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ABSTRACT

Action Languages are formal methods of talking about astemd their effects on fluents. One
recent approach in planning is to define the domains of thenpdg problems using action lan-
guages. The aim of this research is to find a plan for a systdimedein the action language
C by translating it into a causal theory and then finding an\edent logic program. The plan-
ning problem will then be reduced to finding the answer sab{stmodel) of this logic program.
This planner will be added as an extension to the Causal sy (CCALC) which is a model
checker for the language of the causal theories.

| INTRODUCTION

Plan generation plays an important role in Al research. Aofowork has been done on repre-
senting actions and generating plans. While reasoningtamion, some problems (such as the
frame, ramification, and qualification problems) have todkeh into account. It has been shown
[3] that these problems can be overcome to some extent bg gaunsal knowledge. CCALC,
which is a system written at the University of Texas, Ausfingds plans and reasons about the
actions defined in causal theories. Programs written in thieradescription languag€ can
be given as input to the CCALC system. CCALC translates thethé corresponding causal
theory. TheC language can express indirect effects, implicit precooilé, action preconditions,
nondeterminism, concurrent actions, and noninertial taie@ CALC gets the equivalent propo-
sitional representation of the problem by literal comgletand finds the models of the system
by using the available satisfiability solvers. (A user of ClGAcurrently has the choice of using
either “relsat” [13] or “sato” [4] as the satisfiability sax).

Another perspective to planning is to use logic programmirige language of logic programming
offers a reasonably expressive way, enabling us to desttrébeffects of actions. Also there is a



relation between logic programming and causal theoriebahlioth arenoncontrapositive As
is mentioned in [17] the difference between

p < not q Q)

and
q < notp (2)

is apparent both in logic programming and in causal thednigss lost if propositional logic is
used. The first sentence means that the absengésad cause fop, but this doesn’t mean that
the absence qf is a cause foq, which is what the second sentence says. To combine theafleas
logic programming with the use of expressive action desiondanguages, the domain described
in the action language can be translated into an equivalgit program. Our research will real-
ize this by first translating a program @ language to a causal theory and then the causal theory
to the corresponding logic program. The answer set of thgram will be used for planning or
guerying the plans found.

Causality is an important concept for nonmonotonic reagpwnihile working on action represen-
tations and their effects on the fluents. Situation calcwhbih specifies the effects of actions
using only domain constraints is too weak and cannot dedl thg well known problems such
as the frame, qualification, and ramification problems. Tference [3] adresses this problems
and intoduces a ternary predic&ausedo situation calculus to solve them. In this research the
formalism introduced by [12] will be used. According to tifismalism, one does not need to
know the cause of facts in order to determine whether a waslbty is causally possible. It is
sufficient to know the conditions under which the facts angsed. The causal theory is a set of
causal rules which are expressions of the form

¢ =1 (3

where¢ and+) are formulas of the underlying propositional language. ifibended reading of
(3) is: Necessarily, ifs then the fact that) is caused.

It is possible to formalize action domains using this nonatonic causal theory. To formalise
action domains three pair-wise disjoint sets are definedet afsaction namesa set offluent
namesand a set ofime instancesThe atoms of the language are expressions of the fayrasd
f: wherea, f, t are action, fluent and time instances respectivelyneans action occurs at time
t and f;, means fluent holds at time. In this formalism, the causes of the actions are not taken
into account and the following two schemas provide that ttioence of actions is exogendus
to the causal theory:

a; = a; (4)

fe= [t 5)

Also the initial values of the fluents are exogenous to theaktheory and this can be represented
using the following schemas:

fo= fo (6)
=fo= /o (7)

1An implication of the form—g < —p is the contrapositive of < ¢. In a noncontrapositive theory these two
statements don’t have the same meaning.
2An action or fluent iexogenoud its cause lies outside of the theory.




Inertia, that is a fluent doesn’t change its value unlesstigea reason for it, can be expressed
using the schema below, wheras a meta-variable for inertial fluent.

0t N Ot41 = Oy (8)

also be described and things that change by themselves candeded.

One of the ways of expressing the non-monoticity and negatsofailure in logic programming
is the “model theoretic” approach. In this approach, the el®af the program represent the
semantics of the program. Instead of doing query evaluatimttly, the intended meaning of
the program is obtained by finding its model. As an exampl&¢o‘todel theoretic” approach
the well-founded semantics, perfect model semantics, tiidesmodel semantics can be given.
Stable model semantics is related with auto-epistemiclofie stable model of a system is said
to be the rational beliefs of an agent. Every predicate ialblstmodel is “supported”, that is, have
a reason to be there. The Smodels system [6] is an implen@ntdithe stable model semantics
for range-restricted function-free normal programs.  tveo modules: one for finding the stable
model of a grounded program and one for grounding the givegea-aestricted program. There
are different front-ends of the Smodels but the richest efritiin terms of features is Iparse [15].

Il PLANNING WITH STABLE MODEL SEMANTICS

The aim of this research is to use logic programming and stataldel semantics for plan gen-
eration and add it as an option to the CCALC system. The giwenaih description irC will

be translated to a logic program and the logic program wiljlminded to obtain a ground logic
program. The Smodels system accepts ground logic prograchrads their corresponding sta-
ble model. The stable model of the program will then be usdthtbthe sought plan. There are
different ways of doing all these; one can either take thetimgitten inC and directly translate
it to a logic program or let CCALC translate it to causal theand then translate this causal
theory to a logic program. In our research, the latter adtéwe is chosen. Moreover, there are two
methods for grounding: let CCALC do grounding and get thaigtbcausal theory or let Iparse
do grounding, which is the front-end parser of Smodels. Inresearch the latter method will be
applied, because of efficiency consideration.

As a result, the execution steps will be in the following arde

e Get the causal theory of the planning problem from CCALC

e Translate it to an equivalent logic program

e Call Iparse to ground the program

e Call Smodels to get the answer set (stable model) of the anogr
e Extract the plan(s) from the stable model of the program

The translation task starts with getting the causal themmpnfCCALC system. During the trans-
lation, instead of using a different predicate for eachosctind fluent, two predicates will be used.
These aréholds’ and‘occurs’. The‘holds’ predicate is in the form

holds(F,T) 9)
meaning that fluerf holds at timeT. The’occurs’ predicate is in the form

occurs(A,T) (20)



meaning that action A occurs at time T.

One problem is that the early versions of Smodels doesné biassical negation, but this problem
can be easily solved, as suggested in [17], by introduciaganedicates standing for the negations
of holdsandoccurs The following four rules are used for handling the cladsiegation problem:

not hol ds(F,0) :- not holds(F,0), fluent(F).

not occurs(A, 0) :- not occurs(A 0), action(A).
hol ds(F,0) :- not notholds(F,0), fluent(F).
occurs(A,0) :- not notoccurs(A 0), action(A).

.- not holds(F, T), not notholds(F, T), fluent(F), time(T), T>0.
.- not occurs(A, S), not notoccurs(A S), action(A), step(S), S>0.

The other rules of the logic program are obtained by traimgjahe causal theory produced by
CCALC. As an example, a solution to the Yale Shooting Prolp¥s#) [15] will now be revis-
itec®.

The constantsaindvariablesare declared as follows

gun(gl).
gun(g2).

action(load(gl)).
action(load(g2)).
action(shoot(gl)).
action(shoot(g2)).

Time is represented using the predicdtese st ep andnext :

time(0). time(l). tine(2).
step(0). step(l).
next (0,1). next(1,2).

st ep is used to make sure that no action takes place at the lasptime
All of the causal rules returned by CCALC are translated éocibrresponding logic programming
rules. For example, the rule:

shoot (G causes -alive if | oaded(GQ.

becomes
-h(alive,1) <- h(loaded(G,0) &% o(shoot(G,0) && true
which in turn translated to:

not hol ds(alive, T1) :- holds(loaded(G,T),
occurs(shoot (G, 1),
time(T),
next (T, T1),
gun( Q.

3This example is for giving a complete overview of the tratistatask. More detailed information about the
translation will be given in section 3 and 4
4Some of the declarations are omitted for the sake of sintylici



The initial state and the goal state of the planning domawrigen in thecomputestatement of
Smodels. For example, for YSP the initial condition is thatthbof the guns are unloaded and the
turkey is alive and the goal to be reached is that the turkdgasl at time 2. So the corresponding
computestatement is:

conmput e al |l { hol ds(unl oaded(gl), 0), hol ds(unl oaded(g2), 0),
hol ds(al i ve, 0), notholds(alive, 2)

}.

The initial state is:
hol ds(unl oaded(gl), 0) hol ds(unl oaded(g2),0) holds(alive,0)
The goal state is:

not hol ds(al i ve, 2)

[11  TRANSLATION OF CAUSAL RULESTO LOGIC PROGRAM
Causal rules returned by CCALC are in the form:
head <= body (11)

wherehead andbody can be any kind of logical formulas constructed with the tatss &&,
++, —, <, V, A. Here && stands for “and”, ++ for “or”— for “only if”, <« for “if and only if”,
vV for “there exist” andh for “for all”.
Translation starts first by eliminating the construgtand A if there is any. For each expression
in the form

VXF(X) (12)

whereF(X) is an expression having the free varialld he instantiation oK results in the formula

F(ay) + +F(a3)... + +F(ay,) (13)

whereaq; is a constant in the domain of the varialeThe same method applies to the construct
A, but in this case ++ is replaced with &&.

The next step is placing this formula in the ‘Disjunctive N@ Form’ (DNF). The logic program
statements are constructed as :

head : —b;
head : —by

(14)
head : —b,

whereb; represents a disjunct of the expression that was derivedl fine original expression by
eliminating the constructs andA. To illustrate this translation an example from the “grippe
problem” can be given. In the CCALC formalization of the grgp problem in [11], the below
rule written inC language says that: If the gripper of the robot is holdinglaibeannot pick up
another ball. The rule is in the form:

nonexecut abl e pickUp(B, G if \/Bl:isHolding(Bl,G.



The corresponding causal rule returned by CCALC is in thnfor
(fal se<-(o(pickUp(B,G,0)&& \/B1l: h(isHol di ng(B1, G, 0)) &t r ue)
Elimination of v results in the expression:

o(pi ckUp(B, G, 0) && ((h(isHol ding(balll,G,0)) \/
(h(i sHol di ng(bal 12,3, 0)) \/
(h(i sHol di ng(bal 1 3,3, 0)))

Placing the expression in DNF results in the expression:

(o(pi ckUp(B, §, 0) && (h(isHol ding(balll,G,0))) \/
(o(pi ckUp(B, §, 0) && (h(isHol ding(ball2, G,0))) \/
(o(pi ckUp(B, G, 0) && (h(isHol ding(ball3,G,0))) \/

The corresponding logic program statements are given below

false :- o(pickUp(B,G,0), (h(isHolding(balll, G,0))
false :- o(pickUp(B,G,0), (h(isHolding(ball2, G,0))
false :- o(pickUp(B,G,0), (h(isHolding(ball3,G,0))

IV FORMALIZING PLANNING PROBLEMSASLOGIC PROGRAMS

CCALC takes a planning problem as a set of facts and goabkstate each fact, the time instance
at which it holds, and for each goal state, the time instahe@ehach it should hold is given. On
the other hand, theomputestatement of Smodels system doesn’t make any distinctitweas
facts and goals. Writing a literal in tr@omputestatement means that the model of the system
should include this literal. Therefore the literals in teenputestatement represent a conjunction.
Computestatement should include only ground literals.

One of the planning problems for the “gripper problem” gianinput to CCALC in [11] is as
follows:®

;- plan
| abel
0;
facts ::
0: /\B: at(B,roontl),
0: /\B: color(B,white),
0: /\B: onFl oor(B),
0: at(robot, roonB);
goals ::
15: (\/B: color(B,red) & \/B: color(B,white) & \/B: color (B, blue)).

As in the previous case the translation starts with elinmmabf the constructy and A if there
is any. Then for each fact and goal its corresponding ‘Cartjue Normal Form’(CNF) is found.
For example for the goal:

15: (\/B: color(B,red) & \/B: color(B,white) & \/B: color (B, blue)).

5This is a simplification of the planning problem in [11].



the conjuncts are:

h(at (bal | 1, white), 14) \/ h(at(ball2, white), 14) \/ h(at(ball3, white), 14)
h(at (bal | 1, red), 14) \/ h(at(ball2,red),14) \/ h(at(ball3, red), 14)
h(at (bal I 1, bl ue), 14) \/ h(at(ball2, bl ue), 14) \/ h(at(ball3, bl ue), 14)

If the conjunct consists of only one literal it can be dirggtut in thecomputestatement, as in the
planning problem in section 2. Otherwise, a new rule withsdume head is created for each literal
in the conjunct. The case for the above goal statement &#lted below and the corresponding

computestatement is given:

tenpl:
tenpl:
tenpl:

t enp2:
t enp2:
t enp2:

t enp3:
t enp3:
t enp3:

h(color(ball1,white), 14).
h(col or(ball 2,white), 14).
h(col or(ball 3,white), 14).

h(col or(ball 1, bl ue), 14).
h(col or(ball 2, bl ue), 14).
h(col or (bal | 3, bl ue), 14).

h(color(balll1,red), 14).
h(col or(ball 2,red), 14).
h(col or(ball 3,red), 14).

comput e 1{
h(at(ball 1, rooml),0), h(at(ball2,roontl), 0),
h(at (bal | 3, roonl), 0), h(color(balll, white),0),

h(col or(ball 2,white), 0),

h(col or(ball 3,white), 0),

h(onFl oor (ball 1),0), h(onFl oor(ball?2),0),
h(onFl oor (ball 3),0), h(at(robot,roonB), 0),

tenpl,

}.

tenp2, tenp3

V AN EXAMPLE

Applying the method described in the previous section to,¥B® following logic program is
obtained:

% Yal e Shooting Problemw th two guns

gun(gl).
gun(g2) .

action(load(gl)).
action(load(g2)).
action(shoot(gl)).
action(shoot(g2)).

inertial Fluent (alive).



nertial Fl uent (1 oaded(gl)).
nerti al Fl uent (1 oaded(g2)).

nerti al Fal seFl uent (alive).
nerti al Fal seFl uent (1 oaded(gl)).
nerti al Fal seFl uent (1 oaded(g2)).

nertial TrueFl uent (alive).
i nertial TrueFl uent (1 oaded(gl)).
i nertial TrueFl uent (1 oaded(g2)).

fluent(alive).
fluent (1 oaded(gl)).
fl uent (1 oaded(g2)).

hi de.

show o(AT).
show h(F, T).
show not h(F, T).

time(0). time(l). tine(2).
step(0). step(1).
next (0,1). next(1,2).

% Only one action can be executed at a tine
1{o(A ' S): action(A)}1 :- step(9).
- noth(F, T), h(F, T), fluent(F), tinme(T).

h(F,0) :- h(F,0),fluent(F).

o(A'S) :- o(A'S), action(A), step(S).
noth(F,0) :- noth(F,0), fluent(F).
noto(A,S) :- noto(A'S), action(A), step(S).

% Rul es for inplenenting the classical negation
noth(F,0) :- not h(F,0), fluent(F).
noto(A, S) :- not o(A'S), action(A), step(S).

h(F,0) :- not noth(F,0), fluent(F).
o(A,’S) :- not noto(A S), action(A, step(S).

.- not h(F, T), not noth(F, T), fluent(F), tinme(T), T>0.
.- not o(A'S), not noto(A, ' S), action(A), step(S), S>0.

% The following rules are witten by translating the causal theory
% returned by CCALC.

h(l oaded( G, T1l) :- o(load(Q,S), step(S), tine(Tl), next(S, T1),
gun( G .



noth(alive, T1) :- h(loaded(G,S), o(shoot(Q,S), step(S),time(Tl),
next (S, T1), gun( Q.

not h(l oaded( G, T1) :-o(shoot(Q,S), step(S), tinme(Tl), next(S, T1l),
gun( Q.

h(IT,T) :- h(IT,S), not noth(IT,T), step(S), time(T), next(S,T),
inertial TrueFluent(IT).

h(DT,T) :- h(DT, T), defaultTrueFluent(DT), time(T), T>O0.
noth(DF, T) :- noth(DF, T), defaultFal seFluent(DF), tinme(T), T>0.

noth(lIF T) :- noth(lIF,S), not h(IF, T), step(S), tinme(T), next(S,T),
i nertial Fal seFl uent (I F).

% The initial and final states
conpute all{

h(alive, 0), noth(loaded(gl),0), noth(loaded(g2),0), noth(alive, 2)
}.

The Smodels system finds two stable models for this progrdresd are:

Answer: 1

St abl e Mobdel : not h(I oaded(gl), 0) not h(| oaded(g2),0) h(alive, 0)
not h(alive, 2) o(shoot(g2),1) h(loaded(g2),1) noth(loaded(g2), 2)
not h(l oaded(gl), 2) noth(loaded(gl),1) h(alive, 1) o(load(g2), 0)
Answer: 2

St abl e Model : not h(1l oaded(gl), 0) not h(l oaded(g2),0) h(alive,0)
not h(alive, 2) o(shoot(gl),1) h(loaded(gl), 1) noth(loaded(g2), 2)
not h(| oaded(g2), 1) noth(l oaded(gl),?2) h(alive, 1) o(load(gl), 0)

The first model gives a plan in which the ggR is loaded and shooted and the second model
gives a plan in which the other gyl is loaded and shooted.

VI CONCLUSION

In this research, the aim is to use the action descriptioguageC to define actions and their
effects on fluents. By translatir@program to a logic program, it will be possible to combine the
expressiveness @ with efficient computational techniques for logic programgn Finding the
stable model of the logic program using Smodels will prowige required planning for a given
domain.
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