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Abstract
We develop a conceptually clear, intuitive and feasible decision procedure for testing satisfiability in the full multiagent
epistemic logic CMAEL(CD) with operators for common and distributed knowledge for all coalitions of agents mentioned
in the language. To that end, we introduce Hintikka structures for CMAEL(CD) and prove that satisfiability in such structures
is equivalent to satisfiability in standard models. Using that result, we design an incremental tableau-building procedure that
eventually constructs a satisfying Hintikka structure for every satisfiable input set of formulae of CMAEL(CD) and closes
for every unsatisfiable input set of formulae.
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1 Introduction

Over the last three decades, multiagent epistemic logics [9], [27] have been playing an increasingly
important role in computer science and AI. The earliest prominent applications have been to specifi-
cation, design and verification of distributed protocols [23] and [24]; a number of other applications
are described in, among others, [9], [10], and [27]. The most recent, and perhaps more important
ones are to specification, design and verification of multiagent systems—a research area that has
emerged on the borderline between distributed computing, AI, and game theory [36], [45], [47].

1.1 Multiagent epistemic logics and decision methods for them

Languages of multiagent epistemic logics considered in the literature contain various repertoires of
epistemic operators. We refer to the basic multiagent epistemic logic, containing only operators of
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individual knowledge for a finite non-empty set � of agents, as MAEL (Multi Agent Epistemic
Logic). Since all epistemic operators of this logic are S5-type modalities, it is also referred to in the
literature as S5n, where n is the number of agents in the language. The logic obtained from MAEL
by adding the operator of common knowledge among all agents in � is then called MAEL(C).
This logic, along with MAEL, was studied in [25]. Analogously, if MAEL is augmented with the
operator of distributed knowledge for all agents, then the resulting logic will be called MAEL(D).
It was studied in [10] and [38]. MAEL augmented with operators of both common and distributed
knowledge for the set of all agents, hereafter called MAEL(CD), was studied in [39], and a tableau-
based decision procedure for it was first presented in [14]. Thus, all logics mentioned so far either
do not have both operators of common and distributed knowledge, or only have those operators for
the whole set of agents in the language.

At the same time, there has recently been an increasing interest in the study of coalitional mul-
tiagent logics (see [30], [31], [32], [2], [40], [13]), i.e. logics whose languages refer to any groups
(coalitions) of agents. These are important, inter alia, in multiagent systems, where agents may
‘cooperate’ (i.e. form a coalition) in order to achieve a certain goal. Most of the so far studied logi-
cal formalisms referring to coalitions of agents have only been concerned with formalizing reasoning
about strategic abilities of coalitions. (A notable exception is [40], where the Alternating-time Tem-
poral Epistemic Logic ATEL was introduced, whose language contains both common knowledge
and strategic operators for coalitions of agents.) Clearly, real cooperation can only be achieved by
communication, i.e. exchange of knowledge. Thus, it is particularly natural and important to consider
multiagent epistemic logics with operators for both common and distributed knowledge among any
(non-empty) coalitions of agents. This is the logic under consideration in the present article, hereby
called CMAEL(CD) (for Coalitional Multi-Agent Epistemic Logic with operators of Common and
Distributed knowledge). It subsumes all multiagent epistemic logics mentioned above, except ATEL.

In order to be practically useful for such tasks as specification and design of distributed or mul-
tiagent systems, the respective logic need to be equipped with algorithms solving (constructively)
its satisfiability problem, i.e. testing whether a given input formula ϕ of that logic is satisfiable and,
if so, providing enough information for the construction of a model for ϕ. Decidability of modal
logics, including epistemic logics, is usually proved by establishing a ‘small model property’, which
provides a brute force decision procedure consisting of exhaustive search for a model amongst all
those whose size is within the theoretically prescribed bounds. The two most common practically
feasible general methods for satisfiability checking of modal logics are based on automata [41] and
on tableaux (see e.g. [33], [3], [11], [46], [8], [19], [12]).

There are various styles of tableau-based decision procedures; see [11], [19] and [12] for detailed
exposition and surveys. An easy to describe but somewhat less efficient and practically unfeasible
approach, that we will call maximal tableau (also called top-down in [8]), consists in trying to build
in one step a ‘canonical’ finite model for any given formula out of all maximal consistent subsets
of the closure of that formula. This method always works in (at least) exponential time and usually
produces a wastefully large model, if any exists. A more flexible and more practically applicable
version, adopted in the present paper, is a so called incremental (aka, ‘bottom-up’) tableau building
procedure. While in all known cases, the worst-case time complexity for maximal and incremental
tableaux are the same, the crucial difference is that maximal tableaux always require the amount of
resources predicted by the theoretical worst-case time estimate, while incremental tableaux work on
average much more efficiently1.

1This claim cannot be made mathematically precise due to the lack of an a priori probability distribution on formulae of
a logic. The interested reader may consult [17] for comparison of efficiency of the two types of tableaux in the context of
Alternating-time temporal logic ATL.
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1.2 Related work and comparison

The present work is part of a series of papers ([17], [14], [18], [15]) where we have embarked
on the project of developing practically efficient yet intuitive and conceptually clear incremental-
tableau-based satisfiability checking procedures for a range of multiagent logics. This article builds
on the conference papers [14] and [18] by substantially extending, revising and improving
them.

There are three inherent complications affecting the construction of a tableau procedure for the
logic CMAEL(CD), arising respectively from the common knowledge (fixpoint-definable operator),
the distributed knowledge (with associated epistemic relation being the intersection of the individual
knowledge epistemic relations), and the interactions between the knowledge operators over different
coalitions of agents.

Several tableau-based methods for satisfiability-checking for modal logics with fixpoint-definable
operators have been developed and published over the past 30 years, all going back to the tableau-
based decision methods developed for the Propositional Dynamic Logic PDL in [34], for the
branching-time temporal logics UB in [3] and CTL in [8, Section 5] and [7]. In terms of han-
dling eventualities arising from the fixed-point operators our tableau method follows more closely
on the incremental tableaux for the linear time temporal logic LTL in [46] and for CTL in [8,
Section 7].

A particular complication arising in the tableau for CMAEL(CD) stems from the fact that the
epistemic operators, being S5 modalities, are symmetric, and thus the epistemic boxes have global
effect on the model, too. This requires a special mechanism for propagating their effect backwards
when occurring in states of the tableau. In the present article, we have chosen to implement such
mechanism by using analytic cut rules, going back to Smullyan [37] and Fitting [11], see also [19]
and [28]. More recently, tableaux with analytic cut rules for modal logics with symmetric relations
have been developed in [21], [20], [5].

We note that there is a natural tradeoff between conceptual clarity and simplicity of (tableau-based)
decision procedures on the one hand, and their technical sophistication and optimality on the other
hand. We emphasize that the main objective of developing the tableau procedure presented here
is the conceptual clarity, intuitiveness and ease of implementation, rather than practical optimality.
While being optimal in terms of worst-case time complexity and incorporating some new and non-
trivial optimizing features (such as restricted applications of cut rules) this procedure is amenable
to various improvements and further optimizations. Most important known such optimizations are
on-the-fly techniques for elimination of bad states and one-pass tableau methods developed for
some related logics in [35], [1] and cut-free versions of tableau as in [1] for MAEL(C), [22] for
PDL with converse operators, [29] for the description logic SHI and of sequent calculi, in [26]
for MAEL(C) and in [4] for LTL and CTL. We discuss briefly the possible modifications of our
procedure, implementing such optimizing techniques in Section 6.

Here is a summary (in a roughly chronological order) of the more closely related previous work,
besides our own, on tableau-based decision procedures for multiagent epistemic logics with common
and/or distributed knowledge:

• the maximal tableaux for MAEL(C), presented in [25];
• the semantic construction used in [10, Appendix A1] to prove completeness of an axiomatic

system for MAEL(D);
• the proof of decidability of MAEL(CD) based on finite model property via filtration in [39];
• the maximal tableau-like decision procedure for ATL, presented in [44] and extended to ATEL

in [43];
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• the exponential-time tableau-based procedure developed in [6] for testing satisfiability in the
BDI logic, that has some common features with CMAEL(C);

• the optimized cut-free single-pass tableaux for the multi-agent logic of common knowledge
MAEL(C), in [1]. on tableaux for multiagent logics using global caching and analytic cuts
in [5].

1.3 Structure of the paper

In Section 2, we introduce the syntax and semantics of the logic CMAEL(CD). In Section 3, we
introduce Hintikka structures for CMAEL(CD) and show that Hintikka structures are equivalent
to Kripke models with respect to satisfiability of formulae. Then, in Section 4, we develop the
tableau procedures checking for satisfiability of formulae of CMAEL(CD). In Section 5, we prove
the correctness of our procedure in Section 6 we estimate its complexity, discuss it efficiency and
indicate some possible technical improvements. We end with concluding remarks pointing out some
directions for further development.

2 Syntax and semantics

2.1 Syntax of CMAEL(CD)

The language of CMAEL(CD) contains a fixed, at most countable, set AP of atomic propositions,
typically denoted by p,q,r,...; a finite, non-empty set � of (names for) agents2, typically denoted
by a,b,..., while sets of agents, called coalitions, will be usually denoted by A,B,...; a sufficient
repertoire of the Boolean connectives, say ¬ (‘not’) and ∧ (‘and’); and, for every non-empty coalition
A, the epistemic operators DA (‘it is distributed knowledge among A that …’) and CA (‘it is common
knowledge among A that …’). The formulae of CMAEL(CD) are thus defined by the following
BNF expression:

ϕ :=p |¬ϕ | (ϕ1 ∧ϕ2) |DAϕ |CAϕ,

where p ranges over AP and A ranges over the set P+(�) of non-empty subsets of �. The other
Boolean connectives can be defined as usual. We denote formulae of CMAEL(CD) by ϕ,ψ,χ,...
and omit parentheses in formulae whenever it does not result in ambiguity.

The distributed knowledge operator DAϕ intuitively means that an ‘A-superagent’, who knows
everything that any of the agents in A knows, can obtain ϕ as a logical consequence of their knowl-
edge. For example, if agent a knows that ψ and agent b knows that ψ→χ , then D{a,b}χ is true
even though neither a nor b knows χ . The operators of individual knowledge Kaϕ (‘the agent a
knows that ϕ’), for a∈�, can be defined as D{a}ϕ, henceforth simply written Daϕ. Then, we define
KAϕ :=∧

a∈ADaϕ.
The common knowledge operator CAϕ intuitively means that ϕ is ‘public knowledge’ among A,

i.e. that every agent in A knows that ϕ and knows that every agent in A knows that ϕ, etc. Formulae
of the form ¬CAϕ are referred to as (epistemic) eventualities, for the reasons given later on.

2The notion of agent used in the present article is an abstract one; in the context of distributed systems, for example,
agents can be thought of as processes making up the system; in the context of multiagent systems, they can be thought of as
independent software components of the system.
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2.2 Coalitional multiagent epistemic models

Formulae of CMAEL(CD) are interpreted in coalitional multiagent epistemic models. In order to
define those, we first need to introduce coalitional multiagent epistemic structures and frames.

DEFINITION 2.1
A coalitional multiagent epistemic structure (CMAES) is a tuple

G = (�,S,{RD
A }A∈P+(�),{RC

A }A∈P+(�))

where

1. � is a finite, non-empty set of agents;3

2. S �=∅ is a set of states;
3. for every A∈P+(�), RD

A is a binary relation on S;
4. for every A∈P+(�), RC

A is the reflexive, transitive closure of
⋃

B⊆ARD
B .

DEFINITION 2.2
A coalitional multiagent epistemic frame (CMAEF) is a CMAES

F= (�,S,{RD
A }A∈P+(�),{RC

A }A∈P+(�)),

where each RD
A is an equivalence relation satisfying the following condition:

(†) RD
A =⋂

a∈ARD
a

(Here, and further, we write RD
a instead of RD

{a}, where a∈�.)
If condition (†) above is replaced by the following, weaker one:

(††) RD
A ⊆RD

B whenever B⊆A,

then F is a coalitional multiagent epistemic pseudo-frame (pseudo-CMAEF).

Note that in every (pseudo-)CMAEF RD
A ⊆⋂

a∈ARD
a , and hence

⋃
B⊆ARD

B =⋃
a∈ARD

a . Hence,
condition 4 of Definition 2.1 in (pseudo-) CMAEFs is equivalent to requiring that RC

A is the transitive
closure of

⋃
a∈ARD

a , for every A∈P+(�). Also, note that each RC
A in a (pseudo-)CMAEF is an

equivalence relation.

DEFINITION 2.3
A coalitional multiagent epistemic model (CMAEM) is a tuple M= (F,AP,L), where F is a CMAEF
with a set of states S, AP is a set of atomic propositions, and L :S 	→P(AP) is a labelling function,
assigning to every state s the set L(s) of atomic propositions true at s.

If F is a pseudo-CMAEF, then M= (F,AP,L) is a multiagent coalitional pseudo-model (pseudo-
CMAEM).

The notion of truth, or satisfaction, of a CMAEL(CD)-formula at a state of a (pseudo-)CMAEM
is defined in the standard Kripke semantics style. In particular:

• M,s�DAϕ iff (s,t)∈RD
A implies M,t �ϕ;

• M,s�CAϕ iff (s,t)∈RC
A implies M,t �ϕ.

3Notice that we use the same symbol, ‘�’, both for the set of names of agents in the language and for the set of agents
in CMAES’s. It will always be clear from the context which set we refer to.
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DEFINITION 2.4
Given a (pseudo-)CMAEM M, a CMAEL(CD)-formula ϕ is satisfiable in M if M,s�ϕ holds for
some s∈M; ϕ is valid in M if M,s�ϕ holds for every s∈M.

A formula ϕ is satisfiable if it is satisfiable in some CMAEM; it is valid, denoted �ϕ, if it is valid
in every CMAEM.

The satisfaction condition for the operator CA can be re-stated in terms of reachability. Let M
be a (pseudo-)CMAEM with state space S and let s,t ∈S. We say that t is A-reachable from s if
either s= t or, for some n≥1, there exists a sequence s=s0,s1,...,sn−1,sn = t of elements of S such
that, for every 0≤ i<n, there exists ai ∈A such that (si,si+1)∈RD

ai
. It is then easy to see that the

satisfaction condition for CA is equivalent to the following one:

• M,s�CAϕ iff M,t �ϕ for every t that is A-reachable from s.

The following claim be easily verified.

PROPOSITION 2.5
�CAϕ↔ (ϕ∧∧

a∈ADaCAϕ).

Remark If �={a}, then Daϕ↔Caϕ is valid for all ϕ. Thus, the single-agent case is essentially
trivialized and, therefore, we assume throughout the remainder of the article that the set � of names
of agents in the language of CMAEL(CD) contains at least 2 agents.

3 Hintikka structures for CMAEL(CD)

We are ultimately interested in (constructive) satisfiability of (finite sets of) formulae in models.
However, the tableau procedure we present in this article checks for the existence of a more general
kind of semantic structure for the input formula, namely a Hintikka structure. In Section 3.1, we
introduce Hintikka structures for CMAEL(CD). In Section 3.2, we show that satisfiability in Hin-
tikka structures is equivalent to satisfiability in models; consequently, testing for satisfiability in a
Hintikka structure can replace testing for satisfiability in a model.

3.1 Fully expanded sets and Hintikka structures

There are two fundamental differences between (pseudo-)models and Hintikka structures for
CMAEL(CD), which make working with the latter substantially easier than working directly with
models. First, while models specify the truth value of every formula of the language at each state,
Hintikka structures only do so for the formulae relevant to the evaluation of a fixed formula θ (or, a
finite set of formulae �) at a distinguished state. Second, the relations in (pseudo-) models have to
satisfy certain conditions (see Definition 2.2), while in Hintikka structures conditions are only placed
on the labels of states. These labelling conditions ensure, however, that every Hintikka structure
generates, through the constructions described in Section 3.2, a pseudo-model so that membership
of formulae in the labels is compliant with the truth in the resultant pseudo-model. We then show
how to convert a pseudo-model into a bona fide model in a ‘truth-preserving’ way.

To describe Hintikka structures, we need the concept of fully expanded set. Such sets contain
all the formulae that have to be satisfied locally at the state under consideration. We divide all
the formulae that are not elementary in the sense that their satisfaction at the state does not imply
satisfaction of any other formulae at the same state (such as p∈AP or ¬DAϕ) into α-formulas and
β-formulas. The former are formulae of a conjunctive type, i.e. their truth implies the truth of all
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TABLE 1. α- and β-formulas of CMAEL(CD) with their respective components

α-formula α-components

¬¬ϕ {ϕ}
ϕ∧ψ {ϕ,ψ}
DAϕ {DAϕ,ϕ}
CAϕ {ϕ}∪{DaCAϕ | a∈A}

β-formula β-components

¬(ϕ∧ψ) {¬ϕ,¬ψ}
¬CAϕ {¬ϕ}∪{¬DaCAϕ | a∈A}

their α-components at the same state, while the latter are of a disjunctive type: their truth implies the
truth of at least one of their β-components at the same state. Table 1 shows the α- and β-formulas of
CMAEL(CD) together with their α- and β-components. The following claims are straightforward,
the cases of common knowledge using Proposition 2.5.

LEMMA 3.1
1. Every α-formula is equivalent to the conjunction of its α-components.
2. Every β-formula is equivalent to the disjunction of its β-components.

DEFINITION 3.2
The closure of the formula ϕ is the smallest set of formulae cl(ϕ) such that:

1. ϕ∈cl(ϕ);
2. cl(ϕ) is closed with respect to α- and β-components of all α- and β-formulae, respectively;
3. for any formula ψ and coalition A, if ¬DAψ ∈cl(ϕ) then ¬ψ ∈cl(ϕ).

DEFINITION 3.3
For any set of formulae 
 we define cl(
) :=⋃{cl(ϕ) |ϕ∈
}. A set of formulae 
 is closed if

=cl(
).

REMARK 3.4
Intuitively, the closure of a set of formulae � consists of all formulae that may appear in the tableau
whose input is the set of formulae �.

DEFINITION 3.5
A set of formulae is patently inconsistent if it contains a contradictory pair of formulae ϕ and ¬ϕ.

DEFINITION 3.6
A set 
 of CMAEL(CD)-formulae is fully expanded if it satisfies the following conditions:

• 
 is not patently inconsistent;
• if ϕ is an α-formula and ϕ∈
, then all α-components of ϕ are in 
.
• if ϕ is a β-formula and ϕ∈
, then at least one β-component of ϕ is in 
.

Intuitively, a non-patently inconsistent set is fully expanded if it is closed under applications of
all local (pertaining to the same state of a structure) formula decomposition rules.

DEFINITION 3.7
The procedure FullExpansion applies to a set of formulae � and produces a (possibly empty) family
of sets FE(�), called the family of full expansions of �, obtained as follows: start with the singleton
family {�}; if � is patently inconsistent, halt and return FE(�)=∅; otherwise repeatedly apply, until
saturation, the following set replacement operations, each time to a non-deterministically chosen
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set � from the current family of sets F and a formula ϕ∈�; though, we prioritize the eventualities
in � so that these formulae are processed first:

1. If ϕ is an α-formula with α-components ϕ1 and ϕ2, then replace � by �∪{ϕ1,ϕ2}.
2. If ϕ is a β-formula such that none of its β-components is in �, then replace � with the family

of extensions

{�∪{ψ} |ψ is a β-component of ϕ}

3. If ϕ=¬CAψ and ¬ψ /∈�, but some of the other β-components of ϕ is in �, then add to F the
set �∪{¬ψ}

The following proviso applies to the procedure above: if a patently inconsistent set is added to F
as a result of such application, it is removed immediately thereafter.

Saturation occurs when no application of a set replacement operation can change the current
family F . At that stage, the family FE(�) of sets of formulae is produced and returned. Reaching a
stage of saturation is guaranteed to occur because all sets of formulae produced during the procedure
FullExpansion are subsets of the finite set cl(�).

Notice that the procedure FullExpansion allows adding not more than one β-component of a
formula ϕ=¬CAψ to the initial set, besides ¬ψ .

In what follows, we will need the following proposition.

PROPOSITION 3.8
For any finite set of formulae �:

�
∧
�↔

∨{∧

 |
∈FE(�)

}
.

PROOF. By Lemma 3.1, every set replacement operation applied to a family F preserves the formula∨{∧
 |
∈FE(�)} up to logical equivalence. At the beginning, that formula is
∧
�, hence the

claim follows.

We now define Hintikka structures for CMAEL(CD):

DEFINITION 3.9
A coalitional multiagent epistemic Hintikka structure (CMAEHS) is a tuple

(�,S,{RD
A }A∈P+(�),{RC

A }A∈P+(�),AP,H )

such that:

• (�,S,{RD
A }A∈P+(�),{RC

A }A∈P+(�)) is a CMAES (recall Definition 2.1);
• AP is a set of atomic propositions;
• H is a labelling of the elements of S with sets of CMAEL(CD)-formulae that satisfy the

following constraints, for every s,s′ ∈S:
CH1 H (s) is fully expanded;
CH2 If ¬DAϕ∈H (s), then (s,t)∈RD

A and ¬ϕ∈H (t), for some t ∈S;
CH3 If (s,s′)∈RD

A , then DBϕ∈H (s) iff DBϕ∈H (s′), for every B⊆A;
CH4 If ¬CAϕ∈H (s), then (s,t)∈RC

A and ¬ϕ∈H (t), for some t ∈S.
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DEFINITION 3.10
Let H be a CMAEHS with state space S. A CMAEL(CD)-formula θ is satisfiable in H if θ ∈H (s),
for some s∈S. Likewise, a set of CMAEL(CD)-formulae � is satisfiable in H if �⊆H (s), for
some s∈S.

3.2 Equivalence of Hintikka structures and models for CMAEL(CD)

Here we show that satisfiability in Hintikka structures is equivalent to satisfiability in models. For
brevity, we only deal with single formulae; the extension to finite sets of formulae is straightforward.
The main complications in the proofs below arise due to the presence of distributed knowledge
operators in the language of a logic.

Here we will prove that a CMAEL(CD)-formula θ is satisfiable in a CMAEM iff it is satisfiable
in a CMAEHS. First, we show that satisfiability in a CMAEM implies satisfiability in a CMAEHS.
Then, we show that satisfiability in a CMAEHS implies satisfiability in a pseudo-CMAEM, which
in turn implies satisfiability in a CMAEM.

That satisfiability in a CMAEM implies satisfiability in a CMAEHS is almost immediate. Given
a CMAEM M with a set of states S, define the extended labelling function L+

M from S to the
power-set of CMAEL(CD)-formulae as follows: L+

M(s)={ϕ | M,s�ϕ}. It is then routine to check
the following.

LEMMA 3.11
Let M= (�,S,{RD

A }A∈P+(�),{RC
A }A∈P+(�),AP,L) be a CMAEM satisfying θ and let L+

M be the
extended labelling on M. Then, (�,S,{RD

A }A∈P+(�), {RC
A }A∈P+(�),AP,L

+
M) is a CMAEHS satisfying

θ . Therefore, satisfiability in a CMAEM implies satisfiability in a CMAEHS.

For the converse direction we need two steps, done in Lemma 3.12 and Lemma 3.14.

LEMMA 3.12
Let θ be a CMAEL(CD)-formula satisfiable in a CMAEHS. Then, θ is satisfiable in a pseudo-
CMAEM.

PROOF. Let H= (�,S,{RD
A }A∈P+(�),{RC

A }A∈P+(�),AP,H ) be an CMAEHS for θ . We construct a
pseudo-CMAEM M′ satisfying θ out of H as follows.

First, for every A∈P+(�), let R′D
A be the reflexive, symmetric and transitive closure of

⋃
A⊆BRD

B

and let R′C
A be the transitive closure of

⋃
a∈AR′D

a . Thus, both R′D
A and R′C

A are equivalence relations
and RD

A ⊆R′D
A and RC

A ⊆R′C
A , for every A∈P+(�). Second, let L(s)=H (s)∩AP, for every s∈S.

It is then immediate to check that B⊆A implies R′D
A ⊆R′D

B , and hence, M′ = (�,S,{R′D
A }A∈P+(�),

{R′C
A }A∈P+(�),L) is a pseudo-CMAEM.
Basically this construction relabels the edges of a Hintikka structure such that if a directed edge

is labelled with a coalition A, it is made bidirectional and is further labelled with all coalitions that
are subsets of A. Hereafter the relation is then made transitive and reflexive. The labels of the states
are reduced to only containing (positive) atoms. Figure 1 illustrates the process of transforming the
Hintikka structure on the left into the pseudo-model on the right.

To complete the proof of the lemma, we show, by induction on the structure of the formulae in
cl(θ ) that, for every s∈S and every formula χ , the following hold:

(i) χ ∈H (s) implies M′,s�χ;
(ii) ¬χ ∈H (s) implies M′,s�¬χ.

The statement of the lemma then follows.
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FIG. 1. Example on transforming a Hintikka structure to a pseudo-model using the construction from
the proof of Lemma 3.12.

Let χ be some p∈AP. Then, p∈H (s) implies p∈L(s) and, thus, M′,s�p; if, on the other hand,
¬p∈H (s), then due to (CH1), p /∈H (s) and thus p /∈L(s); hence, M′,s�¬p.

Assume that the claim holds for all subformulae of χ ; then, we have to prove that it holds for χ ,
as well.

Suppose that χ is ¬ϕ. If ¬ϕ∈H (s), then the inductive hypothesis immediately gives us M′,s�
¬ϕ; if, on the other hand, ¬¬ϕ∈H (s), then by virtue of (CH1), ϕ∈H (s) and hence, by inductive
hypothesis, M′,s�ϕ and thus M′,s�¬¬ϕ.

The case of χ=ϕ∧ψ is straightforward, using (CH1).
Suppose that χ is DAϕ. Assume, first, that DAϕ∈H (s). In view of the inductive hypothesis, it

suffices to show that (s,t)∈R′D
A implies ϕ∈H (t). So, assume that (s,t)∈R′D

A . There are two cases to
consider. If s= t, then the conclusion immediately follows from (CH1). If, on the other hand, s �= t,
then there exists an undirected path between s and t along the relations of the form RD

B , where each
B is a superset of A. Then, in view of (CH3), DAϕ∈H (t); hence, by (CH1), ϕ∈H (t), as desired.

Assume, next, that ¬DAϕ∈H (s). In view of the inductive hypothesis, it suffices to show that there
exists t ∈S such that (s,t)∈R′D

A and ¬ϕ∈H (t). By (CH2), there exists t ∈S such that (s,t)∈RD
A and

¬ϕ∈H (t). As RD
A ⊆R′D

A , the desired conclusion follows.
Suppose now that χ is CAϕ. Assume that CAϕ∈H (s). In view of the inductive hypothesis, it

suffices to show that if t is A-reachable from s in M′, then ϕ∈H (t). So, assume that either s= t or,
for some n≥1, there exists a sequence of states s=s0,s1,...,sn−1,sn = t such that, for every 0≤ i<n,
there exists ai ∈A such that (si,si+1)∈R′D

ai
. In the former case, the desired conclusion follows from

(CH1). In the latter, we can show by induction on i, for 0≤ i<n, using (CH3) and (CH1), that
Dai CAϕ∈H (si). Then, in particular, Dan−1CAϕ∈H (sn−1), and again, by (CH3), Dan−1CAϕ∈H (t) and
thus by (CH1), CAϕ∈H (t) and ϕ∈H (t).

Assume, on the other hand, that ¬CAϕ /∈H (s). Then, the desired conclusion follows from (CH4),
the inclusion RC

A ⊆R′C
A , and the inductive hypothesis.

We now prove that satisfiability in a pseudo-CMAEM implies satisfiability in a CMAEM. To that
end, we use a modification of the construction from [10, Appendix A1] to show that if θ is satisfiable
in a pseudo-CMAEM, then it is satisfiable in a ‘tree-like’ pseudo-CMAEM that actually turns out
to be a bona fide CMAEM. To present the proof, we need some preliminary definitions.

DEFINITION 3.13
Let M= (�,S,{RD

A }A∈P+(�),{RC
A }A∈P+(�),AP,L) be a (pseudo-) CMAEM and let s,t ∈S. A maximal

path from s to t in M is a sequence s0,A0,s1,A1,...,sn−1,An−1,sn where s=s0 and t =sn, such that
n=0 and s= t or, for every 0≤ i<n, (si,si+1)∈RD

Ai
, but (si,si+1)∈RD

B does not hold for any B with
Ai ⊂B⊆�. A segment ρ ′ of a maximal path ρ starting and ending with a state is a sub-path of ρ.
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Notice that, in general, there might be several maximal paths between a pair of states.
For a path τ=s0,A0,s1,...,sn−1,An−1,sn, we denote by τ|i the sub-path of τ starting in s0 and

ending in si, i.e. τ|i =s0,A0,s1,...,Ai−1,si and by |τ | the length of τ , i.e. n. We denote the last
element of a path τ , which is a state, by l(τ ) and the second last element of τ , which is a coalition,
by sl(τ ).

LEMMA 3.14
Let θ be a CMAEL(CD)-formula satisfiable in a pseudo-CMAEM; then, θ is satisfiable in a
CMAEM.

PROOF. Suppose that θ is satisfied in a pseudo-CMAEM M at state s. Let Ms = (�,S,{RD
A }A∈P+(�),

{RC
A }A∈P+(�),AP,L) be the submodel of M generated by s. Then, Ms,s�θ since Ms and M are

locally bisimilar at s. Next, we unravel Ms into a model M∗ = (�,S∗,{R∗D
A }A∈P+(�),{R∗C

A }A∈P+(�),

AP,L∗), as follows.
First, call a maximal path ρ in Ms an s-max-path if the first component of ρ is s, and let S∗ be

the set of all s-max-paths in Ms. Notice that s by itself is an s-max-path with l(s)=s.
For every A∈P+(�), let

R′D
A ={(ρ,τ ) | ρ,τ ∈S∗, τ||τ |−1 =ρ and sl(τ )⊇A},

i.e. (ρ,τ )∈R′D
A if τ extends ρ with one step labelled by a coalition containing A. Next, let R∗D

A be
a reflexive, symmetric and transitive closure of R′D

A . Notice that (ρ,τ )∈R∗D
A holds for two distinct

paths ρ and τ iff there exists a sequence ρ0,...,ρn ∈S∗ with ρ=ρ0 and τ=ρn such that for all
i<n, either (ρi,ρi+1)∈R′D

A or (ρi+1,ρi)∈R′D
A . It then follows that the following downward closure

condition holds:

(DC) If (ρ,τ )∈R∗D
A and B⊆A, then (ρ,τ )∈R∗D

B .

The relations R∗C
A are defined as in any CMAEF. To complete the definition of M∗, we put L∗(ρ)=

L(l(ρ)), for every ρ∈S∗. Notice that M∗ is tree-like in the sense that the structure (S∗,{R′D
A }A∈P+(�))

is a tree.
By this construction we basically remove all ‘non-maximal’ edges between two vertices from the

part of the given pseudomodel that can be reached by the given state s. Then we build paths by
starting in s and then traversing the resulting graph via the edges. E.g. if we consider the pseudo-
model M in Figure 1, and we let the top-left-most state be s, then M,s�¬Da¬p∧Dbq. S∗ will in
this case be all paths starting in s and following the links in the graph.

I.e. ρ= (s,{a,b},s,{a},t) and τ= (s,{a,b},r,{b},t) are in S∗, while ρ ′ = (s,{a},s,{b},t) /∈S∗.
We have (ρ,τ ) /∈R∗D

a , (ρ,τ ) /∈R∗D
b and (ρ,τ ) /∈R∗D

a,b. On the other hand, (τ,(s,{a,b},r,{a,b},s))
∈R∗D

b .

In this example, L∗(ρ)=L∗(τ )
def.= L(t)={p,q}.
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FIG. 2. The situation from (3.1) drawn in M, i.e. the dots/circles belongs to S, and the links are
links in RD.

It is clear from the construction, namely from (DC), that M∗ is a pseudo-CMAEM, and in the
following, we will show that condition (†) of Definition 2.2 also holds, so that M∗ is a CMAEM.

First, we notice that, since M∗ is tree-like, we have (ρ,τ )∈R∗D
A iff there exists k ≥0, with k ≤|ρ|

and k ≤|τ |, such that

ρ|k =τ|k , and

for all k< i≤|τ | and k< j≤|ρ|,A⊆sl(τ|i) and A⊆sl(ρ|j).
(3.1)

(The situation is depicted in Figure 2.) As stated, we have to prove that R∗D
A =⋂

a∈AR∗D
a for every

A∈P+(�). The left-to-right inclusion immediately follows from (DC). For the converse, assume
that (ρ,τ )∈R∗D

a holds for every a∈A. Then, for every a∈A, according to (3.1), there exists ka ≥0
such that ρ|ka =τ|ka and {a}⊆sl(τ|i),sl(ρ|j) for every |τ |≥ i>ka and every |ρ|≥ j>ka. Now, let k
be the largest ka satisfying this condition (such a k exists since M∗ is tree-like). Then, ρ|k =τ|k ,
and for every a∈A, the inclusions {a}⊆sl(τ|i) and {a}⊆sl(ρ|j) hold for every |τ |≥ i>k and every
|ρ|≥ j>k . Therefore, condition (3.1) is fulfilled for A and k , and hence (ρ,τ )∈R∗D

A , as desired.
Finally, it remains to prove that M∗ satisfies θ . From (3.1) we see, that if (ρ,τ )∈R∗D

A , then
(l(ρ),l(τ ))∈RD

A , since every RD
A is an equivalence relation. It is now easy to check that the relation

Z ={(ρ,l(ρ)) | ρ∈S∗} is a bisimulation between M∗ and Ms. Since (s,l(s))∈Z , it follows that
M∗,s�θ , and we are done.

THEOREM 3.15
Let θ be a CMAEL(CD)-formula. Then, θ is satisfiable in a CMAEHS iff it is satisfiable in a
CMAEM.

PROOF. Immediate from Lemmas 3.11, 3.12 and 3.14.

4 Tableau procedure for testing satisfiability in CMAEL(CD)

In this section, we present our tableau algorithm for checking (constructive) satisfiability of for-
mulae of CMAEL(CD). We start off by explaining the general philosophy underlying our tableau
procedure and then present it in detail.

4.1 Basic ideas and overview of the tableau procedure

Traditionally, the propositional tableau method works by decomposing the formula whose satisfia-
bility is being tested into its α-, resp. β- components—repeatedly, until producing all full expansions
of that formula. All these components belong to the closure of the input formula. When the closure is
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finite (as it is usually the case with modal and temporal logics) the termination of the tableau-building
procedure is guaranteed because there are only finitely many full expansions.

Furthermore, in the tableau method for the classical propositional logic that decomposition into
components produces a tree representing an exhaustive search for a Hintikka set, the propositional
analogue of Hintikka structures, for the input formula. If at least one branch of the tree remains
open, it produces a full expansion of the input formula, which is a Hintikka set for this formula. In
this case, the formula is pronounced satisfiable; otherwise, it is declared unsatisfiable. In the case
of modal and temporal logics, local decomposition steps, producing full expansions, are interleaved
with steps along the accessibility/transition relations, producing sets of formulae that are supposed to
be true at successors of the current state. These sets are subjected, again, to local decomposition into
components, eventually producing their full expansions, etc. In order to distinguish fully expanded
sets from those produced after transition to successors, we will deal with two types of nodes of the
tableau, respectively called ‘states’ and ‘prestates’. In order to ensure termination of the construction
process, we will systematically reuse states and prestates labelled with the same sets of formulae.

The tableau procedure for testing a formula θ for satisfiability attempts to construct a non-empty
graph T θ (called itself a tableau) representing ‘sufficiently many’ CMAEHSs for θ in the sense that
if θ is satisfiable in any CMAEHS, then it is satisfiable in a CMAEHS represented by the tableau.
The procedure consists of three major sub-procedures, or phases: construction, prestate elimination
and state elimination. During the construction phase, we build the pretableau Pθ—a directed graph
whose nodes are sets of formulae of two types: states4 and prestates, as explained above. States
represent (labels of) states of the CMAEHSs that the tableau attempts to construct, while prestates
are only used temporarily, during the construction phase.

During the prestate elimination phase, we create a smaller graph T θ
0 out of Pθ , called the initial

tableau for θ , by eliminating all the prestates of Pθ and adjusting its edges, as prestates have already
fulfilled their role of keeping the graph finite and can, therefore, be discharged.

In the case of classical propositional logic, the only reason why it may turn out to be impossible
to produce a Hintikka set for the input formula is that every attempt to build such a set results in a
collection of formulae containing a patent inconsistency. In the case of logics with fixpoint-definable
operators, such as CMAEL(CD), there are two other reasons for a tableau not to correspond to any
Hintikka structure for the input formula. The first one has to do with realization of eventualities—
formulas of the form ¬CAϕ, whose truth condition requires that ¬ϕ ‘eventually’ becomes true—in
the tableau graph. Applying decomposition rules to eventualities in the construction of the tableau can
postpone indefinitely the realization by keeping ‘promising’ that the realization will happen further
down the line, while that ‘promise’ never becomes fulfilled. Therefore, a ‘good’ tableau should not
contain states with unrealized eventualities. The other additional reason for the resultant tableau not
to represent a Hintikka structure is that some states do not have all the successors they would be
required to have in a corresponding Hintikka structure (for example, because those successors have
been removed for not realizing eventualities).

During the state elimination phase, we remove from T θ
0 all states, if any, that cannot be satisfied

in any CMAEHS for any of the reasons suggested above and discussed in more detail further
(excluding patently inconsistent sets, which are removed ‘on the fly’ during the construction phase).
The elimination procedure results in a (possibly empty) subgraph T θ of T θ

0 , called the final tableau
for θ . If some state
 of T θ contains θ , it is declared satisfiable; otherwise, θ is declared unsatisfiable.

4From now on we will use the term ‘state’ in two related but distinct senses: as a state of a tableau and as a state of
a semantic structure (frame, model, Hintikka structure). The use of term ‘state’ will usually be clear from the context or
explicitly specified.
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The logic CMAEL(CD) involves modal operators over equivalence relations, and thus invokes
some typical complications in the tableau-building procedures associated with inverse-looking
modalities, see e.g. [19]: every box occurring in the label of a descendant state has a backwards
effect on all predecessor states, incl. the current state. In order to deal with these complications we
must either organize a mechanism for backtracking and backwards propagation of box-formulae,
or a mechanism for anticipation of the occurrence of such boxes in the future, coming from subfor-
mulae of formulae in the label of the current state, based on analytic cut rules. We will adopt here
the latter approach, which is easier to describe and implement into what we call a diamond-propa-
gating procedure, by employing suitably restricted analytic cut rules to maintain the efficiency of
the procedure, but later we will briefly discuss the former alternative, too. The two procedures only
differ in the construction phase; the prestate and state elimination phases are common to both. The
need and use of analytic cut rules is illustrated later in Example 5.6.

4.2 Cut-saturated sets and expansions

The application of the analytic cut, mentioned above, is implemented by imposing an additional
cut-saturating rule on the construction of the full expansions of a given set of formulae. In order
to prevent the unnecessary swelling and proliferation of states, we will restrict the application of
that rule by imposing generic restrictions which, on the other hand, should be sufficiently relaxed
to guarantee the completeness of the tableau procedure. These generic conditions, which will be
specified later, will be imposed separately on the two types of box-formulae in CMAEL(CD), viz.
DA-formulae and on CA-formulae.

DEFINITION 4.1
Given restrictive conditions C1 and C2, a set
 of CMAEL(CD)-formulas is (C1,C2)-cut-saturated
if it satisfies the following conditions, where Sub(ψ) is the set of subformulae of a formula ψ :

CS0 
 is fully expanded (recall Definition 3.6).
CS1 For any DAϕ∈Sub(ψ) where ψ ∈
, if condition C1 holds then either DAϕ∈
 or ¬DAϕ∈
.
CS2 For any CAϕ∈Sub(ψ) where ψ ∈
, if condition C2 holds then either CAϕ∈
 or ¬CAϕ∈
.

We note that CS1 and CS2 are semantically sound rules, no matter what C1 and C2 are, as they
cannot make a tableau closed if the input formula is satisfiable. On the other hand, if C1 and C2 are
too strong, that may prevent the tableau from closing and thus yield an incomplete tableau procedure,
as will become apparent later. Again, the reason we would want to make C1 and C2 as strong as
possible is to avoid branching on too many formulae, causing an unnecessary large state space and
resulting in a practically less efficient procedure.

Hereafter, we will omit the explicit mention of the conditions C1 and C2, unless necessary. In fact,
for now we can assume both C1 and C2 to be True, but later we will introduce non-trivial restrictive
conditions.
DEFINITION 4.2
The family CSE(�) of cut-saturated expansions (CS-expansions) of a set of formulae � is defined
by expanding the procedure FullExpansion with the following two set-replacement rules, again
applied to a non-deterministically chosen set � from the current family and a formula ψ ∈�:

1. For any formula DAϕ that is a subformula of ψ such that C1 is satisfied, replace � with the two
extensions of � obtained by adding respectively DAϕ and ¬DAϕ to it.

2. For any formula CAϕ that is a subformula of ψ such that C2 is satisfied, replace � with the two
extensions of � obtained by adding respectively CAϕ and ¬CAϕ to it.
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It is clear from the definition that all sets in CSE(�) are (C1,C2)-cut-saturated .

DEFINITION 4.3
The extended closure of θ , denoted ecl(θ ), is the smallest set such that ϕ,¬ϕ∈ecl(θ ) for every
ϕ∈cl(θ ). The extended closure ecl(�) of a set of formulae � is defined likewise.

The following is immediate from the definitions.

LEMMA 4.4
Every CS-expansion of a set of formulae � is a subset of ecl(�).

LEMMA 4.5
For any CMAEL(CD)-formula θ , the size of (i.e. number of formulae in) the extended closure of
θ is O(k ·|θ |), where k is the number of agents occurring in θ .

PROOF. Straightforward.

4.2.1 Construction phase
As already mentioned, a tableau algorithm attempts to produce a compact representation of ‘suf-
ficiently many’ CMAEHSs for the input formula; in this attempt, it sets in motion an exhaustive
search for such CMAEHSs. As a result, the pretableau Pθ built at this phase contains two types of
edge, as well as two types of node (states and prestates; see above).

One type of edge, depicted by unmarked, dashed uni-directed arrows ���, represents the search
dimension of the tableaux. The exhaustive search considers all possible alternatives arising when
prestates are expanded into states by branching in the ‘disjunctive’ cases. Thus, when we draw
unmarked arrows from a prestate � to each state from a set of states X , this intuitively means that,
in any CMAEHS, a state satisfying � has to satisfy at least one of the states in X .

The second type of edge represents transition relations in the CMAEHSs that the procedure
attempts to build. Accordingly, this type of edges is represented by solid, uni-directed arrows, −→,
marked with formulae whose presence in one of the end nodes requires the presence in the tableau
of the other end node, reachable by a particular relation. Intuitively, if ¬DAϕ∈
 for some state 
,
then some (state obtained from a) prestate � containing ¬ϕ must be accessible from 
 by relation
RD

A . We mark these arrows with the respective formulae ¬DAϕ in order to keep track of the specific
reason for creating that particular state. That information will be needed during the elimination
phases.

We now turn to presenting the rules of the ‘diamond-propagating’ construction phase, each of
which creates a different type of edge, as discussed above. The first rule, (SR), prescribes how to
create states from prestates, while (DR) expands prestates into states.

Rule (SR) Given a prestate �, such that (SR) has not been applied to it before, do the following:

1. Add to the pretableau all CS-expansions 
 of �; declare these to be states;
2. For each so obtained state 
, put � ���
;
3. If, however, the pretableau already contains a state 
′ =
, then do not create a new state, but

put � ���
′.

We denote by states(�) the (finite) set {
 |� ���
}.
Rule (DR): Given a state
 such that ¬DAϕ∈
 and (DR) has not been applied to
 with respect

to ¬DAϕ before, do the following:
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1. Add to the pretableau the set�={¬ϕ}∪ {DA′ψ ∈
 | A′ ⊆A}∪ {¬DA′ψ ∈
 | A′ ⊆A and ¬DA′ψ �=
¬DAϕ}∪ {¬CA′ψ ∈
 | A′ ∩A �=∅} and declare this set to be a prestate.

2. Put 

¬DAϕ−→�.

3. If, however, the pretableau already contains a prestate �′ =�, then do not create a new prestate,

but put 

¬DAϕ−→�′.

When building a tableau for a formula θ , the construction phase begins with creating a single
prestate {θ}. Afterwards, we alternate between (SR) and (DR): first, (SR) is applied to the prestates
created at the previous stage of the construction, then (DR) is applied to the states created at the
previous stage.

The construction phase is completed when every prestate required to be added to the pretableau
has already been added (as prescribed in item 3 of (SR)) and (DR) does not apply to any of the
states with respect to any of the formulae.

EXAMPLE 4.6
Let us construct the pretableau for the formula θ=¬D{a,c}C{a,b}p∧C{a,b}(p∧q), assuming that �=
{a,b,c}. To save space, we replace θ by the set of its conjuncts �={¬D{a,c}C{a,b}p,C{a,b}(p∧q)}.

Here and further on in the examples, we let CAϕ denote the set {CAϕ,ϕ}∪⋃
a∈ADaCAϕ. Figure 3

shows the pretableau for �.

4.2.2 Prestate elimination phase
At this phase, we remove from pretableau Pθ all the prestates and unmarked arrows, by applying
the following rule (the resultant graph is denoted T θ

0 and is called the initial tableau):

(PR) For every prestate � in Pθ , do the following:

1. Remove � from Pθ ;
2. If there is a state 
 in Pθ with 


χ−→�, then for every state 
′ ∈states(�), put 

χ−→
′;

FIG. 3. The pretableau for {¬D{a,c}C{a,b}p,C{a,b}(p∧q)}.
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FIG. 4. The initial tableau for {¬D{a,c}C{a,b}p,C{a,b}(p∧q)}.

EXAMPLE 4.7
We continue Example 4.6 by creating the initial tableau for�={¬D{a,c}C{a,b}p, C{a,b}(p∧q)} out of
the pretableau in Figure 3. Again we let CAϕ denote the set consisting of CAϕ and its α-components.
Figure 4 shows the resulting initial tableau.

4.2.3 State elimination phase
During this phase, we remove from T θ

0 states that are not satisfiable in any CMAEHS. Of course,
when a state is removed, so are all of its incoming and outgoing arrows.

There are two reasons why a state 
 of T θ
0 might turn out to be unsatisfiable: either because


 needs, in order to satisfy some diamond-formula, a successor state that has been eliminated, or
because 
 contains an eventuality that is not realized in the tableau. Accordingly, we have two
elimination rules (E1) and (E2).

Formally, the state elimination phase is divided into stages; we start at stage 0 with T θ
0 ; at stage

n+1, we remove from the tableau T θ
n obtained at the previous stage exactly one state, by applying

one of the elimination rules, thus obtaining the tableau T θ
n+1. We state the rules below, where Sθm

denotes the set of states of T θ
m .

(E1) If 
∈Sθn contains a formula χ=¬DAϕ such that there is no 

χ−→
′, where 
′ ∈Sθn , then

obtain T θ
n+1 by eliminating 
 from T θ

n .

For the other elimination rule, we need the concept of eventuality realization.

DEFINITION 4.8
The eventuality ξ=¬CAϕ is realized at 
 in T θ

n if either ¬ϕ∈
 or there exists in T θ
n a finite

number of states 
0,
1,...,
m such that 
0 =
; ¬ϕ∈
m; and, for every 0≤ i<m, ξ ∈
i and

there exists χi =¬Daiψi such that ai ∈A and 
i
χi−→
i+1.

We can now state the rule.

(E2) If 
∈Sθn contains an eventuality ¬CAϕ that is not realized at 
 in T θ
n , then obtain T θ

n+1 by
removing 
 from T θ

n .

We check for realization of ¬CAϕ by running the following, global procedure that marks all states
of T θ

n realizing ¬CAϕ in T θ
n . Initially, we mark all 
∈Sθn such that ¬ϕ∈
. Then, we repeatedly

do the following: if
∈Sθn contains ¬CAϕ and is unmarked yet, but there exists at least one
′ such

that 

¬Daψ−→
′, for some formula ψ and a∈A and 
′ is marked, we mark 
. The procedure is over

when no more states get marked. Note that marking is carried out with respect to a fixed eventuality
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ξ and is, therefore, repeated each time we want to check realization of an eventuality (see reasons
further).

We have so far described elimination rules; to describe the state elimination phase as a whole,
we need to specify the order of their application. We have to be careful since, having applied
(E2), we could have removed all the states accessible from some 
 along the arrows marked with
some formula χ ; hence, we need to reapply (E1) to the resultant tableau to remove such 
’s.
Conversely, after having applied (E1), we could have thrown away some states that were needed
for realizing certain eventualities; hence, we need to reapply (E2). Moreover, we cannot terminate
the procedure unless we have checked that all eventualities are realized. Therefore, we apply (E1)
and (E2) in a dovetailed sequence that cycles through all the eventualities. More precisely, we
arrange all eventualities occurring in the states of T θ

0 in a list ξ1,...,ξm. Then, we proceed in cycles.
Each cycle consists of alternatingly applying (E2) to the pending eventuality (starting with ξ1), and
then applying (E1) to the resulting tableau, until all the eventualities have been dealt with. These
cycles are repeated until no state is removed throughout a whole cycle. When that happens, the state
elimination phase is over.

The graph produced at the end of the state elimination phase is called the final tableau for θ ,
denoted by T θ , and its set of states is denoted by Sθ .

DEFINITION 4.9
The final tableau T θ is open if θ ∈
 for some 
∈Sθ ; otherwise, T θ is closed.

The tableau procedure returns ‘no’ (not satisfiable) if the final tableau is closed; otherwise, it
returns ‘yes’ (satisfiable) and, moreover, provides sufficient information for producing a finite model
satisfying θ ; that construction is sketched in Section 5.2.

EXAMPLE 4.10
We will continue to make the final tableau for the formulae � considered in Example 4.6 and
Example 4.7. The state elimination procedure starts with the initial tableau given in Figure 4. During
the state-elimination phase, state 
1 gets removed due to (E1), since it does not have any successor
states along an arrow labelled with χ , while states 
2,
3,
4 and 
5 are eliminated due to (E2),
as all of them contain the unrealized eventuality ¬C{a,b}p. Thus, the final tableau for � is an empty
graph; therefore, � is unsatisfiable.

5 Soundness and completeness of the tableau

5.1 Soundness

Technically, soundness of a tableau procedure amounts to claiming that if the input formula θ is
satisfiable, then the final tableau T θ is open.

Before going into the technical details, we give an informal outline of the proof. The tableau
procedure for the input formula θ starts off with creating a single prestate {θ}. Then, we expand {θ}
into states, each of which contains θ . To establish soundness, it suffices to show that at least one of
these states survives to the end of the procedure and is, thus, part of the final tableau.

We start out by showing (Lemma 5.1) that if a prestate � is satisfiable, then at least one state
created from � using (SR) is also satisfiable. In particular, this ensures that if θ is satisfiable, then
so is at least one state obtained by (SR) from {θ}. To ensure soundness, it suffices to prove that this
state never gets eliminated from the tableau.
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To that end, we first show (Lemma 5.2) that, given a satisfiable state 
, all the prestates created
from
 in accordance with (DR)—each prestate being associated with a formula of the form ¬DAϕ—
are satisfiable; according to Lemma 5.1, each of these prestates will give rise to at least one satisfiable
state. It follows that, if a tableau state
 is satisfiable, then every successor of
 in the initial tableau
will have at least one satisfiable successor reachable by an arrow associated with each formula of the
form ¬DAϕ belonging to 
. Hence, if 
 is satisfiable, it will not be eliminated on account of (E1).

Second, we show that no satisfiable states contain unrealized eventualities (in the sense of Defi-
nition 4.8), and thus cannot be removed from the tableau on account of (E2). Thus, we show that
a satisfiable state of the pretableau (equivalently, initial tableau) cannot be removed on account of
any of the state elimination rules and, therefore, survives to the end of the procedure. In particular,
this means that at least one state obtained from the initial prestate θ , and thus containing θ , survives
to the end of the procedure. Hence, the final tableau for θ is open, as desired.

We emphasize again that the claims mentioned above, and their proofs, do not depend on the
application (or not) of the cut rules CS1 and CS2, because they are sound, since γ ∨¬γ is valid for
any formula γ . Therefore, these results are unaffected by the restrictive conditions C1 and C2 for
their application.

We now proceed with the technical details.

LEMMA 5.1
Let � be a prestate of Pθ such that M,s�� for some CMAEM M and s∈M. Then:

1. M,s�
 holds for at least one 
∈states(�).
2. Moreover, if ¬CAϕ∈� and M,s�¬ϕ, then 
 can be chosen so that ¬ϕ∈
.
3. If ¬CAϕ∈� while none of ¬CAϕ’s β-components are in �, then for every a∈A, if M,s�

¬DaCAϕ then 
 can be chosen so that either ¬DaCAϕ∈
 or ¬ϕ∈
.

PROOF. Straightforward from the definition of CSE(�) and using Proposition 3.8.

LEMMA 5.2
Let 
∈Sθ0 be such that M,s�
 for some CMAEM M and s∈M, and let ¬DAϕ∈
. Then, there
exists t ∈M such that (s,t)∈RD

A and M,t ��, for a set � defined according to the rule (DR) applied
to 
 and ¬DAϕ:

�={¬ϕ}∪ {DA′ψ ∈
 | A′ ⊆A}∪ {¬DA′ψ ∈
 | A′ ⊆A and ¬DA′ψ �=¬DAϕ}∪ {¬CA′ψ ∈
|A′ ∩A �=∅}
PROOF. Easily follows from the semantics of the epistemic operators and the definition of CMAEM.

LEMMA 5.3
Let 
∈Sθ

0 , let ¬CAϕ,¬DaCAϕ∈
, and let, furthermore, 

¬DaCAϕ−→ � for some prestate �∈Pθ .

Assume that M,s�
 and (s,s′)∈RD
a , for some model M and a pair of states s,s′ ∈M; then

M,s′ ��.

PROOF. Recall from the rule (DR) that�={¬CAϕ}∪{Daγ | Daγ ∈
}∪{¬Daγ | ¬Daγ ∈
,¬Daγ �=
¬DaCAϕ}∪{¬Caγ | ¬Caγ ∈
}. The claim follows easily, because RD

a is an equivalence relation.
Indeed, M,s′ �¬CAϕ because every A-reachable state from s is A-reachable from s′, too. Moreover,
(s′,s′′)∈RD

a iff (s,s′′)∈RD
a , for all s′′. Therefore, M,s′ �χ for all χ ∈�\{¬CAϕ}.

LEMMA 5.4
Let 
∈Sθ

0 be such that M,s�
 for some CMAEM M and s∈M, and let ¬CAϕ∈
. Then there
is a finite path in Sθ

0 of satisfiable states that realizes ¬CAϕ at 
.

 at R
ijksuniversiteit G

roningen on January 30, 2014
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/
http://jigpal.oxfordjournals.org/


[14:12 9/4/2013 jzs048.tex] Paper Size: a4 paper Job: JIGPAL Page: 426 407–437

426 Tableaux for the full coalitional multiagent epistemic logic

PROOF. We start by proving the following:

Let ¬CAϕ∈�1 for some prestate �1 ∈Pθ such that �1 does not contain any of the β-components

of ¬CAϕ. Suppose that M,s1 ��1, and let s1
a1−→s2

a2−→ ...
an−1−→sn be a shortest path in M that

satisfies ¬CAϕ, i.e. M,sn �¬ϕ, and for all i<n, the following hold: M,si � {¬CAϕ,ϕ}, and
(si,si+1)∈RD

ai
, for some ai ∈A. Then there exists a path


1
¬Da1 CAϕ−→ 
2

¬Da2 CAϕ−→ ...
¬Dan′−1

CAϕ−→ 
n′ ,

of satisfiable states in Sθ
0 , where n′ ≤n, 
1 ∈states(�1) and ¬ϕ∈
n′ .

We prove the above claim by induction on n.
If n=1, then M,s1 �¬ϕ. Since ¬CAϕ∈�1 and M,s1 ��1, Lemma 5.1 implies that there is a


1 ∈states(�1) such that M,s1 �
1 and ¬ϕ∈
1. Thus 
1 is the needed path in Sθ
0 that satisfies

the claim above.
Assume now the claim holds for all m<n. Let ¬CAϕ∈�1, let M,s1 ��1, and assume that none

of ¬CAϕ’s β-components are in �1. Let the path in M satisfying the eventuality ¬CAϕ be s1
a1−→

s2
a2−→ ...

an−1−→sn, where n>1.
Since M,s1 � {¬Da1CAϕ,¬CAϕ}, Lemma 5.1 implies the existence of
1 ∈states(�1) in Sθ

0 with
M,s1 �
1, and ¬Da1CAϕ∈
1 or ¬ϕ∈
1. In the latter case, 
1 is the needed path. In the former

case, due to Lemma 5.2, there exists a prestate �2 ∈T θ , with 
1
¬Da1 CAϕ−→ �2; then, ¬CAϕ∈�2. Note

that �2 cannot contain any of ¬CAϕ’s β-components, since 
1 contains ¬Da1CAϕ, and thus, it can
contain at most one other β-component, namely ¬ϕ. But in that case we would have that M,s1 �¬ϕ,
which contradicts the assumption. Lemma 5.3 gives us M,s2 ��2.

Thus, since s2
a2−→ ...

an−1−→sn is a path of length n−1 that realizes ¬CAϕ at s2, the induction
hypothesis claims that there is a path of satisfiable states in Sθ

0 ,


2
¬Da2 CAϕ−→ ...

¬Dan′−1
CAϕ−→ 
n′ ,

where n′ ≤n−1, 
2 ∈states(�2), ¬ϕ∈
n′ .

Since �1 ���
1
¬Da1 CAϕ−→ �2 ���
2, we obtain a path in Sθ

0 of length atmost n that satisfies the
induction hypothesis.

That concludes the induction.
Getting back to the claim of the Lemma, we have that if ¬CAϕ∈
, then either ¬ϕ∈
 or there

exists an a′ ∈A such that ¬Da′CAϕ∈
, since 
 is fully expanded. In the former case, ¬CAϕ is
realized in 
 and the claims follows. In the latter case, there will be a prestate � in T θ , such that



¬Da′ CAϕ−→ �. Note that in this case �⊆
. Due to (DR) and the fact that ¬ϕ /∈
, � cannot contain

any of ¬CAϕ’s β-components.
Thus, the statement above gives us that there there is a 
→�→
1 → ...→
n′ , i.e. there is a

path of satisfiable states in Sθ
0 , that realizes ¬CAϕ∈
.

THEOREM 5.5
If θ ∈L is satisfiable in a CMAEM, then T θ is open.

PROOF. Using the preceding Lemma 5.2 and Lemma 5.4, one can show by induction on the number
of stages in the state elimination process that no satisfiable state can be eliminated due to (E1)–(E2).
The claim then follows from Lemma 5.1.
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5.2 Completeness

The completeness of a tableau procedure means that if the tableau for a formula θ is open, then
θ is satisfiable in a CMAEM. In view of Theorem 3.15, it suffices to show that an open tableau
for θ can be turned into a CMAEHS for θ . In order to prove that, we need to specify sufficiently
strong restrictive conditions C1 and C2 governing the application of the cut rules CS1 and CS2,
respectively on formulas DAϕ and CAϕ in the Definition 4.1 of cut-saturated sets. We now specify
these conditions as follows.

C1 Cut on DAϕ∈Sub(ψ) where ψ ∈
, if either of the following holds:
C11 ψ=DBδ or ψ=¬DBδ, and there is a ¬DEε∈
 such that A⊆E and B⊆E.
C12 ψ=¬CBδ and there exists a ¬DEε∈
 such that A⊆E and B∩E �=∅.

C2 Cut on CAϕ∈Sub(ψ) where ψ ∈
, if either of the following holds:
C21 ψ=DBδ or ψ=¬DBδ, and there exists a ¬DEε∈
 such that B⊆E and A∩E �=∅.
C22 ψ=¬CBδ and there exists a ¬DEε∈
 such that A∩E �=∅ and B∩E �=∅.

The intuition: a cut rule only has to be applied to a formula DAϕ or CAϕ if:

(i) that formula can occur in the label of a descendant state and,
(ii) once it occurs there, it will have an effect spreading back to the current state.

For the former to happen, that formula must occur in a DB-formula or a ¬DB-formula or a ¬CB-
formula. For the latter, the path leading from the current state to that descendant must be labelled
with relations propagating the effect of the respective box.

EXAMPLE 5.6
This example illustrates the need for applying cut rules and using cut-saturated sets instead of
simply fully expanded sets. First, recall the requirement of the relations in a (pseudo-)CMAEL(CD)
model to be equivalence relations, reflected in (CH3) of Definition 3.9 for Hintikka structures. Now,
consider the tableau constructed for the formula θ=¬D{a,b}p∧¬D{a,c}¬Dap if we would only use
fully expanded sets:

The corresponding claimed Hintikka structure and (pseudo)-model, that this tableau would produce
(see the construction in Lemma 5.8) would then be, respectively:

In the ‘Hintikka’-structure to the left, we have that Dap is in the state in the bottom right corner,
but not in the state in the top, though the edge connecting them is labelled with {a,c}. This on the
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other hand means, that θ is not satisfied in the ‘model’ to the right, because Dap does not hold at
any state, hence ¬D{a,c}¬Dap in not true at any state. In fact, θ is not satisfiable at all.

If we would indeed apply the cut-rules then the tableau for θ would close. The pretableau for θ
would look as follows.

Notice that some of the prestates (namely {¬p,Dap} and {¬¬Dap,¬Dap}) do not have any full
expansions since these are patently inconsistent. After the initial tableau has been build, this then
causes the two states in states(θ ) to be deleted by (E1) and the final tableau is

{¬p,¬Dap}
¬Dap �� {¬p} {¬¬Dap,Dap,p}

which closes.

The following lemma is needed to ensure that the satisfaction of the condition (CH3) from the
definition of Hintikka structures for CMAEL(CD) is guaranteed in the final tableau.

LEMMA 5.7
Suppose 


¬DAϕ−→
′ in the final tableau T θ for some input formula θ and suppose that DBψ ∈
′

where B⊆A. Then DBψ ∈
.

PROOF. First, note that if the cut rules CS1 and CS2 are applied unrestrictedly to every subformula
DAϕ or CAϕ of a formula in the label of the current state 
, the proof of the lemma is immediate.
We will show that the claim still holds if the restrictions C1 and C2, specified above, are imposed.

For a formula α we let CS1(α) be the set of all formulae that can occur in any one-step cut-
saturated expansion of α according to the procedure described in Definition 4.2. Similarly CS1(�)=⋃
α∈�CS1(α) for a set � of formulae, and recursively we let CSn(�)=CS1(CSn−1(�)). As is easy to

see, this construction converges, and the following is true:

• For any formula α and any n∈N, CSn(α)⊆ecl(α), i.e.:

CSn(α)⊆{β,¬β |β∈Sub(α)}∪{DeCEε,¬DeCEε | CEε∈Sub(α),e∈E}
• For any cut-saturated expansion � of � there is an n such that �⊆CSn(�).
• If β∈CSn(�), then there is an α∈�, such that β∈CSn(α).

Now, let � be the prestate in the pretableau Pθ that gives rise to the relation between 
 and 
′,
i.e. 


¬DAϕ−→� ���
′ in Pθ . The above gives us that since 
′ is a cut-saturated expansion of � and
DBψ ∈
′, there is an α∈� such that DBψ ∈ecl(α). That is, either DBψ ∈Sub(α), or DBψ=DdCDδ

for a CDδ∈Sub(α) and a d ∈D.
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Since α∈�, due to (DR), either α=DCγ ∈
 or α=¬DCγ ∈
 for a C ⊆A, or α=¬CCγ ∈

where C∩A �=∅, or α=¬ϕ. We notice that it is enough to show that C1 is applicable to DBψ at 
,
since then either DBψ ∈
 (which is what we want) or ¬DBψ ∈
; the latter would, according to (DR),
imply that ¬DBψ ∈�⊆
′, which would cause 
′ to be patently inconsistent, which contradicts 
′

being a cut-saturated set and thus fully expanded (cf. CS0). We split according to cases:

Case 1. α=DCγ ∈
 or α=¬DCγ ∈
 for a C ⊆A: DBψ ∈ecl(DCγ ) gives that DBψ ∈Sub(DCγ ),
or DBψ=DdCDδ for a CDδ∈Sub(DCγ ), where d ∈D.

In the first case, DBψ is a subformula of a DC-formula in 
, and since C,B⊆A and ¬DAϕ∈
,
C1 is applicable to DBψ at 
.

In the second case, DBψ=DdCDδ for an CDδ∈Sub(DCγ ) with d ∈D. Since B={d}⊆A, we have
d ∈D ∩A and hence C2 is applicable to CDδ at
, as we also have C ⊆A and ¬DAϕ∈
. This means
that either CDδ∈
 or ¬CDδ∈
 according to CS2. If CDδ∈
, then DBψ=DdCDδ∈
 according to
CS0. If ¬CDδ∈
, then according to (DR), ¬CDδ∈� since d ∈D∩A. However, DBψ=DdCDδ∈�,
and hence CDδ∈
′. This gives us a contradiction, as 
′ is fully expanded and, thus, not patently
inconsistent.

The case where α=¬DCγ is similar.

Case 2. α=¬ϕ: DBψ ∈ecl(¬ϕ). We have two cases to consider:
Either DBψ ∈Sub(¬ϕ), in which case DBψ ∈Sub(ϕ)⊆Sub(¬DAϕ) and thus C1 is applicable

(since B,A⊆A).
DBψ=DdCDδ for an CDδ∈Sub(¬ϕ) and d ∈D gives that CDδ∈Sub(ϕ)⊆Sub(¬DAϕ), and thus

C2 is applicable to CDδ at 
 since, again, d ∈D∩A and A⊆A. Then, either CDδ∈
 or ¬CDδ∈
.
As before, the former implies that DBψ ∈
, as desired, while the latter leads to a contradiction.

Case 3. α=¬CCγ , where C∩A �=∅:
DBψ ∈Sub(¬CCγ ) immediately gives that C1 is applicable to DBψ at 
.
If DBψ=DdCDδ, where CDδ∈Sub(¬CCγ ) and d ∈D, then C2 is applicable to CDδ at 
, as

d ∈D∩A and ¬DAϕ∈
. Thus, either CDδ∈
 or ¬CDδ. The former implies that, due to CS0,
DBψ ∈
, as desired, while the other gives a contradiction, due to (DR) and CS0.

LEMMA 5.8
If T θ is open, then there exists a CMAEHS for θ .

PROOF. The needed Hintikka structure H for the formula θ is built out of the final tableau T θ by
renaming the relations between the states, such that they correspond to a subset of �. This is done

by labelling the edges from 
 to 
′ with the set A for which 

¬DAϕ−→
′ in T θ .

Now, let � be the set of agents occurring in θ , and let S =Sθ . For any A∈P+(�), let RD
A =

{(
,
′)∈S ×S |
¬DAϕ−→
′ for some ϕ}, and let RC
A be the reflexive, transitive closure of

⋃
B⊆ARD

B .
Let L(
) be the labelling of the state in T , i.e. the sets of formulae that has been associated with 
.

Finally, let Hθ = (�,Sθ ,{RD
A }A∈P+(�),{RC

A }A∈P+(�),AP,L).
We will now show that Hθ is a Hintikka structure. To that end, we have to prove (�,S,{RD

A }A∈P+(�),

{RC
A }A∈P+(�)) is a CMAES, and that conditions (CH1)-(CH4) of Definition 3.9 hold for H. The for-

mer is clear from the construction of H.
(CH1) holds since all states in the final tableau are fully expanded.
(CH2) is satisfied since, otherwise, the state would have been deleted from the tableau due to (E1).
Likewise, (CH4) is satisfied since, otherwise, the state would have been removed due to (E2).

It remains to show that (CH3) holds. Let (
,
′)∈RD
A (i.e. 


¬DAϕ−→
′ in T θ ), and B⊆A. We need
to show that DBψ ∈
⇔DBψ ∈
′. If DBψ ∈
, then due to the propagation rule (DR), DBψ ∈�,
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where � is the prestate in the final pretableau, such that

¬DAϕ−→� ���
′. Thus DBψ is also in
′ since

� is included in all cut-saturated expansions of �. The other direction follows from Lemma 5.7

THEOREM 5.9 (Completeness)
Let θ ∈L and let T θ be open. Then, θ is satisfiable in a CMAEM.

PROOF. Immediate from Lemma 5.8 and Theorem 3.15.

6 Complexity, efficiency and possible optimizations of the tableau procedure

6.1 Complexity

The termination of the tableau procedure described above is a fairly straightforward consequence of
the finiteness of the set of all possible labels of states and prestates and their re-use in the construction
phase. In this subsection, we estimate the worst-case running time of all phases of the procedure.

We denote by |θ | the length of a formula θ and by |ecl(θ )| the number of formulae in ecl(θ ). Let
|θ |=n and the number of agents occurring in θ be k .

By Lemma 4.5, |ecl(θ )|≤ckn for some (small) constant c. Then, the number of prestates and states
in the tableau for θ is O(2ckn). Comparing two states or prestates takes O(ckn) steps (assuming a
fixed order of the formulae in ecl(θ ), and each state being represented as a 0/1 string of length ckn),
hence checking whether a prestate or a state has already been created, takes O(ckn2ckn). Therefore,
the construction phase takes time O(ckn22ckn).

The prestate elimination phase takes time O(2ckn). Checking realization of an eventuality in a
state takes O(2ckn) steps and the number of eventualities is bounded by n, hence the elimination of
a ‘bad’ state takes at most O(n2ckn) steps. Hence, the elimination state takes O(n22ckn) steps.

We conclude that the whole tableau procedure terminates in O(ckn22ckn) steps, hence it is in EXP-
TIME, which is in compliance with the known EXPTIME(-complete) lower bound (see [9], [10]).

6.2 Efficiency

Some features of the ‘diamond-propagating’ procedure described above make it sometimes practi-
cally sub-efficient.

Firstly, the application of the cut rules CS1 and CS2 can produce many cut-saturated sets, even
after imposing the restrictive conditions C1 and C2. Potentially, it can create a number of states that
is exponential in the number of subformulae of the form DAψ or CAψ occurring in the formulas of
the input set �.

Secondly, when applying the rule (DR) to a state 
 with respect to some ¬DAϕ, we propagate
to the newly created prestate all the diamond-formulae of the form ¬DBψ , where B⊆A, except
¬DAϕ itself. Likewise, all formulae ¬CAψ where A and B are not disjoint, get propagated. Thus,
the presence of a ‘diamond’ in a prestate � is then passed on to all states in states(�), resulting
in the need to apply the rule (DR) to every state in states(�) with respect to this diamond; this,
again, implies the creation of a large number of states (even though, as we have shown, the maximal
number of states is still no more than exponential in the size of the input formula). However, we
re-iterate that this ‘diamond-propagation’ is necessary for the procedure developed here, because if
a diamond-formula is not propagated forward, then its negation, which is a box-formula, may be
added to a successor state and thus clash with that diamond-formula in the current state.
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On the other hand, the restrictive conditions C1 and C2 for the application of cut-saturation in
the production of CS-expansions can have a very significant effect on the size of the tableau, as
illustrated by the next example.

EXAMPLE 6.1
Suppose we want to build a tableau for the formula θ=C{a,b}Dap→¬C{b,c}Dbp≡¬(C{a,b}Dap∧
C{b,c}Dbp) and suppose that �={a,b,c}. We start off with creating a single prestate {θ}. Using only
the unrestricted conditions C1 and C2 to cut, applying the rule (SR) to this prestate produces an
overwhelming number of 35 states:

1. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,Dap,p,C{b,c}Dbp};
2. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,Dap,p,¬C{b,c}Dbp,¬DbC{b,c}Dbp,Dbp};
3. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,Dap,p,¬C{b,c}Dbp,¬DbC{b,c}Dbp,¬Dbp};
4. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,Dap,p,¬C{b,c}Dbp,¬DcC{b,c}Dbp,Dbp};
5. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,Dap,p,¬C{b,c}Dbp,¬DcC{b,c}Dbp,¬Dbp};
6. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,Dap,p,¬C{b,c}Dbp,¬Dbp};
7. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,¬Dap,C{b,c}Dbp,p};
8. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬DbC{b,c}Dbp,Dbp,p};
9. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬DbC{b,c}Dbp,¬Dbp};

10. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬DcC{b,c}Dbp,Dbp,p};
11. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬DcC{b,c}Dbp,¬Dbp};
12. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬Dbp};
13. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap,Dap,p,C{b,c}Dbp};
14. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap,Dap,p,¬C{b,c}Dbp,¬DbC{b,c}Dbp,Dbp};
15. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap,Dap,p,¬C{b,c}Dbp,¬DbC{b,c}Dbp,¬Dbp};
16. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap,Dap,p,¬C{b,c}Dbp,¬DcC{b,c}Dbp,Dbp};
17. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap,Dap,p,¬C{b,c}Dbp,¬DcC{b,c}Dbp,¬Dbp};
18. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap,Dap,p,¬C{b,c}Dbp,¬Dbp};
19. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap,¬Dap,C{b,c}Dbp,p};
20. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬DbC{b,c}Dbp,Dbp,p};
21. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬DbC{b,c}Dbp,¬Dbp};
22. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬DcC{b,c}Dbp,Dbp,p};
23. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬DcC{b,c}Dbp,¬Dbp};
24. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬Dbp};
25. {θ,¬C{a,b}Dap,¬Dap,C{b,c}Dbp,p};
26. {θ,¬C{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬DbC{b,c}Dbp,Dbp,p};
27. {θ,¬C{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬DbC{b,c}Dbp,¬Dbp};
28. {θ,¬C{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬DcC{b,c}Dbp,Dbp,p};
29. {θ,¬C{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬DcC{b,c}Dbp,¬Dbp};
30. {θ,¬C{a,b}Dap,¬Dap,¬C{b,c}Dbp,¬Dbp};
31. {θ,C{a,b}Dap,p,¬C{b,c}Dbp,¬DbC{b,c}Dbp,Dbp};
32. {θ,C{a,b}Dap,p,¬C{b,c}Dbp,¬DbC{b,c}Dbp,¬Dbp};
33. {θ,C{a,b}Dap,p,¬C{b,c}Dbp,¬DcC{b,c}Dbp,Dbp};
34. {θ,C{a,b}Dap,p,¬C{b,c}Dbp,¬DcC{b,c}Dbp,¬Dbp};
35. {θ,C{a,b}Dap,p,¬C{b,c}Dbp,¬Dbp};

If we instead use the restricted C1 and C2, we will produce 8 states:

1. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,Dap,p}
2. {θ,¬C{a,b}Dap,¬DaC{a,b}Dap,¬Dap}
3. {θ,¬C{a,b}Dap,¬DbC{a,b}Dap}
4. {θ,¬C{a,b}Dap,¬Dap}
5. {θ,¬C{b,c}Dbp,¬DbC{b,c}Dbp,Dbp,p}
6. {θ,¬C{b,c}Dbp,¬DbC{b,c}Dbp,¬Dbp}
7. {θ,¬C{b,c}Dbp,¬DcC{b,c}Dbp}
8. {θ,¬C{b,c}Dbp,¬Dbp}
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FIG. 5. Pretableau for ¬C{a,b}Dap.

Figure 5 shows the pretableau for one part of θ , i.e. ¬C{a,b}Dap. The tableau for the other part of θ
will be similar and disjoint from this tableau.

As seen here, the backtracking procedure is rather inefficient when applied to formulae of the
type of C{a,b}Dap→¬C{b,c}Dbp. �

Both causes of potential inefficiencies discussed above, viz. the forward diamond-propagation
and the (restricted) analytic cut rules on box-formulae, are needed to ensure that every ‘successful’
tableau can be turned into a Hintikka structure. More precisely, they together ensure that the right-
to-left implication in the statement of property (CH3) of Hintikka structures (recall Definition 3.9)
holds.

A possible way of eliminating these causes for inefficiencies is to change the strategy in the
tableau-building, by implementing a mechanism for backward propagation of boxes: if DAϕ occurs
in a state 
, then ensure that this box is propagated backwards to all predecessor states where it
must occur. The main disadvantage of this approach is that it requires an elaborated mechanism of
repeated updating the hitherto constructed part of the tableau. We leave the realization of this idea
for future work.

6.3 Improvements

As stated earlier, the main emphasize of our tableau construction is the ease of presentation, com-
prehension and implementation, rather than technical sophistication and optimality of the procedure.
While being worst-case time optimal, it is amenable to various improvements and further optimiza-
tions, some of which we will mention briefly here.
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To begin with, for methodological reasons, our procedure is divided into three phases, where the
different components of the tableau-building procedure are dealt with separately. That separation of
the procedure into phases makes it less optimal compared to the approach whereby the three phases
are carried out simultaneously and the prestate and state elimination is done ‘on-the-fly’.

Also, as briefly mentioned in Section 4.1, it is possible to make the procedure cut-free by using a
mechanism for ‘backwards propagation’ of D-formulas, which, when well designed can lead to more
optimal performance in some cases. This approach is taken e.g. in [22], where the authors construct
a cut-free tableau-based algorithm for the logic PDL with converse, while the algorithm presented
in [29] builds on this work by constructing a cut-free tableaux-based algorithm for the description
logic SHI, which contains inverse roles. Both methods account for the case where a (number of)
formula(s) turns up in a node, which will be required to be in the already created predecessor node of
the node in question. The former algorithm deals with eventualities, too. Adopting this approach to
our procedure while optimizing it for the logic CMAEL(CD) would result in a procedure sketched
below.

6.3.1 State elimination ‘on-the-fly’
Here we make use of the concept of ‘potential rescuers’ used in [22] and [29], though in a slightly
different way, adjusted to our needs. We likewise take on board the techniques of updating and
propagating statuses of nodes in the tableaux.

Firstly, we maintain a status for (pre)states, which can either be unexplored, open or closed.
The status of a (pre)state is initially set to unexplored when the (pre)state is created, and then
updated during the procedure. When a prestate is expanded or a state expanded for all diamond-
formulas in it, its status changes to open. Later on the status of a state
 can then change to closed
in the following cases:

• there is an epistemic prestate � such that

δ→� for a formula δ and the status of � is closed.

• 
 contains an eventuality ¬CAϕ that it neither realized in the current tableau under construction
nor has a ‘potential rescuer’. A potential rescuer is a (pre)state, which is A-reachable from 
,
contains ¬CAϕ, and has not been expanded yet, i.e. it has status unexplored. Here we use
a modified definition of A-reachability, where ���-arrows are allowed too.

The status of a prestate � is set to closed if:

• all states in states(�) are closed, including the case where states(�)=∅, or
• � contains an eventuality that it neither realized nor has a potential rescuer.

Additionally, we make sure, that unsatisfiable (pre)states are removed on-the-fly and that the proce-
dure stops and the tableau closes as soon as unsatisfiability of the input prestate is detected during
the procedure, i.e.:

• We close a prestate when it is expanded and does not have any cut-saturated expansions.
• When a (pre)state � closes, we propagate updates of statuses to the relevant (pre)states, whose

status depend on the status of �. These are (pre)states that have outgoing arrows pointing
to �.

• We keep an eye on the initial prestate, labelled with the input formula whose satisfiability we
are checking. When/if this prestate closes, we stop the whole procedure and return ‘unsat’.
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Finally, we also want to avoid the unnecessary checking of unrealized eventualities, since this step
is one of the more expensive checks. Thus, when updating the status of a (pre)state we only check
containment of unrealized eventualities, when this is really necessary. E.g. we do not check that if
a potential rescuer is known to be reachable. This of course requires some bookkeeping.

6.3.2 Making the procedure cut-free
The procedure above takes care of doing the satisfiability checking ‘on the fly’, however it is not
cut-free. Though, the procedure can be made cut-free by incorporating the following:

Firstly, we use full expansions instead of cut-saturated expansions. Secondly, we now need to
account for a further reason why a state 
 can close, namely that 
 contains a diamond formula

¬DAϕ, such that 

¬DAϕ−→� and all states in states(�) are incompatible with 
 with respect to ¬DAϕ.

Here, 
′ ∈states(�) is incompatible with 
 if {DA′ψ ∈
′ | A′ ⊆A} �⊆
, i.e. condition (CH3) will
not be fulfilled in the resulting Hintikka structure. This, however, does not neccessarily mean, that
the state 
 needs to close. After all, since we are not proactively looking ahead for box-formulas
which could possibly occur in a future descendent state of
 and include these in
 (as is done when
using cut-saturated expansions), it is possible that 
 could become satisfiable if the box-formulas
in question were added to 
.

Therefore, when it happens that

¬DAϕ−→� and none of the states in states(�) are compatible with


with respect to ¬DAϕ, we construct so-called ‘alternatives’ for the state 
. These are states labelled
with the fully expanded sets
∪S ′ for each S ′ ∈⋃


′∈states(�)FE({DA′ψ ∈
′ | A′ ⊆A and DA′ψ /∈
}).
Then ���-arrows pointing to these alternatives are added from each prestates pointing to 
, and
finally we close the original state 
 (and propagate the change of status that hereby occurs, as
described previously).

In this procedure, we need to keep track of when such incompatibilities occur, which requires
some further bookkeeping.

7 Concluding remarks

We have developed a sound and complete tableau-based decision procedure for the full coalitional
multiagent epistemic logic CMAEL(CD). The incremental tableau style adopted here is intuitive,
practically more efficient, and more flexible than the maximal tableau style, developed e.g. for the
fragment MAEL(C) of CMAEL(CD) in [25], and therefore it is more suitable both for manual
and automated execution. In fact, an earlier, less optimal version, of this procedure has been imple-
mented and reported in [42]. On the other hand, as discussed in the previous section, various further
optimizations of the procedure are possible and desirable, and some such optimizations have been
developed for logics related to CMAEL(CD), see Section 1.2. Furthermore, our tableau procedure
is also amenable to various extensions, subject to current and future work:

• to temporal epistemic logics of linear and branching time, preliminary reports on which have
appeared respectively in [15] and [16].

• with the strategic abilities operators of the Alternating-time temporal logic ATL, a tableau-
based decision procedure for which were developed in [17]. Merging tableaux for these two
logical systems will produce, inter alia, a feasible decision procedure for the Alternating-time
temporal epistemic logic ATEL [40].

• a cut-free, ‘on the fly’ version, as described in Section 6.3.
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