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ABSTRACT

Action Languages are formal methods of talking about actions and their effects on fluents. One
recent approach in planning is to define the domains of the planning problems using action lan-
guages. The aim of this research is to find a plan for a system defined in the action language
C by translating it into a causal theory and then finding an equivalent logic program. The plan-
ning problem will then be reduced to finding the answer set (stable model) of this logic program.
This planner will be added as an extension to the Causal Calculator (CCALC) which is a model
checker for the language of the causal theories.

I INTRODUCTION

Plan generation plays an important role in AI research. A lotof work has been done on repre-
senting actions and generating plans. While reasoning about action, some problems (such as the
frame, ramification, and qualification problems) have to be taken into account. It has been shown
[3] that these problems can be overcome to some extent by using causal knowledge. CCALC,
which is a system written at the University of Texas, Austin,finds plans and reasons about the
actions defined in causal theories. Programs written in the action description languageC can
be given as input to the CCALC system. CCALC translates them to the corresponding causal
theory. TheC language can express indirect effects, implicit preconditions, action preconditions,
nondeterminism, concurrent actions, and noninertial fluents. CCALC gets the equivalent propo-
sitional representation of the problem by literal completion and finds the models of the system
by using the available satisfiability solvers. (A user of CCALC currently has the choice of using
either “relsat” [13] or “sato” [4] as the satisfiability solver).

Another perspective to planning is to use logic programming. The language of logic programming
offers a reasonably expressive way, enabling us to describethe effects of actions. Also there is a



relation between logic programming and causal theories in that both arenoncontrapositive1. As
is mentioned in [17] the difference betweenp not q (1)

and q  not p (2)

is apparent both in logic programming and in causal theoriesbut is lost if propositional logic is
used. The first sentence means that the absence ofq is a cause forp, but this doesn’t mean that
the absence ofp is a cause forq, which is what the second sentence says. To combine the ideasof
logic programming with the use of expressive action description languages, the domain described
in the action language can be translated into an equivalent logic program. Our research will real-
ize this by first translating a program inC language to a causal theory and then the causal theory
to the corresponding logic program. The answer set of the program will be used for planning or
querying the plans found.

Causality is an important concept for nonmonotonic reasoning while working on action represen-
tations and their effects on the fluents. Situation calculuswhich specifies the effects of actions
using only domain constraints is too weak and cannot deal with the well known problems such
as the frame, qualification, and ramification problems. The reference [3] adresses this problems
and intoduces a ternary predicateCausedto situation calculus to solve them. In this research the
formalism introduced by [12] will be used. According to thisformalism, one does not need to
know the cause of facts in order to determine whether a world history is causally possible. It is
sufficient to know the conditions under which the facts are caused. The causal theory is a set of
causal rules which are expressions of the form�)  (3)

where� and are formulas of the underlying propositional language. Theintended reading of
(3) is: Necessarily, if� then the fact that is caused.

It is possible to formalize action domains using this nonmonotonic causal theory. To formalise
action domains three pair-wise disjoint sets are defined: a set of action names, a set offluent
names, and a set oftime instances. The atoms of the language are expressions of the formsat andft wherea, f, t are action, fluent and time instances respectively.at means action occurs at time
t andft means fluentf holds at timet. In this formalism, the causes of the actions are not taken
into account and the following two schemas provide that the occurrence of actions is exogenous2

to the causal theory: at ) at (4)ft ) ft (5)

Also the initial values of the fluents are exogenous to the causal theory and this can be represented
using the following schemas: f0 ) f0 (6):f0 ) :f0 (7)

1An implication of the form:q  :p is the contrapositive ofp  q. In a noncontrapositive theory these two
statements don’t have the same meaning.

2An action or fluent isexogenousif its cause lies outside of the theory.



Inertia, that is a fluent doesn’t change its value unless there is a reason for it, can be expressed
using the schema below, where� is a meta-variable for inertial fluent.�t ^ �t+1 ) �t+1 (8)

also be described and things that change by themselves can bemodeled.

One of the ways of expressing the non-monoticity and negation as failure in logic programming
is the “model theoretic” approach. In this approach, the models of the program represent the
semantics of the program. Instead of doing query evaluationdirectly, the intended meaning of
the program is obtained by finding its model. As an example to the “model theoretic” approach
the well-founded semantics, perfect model semantics, and stable model semantics can be given.
Stable model semantics is related with auto-epistemic logic. The stable model of a system is said
to be the rational beliefs of an agent. Every predicate in a stable-model is “supported”, that is, have
a reason to be there. The Smodels system [6] is an implementation of the stable model semantics
for range-restricted function-free normal programs. It has two modules: one for finding the stable
model of a grounded program and one for grounding the given range-restricted program. There
are different front-ends of the Smodels but the richest of them in terms of features is lparse [15].

II PLANNING WITH STABLE MODEL SEMANTICS

The aim of this research is to use logic programming and stable model semantics for plan gen-
eration and add it as an option to the CCALC system. The given domain description inC will
be translated to a logic program and the logic program will begrounded to obtain a ground logic
program. The Smodels system accepts ground logic programs and finds their corresponding sta-
ble model. The stable model of the program will then be used tofind the sought plan. There are
different ways of doing all these; one can either take the input written inC and directly translate
it to a logic program or let CCALC translate it to causal theory and then translate this causal
theory to a logic program. In our research, the latter alternative is chosen. Moreover, there are two
methods for grounding: let CCALC do grounding and get the ground causal theory or let lparse
do grounding, which is the front-end parser of Smodels. In our research the latter method will be
applied, because of efficiency consideration.
As a result, the execution steps will be in the following order� Get the causal theory of the planning problem from CCALC� Translate it to an equivalent logic program� Call lparse to ground the program� Call Smodels to get the answer set (stable model) of the program� Extract the plan(s) from the stable model of the program

The translation task starts with getting the causal theory from CCALC system. During the trans-
lation, instead of using a different predicate for each action and fluent, two predicates will be used.
These are‘holds’ and‘occurs’. The‘holds’ predicate is in the formholds(F; T ) (9)

meaning that fluentF holds at timeT. The’occurs’ predicate is in the formoccurs(A; T ) (10)



meaning that action A occurs at time T.
One problem is that the early versions of Smodels doesn’t have classical negation, but this problem
can be easily solved, as suggested in [17], by introducing new predicates standing for the negations
of holdsandoccurs. The following four rules are used for handling the classical negation problem:

notholds(F,0) :- not holds(F,0), fluent(F).
notoccurs(A,0) :- not occurs(A,0), action(A).
holds(F,0) :- not notholds(F,0), fluent(F).
occurs(A,0) :- not notoccurs(A,0), action(A).
:- not holds(F,T), not notholds(F,T), fluent(F), time(T), T>0.
:- not occurs(A,S), not notoccurs(A,S), action(A), step(S), S>0.

The other rules of the logic program are obtained by translating the causal theory produced by
CCALC. As an example, a solution to the Yale Shooting Problem(YSP) [15] will now be revis-
ited3.
Theconstantsandvariablesare declared as follows4:

gun(g1).
gun(g2).

action(load(g1)).
action(load(g2)).
action(shoot(g1)).
action(shoot(g2)).

Time is represented using the predicatestime step andnext:

time(0). time(1). time(2).
step(0). step(1).
next(0,1). next(1,2).

step is used to make sure that no action takes place at the last timepoint.
All of the causal rules returned by CCALC are translated to the corresponding logic programming
rules. For example, the rule:

shoot(G) causes -alive if loaded(G).

becomes

-h(alive,1) <- h(loaded(G),0) && o(shoot(G),0) && true

which in turn translated to:

notholds(alive,T1) :- holds(loaded(G),T),
occurs(shoot(G),T),
time(T),
next(T,T1),
gun(G).

3This example is for giving a complete overview of the translation task. More detailed information about the
translation will be given in section 3 and 4

4Some of the declarations are omitted for the sake of simplicity.



The initial state and the goal state of the planning domain iswritten in thecomputestatement of
Smodels. For example, for YSP the initial condition is that both of the guns are unloaded and the
turkey is alive and the goal to be reached is that the turkey isdead at time 2. So the corresponding
computestatement is:

compute all{ holds(unloaded(g1), 0), holds(unloaded(g2),0),
holds(alive,0), notholds(alive,2)

}.

The initial state is:

holds(unloaded(g1), 0) holds(unloaded(g2),0) holds(alive,0)

The goal state is:

notholds(alive,2)

III TRANSLATION OF CAUSAL RULES TO LOGIC PROGRAM

Causal rules returned by CCALC are in the form:head( body (11)

wherehead andbody can be any kind of logical formulas constructed with the constructs &&,
++,!,$, _, ^. Here && stands for “and”, ++ for “or”,! for “only if”, $ for “if and only if”,_ for “there exist” and̂ for “for all”.
Translation starts first by eliminating the constructs_ and^ if there is any. For each expression
in the form _XF (X) (12)

whereF(X) is an expression having the free variableX. The instantiation ofX results in the formula
: F (a1) + +F (a2)::: ++F (an) (13)

whereai is a constant in the domain of the variableX. The same method applies to the construct^, but in this case ++ is replaced with &&.
The next step is placing this formula in the ‘Disjunctive Normal Form’ (DNF). The logic program
statements are constructed as : head : �b1head : �b2::head : �bn (14)

wherebi represents a disjunct of the expression that was derived from the original expression by
eliminating the constructs_ and^. To illustrate this translation an example from the “gripper
problem” can be given. In the CCALC formalization of the gripper problem in [11], the below
rule written inC language says that: If the gripper of the robot is holding a ball it cannot pick up
another ball. The rule is in the form :

nonexecutable pickUp(B,G) if \/B1:isHolding(B1,G).



The corresponding causal rule returned by CCALC is in the form:

(false<-(o(pickUp(B,G),0)&& \/B1:h(isHolding(B1,G),0))&&true)

Elimination of_ results in the expression:

o(pickUp(B,G),0) && ((h(isHolding(ball1,G),0)) \/
(h(isHolding(ball2,G),0)) \/
(h(isHolding(ball3,G),0)))

Placing the expression in DNF results in the expression:

(o(pickUp(B,G),0) && (h(isHolding(ball1,G),0))) \/
(o(pickUp(B,G),0) && (h(isHolding(ball2,G),0))) \/
(o(pickUp(B,G),0) && (h(isHolding(ball3,G),0))) \/

The corresponding logic program statements are given below:

false :- o(pickUp(B,G),0), (h(isHolding(ball1,G),0))
false :- o(pickUp(B,G),0), (h(isHolding(ball2,G),0))
false :- o(pickUp(B,G),0), (h(isHolding(ball3,G),0))

IV FORMALIZING PLANNING PROBLEMS AS LOGIC PROGRAMS

CCALC takes a planning problem as a set of facts and goal states. For each fact, the time instance
at which it holds, and for each goal state, the time instance at which it should hold is given. On
the other hand, thecomputestatement of Smodels system doesn’t make any distinction between
facts and goals. Writing a literal in thecomputestatement means that the model of the system
should include this literal. Therefore the literals in thecomputestatement represent a conjunction.
Computestatement should include only ground literals.
One of the planning problems for the “gripper problem” givenas input to CCALC in [11] is as
follows:5

:- plan
label ::

0;
facts ::

0: /\B: at(B,room1),
0: /\B: color(B,white),
0: /\B: onFloor(B),
0: at(robot,room3);

goals ::
15: (\/B: color(B,red) && \/B: color(B,white) && \/B: color(B,blue)).

As in the previous case the translation starts with elimination of the constructs_ and^ if there
is any. Then for each fact and goal its corresponding ‘Conjunctive Normal Form’(CNF) is found.
For example for the goal:

15: (\/B: color(B,red) && \/B: color(B,white) && \/B: color(B,blue)).

5This is a simplification of the planning problem in [11].



the conjuncts are:

h(at(ball1,white),14) \/ h(at(ball2,white),14) \/ h(at(ball3,white),14)
h(at(ball1,red),14) \/ h(at(ball2,red),14) \/ h(at(ball3,red),14)
h(at(ball1,blue),14) \/ h(at(ball2,blue),14) \/ h(at(ball3,blue),14)

If the conjunct consists of only one literal it can be directly put in thecomputestatement, as in the
planning problem in section 2. Otherwise, a new rule with thesame head is created for each literal
in the conjunct. The case for the above goal statement is illustrated below and the corresponding
computestatement is given:

temp1:- h(color(ball1,white),14).
temp1:- h(color(ball2,white),14).
temp1:- h(color(ball3,white),14).

temp2:- h(color(ball1,blue),14).
temp2:- h(color(ball2,blue),14).
temp2:- h(color(ball3,blue),14).

temp3:- h(color(ball1,red),14).
temp3:- h(color(ball2,red),14).
temp3:- h(color(ball3,red),14).

compute 1{
h(at(ball1,room1),0), h(at(ball2,room1),0),
h(at(ball3,room1),0), h(color(ball1,white),0),
h(color(ball2,white),0), h(color(ball3,white),0),
h(onFloor(ball1),0), h(onFloor(ball2),0),
h(onFloor(ball3),0), h(at(robot,room3),0),
temp1, temp2, temp3
}.

V AN EXAMPLE

Applying the method described in the previous section to YSP, the following logic program is
obtained:

% Yale Shooting Problem with two guns
gun(g1).
gun(g2).

action(load(g1)).
action(load(g2)).
action(shoot(g1)).
action(shoot(g2)).

inertialFluent(alive).



inertialFluent(loaded(g1)).
inertialFluent(loaded(g2)).

inertialFalseFluent(alive).
inertialFalseFluent(loaded(g1)).
inertialFalseFluent(loaded(g2)).

inertialTrueFluent(alive).
inertialTrueFluent(loaded(g1)).
inertialTrueFluent(loaded(g2)).

fluent(alive).
fluent(loaded(g1)).
fluent(loaded(g2)).

hide.
show o(A,T).
show h(F,T).
show noth(F,T).

time(0). time(1). time(2).
step(0). step(1).
next(0,1). next(1,2).

% Only one action can be executed at a time
1{o(A,S): action(A)}1 :- step(S).
:- noth(F,T), h(F,T), fluent(F), time(T).

h(F,0) :- h(F,0),fluent(F).
o(A,S) :- o(A,S), action(A), step(S).
noth(F,0) :- noth(F,0), fluent(F).
noto(A,S) :- noto(A,S), action(A), step(S).

% Rules for implementing the classical negation
noth(F,0) :- not h(F,0), fluent(F).
noto(A,S) :- not o(A,S), action(A), step(S).

h(F,0) :- not noth(F,0), fluent(F).
o(A,S) :- not noto(A,S), action(A), step(S).

:- not h(F,T), not noth(F,T), fluent(F), time(T), T>0.
:- not o(A,S), not noto(A,S), action(A), step(S), S>0.

% The following rules are written by translating the causal theory
% returned by CCALC.

h(loaded(G),T1) :- o(load(G),S), step(S), time(T1),next(S,T1),
gun(G).



noth(alive,T1) :- h(loaded(G),S), o(shoot(G),S), step(S),time(T1),
next(S,T1), gun(G).

noth(loaded(G),T1) :-o(shoot(G),S), step(S), time(T1), next(S,T1),
gun(G).

h(IT,T) :- h(IT,S), not noth(IT,T), step(S), time(T), next(S,T),
inertialTrueFluent(IT).

h(DT,T) :- h(DT,T), defaultTrueFluent(DT), time(T), T>0.

noth(DF,T) :- noth(DF,T), defaultFalseFluent(DF), time(T), T>0.

noth(IF,T) :- noth(IF,S), not h(IF,T), step(S), time(T), next(S,T),
inertialFalseFluent(IF).

% The initial and final states
compute all{

h(alive,0), noth(loaded(g1),0), noth(loaded(g2),0), noth(alive,2)
}.

The Smodels system finds two stable models for this program. These are:

Answer: 1
Stable Model: noth(loaded(g1),0) noth(loaded(g2),0) h(alive,0)
noth(alive,2) o(shoot(g2),1) h(loaded(g2),1) noth(loaded(g2),2)
noth(loaded(g1),2) noth(loaded(g1),1) h(alive,1) o(load(g2),0)
Answer: 2
Stable Model: noth(loaded(g1),0) noth(loaded(g2),0) h(alive,0)
noth(alive,2) o(shoot(g1),1) h(loaded(g1),1) noth(loaded(g2),2)
noth(loaded(g2),1) noth(loaded(g1),2) h(alive,1) o(load(g1),0)

The first model gives a plan in which the gung2 is loaded and shooted and the second model
gives a plan in which the other gung1 is loaded and shooted.

VI CONCLUSION

In this research, the aim is to use the action description languageC to define actions and their
effects on fluents. By translatingC program to a logic program, it will be possible to combine the
expressiveness ofC with efficient computational techniques for logic programming. Finding the
stable model of the logic program using Smodels will providethe required planning for a given
domain.
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