchrony, (no) learning, (no) forgetting (aka,
perfect recall or no recall), linear vs. branching time, and existence (or not) of a unique initial
state. Based on these, they identified and analyzed a total of 96 temporal-epistemic logics and
obtained lower bounds for the complexity of a satisfiability problem in them. In [5] matching
upper bounds were claimed for all, and established for most of these logics. It turned out that
most of the logics that involve more than one agents, whose knowledge interacts with time
(e.g., who do not learn or do not forget) – are undecidable (with common knowledge), or
decidable but with non-elementary time lower bound (without common knowledge). Even in
the single-agent case the interaction between knowledge and time proved to be quite costly,
pushing the complexities of deciding satisfiability up to EXPSPACE and 2EXPTIME. These
complexity lower bounds were established in [4] and the matching upper bounds are claimed
and proved for all synchronous cases in [5]. For the single-agent synchronous cases, these
results follow from the non-elementary upper bounds for the multi-agent cases. However, we
are not aware of both optimal and practically implementable decision methods developed for
these logics so far (but, see further discussion on related work). By “practically implementable
decision method” we mean one that would only hit the worst case complexity in ‘really bad’
? This is the full version, including a technical appendix, of [1]

2

cases – usually seldom occurring in practice – but would perform reasonably well in most of
the practically occurring input instances, whereas a non-practically implementable method is
one that essentially always – or, always when the answer is e.g., ‘no’ – would perform with the
theoretically worst case complexity. For instance, the method of semantic tableau for testing
tautologies in classical propositional logic is practically implementable, whereas the method
using explicitly constructed truth-tables is not.

In this paper we develop such theoretically optimal and practically implementable (mod-
ulo the established complexities, of course) tableau-based procedures for deciding satisfiabil-
ity in single-agent synchronous temporal-epistemic logics with interactions between time and
knowledge, by building on the incremental tableau construction, described in [3] for both
synchronous and asynchronous multi-agent temporal-epistemic logics with common and dis-
tributed knowledge, but with no interactions between time and knowledge (other than syn-
chrony). The method developed there works in EXPTIME, which is the optimal complexity for
the logics considered there. It was not clear whether and how that method could be adapted
to produce optimal decision procedures for the cases of interacting time and knowledge, where
complications arise even in the single-agent case. Here we discuss and illustrate these com-
plications and then extend and adapt the incremental tableaux-based decision method to the
single-agent case over linear time synchronous systems, for all cases of interaction between
knowledge and time involving combinations of assumptions of ‘no learning’, ‘no forgetting’
and ‘unique initial state’, that are not easily covered by the tableau method from [3]. The
basic procedure developed here works in 2EXPTIME and we describe in Section 7 how it
is optimized to work in EXPSPACE, thereby also matching the EXPSPACE upper bounds
obtained for these logics in [5]. For better readability we put some technical details and proofs
in a technical appendix and omit the more routine ones.

In order to delineate the contribution of this paper, we should put it in the context of
related works. On the one hand, as discussed above, Halpern and Vardi have established in
[5] theoretically optimal upper bounds (for the multi+agent cases), by means of essentially
combinatorial estimates of the size of ‘small’ tree-like models satisfying models, but that proof
is far from a practically implementable method as it requires enumerating and checking all
models within the prescribed size. On the other hand, a non-optimal, yet apparently imple-
mentable tableau method for the cases of single-agent synchronous temporal-epistemic logics
with no learning or with no forgetting is developed by Dixon et al in [2], where many of the
concepts used here (states, pre-bubbles and bubbles, etc.) have close analogies. That method
works by first transforming the input formula into a certain clausal normal form that employs
a number of new atoms, used for renaming of subformulae, and then applying a tableau-like
method to the resulting set. It uses double exponential space in the number of logical con-
nectives (except negations) in the formula and does not cover the cases with unique initial
state. A resolution based approach to the logics has been developed in [7], while [6] develops
tableaux for first-order temporal logics, covering (under constant domain assumption) some
single-agent temporal epistemic logics, too.

The tableau method developed here originates from the incremental tableaux, first devel-
oped by Pratt for PDL [8] and later by Wolper for LTL [9], and is an adaptation of the tableau
for the linear time multi-agent temporal epistemic logic with no time-knowledge interaction in
[3], to which we refer the reader for further references. Besides combining optimality and im-
plementability, we believe that our tableau method is also somewhat more intuitive and more
flexible and amenable to further extensions, incl. covering multi-agent logics and asynchrony.

3

2 Preliminaries

For lack of space, we only provide here the very basic preliminaries on the logics under con-
sideration and on the incremental tableau method. For further details the reader is referred
to [4], [5], [3].

2.1 The Single-agent Linear Time Temporal Epistemic Logic TEL1(LT)

Syntax and semantics The language of TEL1(LT) contains a set AP of atomic propositions,
the Booleans ¬ (“not”) and ∧ (“and”), the temporal operators X (“next”) and U (“until”) of
the logic LTL, as well as the epistemic operator K. The formulas of TEL1(LT) are defined as
follows:

ϕ := p | ¬ϕ | (ϕ1 ∧ ϕ2) | Xϕ | (ϕ1 Uϕ2) | Kϕ

where p ranges over AP. All other standard Boolean and temporal connectives can be defined
as usual. Formulas of the type Kϕ or their negations will be called knowledge formulas and
formulas of the type Xϕ, ϕ1 Uϕ2 or their negations will be called temporal formulas. We omit
parentheses when this does not result in ambiguity.

Definition 1 (Temporal-epistemic frames and models). A (single-agent) temporal-
epistemic frame (TEF) is a tuple S = (S,R,R), where S is a non-empty set of states; R ⊆ SN

is a non-empty set of runs; and R ⊆ (R × N)2 is an equivalence relation, representing the
epistemic uncertainty of the agent. A temporal-epistemic model (TEM) is a tupleM = (F, L),
where F is a TEF and L : R× N→ P(AP) is a labeling function.

We denote the set R × N by P (S). An element (r, n) ∈ P (S) is called a point. We note that
the points and not the states of a model are the elements of interest in a model, since both
the epistemic relation and the labelling function are defined with respect to points and not
states.

Truth and satisfiability Truth of formulas at a point of a TEM is defined recursively as
usual, by combining the semantics for LTL and that of the standard epistemic logic:

M, (r, n)
 Xϕ iffM, (r, n+ 1)
 ϕ;
M, (r, n)
 ϕUψ iff M, (r, i)
 ψ for some i ≥ n such that M, (r, j)
 ϕ for every

n ≤ j < i;
M, (r, n)
 Kϕ iffM, (r′, n′)
 ϕ for every ((r, n), (r′, n′)) ∈ R;

A formula ϕ is satisfiable (resp., valid) if M, (r, n)
 ϕ for some (resp., every) TEM M
and a point (r, n) in it. Satisfiability and validity in a class of models is defined likewise.

Remark 1. Our definition of a temporal epistemic frame (and model) can obviously be ex-
tended to the multiagent case by including a relation Ra for all agents and extending the
definition of truth and satisfiability in a model similarly. Note that in both the multi- and
single agent case, our notion of temporal-epistemic model is somewhat more general than the
semantical structure in [4] and [5], called an ‘interpreted system’. In an interpreted system
the (global) system states are tuples of local states of all agents, and runs are defined as
functions from N to the set of global states. The epistemic relations in [4] and [5] are defined
between states, not between points, although one could infer otherwise from the notation used
there: (r, n) ∼a (r′, n′), but that means by definition r(n) ∼a r′(n′), which again is defined to

4

mean that the current local state of r(n) and r′(n′) w.r.t. agent a is the same. Thus, every
interpreted system as defined in [4] and [5] can obviously be redefined as a TEM in our sense,
by lifting the epistemic relation from states to points. Our semantics, where runs are defined
as more abstract entities, is mentioned in [4] and [5] too, and it is stated in these papers that
the semantics are equivalent, but without providing arguments. This is true since every TEM
M in our sense can be transformed into an equi-satisfiable interpreted system M̂, where the
local states for each agent are the respective equivalence classes of the points inM. Then, for
each run r inM a corresponding run r′ in M̂ is defined canonically, and the labeling fromM
is transferred canonically to M̂. If there are no r and s inM for which ((r, n), (s,m)) ∈ Ra
for all agents, then there is a bijection between the runs inM and M̂, and it is easy to show
that satisfiability of formulas inM and M̂ coincide. If there are such runs r and s one can do
a ‘trick’, by adding a new starting point to each new run r′ which is unique for r; these new
starting points can then be labelled with ∅. Thus, the notions of satisfiability (at some point
of a run in some model) in both semantics coincide.

2.2 Some important properties of temporal-epistemic models

Definition 2 (Properties of TEF and TEM). A TEF S = (S,R,R) has the property of:

– Indistinguishable_Initial_States (iis), if for all runs r, r′ ∈ R, ((r, 0), (r′, 0)) ∈ R.
– No_Learning (nol), if whenever ((r, n), (r′, n′)) ∈ R, for every k ≥ n there exists a k′ ≥ n′
such that ((r, k), (r′, k′)) ∈ R.

– No_Forgetting (nof), if whenever ((r, n), (r′, n′)) ∈ R, for every 0 ≤ k ≤ n there exists a
0 ≤ k′ ≤ n′ such that ((r, k), (r′, k′)) ∈ R.

– Synchrony (sync), if ((r, n), (r′, n′)) ∈ R implies n = n′.

A TEMM = (F, L) has the property of x ∈ {nol, nof, sync, iis} if F does so.

The meaning of iis is clear; sync means that the agent can perceive time, i.e., has a clock;
nol means that the agent does not learn over time in the sense that if it cannot distinguish
two runs at any given time instance, it will not be able to do so later on. Likewise, nof means
that if at a given time instance the agent can tell two different runs apart, the agent must
have been able to do so at any previous time instance. We notice that if a TEF or TEM has
the properties nol and iis, then it follows that it has the property nof too.

We denote the classes of all TEMs satisfying property x ∈ {nol, nof, sync, iis} by TEMx,
and we further denote TEMX = ∩x∈X TEMx for X ⊆ {nol, nof, sync, iis}.

Extensions of TEL1(LT) We denote the extension of the logic TEL1(LT) with semantics
restricted to the class TEMX , by TEL1(LT)X for all X ⊆ {nol, nof, sync, iis}. Thus, validity/
satisfiability in TEL1(LT)X means validity/satisfiability in a model from TEMX . In this paper
we focus on the logics for synchronous models TEL1(LT)X (i.e. sync ∈ X) and either nol ∈ X
or nof ∈ X. For convenience, we also denote TEL1(LT) = TEL1(LT)∅ in cases where we want
to emphasize that no interaction conditions are assumed.

Remark 2. The properties of sync, iis, nol and nof are all preserved when transforming a
(single- or multi-agent) interpreted system into a model as in Remark 1. On the other hand,
consider a (single- or multi-agent) modelM. If there are no two runs r and s inM such that
((r, n), (s, n)) ∈ Ra for all agents a, then the transformation described in Remark 1 without
the additional ‘trick’ preserves the properties of sync, uis, nol and nof. If there are such r

5

and s, one can in most cases of combinations of the interaction properties perform suitable
modifications that enable us to still find an equi-satisfiable interpreted system with the same
interaction properties.

However, this is not the case for the single- or multiagent temporal epistemic logic with in-
teraction propertiesX, whereX ∈ { {sync, nol, nof}, {sync, nol, nof, iis}, {sync, nol, iis}, {sync, nof, iis} }.
In these cases the two semantics differ, since e.g. the formula θ = p ∧ ¬Kap is satisfiable in
our semantics, while it is unsatisfiable in the semantics presented in [4] and [5]. This is due
to the fact that the interaction properties implies that if M, (r, n)
 θ for a point (r, n) in
the interpreted system M, then if ((s, n), (r, n)) ∈ Ra then ((s, n′), (r, n′)) ∈ Ra for all n′,
and hence r = s since R according to the definition is a set of runs. Thus we must have that
M, (r, n)
 p,¬p which is a contradiction. Note, however, that the formula is satisfiable if e.g.
the property sync is dropped.

3 Temporal Epistemic Hintikka Structures

Even though we are ultimately interested in testing formulas of TEL1(LT) for satisfiability in a
TEM, the tableau procedure we will present here tests for satisfiability in a more general kind of
semantic structures, namely temporal epistemic Hintikka structures (TEHS). The important
aspect of a Hintikka structure for a formula θ is that it contains just as much semantic
information about the satisfying model of θ as it is necessary, and no more. More precisely,
while a TEM provides the truth value of every formula of the language at every state, a
Hintikka structure only determines the truth of formulas that are directly involved in the
evaluation of the input formula θ.

Some terminology: we distinguish conjunctive formulas, also called f-formulas and dis-
junctive formulas, also called g-formulas, each with a respective set of components, as in the
tables below:

f-formula Set of f -components
¬¬ϕ {ϕ}
ϕ ∧ ψ {ϕ,ψ}
Kϕ {Kϕ,ϕ}

g-formula Set of g -components
¬(ϕ ∧ ψ) {¬ϕ,¬ψ}
(ϕUψ) {ψ,ϕ ∧ X (ϕUψ)}
¬(ϕUψ) {¬ψ ∧ ¬ϕ,¬ψ ∧ ¬X (ϕUψ)}

It can be easily shown, that anyf-formula is equivalent to the conjunction of itsf-components,
and that any g-formula is equivalent to the disjunction of its g-components.

Definition 3 (Fully expanded sets). A set of formulae ∆ of TEL1(LT) is fully expanded
if:

1. ∆ is not patently inconsistent, i.e. if ϕ ∈ ∆ then ¬ϕ /∈ ∆.
2. If α ∈ ∆ is a f-formula, then all of its f-components are in ∆,
3. If β ∈ ∆ is a g-formula, then at least one of its g-components are in ∆,

Definition 4 (Temporal Epistemic Hintikka Structure). A temporal-epistemic Hin-
tikka structure (TEHS) is a tuple (H, H), where H = (S,R,R) is a TEF, and H is a labeling of
points in P (H) with sets of formulae, satisfying the following conditions, for all (r, n) ∈ P (H):

1. H(r, n) is fully expanded.
2. If ¬Kϕ ∈ H(r, n) then ¬ϕ ∈ H(r′, n′) for some (r′, n′) ∈ P (H) such that ((r, n), (r′, n′)) ∈
R.

6

3. If ((r, n), (r′, n′)) ∈ R, then Kϕ ∈ H(r, n) iff Kϕ ∈ H(r′, n′).
4. If Xϕ ∈ H(r, n), then ϕ ∈ H(r, n+ 1) and if ¬Xϕ ∈ H(r, n), then ¬ϕ ∈ H(r, n+ 1).
5. If ϕUψ ∈ H(r, n), then there exists i ≥ n such that ψ ∈ H(r, i) and ϕ ∈ H(r, j) holds for

every n ≤ j < i.

(H, H) has the property x ∈ {nol, nof, sync, iis} if H has the property x.

It was proved in [3] that any temporal-epistemic formula of the multi-agent linear time
temporal epistemic logic with synchrony but without interaction of time and knowledge, is
satisfiable in a TEM iff it is satisfiable in a TEHS. Adding any combination of the interaction
conditions nol, nof or iis does not affect the truth of this claim in the 1-agent case, so we can
from now on restrict attention to satisfiability in TEHS.

4 Tableaux for synchronous TEL1(LT) with interaction conditions

4.1 Overview of the tableau procedure for TEL1(LT)∅

The tableaux method for testing the satisfiability of an input formula θ of TEL1(LT)∅ is used
as a starting point for the procedure for TEL1(LT)X where X 6= ∅. To aid the presentation
of the procedure for TEL1(LT)X , we first outline the essentials of the tableau procedure for
TEL1(LT)∅ developed for multi-agent case in [3]; the reader is referred to the latter for more
detail.

The tableaux procedure for TEL1(LT)∅ consists of three major phases: pretableau construc-
tion, prestate elimination, and state elimination. It constructs a directed graph T θ (called
a tableau) with nodes labelled by finite sets of formulas, and directed edges between nodes,
representing temporal, epistemic, or label-expansion relations.

The pretableau construction phase produces the so-called the pretableau Pθ for the input
formula θ, where the nodes are of two kinds: states and prestates. States are fully expanded
sets, meant to represent states of a TEHS, while prestates are finite sets of formulas and
play a temporary role in the construction of T θ. The pretableau phase consists of alternative
constructions of epistemic and temporal successor prestates of a given state, and expanding a
given prestate Γ into fully expanded sets, denoted by states(Γ), which label new or existing
states.

The prestate elimination phase creates a smaller graph T θ0 out of Pθ, called the initial
tableau for θ, by eliminating all the prestates from Pθ and accordingly redirecting its edges.

Finally, the state elimination phase removes, in successive steps, all the states, if any, that
cannot be satisfied in a TEHS, because they lack necessary successors (epistemic or temporal)
or because they contain unrealized eventualities. When no more states can be removed, the
elimination procedure produces a (possibly empty) subgraph T θ of T θ0 , called the final tableau
for θ. If some state ∆ of T θ contains θ, the procedure declares θ satisfiable and a TEHS
satisfying θ can be extracted from it; otherwise it declares θ unsatisfiable.

4.2 Complications arising with interacting temporal and epistemic operators

In the tableau construction for the basic logic TEL1(LT)∅, when identifying the set of formulas
that must be put in the label of a temporal successor-prestate Γ for a state ∆, the procedure
only has to take into account formulas that come from ∆. When the logic assumes time-
knowledge interaction, e.g. nol, this is no longer the case because there will also be formulas

7

coming from other states that are epistemically related to the immediate predecessor state ∆,
that will be relevant for defining the successor (pre)state Γ . For instance, if two states are
epistemically related, then they need respective successors that are epistemically related, and
therefore it is necessary that these successors contain the same knowledge formulas. Likewise
for the logic assuming nof: if a state (that is not in the ‘first’ temporal layer) is epistemically
related to another state, then both states need to have predecessor-states which are also
epistemically related. Therefore, the procedure has to create enough states at any temporal
layer so that the states needed in the next temporal layer have respective predecessor states.

4.3 Bubbles and bubble-paths

Here we call any set of formulas ∆ of TEL1(LT) a prestate. A fully expanded prestate will be
called a state. For any set of formulas Γ , we denote by states(Γ) the set of full expansions of
Γ that are produced by the tableau- procedure for TEL1(LT)∅.

We let K(∆) := {Kϕ | Kϕ ∈ ∆ }, Epi(∆) := K(∆) ∪ {¬Kϕ | ¬Kϕ ∈ ∆ } and
Next(∆) := {ϕ | Xϕ ∈ ∆ } ∪ { negϕ | ¬Xϕ ∈ ∆ }, where negϕ = ϕ if the main-connective
of ϕ is ¬ and negϕ = ¬ϕ otherwise. Note that in the tableaux for TEL1(LT)∅, the set
{¬ϕ} ∪ Epi(∆) \ {¬Kϕ} is the epistemic successor prestate for the state ∆ created for the
diamond formula ¬Kϕ ∈ ∆, while Next(∆) is the temporal prestate created for ∆.

In order to deal with the complications discussed above, the tableau procedure presented
here will act not on single states but on special kinds of sets of states representing possible
epistemic clusters, which we will call bubbles, formally defined below. Any finite set of states
will be called a pre-bubble.

Definition 5 (Bubbles). A bubble B is a pre-bubble such that:

– for all ∆ ∈ B and all ¬Kϕ ∈ ∆ there exists a ∆′ ∈ B such that ¬ϕ ∈ ∆′.
– B is knowledge-consistent, i.e. K(∆) = K(∆′) for all ∆,∆′ ∈ B.

Definition 6 (Successor- and predecessor-sets). A set of states S is a successor-set for
a bubble B if for all ∆ ∈ B there is a ∆′ ∈ S s.t. Next(∆) ⊆ ∆′. In that case, we write
B →∀∃ S. Respectively, S is a predecessor-set for B if for all ∆ ∈ B there is a ∆′ ∈ S s.t.
Next(∆′) ⊆ ∆. In that case we write S →−1∀∃ B.

Definition 7 (Bubble-paths). A sequence of bubbles B = (Bi)0≤i≤m is a called a bubble-
path. It is a successor-bubble-path, if Bi →∀∃ Bi+1 for all 0 ≤ i < m. It is a predecessor-
bubble-path if Bi →−1∀∃ Bi+1 for all 0 ≤ i < m.

A sequence of states π = (∆i)0≤i≤m is a temporal path if Next(∆i) ⊆ ∆i+1 for all 0 ≤ i < m.
The temporal path π = (∆i)0≤i≤m follows the bubble-path B = (Bi)0≤i≤m if ∆i ∈ Bi for all
0 ≤ i ≤ m.

The tableau-procedure will construct bubble-paths. For logics that satisfy nol, these bubble-
paths will be successor-bubble-paths, and for logics that satisfy nof, they will be predecessor-
bubble-path. If the logic satisfies both nol and nof, the bubble-paths will be both successor-and
predecessor-bubble-paths at the same time.

Definition 8 (Realization of eventualities). Let ∆ be a state in a bubble B. Let ϕUψ
be an eventuality in ∆. Then ϕUψ ∈ ∆ is realized on a bubble-path B in a tableau T by a

8

temporal path π if B equals the first bubble in B, ∆ equals the first state in π, π follows B,
and there is a subpath π′ of π starting in ∆, where ψ belongs to the last state of π′, while ϕ
belongs to all previous states in π′.

We need the next technical notion in order to define satisfaction of a bubble-path in a TEM
M.

Definition 9 (State-point-assignment). Let B = (Bk)0≤k≤m be a bubble-path. Let M be
a TEM with a point (r, n). Then a state-point-assignment forM, (r, n) and B is a set

A ⊆
⋃

0≤k≤m

(
Bk × { (r′, n′) | ((r′, n′), (r, n+ k)) ∈ R}

)
.

We imagine the states in the bubbles in the specified bubble-path being assigned to points of
the model, so that the states in the first bubble are assigned to points epistemically related
to the specified point (r, n), and states in the second bubble are assigned to points inM that
are epistemically realted to (r, n+ 1), and so on.

Definition 10 (Satisfiability of a bubble-path). LetM be a TEMX and (r̄, n) a point in
P (M). Let B = (Bi)0≤i≤m be a bubble-path. Then we say that M satisfies B at (r̄, n) by A,
and writeM, (r̄, n)
A B, if A is a states-point assignment forM, (r̄, n) and B, such that

– (∆, (r, n+ k)) ∈ A implies thatM, (r, n+ k)
 ∆.
– if nol ∈ X then for all 0 ≤ k < m and all ∆ ∈ Bk there is a run r, such that (∆, (r, n+k)) ∈
A and (∆′, (r, n+ k + 1)) ∈ A for some ∆′ ∈ Bk+1 with Next(∆) ⊆ ∆′.

– if nof ∈ X then for all 0 < k ≤ m and all ∆ ∈ Bk there is a run r such that (∆, (r, n+k)) ∈
A and (∆′, (r, n+ k − 1)) ∈ A for some ∆′ ∈ Bk−1 with Next(∆′) ⊆ ∆′.

4.4 Construction of the pretableau

For the logic TEL1(LT)X where sync ∈ X and either nol ∈ X or nof ∈ X, the procedure
is split into three parts: construction of the pretableau, where pre-bubbles and bubbles are
added to the tableau; construction of the initial tableau, where the pre-bubbles are removed;
and construction of the final tableau, where bubbles are eliminated. The construction of the
pretableau for θ works as follows:

1. For all ∆ ∈ states({θ}), make {∆} a pre-bubble in T .
2. Expand each not yet expanded pre-bubble A into bubbles by applying the procedure

ExpandPrebubble(A, X), outlined further. For every returned bubble B produce an
arrow A 99K B.

3. Produce temporal successor-prebubbles for each bubble B for which this has not been done
so far, by applying the procedure TempSuccessorPrebubbles(B, X) outlined further.
Add any such pre-bubble A to T if it is not already there and produce an arrow B X // A.

4. Repeat step 2 and 3 in cycles until no new bubbles or pre-bubbles are created.

When producing successor-pre-bubbles and expanding pre-bubbles, we use the procedures
from the basic algorithm for TEL1(LT)∅ for expanding prestates into states and producing
temporal successor-prestates and epistemic alternatives for the states in the bubbles. These
operations are performed ‘on the side’, and are not part of the bubble-based tableau construc-
tion itself. However, for efficiency we keep the expanded states on the side, so that we e.g. do
not have to recompute full expansions of a state. The procedures ExpandPrebubble and

9

TemporalSuccessorPrebubbles depend on X and are explained below. They use 3 other
procedures, which do not depend on X, described first.

MakeKnowledgeConsistent takes a set of states S as input, and returns a set L of
all knowledge-consistent ‘alternatives’ of S. That is, if S′ is in the returned set L, then S′ is
knowledge-consistent and there is a surjective function f : S → S′ such that if ∆ ∈ S then
∆ ⊆ f(∆), i.e. some formulas might be added to every state in S. If S is already knowl-
edge consistent, L = {S} is returned. Otherwise, for every state ∆ in S we collect in K∆

the K-formulas in the states in S which are not in ∆, and the ¬K-formulas in the states
of S are collected in nK. Then the method returns L = { {∆0 ∪ Σ0, . . . ,∆n ∪ Σn} | Σi ∈
states(K∆i), ∆i ∪Σi and Σi ∪nK are not patently inconsistent for all i }, where ∆0, . . . ,∆n

are the states in S. However, if there is a ∆ ∈ S such that ∆ ∪ Σj or Σj ∪ nK is patently
inconsistent for all Σj ∈ K∆, then ∅ is returned.

The procedure LocalBubble(A, ∆) (where ∆ ∈ A and A is a prebubble) returns a set
L consisting of epistemic alternatives for all formulas ¬Kϕ in ∆ (i.e. diamond formulas),
for which there is no ∆′ ∈ A that contains ¬ϕ, i.e. it returns L = { {∆0, . . . ,∆n} | ∆i ∈
states(Γi) for all i }, where ¬Kϕ0, . . . ,¬Kϕn are the ‘unfulfilled’ epistemic diamond formulas
in ∆ and Γi = {¬ϕi} ∪ Epi(∆) \ {¬Kϕi} for all i. Though, if any of the sets states(Γi) = ∅,
then ∅ is returned.

ExpandToBubble takes as input a knowledge-consistent prebubble S, and returns a set
L consisting of bubbles, each containing S. That set is constructed by first adding S to L, and
then repeatedly replacing a set S′ in L (which is not marked ‘closed’) with S′∪L1, . . . , S

′∪Ln,
where {L1, . . . , Ln} is the set returned by LocalBubble(S′, ∆) for an unmarked ∆ ∈ S′ (af-
ter which ∆ ∈ S′ ∪ Li is marked). If LocalBubble(S′, ∆) returns ∅, then S′ is marked
‘closed’. When each set in L is either marked ‘closed’ or all states in the set are marked, the
‘closed’ sets are removed from L, and L is returned.

TemporalSuccessorPrebubbles(B, X) returns a set L of temporal successor pre-bubbles
for a bubble B. When nol ∈ X, all states in B needs to have successor-states in the same bub-
ble, so the method returns L = { {∆′0, . . . ,∆′n} | ∆′i ∈ states(Next(∆i)) for all i }, where
∆0, . . . ,∆n are the states in B. Though, if states(Next(∆i)) = ∅ for any ∆i ∈ B, the method
returns ∅. When nol /∈ X, the successors of the states in B need not be in the same bub-
ble but there should be a successor-bubble for every state in B. Thus, the returned set is
L = { {∆′} | ∆′ ∈ states(Next(∆)) for a ∆ ∈ B }. If states(Next(∆)) = ∅ for any ∆ ∈ B,
then L = ∅ is returned.

When nof ∈ X or {nol, iis} ⊆ X, the expansion of a prestate (that is not in the first tempo-
ral layer) is done with respect to the immediate predecessor bubble, for which the pre-bubble
was created. Thus, in these cases we annotate any created successor-pre-bubble with the bub-
ble that created it, and two pre-bubbles are not considered the same, unless they have the
same annotation. There are thus 22·#stsθ possible pre-bubbles, where #stsθ are the number of
possible states belonging to a bubble in the tableau for a formula θ. The number of prebubbles
is, however, still double-exponential in the length of the input-formula.

Before describing the next procedure, we note that the expanding procedure for prestates
into states in the tableau method for TEL1(LT)∅ uses analytic cuts to ensure that if ∆ ¬Kϕ−→ ∆′

and Kψ ∈ ∆′, then Kψ ∈ ∆. That is, for any α ∈ ∆ where α = Kψ or α = ¬Kψ, if

10

Kϕ ∈ Sub(α) and there are no X s on the parse tree between α and Kϕ, then Kϕ ∈ ∆ or
¬Kϕ ∈ ∆.

ExpandPrebubble(A,X) works as follows: When nof /∈ X and {iis, nol} 6⊆ X (in which
case nof is implied) the method first considers all knowledge-consistent versions of A (as
returned by MakeKnowledgeConsistent), and then expand these to bubbles (by calls to
ExpandToBubble). However, when nof ∈ X or {iis, nol} ⊆ X (in which case nof is implied)
things are more complicated. First of all, every state in a bubble B constructed as described
above needs to have a predecessor in the bubble B′ that created A (i.e. the annotation of
A); of course, in the first temporal layer (when the annotation of A = ∅) this is not required.
Secondly, we might later on encounter a state in a bubble that needs predecessors in the bubble
B in question, so we have to ensure there are ‘enough’ states in B. Any state that can possibly
be added to B needs to contain, as a minimum, the K-formulas of any other state in B, and
thus the states in states(K(B)) contain the ‘minimal’ formulas for a state belonging to B.
Adding a Σ ∈ states(K(B)) with K(Σ) = K(B) to B will still yield a bubble, because if Σ
contains a diamond-formula ¬Kϕ, then there will be a state in B containing ¬Kϕ (because
of the cuts). In temporal layers different from the first, there might have to be added more
formulas to these states, but in any case, these states are denoted as the ‘minimal’ states of
B, Bmin.

The method thus works as follows. To keep the method working within double-exponential
time, it builds a ‘mini-tableau’ on the side: pre-bubbles A′, are expanded into knowledge-
consistent pre-bubbles (to which A′ is linked by a KC−→-arrow). The knowledge-consistent pre-
bubbles S are then expanded into bubbles (to which S is linked by Bubble−→). For any of these
bubbles B̃, it might be the case that not every state ∆ in B̃ has a potential predecessor in
B′, the bubble creating A, i.e. there is no state ∆′ ∈ B′ where Next(∆′) ⊆ ∆. So for all
states ∆ ∈ B̃ that do not have a potential predecessor in B′ we take any of the ‘minimal’
states Σ ∈ B′min, and try to make this the predecessor of ∆; this step is of course omitted
when expanding prebubbles in the first temporal layer. This is done by modifying a copy of B̃,
where each ∆ without a predecessor has been replaced with ∆∪Ω for a Ω ∈ states(Next(Σ))
where ∆ ∪ Ω is not patently inconsistent. B̃ is then linked to each of these ‘copies’ with
an arrow pred−→. These pre-bubbles are not necessarily knowledge-consistent, so the outlined
steps are repeated. We always reuse pre-bubbles, knowledge-consistent pre-bubbles and bub-
bles whenever possible. At some point, no new pre-bubbles, knowledge-consistent pre-bubbles
or bubbles are produced. The bubbles in the mini-tableau, where all states have predeces-

sors, i.e. B̃s for which B̃
KC // B̃

Bubble// B̃
pred.

kk , now needs to have the ‘minimal’ states added to

them. For each such bubble B̃ and each Y ∈ P({∆ ∈ states(K(B̃)) | K(∆) = K(B̃) }) we
therefore add B̃ ∪ Y to the mini-tableau as a knowledge-consistent pre-bubble, if it is not
already there, and we let the states in Y be ‘minimal’; if B̃ ∪ Y is present with another set of
‘minimal’ states, we just add the states in Y as ‘minimal’. Then we expand the mini-tableau
again, until no new pre-bubbles are added. Whenever we add formulas to a ‘minimal’ state (in
making it knowledge-consistent or adding predecessors), we let the modified ‘minimal’ state
be ‘minimal’ in the resulting pre-bubble. At saturation, we return the bubbles B̃ for which

B̃
KC // B̃

Bubble// B̃
pred.

kk .

11

We note that the procedures are so constructed that if B X // A 99K B̃, then B̃ is a suc-
cessor of B if nol ∈ X, and B is a predecessor of B̃ if nof ∈ X.

The concept of bubbles and our use of them in the tableau procedure is similar to the
assignment of states to equialence classes, that the procedure in [2] makes use of. However,
our procedure does not require the input formula to be transformed initially, and instead it
uses the bubbles as the main entities in the procedure and construct the temporal relation
between bubbles (and thereby points) directly such that the required interaction properties
will hold for the model that will be extracted from it. The direct use of bubbles as the main
enitites of the tableau further allows for an easy adaption of the method to the asynchronous
case (i.e. where sync is not required).

Example 1. Figure 1 contains the pretableau for θ = ¬X
(
¬(¬Kp ∧K¬r) ∧ ¬(X q ∧Ku)

)
∧

¬K
(
¬X (XK¬q ∧Kp)∧¬X (r∧¬K¬v)

)
in TEL1(LT)sync,nol. To help readability, the bubbles

are framed with rounded boxes while the pre-bubbles are not. The pretableau is the part
containing the bubbles, while the part consisting of states and prestates just are intermediate
results; here, the expanded (pre)states are marked in bold.

{∆0} //___

&&M
MMM ∆0, ∆1
�� ���� �� X //

X
WWW ++WW

{∆4, ∆5} //___ ∆4 ∪Σ0, ∆5 ∪Σ1
�� ���� �� X // {∆8, ∆9}

{∆3, ∆5} {∆3, ∆6} ∆10
�� ���� �� X ,,

{∆10}kk e_Y
∆0, ∆2
�� ���� �� Xbbbbbbbbbb

11bbbbbbbbbb
X // {∆4, ∆6} X // ∆4, ∆6 ∪Σ0, ∆7

�� ���� �� X // {∆8, ∆10} //___ ∆8, ∆10
�� ���� �� X

kk

——————————

Γ0
//____ ∆0

δ0 //
X��

Γ1
//___ --d c b b a ` ` _ ^ ^] \ \ [Z
∆2

X��

∆1

X��

Ω0
//___ Σ0

∆4

X
BB

BB
B

 B
BB

BB

Γ2
oo_ _ _ _ //___ ∆3 Γ4

//____ ∆6 Γ3
//____ ∆5 Ω1

//___ Σ1

∆4 ∪Σ0

X
PPP

((PPP
P

∆7
X

��

Γ5
oo_ _ _ ∆6 ∪Σ0

Xgg

ssgggggggggggg

δ2oo ∆5 ∪Σ1

X��

Ω2
//___ Σ2

∆8
X

22Γ6
oo_ _ _ _ Γ8

//___ ∆10
X

ii ∆9 Γ7
oo_ _ _ _ Ω3

//___ Σ3

δ0 = ¬K(¬X (XK¬q∧Kp) ∆0 = {θ,¬X (¬(¬Kp ∧K¬r) ∧ ¬(X q ∧Ku)), Ω0 = K(∆4,∆5) \K(∆4)
Γ0 = {θ} ¬K(¬X (XK¬q ∧ Kp) ∧ ¬X (r ∧

¬K¬v)),>}
= K(∆3,∆5) \K(∆3)

Γ1 = {¬(¬X (XK¬q ∧Kp) ∆1 = Γ1 ∪ {¬¬X (XK¬q ∧Kp), = K(∆4,∆6) \K(∆6) = {Kp}
∧ ¬X (r ∧ ¬K¬v))} X (XK¬q ∧Kp),>} Σ0 = {Kp, p,X>,>}

Γ2 = {¬(¬(¬Kp ∧K¬r) ∆2 = Γ1 ∪ {¬¬X (r ∧ ¬K¬v),X (r ∧ ¬K¬v,>} Ω1 = K(∆4,∆5) \K(∆5) = {Ku}
∧ ¬(X q ∧Ku))} ∆3 = Γ2 ∪{¬¬(¬Kp∧K¬r),¬Kp∧K¬r,¬Kp, Σ1 = {Ku, u,X>,>}

Γ3 = {XK¬q ∧Kp)} K¬r,¬r,X>,>} Ω2 = K(∆3,∆5) \K(∆5) = {K¬r}
Γ4 = {r ∧ ¬K¬v} ∆4 = Γ2 ∪ {¬¬(X q ∧ Ku),X q ∧

Ku,X q,Ku, u,>}
Σ2 = {K¬r,¬r}

Γ5 = {v,Ku} ∆5 = Γ3 ∪ {XK¬q,Kp, p,>} Ω3 = K(∆8,∆9) \K(∆8) = {K¬q}
Γ6 = {q} ∆6 = Γ4 ∪ {r,¬K¬v,X>,>} Σ3 = {K¬q,¬q,X>,>}
Γ7 = {K¬q} ∆7 = {v,Ku, u,X>,>} ∆9 = {K¬q,¬q,>}
Γ8 = {>} ∆8 = {q,X>,>} ∆10 = {>,X>}

Fig. 1. The pretableau for θ in Example 1

Example 2. Figure 2 contains the pretableau for θ = KXp ∧ ¬XKp in TEL1(LT)sync,nof. A
pretableau’s annotation is written in superscript next to it, and minimal states denoted with

12

a m. When e.g., trying to expand {∆2}B0 , the produced ‘mini-tableau’ is

{∆2}
KC−→ {∆2}

Bubble−→ {∆2, ∆4}.

{∆2, ∆4} cannot be expanded to a set of states where all elements have predecessors, because
the only ‘minimal’ state in B0 is ∆1, and the only state ∆′ for which ∆1 X // ∗ 99K ∆′ is ∆3,
and ∆3 ∪∆4 is patently inconsistent.

{∆0} //___ --d c c b a ` ` _ ^ ^] \ [[
B0 = {∆0, ∆1

m}
�� ���� �� X //

X
11{∆2}B0 {∆3}B0 B1 = {∆0}

�� ���� �� X // {∆2}B1

——————————

Γ0
//___ ∆0 X // Γ2

//___ ∆2

¬Kp // Γ4
//___ ∆4 Γ1

//___ ∆1 X // Γ3
//___ ∆3

Γ0 = {KXp ∧ ¬XKp}, ∆0 = {KXp ∧
¬XKp,KXp,¬XKp,Xp,>},

Γ1 = K(∆0) =
{KXp},

∆1 = {KXp,Xp,>},

Γ2 = {¬Kp, p}, ∆2 = {¬Kp, p,>}, Γ3 = {p}, ∆3 = {p,>},
Γ4 = {¬p}, ∆4 = {¬p,>}.

Fig. 2. The pretableau for θ = KXp ∧ ¬XKp in Example 2

4.5 Construction of the initial and final tableau

After having constructed the pretableau, the initial tableau is then produced from the pretableau
by taking each pre-bubble A in the pretableau, redirecting the arrows to and from A and then
deleting A. I.e., for every bubbles B and B′, where B X // A and A 99K B′, we let B X // B′

and delete A. To ease the checking for realization of eventualities, we then add arrows between
the individual states in two successive bubbles: if ∆ ∈ B and ∆′ ∈ B′, and Next(∆) ⊆ ∆′,
then we add an arrow ∆ // ∆′ between ∆ in B and ∆′ in B′, though, technically, the
individual states are not entities in the tableaux.

Finally, the phase of building the final tableau from the initial tableau works by repeatedly
making calls to two procedures, Elim-NoTempSuc(B) and Elim-UnrealEven(B), for all
bubbles B in the tableau, until no bubble gets deleted in a loop. We define these procedures
as follows:

Elim-NoTempSuc(bubble B): If there is no bubble B′ in the current tableau such that
B X // B′, then delete B and all arrows associated with it.

Elim-UnrealEven(bubble B): If the condition (E), defined below, is not satisfied in the
current tableau, then delete B and all arrows associated with it.

(E) For any ∆ ∈ B and any eventuality ξ ∈ ∆ there exists a bubble-path B = (Bi)0≤i≤m
with B0 = B and a temporal path π such that ξ is realized on B by π.

Definition 11. The tableau T for a formula θ is open if there is a bubble B ∈ T and a ∆ ∈ B
such that θ ∈ ∆.

Example 3. Figure 3 depicts the initial tableau for the formula θ from Example 1. In the
final tableau, the two leftmost bubbles are deleted. The tableau is open (since θ ∈ ∆0 and

13

∆0 ∈ {∆0, ∆2}).

The initial tableau for θ in Example 2 simply consists of two bubbles:

∆0, ∆1
�� ���� �� ∆0

�� ���� ��
In the elimination-procedure, the two bubbles get deleted in the first loop, and the initial
tableau is empty. Thus, the tableau closes and θ is declared unsatisfiable.

∆0,
�� ��
�� ��

// ∆4 ∪Σ0,
�� ��
�� ��

∆0,
�� ��
�� ��

// ∆4,
�� ��
�� ��

// ∆8,
�� ��
�� �� ++

∆1 // ∆5 ∪Σ1 ∆2 // ∆6 ∪Σ0, //
33
∆10 // ∆10

�� ���� ��oo
kk

X
jj

∆7

33
66

X -- X -- X **
X $$

Fig. 3. The initial for θ from Example 1.

5 Soundness

Theorem 1. The tableaux procedure for each TEL1(LT)X is sound.

Soundness of the tableaux method means that if the input formula is satisfiable, then the
procedure will indeed produce an open tableau. The argument in a nutshell is that if the
input formula θ is satisfiable, then there is also a satisfiable state ∆ in states({θ}), and the
pre-bubble {∆} will be expanded to a number of bubbles. At least one of them ‘survives’ in
the final tableau. See the appendix for a proof-sketch.

6 Completeness

Theorem 2. The tableaux procedure for each TEL1(LT)X is complete.

Completeness of the procedure means that an open tableau can be turned into a model, or
equivalently into a temporal-epistemic Hintikka structure. In somewhat simplified terms, this
is done by making runs corresponding to the ‘realizing’ temporal path of the states in the
bubble B, that ensures that the tableau is open, and then doing the same for each state in
the bubbles that these paths pass by. See the proof sketch in the appendix.

7 Complexity

Recall that #stsθ denotes the number of possible states in the bubbles in the tableaux for a
formula θ, which is exponential in the length of the input formula, while #Bs := 2#stsθ is the
possible number of bubbles in the tableau.

Theorem 3. The tableaux procedure for each TEL1(LT)X runs in 2EXPTIME.

The proof of this theorem relies on the fact that all presented methods run in time polynomial
in the number of bubbles in the tableau, i.e. the procedure runs in double-exponential time.
See the appendix for the proof.

14

Theorem 4. For TEL1(LT)X where nol ∈ X, the tableaux-procedure can be modified to work
in EXPSPACE.

Proof. If nol ∈ X, the bubble-path constructed in Section 5 can be shortened to a suitable
size. In the construction we several times find a bubble-path B starting in a bubble B, so that
a state ∆ ∈ B has an associated path π∆ such that a given eventuality ξ ∈ ∆ is realized on
B by π∆. B and π can now be shortened so that π does not pass through the same state in
the same bubble, i.e. the length of π and B will be at most #Bs ·#stsθ; if Bi, Bj ∈ B with
Bi = Bj and πi = πj , then we just remove the bubbles in between Bi and Bj−1 (including
both). The new bubble-path emerging from this operation will be satisfied by possibly another
model and state-point-assignment.

In this way, we can obtain a bound on the indexes ρ and m of the ultimately periodic
bubble-path B X // . . . X // Bρ X // . . . X // Bm−1

Xrr . These bounds can now be used to
turn the procedure into a procedure that runs in NEXPSPACE=EXPSPACE. This procedure
is similar to the one for LTL with an ‘exponential step’ added to it. If θ is a satisfiable formula,
then the following procedure finds the ultimately periodic bubble-path with indexes ρ and m,
and if not, “false” is returned. The procedure works as follows:

1. Guess ρ, m and the starting bubble which is kept in the variable CurB; check that CurB
is a bubble. Return “false” if this is not the case. Set k = 0.

2. Guess the successor-bubble of CurB, which is stored in the variable NextB; check that
NextB is a bubble and that it is a successor-set for CurB, and return “false” otherwise. If
nof ∈ X, also check that CurB is a predecessor-set forNextB, and return “false” otherwise.
Assign NextB to CurB, and add one to k.

3. Repeat step 2 until k = ρ (CurB now corresponds to Bρ). Let the variable RepB store
the bubble CurB. For all ∆ ∈ CurB and all eventualities ϕUψ ∈ ∆, add ϕUψ to the set
Real∆ (create Real∆ if it does not already exist).

4. Guess the successor-bubble of CurB, and store it inNextB. Check thatNextB is a bubble,
that it is a successor-set for CurB, and if nof ∈ X, check that CurB is a predecessor-set
for NextB. Return “false” otherwise. For all ∆′ ∈ NextB create a new Real∆′ . For all
states ∆ ∈ CurB, guess the successor ∆′ ∈ NextB of ∆. For all eventualities ϕUψ in
Real∆, add ϕUψ to Real∆′ if ψ /∈ ∆′. Remove Real∆ from memory. Assign NextB to
CurB, and add one to k.

5. Repeat step 4 until k = m− 1 (CurB now corresponds to Bm−1). Check that RepB is a
successor-set of CurB, and if nof ∈ X, check that CurB is a predecessor-set for RepB.
For all ∆ ∈ CurB, guess the successor ∆′ ∈ RepB of ∆. Check that all eventualities
ϕUψ ∈ Real∆ are realized in ∆′, i.e. ψ ∈ ∆′. If not, return “false”.

6. If the algorithm has not terminated so far, return “true”.

At any point in time the procedure only keeps 3 bubbles in memory (which takes 3 · #stsθ
space) and the number of variables Real∆ is at most 2 ·#stsθ, and the length of each Real∆ is
at most |θ|, where |θ| is the length of the input-formula θ. Thus, the procedure runs in space
O(poly(#stsθ)).

8 Concluding remarks

We have substantially extended and adapted the incremental tableau procedure sketched in
[3] to work for all cases of single-agent synchronous temporal-epistemic logics with interac-

15

tions between time and knowledge considered in [4] and [5] and have thus developed a uni-
form, optimal and practically implementable method for deciding satisfiability in these logics.
The method is amenable to easy adaptations to systems where the synchrony-assumption is
dropped, and to 1-agent branching-time temporal epistemic logics. It can further be extended
to the multiagent case, however, it will work in non-elementary time (due to the complexity
of these logics). Tableaux for these and other related cases are part of the future agenda of
this project.

References

1. M. Ajspur and V. Goranko. Tableaux-based decision method for single-agent linear time synchronous
temporal epistemic logics with interacting time and knowledge. In Proceedings of the 5th Indian Conference
on Logic and its Applications ICLA’2013, LNCS. Springer-Verlag, 2013, to appear.

2. C. Dixon, C. Nalon, and M. Fisher. Tableaux for logics of time and knowledge with interactions relating
to synchrony. Journal of Applied Non-Classical Logics, 14(4):397–445, 2004.

3. Valentin Goranko and Dmitry Shkatov. Tableau-based decision procedure for full coalitional multiagent
temporal-epistemic logic of linear time. In Decker, Sichman, Sierra, and Castelfranchi, editors, Proc. of
AAMAS’2009, 2009.

4. Joseph Y. Halpern and Moshe Y. Vardi. The complexity of reasoning about knowledge and time I: Lower
bounds. Journal of Computer and System Sciences, 38(1):195–237, 1989.

5. Joseph Y. Halpern and Moshe Y. Vardi. Reasoning about knowledge and time: Synchronous systems, 1989.
IBM Research Report,.

6. R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporalizing tableaux. Studia Logica, 76(1):91–
134, 2004.

7. C. Nalon, C. Dixon, and M. Fisher. Resolution for synchrony and no learning. In in: Advances in Modal
Logic 5, R. Schmidt et al (eds), pages 231–248, 2004.

8. Vaughan R. Pratt. A practical decision method for propositional dynamic logic. In Proc. of the 10th Annual
ACM Symposium on the Theory of Computing, pages 326–337, San Diego, California, May 1979.

9. Pierre Wolper. The tableau method for temporal logic: an overview. Logique et Analyse, 28(110–111):119–
136, 1985.

Appendix

Proof sketch for Theorem 1: For TEL1(LT)X with nol ∈ X, this is the case since there is an
ultimately periodic bubble-path

B X // . . . X // Bρ X // . . . X // Bm−1

Xvv

in the initial tableau that starts in a bubble B 3 ∆, where none of the bubbles on the bubble-
path will be deleted by any of the two elimination rules, so that the ultimately periodic path
will also exist in the final tableau. If nol /∈ X, we can identify a tree-structure, where each node
n in the tree corresponds to a bubble B(n) in the initial tableau, and the root corresponds to
a bubble B 3 ∆. In this tree, if a node n is the parent of the node n′, then B(n) X // B(n′).
None of the bubbles corresponding to nodes in the tree will be deleted by any of the two
elimination rules, and thus B will also exist in the final tableau. Below we outline how this
bubble-path or ‘bubble-tree’ can be constructed.

First of all, if M, (r, n)
 θ, where θ is the input formula of the procedure, then there
exists a state ∆ 3 θ such that M, (r, n)
 ∆, and then there exists a bubble B 3 ∆, such
thatM, (r, n)
A B. This bubble is in the initial tableau, and will ‘survive’ to the end of the
procedure.

16

The argument builds on the fact that a bubble-path B = (Bi)0≤i≤m in the initial tableau
for whichM, (r, n)
A B can always be ‘expanded’ with another bubble Bm+1, i.e. there exists
a bubble-path B′ = (B′i)0≤i≤m+1 in the initial tableau, where Bi ⊆ B′i for all 0 ≤ i ≤ m, and
M, (r, n)
A

′ B′. In case X = {sync, nol} we still have B′i = Bi. The reason why we cannot
simply add Bm+1 to B when X 6= {sync, nol} is that even though all states in a satisfiable
bubble do have a predecessor state, it is not certain that these predecessors are in the given
predecessor-bubble. But, if they are not, we have previously made sure to produce a bubble
similar to the predecessor-bubble, just with the needed predecessors added.

This fact can then be used to prove that if B = (Bi)0≤i≤m is a bubble-path in the initial
tableau whereM, (r, n)
A B for a modelM and a point (r, n), and there is a state ∆ ∈ Bm
containing an eventuality ξ, then B can be extended (in the way described above) with a
bubble-path B′, such that there is a temporal path π where ξ ∈ ∆ is realized on B′ by π. The
resulting bubble-path will likewise be modelled byM at (r, n).

We first consider the case where nol ∈ X. Let ∆ be a satisfiable state in states({θ})).
By induction we can then find a bubble-path B = (Bi)0≤i≤m and a path π, such that all
eventualities in ∆ are realized on B by π. This works since any eventuality in a state is either
realized on a temporal path starting in that state, or is in the end state of the path. Since
nol ∈ X, each Bi+1 is a successor-set for Bi, so there exists a π∆′ following B and starting in
∆′ for all ∆′ ∈ B0. As before, every eventuality in ∆′ that is not realized on B by π∆′ , belongs
to the end state of π∆′ . By induction, we can expand B, so we end with a bubble-path B0

starting in B0
0 ⊇ B0, where for all states ∆′ ∈ B0

0 there is a π∆′ , such that all eventualities in
∆′ are realized on B0 by π∆′ . For the last bubble in B0, we repeat the process above, so that
we get a bubble-path B1 with starting bubble B1

0 ⊇ B0. For all bubbles B1
i ∈ B1 where i is

at most the length of B0, all states ∆′ ∈ B1
i has an associated π∆′ following B1 from B1

i and
onwards that realizes all eventualities of ∆′.

We can repeat the outlined steps for the last bubble in B1, and so on. At some point,
the last bubble of the constructed bubble-path Bj will be a bubble Bj

i ∈ Bi where i is at
most the length of Bj−1. So, for all states ∆′ in Bj

i there is a temporal path π∆′ such that all
eventualities of ∆′ are realized on Bj from Bj

i and onwards by π∆′ . The procedure stops now.
By construction, no bubble in Bj can be eliminated by any of the elimination rules, so they
are all in the final tableau.

When nol /∈ X, all states in a bubble do not necessarily have successors in the same
successor-bubble so we cannot build one single bubble-path; instead we build a bubble-tree.
Consider again a state ∆ 3 θ. Then there is bubble B 3 ∆ for which M, (r, n)
A B, and
there is no other bubble B′ ⊃ B in the first level of the tableau withM, (r, n)
A

′
B′. For all

states ∆′ in B we can find a satisfiable bubble-path B∆′ = (B∆′
i)0≤i≤m∆′ with B

∆′
0 = B (since

B is maximal) and a π∆′ such that all eventualities in ∆′ are realized on B∆′ by π∆′ . The
satisfiable bubbles on B∆′ can be chosen to be maximal, i.e. for all i > 0 there is no B′i ⊃ B∆′

i

such thatM, (r, n+ i)
 B′i and B
∆′
i−1 X // B′i. This is done inductively by possibly replacing

B∆′
i with a bigger, satisfiable B′ for which B∆′

i−1 X // B′. In the tree under construction, we
let B be the root, and for each B∆′ we let B∆′

i be a child of B∆′
i−1 for 1 ≤ i ≤ m∆′ .

We now do the same for any bubble B′ in the second level of the tree being build, i.e.
we find a maximal B∆′ for each ∆′ ∈ B′ starting in B′ such that all eventualities of ∆′ are
realized on B∆′ by a π′ following B∆′ . When this is done, the bubbles on the bubble-paths are
added in the obvious way to the tree.

17

We then continue for the next level and do the same, and so on, eventually building up the
needed tree of bubbles. When at some level we consider a bubble B′, then if it is already in a
previous level of the tree, we do not ‘expand’ it, but make a reference to the bubble in that
previous level. Since there is only a finite number of bubbles, and we do not ‘expand’ a bubble
which has already been ‘expanded’, the process will stop at some point, and then we get a finite
tree where all bubbles have a successor in the initial tableau, and further, for all states ∆′ in a
bubble B′ there exists a bubble-path B∆′ starting in B′ and a temporal path π∆′ such that all
eventualities of ∆′ is realized on B∆′ by π∆′ . Therefore, none of the bubbles in this tree will
be deleted in the first loop of the elimination procedure, and if they are not deleted in the ith
loop, they will not be deleted in the i+1’th loop. Thus, they are all present in the final tableau.

Proof sketch of Theorem 2: To prove the completeness of the procedure, we need to show
that if the procedure returns an open tableau, then there is a model for the input formula.
As discussed earlier, it is sufficient to show how to build a Hintikka-structure with the right
properties. Again we start by considering the cases where nol ∈ X. We construct a bubble-path
B = (Bi)0≤i≤m as described in the proof sketch of Theorem 1. The states of the TEHS are now
the states in the bubbles on B. In case X = {sync, nol}, we further add a ‘bogus’ state {>}.
When X 6= {sync, nol}, every state in a bubble in B has a path of predecessors, which will be
used as a ‘history’ for the state. Otherwise we give each state a ‘history’ of bogus states.

The runs are then build inductively for i ∈ N, by building a run for each ∆ ∈ Bi; for
i > m, Bi is defined to be the i’th bubble on the ultimately periodic bubble-path. For ∆ ∈ Bi
we let the run follows its ‘history’ until it reaches ∆ at time instant i. Then it follows a path
to a state ∆′ ∈ Bρ (which is possible, since each Bj+1 is a successor-set for Bj), after which
it continues along the ‘realizing path’ for ∆′ ∈ Bρ. This ‘realizing path’ is a path that realizes
all eventualitites in ∆′ (as described in the proof sketch of Theorem 1). It then follows the
bubble-path until it reaches Bm = Bρ again, and so on.

The equivalence classes of the TEHS with regard to R correspond to the bubbles on B, and
if X = {sync, nol}, there will additionally be an equivalence class for each point corresponding
to a ‘bogus’ state. In this way, we can ensure that the TEHS will have No_Learning, and then
X 6= {sync, nol}, it will also have No_Forgetting. When iis ∈ X, there will not be any ‘bogus’
states, and the starting point of all constructed runs will be in the same bubble, and hence
the constructed TEHS will have Indistinguishable_Initial_States.

When nol /∈ X, we construct a bubble-tree as described in the proof sketch of Theorem 1. From
this tree we build a TEHS as follows: The points of the TEHS are the states in the bubbles
of the tree. The runs are defined inductively by making a run for each state ∆ in a bubble
in the i’th level of the tree; if B′ is a bubble at level i that refers back to B′′ at level j < i
(i.e. B′ = B′′), then B′′ is also considered to be at level i. The run for ∆ ∈ Bi must start in
the root-bubble but since parent-bubbles are predecessor-sets for the bubbles corresponding
to their children, we can find a path starting in the root-bubble and ending in ∆. We then
let the run follow the ‘realizing path’ for ∆, i.e. a path that realizes all eventualities of ∆.
This path ends in a state ∆′ in another bubble B′ in the tree, and we let the run follow the
‘realizing path’ for ∆′ ∈ B′, and so on.

The equivalence classes of the points of the TEHS then correspond to the bubbles in
the tree. This Hintikka Structure will have No_Forgetting since, again, a parent-bubble is a
predecessor-set for each of the bubbles corresponding to its children. By construction, this
TEHS will have Indistinguishable_Initial_States.

18

Proof (Theorem 3). Firstly, we argue that all methods involved in making the pretableu
and initial tableau runs in O(poly(#Bs)). Finding states(Γ) for a set of formulas Γ and
checking whether the union of two fully expanded sets are patently inconsistent takes time
O(poly(#stsθ)). Constructing the set {s0, . . . , sn} for elements (s0, . . . , sn) in ×ni=0Si, where
n ≤ #stsθ and |Si| ≤ #stsθ, takes time O(poly(#stsθ)), and adding a set {s0, . . . , sn} to
a set of set of states takes time polynomial in #Bs. Therefore, MakeKnowledgeConsis-
tent, LocalBubble and TemporalSuccessorPrebubbles run in total time polynomial
in #Bs. In ExpandToBubble, while the set L to be returned is under construction, |L| is
always less than #Bs. At each loop, a call is made to LocalBubble, and at most #stsθ · |θ|
elements are added to L (while one element is deleted). Thus a loop runs in O(poly(#Bs))
time. At each loop, at least one more state in one of the set of states in L gets marked, so the
procedure runs in O(poly(#Bs)) time.

ForX = {sync, nol}, ExpandPrebubble makes calls to functions running inO(poly(#Bs))
time, and it constructs a set with at most #Bs elements, so the method runs in O(poly(#Bs))
time. When X 6= {sync, nol} this is also the case when the method is run on prebubbles in
the first temporal layer. For other layers, each step in the described ‘mini-tableau’ takes time
O(poly(#Bs)), also the step ensuring predecessors. Since prebubbles and bubbles are reused
in the mini-tableau, each step is only done once for each (pre)bubble, so the method runs in
total in time O(poly(#Bs)).

Then, the initial tableau is constructed in time O(#Bs2 · #sts2θ), i.e. O(poly(#Bs)).
Producing the final tableau, likewise, takes time polynomial in #Bs, since the repeat-loop (of
repeatedly applying the two elimination rules) is executed at most #Bs times (at least one
bubble has to be deleted in each loop), and the conditions in the two elimination-procedures
can be checked in O(poly(#Bs)) time for any given B: checking that there is a B′ such that
B X // B′ can be done in O(poly(#Bs)) time. Likewise, for each eventuality ϕUψ in a state
∆ ∈ B, we can check whether ϕUψ can be realized by first marking the states in different
bubbles, that contain ψ; if B1 and B2 both contain ∆ 3 ψ, ∆ ∈ B1 and ∆ ∈ B2 are treated
as different states and marked separately. Then we go backwards via the temporal relations,
i.e. if ∆ ∈ B has been marked and ∆′ ∈ B′, where B′ X // B and ∆′ // ∆ , then we mark
∆′ ∈ B′, and so on. We only do this for marked states for which we have not done it before, so
the overall procedure of marking states in bubbles where a given eventuality can be realized
takes time O(#Bs ·#stsθ). If ∆ ∈ B gets marked by this procedure, then the condition (E)
in Elim-UnrealEven for ϕUψ ∈ ∆ and B is satisfied and otherwise it is not satisfied. For
a given B, Elim-UnrealEven(B) thus runs in O(poly(#Bs)).

