The Ontic Probability Interpretation of Quantum Theory

Part III: Schrödinger's Cat and the 'Basis' and 'Measurement' Pseudo-Problems

Felix Alba-Juez
Felix Alba-Juez, Publisher
Saint George, Utah (USA)
April 4, 2021
https://felixalbajuez.com

Abstract

Most of us are either philosophically naïve scientists or scientifically naïve philosophers, so we misjudged Schrödinger's "very burlesque" portrait of Quantum Theory (QT) as a profound conundrum. The clear signs of a strawman argument were ignored. The Ontic Probability Interpretation (TOPI) is a metatheory: a theory about the meaning of QT. Ironically, equating Reality with Actuality cannot explain actual data, justifying the century-long philosophical struggle. The actual is real but not everything real is actual. The ontic character of the Probable has been elusive for so long because it cannot be grasped directly from experiment; it can only be inferred from physical setups that do not morph it into the Actual. Born's Rule and the quantum formalism for the microworld are intuitively surmised from instances in our macroworld. The posited reality of the quanton's probable states and properties is probed and proved. After almost a century, TOPI aims at setting the record straight: the so-called 'Basis' and 'Measurement' problems are ill-advised. About the first, all bases are legitimate regardless of state and milieu. As for the second, its premise is false: there is no need for a physical 'collapse' process that would convert many states into a single state. Under TOPI, a more sensible variant of the 'measurement problem' can be reformulated in non-anthropic terms as a real problem. Yet, as such, it is not part of QT per se and will be tackled in future papers. As for the mythical cat, the ontic state of a radioactive nucleus is not pure, so its evolution is not governed by Schrödinger's equation -- let alone the rest of his "hellish machine". Einstein was right: "The Lord is subtle but not malicious". However, 'The Lord' turned out to be much subtler than what Einstein and Schrödinger could have ever accepted. Future articles will reveal how other 'paradoxes of QT' are fully explained under TOPI, showing its soundness and potential for nurturing further theoretical/technological advance.

List of Acronyms

QT	Quantum Theory	TOPI	The Ontic Probability Interpretation
EPR	Einstein/Podolsky/Rosen Paper	EPRB	EPR-Bohm Gedankenexperiment
RT	Relativity Theory	$P D$	Probability Distribution
$S D$	Standard Deviation of a $P D$	$P I$	Physical Interaction
$G I$	Gauge Interaction	$T M$	True Measurement
RT-time	Time as conceived in RT	QT-Time	Time to be conceived in revised RT
$M B$	Milieu Basis	$Q E I$	Quanton Emission Interaction
$P D I$	Pure-Detection Interaction	$P T I$	Pure-Transformation Interaction
$P E I$	Pure-Entanglement Interaction	$I T I$	Intrinsic Tele-Interaction

Introduction

Soon after the EPR paper was published, Einstein and Schrödinger had copious epistolary interaction [1] [2] [3] [4]. Many years before, Einstein had conceived a keg of unstable gunpowder that could spontaneously explode -- alleging the inadequacy of QT because (so he thought) it described the reality of the gunpowder state as a fictitious superposition of contradictory 'exploded' and 'not exploded' states. So inspired, by the end of 1935 [5], Schrödinger wrote:

SCHR1: It is also possible to construct very burlesque cases. Imagine a cat locked up in a room of steel together with the following hellish machine (which has to be secured from direct attack by the cat): A tiny amount of radioactive material is placed inside a Geiger counter, so tiny that during one hour perhaps one of its atoms decays, but equally likely none. If it does decay then the counter is triggered and activates, via a relay, a little hammer which breaks a container of prussic acid. After this system has been left alone for one hour, one can say that the cat is still alive provided no atom has decayed in the meantime. The first decay of an atom would have poisoned the cat. In terms of the ψ-function of the entire system this is expressed as a mixture of a living and a dead cat.

Despite the 'very burlesque' and 'room of steel' qualifiers, and the grossly misleading last sentence, the above excerpt triggered a pseudo-philosophical conundrum that has lamentably lasted till today. The uncertain fate of this imaginary cat "expressed as a mixture of a living and a dead cat" seems to mysteriously morph into a definite happy or regrettable outcome, epitomizing the so-called 'Measurement Problem' and wrongly inspiring the idiom 'cat states' for 'entangled states'. In addition, it has become the frivolous benchmark applied to any interpretation of QT. As for the related so-called 'Basis Problem', it is rooted in the belief that the infinitude of bases -in terms of which QT allows the quanton's state to be depicted- are 'incompatible'; that we are compelled to choose one 'preferred' basis for each experimental situation (context) and, ergo, that all those representations cannot describe a single physical reality.

Schrödinger also identified entanglement as the "characteristic trait of quantum mechanics", defended EPR's flawed conclusions [3] [4] [6], and went further by hinting that -beyond being incomplete- there were serious faults in the very foundation of QT [7] [5] [8]. He scorned those "repugnant conclusions":
SCHR2: It is suggested that these conclusions, unavoidable within the present theory but repugnant to some physicists including the author, are caused by applying non-relativistic quantum mechanics beyond its legitimate range [8].

Schrödinger seemed to sensibly imply that macro-entities were beyond QT's legitimate range. But, even as late as 1952, he stated that humans were "not experimenting with single particles any more than we can raise icthyosauria in the zoo", suggesting that QT was not applicable to individual micro-objects either so that, applying it, "invariably entails ridiculous consequences" [9]. Like Einstein, he viewed probability as exclusively epistemic (like in Statistical Mechanics).

Most of us are either philosophically naïve scientists or scientifically naïve philosophers and mistook Schrödinger's caricature of QT as a profound enigma. In my opinion, he derisively conceived his iconic thought experiment in the macroworld for maximum impact with a message primarily directed to the microworld. The clear signs of a strawman argument were unnoticed. Remarkably, almost a century later, the 'measurement problem' is still considered unsolved. In

2013, Antoine Suarez asserted that "Quantum physics has still to solve for instance the so-called measurement problem (Schrödinger cat paradox)" [10] .

TOPI aims at setting the record straight: the so-called 'Basis' and 'Measurement' problems, as widely stated in the literature, are ill-advised, viz pseudo-problems. However, we will see that, as stated by Gisin [11] and treated by Drossel and Ellis [12] [13], their 'measurement problem' can be reformulated in non-anthropic terms, becoming a valid, important, and fascinating challenge.

1. Classical Physics vis à vis QT/TOPI

From the very beginning of our scientific endeavor, we assumed that those relevant physical properties that manifest with the state of a system had definite values representable by real numbers, and that they could be -in principle- measured with infinite precision. Were the actual precision not good enough, a better technique and/or instrument could be developed to improve it. If having accurate-enough values for those properties at a given time, our predictions at later times were not good enough, a better theory could be developed to improve them by reconsidering unrealistic hypotheses, including ignored cause-effect relations, adding neglected interactions with the system's exterior, admitting the occurrence of events first thought to be improbable, etc. Whether to predict the system's evolution or to experimentally confirm those predictions, measurement was and is crucial in Science. In our TOPI jargon [3] [4], a tenet of Classical Physics was that every GI (Gauge Interaction), regardless of the state of a system, could be improved and refined until it became a TM (True Measurement).

Heisenberg, determined in 1925 to devise a purely phenomenological theory of the atom, declared that the electron's position, speed, and orbit were unobservable and therefore they would play no role in his theory. Instead, radiation's frequency, intensity, and polarization were declared observables because they could be accurately measured by spectroscopic techniques. He also avowed the atom's energy level as observable, despite being indirectly inferred, and radiation's phase as unobservable, despite its significant role in his theory. But all observations are inferential: nobody doubts the reality of UV light -- despite its being theoretically inferred from its effects. Likewise, in a Wilson chamber, we see the aligned water droplets and interpret them as produced by a single elementary 'particle' that hits larger particles along its path, inducing condensation of supersaturated vapor. Pithily: no theory with which to infer, no physical magnitude to observe.

Though cursorily ignored, there are innumerable attributes of macro-objects which are not intrinsic to them but to the relation with their milieus. In fact, all attributes which are relative to the spacetime reference frame are necessarily not innate but extrinsic properties of a physical object. Examples are position, velocity, length, mass, kinetic energy, potential energy, time interval, etc. All these attributes have an intrinsic component (e.g. 'proper mass', 'proper length', 'proper time') and an extrinsic part due to the object's interaction with its milieu (e.g. gravitational and/or electromagnetic potentials) or simply due to the reference frame. Likewise, in an inertial frame for which a wave source is in repose, frequency is intrinsic to the wave, while velocity and wavelength are extrinsic, i.e. a joint property of wave and medium. This extrinsic character of some physical properties has nothing to do with the observer's subjectivity: it is an objective fact ensuing from the interactional nature of those properties, the meaning of 'reference frame', and from how the external world is.

Classical Physics had assumed that the variability associated with repeatedly measuring a physical attribute under the same conditions was inherent to the measurement process itself and
had nothing to do with the attribute -- which had to have only one numerical value. The notion of a random variable was thus conceived to represent such inherent variability of data collection. It was natural to introduce the anthropic term uncertainty of the actual value for the physical magnitude as well as precision and accuracy for the measurement. Had the variability been due to a subtle deeply embedded intrinsic variability of the physical attribute, there was no way to know it. Determinism was hence a hypothesis believed to be amply confirmed -- until new experimental evidence to the contrary accumulated, giving birth to QT. Even so, the belief was so strong that the emerging theoretical scaffold -needed to accommodate the new evidence- was persistently conceived and explained (still is) with the anthropic processes of measurement and cognition -instead of around a Reality being progressively unveiled [14] [15] [16] [17] [18] [2].

Despite Aristotle's Metaphysics considering actuality and potentiality as different forms of Being (though he ultimately gave supremacy to actuality), in modern science (as clearly indicated by EPR's Reality Criterion [1] [3]), Reality and Actuality are -even today- deemed synonyms. In Classical Physics only the actual was real, while the probable was a potentiality which could eventually become actual ('realized'). But, oddly against our collective acumen, the potential (yet unrealized) was (via deterministic laws) as determined as the actual. Such a view is a persistent pernicious remnant of the Neopositivist School that assimilated Reality only with anthropic direct observation/measurement (which only detects actualities). As a result, to be real, all states and properties had to be/become actual and, to be/become actual, they had to be, could have been, or would be observed and/or measured in our RT's spacetime. Ergo, using probability was only a faute de mieux to palliate our ignorance of those presumed actual values.

For a classical attribute we needed only one random variable to quantify the variability of the data collection process. In QT/TOPI, instead, the physical attribute is itself a random variable so two random variables are needed: one to quantify the attribute's innate randomness and another to quantify the precision of the experimental technique. Conflating the two variabilities (attribute and experiment) is the main reason for the conceptual muddle surrounding the 'Principle of Uncertainty' [1] [3]. But for the attribute's inherent variability to be experimentally confirmed, the precision of the experimental data had to be much higher than the attribute's variability; otherwise, the latter would have been swamped by the former. It was the ability of researchers to arrange for experiments involving ionization chambers, Wilson chambers, bubble chambers, photographic emulsions, photomultipliers, electron multipliers, etc. that produced the astonishing new evidence.

In the simpler discrete case, to ascertain the innate stochastic nature of a physical attribute, we conduct a large number of 'identical' GIs and, for most of the system's initial states (one by one) we find a large variability in the results. However, upon further analysis, we realize those results can be classified into groups clustering around some discrete values, each group with its own Mean and $S D$. The latter small variability corresponds to that of the GI process per se; the former larger variability unveils the intrinsic stochasticity of the physical property. Furthermore, for a few initial states we may find there is only one such group, i.e. the property behaves deterministically, with its variability ascribable only to experiment. In QT argot, they correspond to the eigenstates and eigenvalues of the operator associated with the physical property. In such cases, and only if the state around which the data points cluster is the same as the initial state, the GI is a $T M$ [3] [4].

1.1. The Adoption of the Real Number Continuum

Continuity of time, space, and most physical magnitudes is a hypothesis about the physical world which has proven very fruitful -- even in the microworld where the discrete nature of matter cannot be ignored. Mathematical continuity is an abstraction inspired by our sensorial experiences: we often experience two pairs of perceptions/measurements (A, B) and (B, C) such that A is indiscernible from B ($A=B$ by Leibniz's Identity of Indiscernibles) and B is indistinguishable from $C(B=C)$; however, our perception/instrumentation may distinguish A from $C(A \neq C)$, imposing a blatant non-transitivity of the equality relation. This inconsistency is resolved with the abstract notion of mathematical continuity, by virtue of which magnitudes so small that they cannot be individually perceived by our senses or measured by our instrumentation (infinitesimals) are still different but, upon accumulation (integration) become perceivable or measurable [15]. This valuable abstraction, which created a non-denumerable set of non-computable numbers, triggered the birth of the so-called 'real' number and the powerful differential and integral calculi.

A denumerable set of real numbers (e.g. $\pi, e, \sqrt{2}$) are computable but most are not -- which means that their representation in any base (radix) contains an infinite sequence of digits that cannot be algorithmically calculated, viz it contains an infinite subsequence which is truly random. Thus, a single real number can represent an infinite amount of information and could be used, e.g. to codify all imaginable questions and their answers in every human language. Some abstraction! And, astonishingly, we use this infinitely powerful construct (with a random component) to represent a 'definite' value for a single physical property, initial state, position of a single pointobject, etc. This is the source of the so-called deterministic chaotic behavior that systems display when their presumed deterministic evolution is hypersensitive to initial conditions or real-time perturbations, i.e. when the random digits of pertinent variables are significant.

It is also usually argued that, because a non-zero volume of space is needed to physically store information, while a point (zero volume) in our physical space is represented by three real numbers (each capable of 'storing' infinite information), then, as richly uttered by Gisin, "the so-called real number is not really real" [19]. Three 'real' with three different meanings, all applied to an abstract entity. In my humble opinion, information is different from its physical storage in the same way a number is different from its embodiment in a computer. As every mathematical tool, 'real' and even 'imaginary' numbers (irrespective of their highly misleading names [17]), represent Reality well in many senses and poorly (even wrongly) in many others. For instance in QT, the eigenstates of position are Dirac's Delta 'functions' (Schwartz's distributions) which, not being normalizable, cannot represent physical pure states by themselves; even so, they are the building blocks in terms of which physical pure states are successfully depicted via superpositions (Equations 9).

Because of the mentioned identification of Reality with Actuality, Operationalism has played a crucial role in the conception and definition of many physical properties. For instance, Einstein, while conceiving RT, realized that the measurement of 'velocity' for distant events was logically vitiated -- which is the reason behind his conventionality of simultaneity. In fact, the meaning of 'velocity' rests on the notions of space interval and time interval; however, the measurement of the latter requires synchronization at the distant endpoints of the former, which circularly requires the velocity of some synchronizing signal [14] [20] [21] [22]. For reasons to be gradually revealed, we will refer to the time so defined by RT via measurement as 'RT-time'.

But, as the termini of the spatial interval get closer, the relevance of synchronization vanishes and, remarkably, the mathematical concepts of continuity, limit of a sequence, and derivative allow us to speak of, and work with, velocities at a point in space and at a point in time -- concealing the need for physical (finite) intervals of both space and time. In this way, Newton gave to his intuitive ideas of 'spatial point', 'instant velocity', and 'instant acceleration' a rigorous analytical meaning. As for their synthetic significance, 'instant' and 'spatial point' are only useful abstractions, whose physical meaning and quantification change with the 'case in point' (pun intended). The same can be said for the abstraction of a 'point-object' for which the ideas of instant velocity/acceleration as well as its instant physical properties are directly applied.

Nonetheless, in practice, a temporal rate of spatial change requires at least two locations and two corresponding instants. The smaller the time interval is, the smaller the space interval is supposed to be, and the more effective the ratio is to estimate what the position was a little earlier (retrodict) or will be a little later (predict). This assertion is based on assuming the continuity of motion, which means that if we know/measure the rate of change based on the near past then we can use it to predict the near future and that, were we to perform the infinite sequence of ratios implicit in the definition, such a sequence would converge (both on the past and future sides) to a well-defined number declared to be the instantaneous velocity. Note as well that trying to compute the ratio for closer and closer instants requires higher and higher numerical precision in the values for closer times and the object's closer positions. The meaning of 'close' is contextual: claiming that all positions in the continuum between two close-enough locations exist in our macroworld (let alone in the microworld) is merely an analytic assertion. The mathematical geniuses of Newton and Leibniz allowed us to ignore the real process: a physical transition between two states that may or may not occur. Ergo (and this is a usually unrecognized part of the century-long philosophical struggle), any differential equation is also (disguisedly) expressing the present in terms of the near future, instead of only the near future in terms of the present. Likewise for the rate of change of any other physical property whose continuity as a function of time is assumed.

Frequency (another temporal rate) and wavenumber (a spatial rate) of a wave are different: even though we speak as if they are properties the wave has at a given instant and location, frequency has no physical import unless we refer to a time interval including multiple cycles, and wavenumber has no physical meaning unless we refer to a space interval including several wavelengths. Ergo, they are not punctual but whole properties of the extended-in-spacetime object we call a wave. But unlike for time, space, and instant properties of point-objects, this assertion has nothing to do with converting intervals into points via a mathematical limit, and all to do with the meaning of the concepts. Hence, even if we assume the continuity of space, time, frequency, and wavenumber, the mathematical trick played on velocity (via derivatives) does not work. In Social Statistics, we all know how to meaningfully interpret a 'tenth of a person' and how meaningless it becomes as the size of the ensemble decreases down to the individual -- calling for a different theoretical approach. Similarly, in Physics, Bohr -to explain atomic spectra- replaced the derivative of Energy with respect to Action (tangent to the curve) with the secant so that, as Action and Energy increased, secant and tangent became indiscernible, and radiation frequencies for single/multiple-level energy drops approached the fundamental/harmonics of the electron's mechanical frequency around the nucleus. The high energy and small relative changes, which are characteristic of the macroworld, explain the countless successes of Classical Physics [23] [18].

To conclude: the abstract 'Real Number Continuum' is as immensely useful as conceptually misleading. As will be proven throughout this paper, keeping in mind the difference between Reality and its symbolic depiction is crucial to understand this marvelous Universe of ours.

1.2 From the Macroworld to the Microcosm

Regarding the concept of state in QT, Schrödinger said in 1935:
SCHR3: The classical concept of state becomes lost, in that at most a well-chosen half of a complete set of variables can be assigned definite numerical values... It would be of no help to permit the model to vary quite "unclassically" perhaps to "jump". Already for the single instant things go wrong ... If I wish to ascribe to the model at each moment a definite (merely not exactly known to me) state, or (which is the same) to all determining parts definite (merely not exactly known to me) numerical values, then there is no supposition as to these numerical values to be imagined that would not conflict with some portion of quantum theoretical assertions [5].

The brilliant mind of Schrödinger presaged/condensed both Bell's theorem of 1964, and Bell-Kochen-Specker theorem of 1966/67 [24] [25] [26]. So he was right but, philosophically, he was wrong. In full agreement with EPR [1], Schrödinger believed that: a) only properties with "definite numerical values" are real (probabilities are not); and b) being probabilities merely epistemic (definite values "merely not exactly known to me"), QT is not only incomplete à la EPR, but internally inconsistent and, ergo, wrong. We will show that, per TOPI, both premises and conclusions are flawed and the direct result of believing that there is no Reality without Actuality.

1.2.1 The Important Notion of Milieu Basis (MB)

Having shown that, even in our macroworld, many physical properties are not inherent to the object but determined jointly with its milieu, the notion of Milieu Basis ($M B$) is essential in both Classical and Quantum Physics. Despite their many drastic differences, both classical and quantic states are conceptually comprehensive in the sense that they incorporate all possible milieus (PIs) the object might encounter. This is so despite the object's current state being fully specified (deterministically or stochastically) by its previous PI and -in general- not all its physical properties being defined for all states. Except in the few cases in which the milieu is irrelevant, the current MB is pinpointed solely by the current milieu (i.e. irrespective of the current state) as a distinct set containing the next states for the object.

In QT lingo, the states in the current $M B$ are the common eigenvectors of all the commutative Operators (speciously called 'Observables') associated with the current milieu (PI). Each operator corresponds to a physical property, with the former's eigenvalues being the latter's possible next values. Among a multitude of bases, the $M B$ is the only one that, when used to express the object's current state, not only directly reveals its next states, but also directly quantifies their probable transitions. Of course, if the physical state is mathematically represented as a member of a vector space, any other basis -though indirectly-could do the same. Let us understand this generic concept and its consequences with some concrete instantiations.

1.2.2 The Galton/Popper Bean Machine and its Milieu Bases

Under TOPI, it is not the Universe that is deterministic while we can use probability to mitigate our ignorance: it is our Universe that is inherently stochastic and, on many occasions (particularly in our macroworld), we can successfully suppose it is deterministic. Most science museums
display some embodiment of Galton's quincunx (bean machine) as a practical illustration of the 'Central Limit Theorem' in Probability Theory. Karl Popper worked on the interpretation of QT with some of his ideas explained using his 'pinboard' [27] [28] [29]. I will stochastically predict how a ball traverses the device (Figure 1/right) under a slight gravity gradient along the columns. Remarkably, despite the macroscopic nature of the ball and its milieu, the appearance of some of the philosophical enigmas of QT (still controversial after a century) is unavoidable.

Figure 1: Probability of a Single Macro-object in Galton's Quincunx
A discrete spacetime reference frame is naturally set by pins and holes, with the first coordinate for vertical position (and discrete time) and the second for horizontal position. Figure 1 shows 14 rows and 25 columns. This grid of times and horizontal positions are operationally defined and measured per RT's synchronization technique, allowing us to correlate actual positions of the ball with actual RT-times. Though we could certainly define a finer grid, due to the relative size of ball and holes, the already-invalid point-object abstraction would get even worse so the classical ball's state, defined by the punctual position/momentum of its mass center, fails. To name a few: mass, size, shape, and elastic properties of ball and pins would be crucial for attempting a deterministic description. But minuscule differences among pins, and how the ball glances off them would drastically change the bin into which it finally falls. Whether you insist on the existence of the chimerical Laplace's Demon or not, it is a matter of moot opinion. Moreover, the number of variables to be included in the ball's state and milieu, their needed infinite precision, and the
ensuing impossibility of the reproducibility test (vital to assess the theory), justify my stance that this macro-system -despite common wisdom- is ontically stochastic.

In sum, once the sensitivity of the system's evolution to initial conditions, physical properties, and milieu reaches the random digits in their numerical representations, we cannot claim ignorance about something innately undetermined, so probability cannot be epistemic. Gisin reaches the same conclusion that Classical Physics is inherently non-deterministic through 'Intuitionistic Mathematics', a school of thought that considers a real number not an entity whose infinite digits are given all at once (David Hilbert's universally accepted view) but a temporal process per se (Luitzen Brouwer's stance) [30] [31] [32]. In my modest opinion, such a radical view is not necessary: TOPI retains Hilbert's stance by treating abstract states/properties as random variables.

We define the ball's current state in a way that, instead of univocally determining its next state, it determines (jointly with the milieu) the probabilities for all possible next states. When the ball is at $(0,13)$, even though right after glancing off a pin in a row the ball can only interact with its contiguous pins in the row below (its local milieu), there are 78 possible ball/pin interactions (PIs) before it reaches one of the 13 collecting bins. This is the global milieu. Our hypotheses are: a) all local PIs are indistinguishable irrespectively of pin and ball genidentities and positions in the machine [17] [18]; b) all local PIs are independent; and c) the probabilities for the ball to fall left or right of a pin are equal. With those premises, all 78 local PIs can be described with structurally the same state-transition equation. Because the ball's position is important as one of its properties for each state, I will denote [$j, k]$ the ball's state when it is about to hit the pin located at (j, k), and express it (capriciously for now) as follows:

$$
\begin{equation*}
[j, k]=(1 / 2)[j+1, k-1]+(1 / 2)[j+1, k+1] \tag{1}
\end{equation*}
$$

I have expressed the current state as a convex superposition of its two possible next states. The adjective 'convex' means that the coefficients in the superposition are real non-negative numbers adding to unity. This must be so because we chose them to be probabilities. In plain English, if the ball hits a pin in a row, then there is a 50% chance of subsequently hitting the pin to the left, and a 50% chance of hitting the pin to the right in the row right below. By extension, we will refer to these states as 'convex states'. Note a convex superposition is not of the type used in QT for the so-called 'pure' states, in which the coefficients are complex numbers whose squared moduli are the probabilities. Such superpositions would not achieve our purpose for this system, with Schrödinger's Equation useless as well. To distinguish them, we will call the latter type '2superpositions' and the convex type ' 1 -superpositions'. We will see that the so-called mixed states and our co-states of composite quantons are also expressible as 1 -superpositions. Likewise (and against common wisdom) for the radioactive nucleus controlling the fate of the poor cat in Schrödinger's contraption.

With the ordinary meaning of the words 'actual' and 'probable', we could say that at RT-time j the state $[j, k]$ is actual, while both states on the right side of Equation 1 are probable because one of them shall become actual at RT-time $j+1$. Gradually reducing the gravity gradient, which of the probable states would become actual could be ascertained by us in real time well before the ball reaches the row below -- realizing their probable status only exists in the blurry narrow spacetime interval in which the ball/pin encounter occurs. In sum, though for most of the RT-time in the quincunx the ball's state is actual, there are poorly defined brief periods during which two probable states coexist as such. TOPI contends that the two (in this case ephemerous) states during
the PI are ontically probable, i.e. probable not because they may eventually become actual, but because, though evanescent, they are as real as the long-lasting actual ones between PIs are.

Note that: (a) before and during the PI at pin (j, k), the ball is not in two actual states at once (let alone two actual positions); it is in the actual state $[j, k]$ that encompasses, and is expressed in terms of, its two real probable next states; (b) each probable next state is correlated with a cluster of physical paths all leading to either the pin on the left or to the pin on the right in the next row; (c) after the PI, only one of the two probable states becomes actual. Though as real as the ball is, its states (and properties) are only attributes that come and go as the ball evolves so there is no magic in the 'disappearance' of one of the probable states. An actual transition from state $[j, k]$ to either state $[j+1, k-1]$ or state $[j+1, k+1]$ has occurred. However, due to their evanescence, such positing of reality for probable states of a macro-ball is inconsequential (even whimsical), explaining why our commonsense directs us to presuppose that the ball's state is always actual, i.e. always observable and/or measurable (at least in principle). Assertions (a) and (b) illustrate what we will call a 'Pure Transformation Interaction' (PTI), while (c) shows what we will call a 'Pure Detection Interaction' (PDI). Both are parts of a typical 'Gauge Interaction' (GI) [3] [4].

From Equation 1, the state-space for the local PI at (j, k) is a bidimensional real vector space with its current Milieu Basis $M B_{j+1}^{j}=\{[j+1, k-1],[j+1, k+1]\}$. We will refer to the states in a basis as eigenstates. Notice that: a) the transition probabilities are given directly by the coefficients; b) no current state can belong to the current $M B$, so the next state is always different from the current state; c) except for the initial ball discharge onto the first pin, the $M B$ cardinality is greater than unity; and d) the current physical state, expressed as a superposition of eigenstates for the current PI, is also an eigenstate for the previous PI (i.e. a member of $M B_{j}^{j-1}$). The same physical state $[j, k]$ is expressed in different bases, i.e. via different superpositions. Let us now see that this unique but simple mathematical representation is not as capricious as it seems.

Looking at Figure 1 (top-left), we keep the initial state fixed at $[0,13]\left(t=t_{0}\right)$, whose local milieu basis is $M B_{1}^{0}=\{[1,13]\}$ and change the milieu by sequentially redefining the final time until the ball is about to fall into a collecting box $\left(t=t_{12}\right)$. In the process, new milieu bases $M B_{2}^{0}=\{[2,12],[2,14]\} ; M B_{3}^{0}=\{[3,11],[3,13],[3,15]\} \ldots$ are determined by the augmented set of possible PIs in each row, and the mathematical expression for the initial state $[0,13]$ in terms of the subsequent bases can be efficiently updated by recursively applying Equation 1:

$$
\begin{gather*}
{[0,13]=[1,13]=\frac{1}{2}[2,12]+\frac{1}{2}[2,14] \quad \Rightarrow \quad[0,13]=\frac{1}{4}[3,11]+\frac{1}{2}[3,13]+\frac{1}{4}[3,15]} \\
\Downarrow \\
{[0,13]=\frac{1}{8}[4,10]+\frac{3}{8}[4,12]+\frac{3}{8}[4,14]+\frac{1}{8}[4,16]} \tag{2}\\
\vdots \\
\Downarrow
\end{gather*}
$$

We started spanning the initial state $[0,13]$ in terms of the only eigenstate in $M B_{1}^{0}=\{[1,13]\}$ and ended expressing the same state $[0,13]$ in terms of the 13 eigenstates (collection bins) in $M B_{13}^{0}$. During our intellectual process, the initial state did not change but, as RT-time elapsed, the milieu
did change -- with its corresponding change of $M B$, i.e. the possible next states. The last statetransition equation corresponds to a PI in which the ball interacts with the whole pinboard. At a given iteration, each coefficient of the superposition of eigenstates gave us the probability for the ball (if started in $[0,13]$) to be in that eigenstate, i.e. to hit that pin when reaching that row. All superpositions represent the same initial state of the ball, but the coefficients are the real probabilities only when using the basis defined by the ball's current milieu. In QT, this temporal description is known as the 'Heisenberg's picture' in which the initial state does not evolve in time, while the Operator whose eigenvectors define the $M B$ does change in time.

Clearly, using the generic local PI (Equation 1) plus the global topology of the network of PIs, we can predict the probability for the ball to reach any state from any state. The convex superposition of states offers a recursive formalism that covertly adds the probabilities of disjunctive (U) events (mutually exclusive paths to hit a pin) and multiplies the probabilities of conjunctive (\cap) events (pins hit within each path). This is the pragmatic reason behind adopting the state-transition 1-superposition of next states in Equation 1.

Had we playfully referred to the set of all coefficients in the final superposition (Equation 2) as the ' ψ-wavefunction', it would simply be the $P D$ for the next states when the current state is $[0,13]$ and the milieu is the whole pinboard -- regardless of which actual path the ball would undergo before reaching a bin. And the actual bin the ball falls in is, of course, not affected by our confining the quincunx in a "room of steel" only to be open after the ball traversed the machine. To assess the accuracy of the predicted $P D$, we could run a single ball a large number of times (recording the bin where it fell and feeding it back to the quincunx) or filling up the feeder with 'identical' balls so we could see in real time how they pile up while approximating the Gaussian $P D$. In either case, statistically interpreting the results, about 23% of the balls would be in bin B7, about 19% in B6 and B8, about 12\% in B5 and B9, and so forth (Figure 1 - bottom left and right).

Now assume we, "without in any way disturbing the system" [1] [3], experimentally determine that at time, say t_{3}, the ball is about to hit pin $(3,11)$, i.e. it is in state $[3,11]$. Is this knowledge of ours affecting the future evolution of the ball? Of course not. It is not our knowledge but the fact that the ball is now in state $[3,11]$ and, furthermore, the last two collector bins B_{12} and B_{13} are now unreachable by the ball. Obviously, such state/milieu change would have occurred anyway without our cognition. If we ignore our knowledge, our original probabilities are still epistemically useful were we to launch a large set of balls from the feeder, because the fractions of balls in the bins would agree with the probabilities in Equation 2 (bottom). However, if -of all those runs- we only tabulated the ones for which the ball did hit pin $(3,11)$, the new fractions would not agree with the predicted $P D$. The current state encompasses all possible milieus, but the $P D$ depends on both the current state and the current milieu. You may ignore or not be aware of what has happened, but Nature does neither.

But if we accounted for the fact that the ball did hit pin $(3,11)$ at t_{3}, the superposition for $[0,13]=(1 / 4)[3,11]+(1 / 2)[3,13]+(1 / 4)[3,15]$ appears to have collapsed to the single eigenstate $[3,11]$. There is however no mysterious physical 'collapse of the wavefunction' here: just a physical transition from a single actual state $[0,13]$ to a single actual state $[3,11]$ because only one of the three probable states may and has become actual. The latter transition is the combined result of two previous transitions at times t_{1} and t_{2}. But, with this new current state, we can now iteratively apply Equation 1 again arriving at an expression for [3,11] in terms of the eigenstates in row 13 (bins) with different coefficients (probabilities), i.e. with a different
wavefunction. The probabilities of reaching the last two bins on the right are now zero as they should be once the ball hits the pin $(3,11)$. The ball's state evolves with RT-time, and this fact has nothing to do with our reference frame or state of knowledge. In QT, this temporal description is known as the 'Schrödinger's picture' in which the current state (wavefunction) does evolve in time, while the operator whose eigenvectors define the $M B$ (comprising all 78 eigenstates) does not. The coefficients of the superposition (state components) change with time. It is formally equivalent to the previously described Heisenberg's picture. Notice though that the temporal evolution for the state allows for some of its initial non-zero components to evolve into zero, further invalidating Schrödinger's Equation.

Here is a different change of milieu: if we -as the ball travels- laterally sloped the quincunx to add a slight gravity gradient along the rows, would its probability of reaching one of the bins change? Yes, it would because, depending upon toward which side the quincunx was tilted, one of the coefficients in Equation 1 must be higher no matter where the ball was at that moment. The $P D$ in Figure 1 would be altered. We still could claim Laplace's Superman powers and state that if we knew enough about the system, its evolution could be deterministically predicted. Under such wishful attitude, probability would be merely epistemic but, even so, by its having factually changed for the single ball upon a change in milieu, a cogent case could be made against its being just a figment of our imagination or merely a statistical property of an ensemble of balls.

Furthermore, were we to remove the pin at, say, location $(6,12)$, Equation 1 would not be valid for state $[6,12]$ because the ball would go straight down the hole $(7,12)$. The superposition for any current state $[j, k](j=1,5)$ in terms of $M B_{13}^{j}$ might change (depending on k), with the $P D$ for a single ball changing accordingly. Of course, the ball does not 'know' whether the pin is there or not. For the photon, Feynman colorfully argued that, by scraping away parts of a mirror (making a diffraction grating), it reflected "where you didn't expect any reflection" [33]. We see that it happens even with a macro-object. It seems mindboggling because we have been pre-programmed to think in a certain way (in terms of dynamic causal chains in spacetime) for centuries.

Summing up: the probability of reaching a collector bin for a single run is a property of the ball's state plus its milieu. The current state is probabilistically determined by the previous PI (it is in the previous $M B$), but the current $P D$ for the next states depends on both the current state and the current MB. Upon the removal of a pin, it is the milieu that changes with no need for any physical 'communication' between the places where the pin was removed and where the ball was at the time. If you insisted on postulating a causal dynamic action between the pin-removal event and the change in the $P D$ for the ball, then you would have to embrace Einstein's 'spooky action at a distance' as a ubiquitous occurrence in our quotidian activities. It is certainly ubiquitous and real, but not a causal dynamic process in RT-spacetime; 'nonlocality' or 'spacelike interaction' are better terms. EPR removed nonlocality from QT's Ontology by fiat because RT, as conceived by Einstein, could not predict it [3] [4] [1].

1.2.2.1 Does the Concept of Classical State become Lost in the Concept of Convex State?

In Schrödinger's sense (SCHR3): no, it does not get lost. Not being deterministic, for every current state, several next states exist with different probabilities, with the convex superposition encoding those next states and state-transition PD. The system's stochasticity belongs to a blurry vanishingly small spacetime interval in which each PI occurs. No current state belongs to the current MB, all states at each RT-time are actual, and all properties are determined for each actual
state, with all potential states/properties well defined but not determined until they become actual in due RT-time. Given initial and final states, there are multiple actual (mutually exclusive) trajectories, each one with a different probability. Yet, for any state, "definite numerical values" can be assigned to a "complete set of variables". Clearly, Schrödinger's denounced conflict does not exist, so stochasticity per se cannot be the culprit. However, the quantum state SCHR3 refers to is what QT calls a 'pure' state, not our 'convex' state for the quincunx's ball. In fact, as we saw, despite our contention that probable states in the quincunx are ontic, it is inconsequential and ergo sensible to believe that the ball's convex state is actual at all conceivable times -- in which case probability can be considered as epistemic (Einstein's and Schrodinger's philosophical view).

1.2.3 The Pendulum and its Milieu Bases

Now we turn to the classical harmonic oscillator: a mechanical system whose dynamics is so stable that a non-chaotic deterministic description is easily attainable. To describe the small-swing motion of a pendulum's bob, we assume it is an ideal point-object of mass m that interacts with an ideal milieu comprising: a) ideal frictionless air; b) an ideal rigid line-rod of length L that can frictionlessly oscillate in a plane around a fixed point, and to which the bob is rigidly attached; and c) the local gravity field \vec{g}, always exerting on the point-bob a vertical-down force $m \vec{g}$. Being the motion of the point-bob planar, the gravity force $m \vec{g}$ to which it is exposed can be decomposed as a superposition of any two non-parallel vectors, i.e. any basis for \mathbb{R}^{2}. But, for the position of the point-bob at which the line-rod makes an angle θ with the vertical (Figure $2 / \mathrm{left}$), there is one distinct basis that cogently relates the theory's Ontology, Foundation, and Structure [3] -- allowing for straight prediction/explanation. Simpler: this unique basis for the gravity force allows to easily apply motion and gravitation laws. It comprises two unit-vectors, one parallel to the line-rod (\hat{r}) along which the point-bob cannot move, and the other, orthogonal to it (\hat{t}), which is the only direction along which the bob may move. The basis $\{\hat{r}, \hat{t}\}$ changes with the bob's position.

From Figure 2, with θ negative to the left of the vertical, $m \vec{g}=m g(\cos \theta \hat{r}-\sin \theta \hat{t})$, and with the approximation for small swings $\sin \theta \cong \theta$, we get $m \vec{g}=m g \cos \theta \hat{r}-m g \theta \hat{t}$. Because of the 'rigidity' of the line-rod, the first component is counterbalanced impeding the bob to move along \hat{r}, while the second component is the restoring force responsible for the bob's acceleration.

Being $q=L \theta$ the pathlength covered by the bob and $p=m \dot{q}$ its momentum, Newton's Second Law becomes: $\dot{p}+(m g / L) q=0$. Hence, the bob's classical state-space is bidimensional and defined by the numerical values of q and p. Another way to describe the motion is using Hamiltonian dynamic equations in state-space:

$$
\begin{gather*}
H(q, p)=\frac{p^{2}}{2 m}+\left(\frac{m g}{2 L}\right) q^{2} \Rightarrow \quad \dot{q}=\frac{\partial H}{\partial p}=\frac{p}{m} \quad ; \quad \dot{p}=-\frac{\partial H}{\partial q}=-\frac{m g q}{L} \\
\Downarrow \tag{3}\\
\dot{p}+(m g / L) q=0 \Rightarrow \underline{s}=\left[\begin{array}{l}
q \\
p
\end{array}\right] \Rightarrow \underline{\dot{s}}=\left[\begin{array}{cc}
0 & 1 / m \\
-m g / L & 0
\end{array}\right] \underline{s}=\underline{A} \underline{s} \Rightarrow \underline{s}=e^{\underline{A} t} \underline{s}_{0}
\end{gather*}
$$

The first line in Equations 3 tells us that the system state (q, p) evolves infinitesimally to the next state via a repeated transformation the heart of which is the Hamiltonian function $H(q, p)$. Hamilton's equations establish a mapping of lawful transitions from one state to another in state-
space. This feature underscores the similarities Hamilton discovered between mechanical motion and wave propagation; it is homologous to Huygens-Fresnel technique for the construction of the equiphase surfaces in Wave Optics. Notice that, because friction was neglected, the total mechanical energy is conserved and the gravity force $-m g q / L$ is calculated as $-\partial V / \partial q$, with the potential $V(q)=(m g / 2 L) q^{2}$. It is the potential $V(q)$ in the Hamiltonian that conveys the changing milieu as the bob oscillates -- with the corresponding changing basis $\{\hat{r}, \hat{t}\}$ for the force.

Figure 2: Milieu Bases for a Pendulum, a Light Beam, and an Atomic Beam
The second line in Equations 3 shows that, representing the state as a column vector, the equation of motion becomes a first order matrix differential equation that is structurally isomorphic to Schrödinger's Equation, and whose solution is the ubiquitous exponential $\underline{s}=e^{\underline{A} t} \underline{S}_{0}$, with the initial state being $\underline{s}_{0}=\left[q_{0} p_{0}\right]^{T}$. Discretizing time via $t=k \Delta t$, we obtain:
$\underline{s}_{k+1}=e^{A \Delta t} \underline{s}_{k} \Leftrightarrow \underline{s}_{k}=e^{-\underline{A}^{A} t} \underline{s}_{k+1} \Rightarrow \underline{S}_{k+n}=\left\{e^{A \Delta t}\right\}^{n} \underline{S}_{k} \Leftrightarrow \underline{s}_{k}=\left\{e^{\underline{A} \Delta t}\right\}^{-n} \underline{s}_{k+n}$
The first recursive equation expresses the only possible next state \underline{S}_{k+1} given the current state \underline{s}_{k}; the second equivalently expresses the only possible previous state \underline{s}_{k} given a current state \underline{s}_{k+1}. The next two equations relate two states separated by n time steps: after/before n steps, the factor relating the two states is the contiguous-state exponential to the $n /-n$ power. Evidently, with no heat dissipation, the bob/milieu PI is reversible: there is a one-to-one relationship between
initial states and corresponding trajectories, so there is only one lawful trajectory and initial state with and from which the bob could have reached a given final state and, ergo, retrodiction is as univocal as prediction. In the real macroworld, heat dissipation destroys such a bijection.

Time discretization created a grid of actual times, positions, and momenta operationally defined/measured per RT's synchronization technique. This technique allows to correlate actual states of the bob with actual RT-times. It is presumed to be valid for arbitrarily small Δt (implicit in the notion of momentum). Hence, the current state is considered always actual and real, while future states are potential because -though not real yet- they will unavoidably become actual and real after some elapsed time. Despite not being real in Classical Physics, potentiality is as determined as actuality because the former is fixed by deterministic laws. A potential state must become actual. Again: this is plainly against our experience in everyday life -- though a steadfast determinist would insist that you are simply not knowledgeable enough.

From the special basis $\{\hat{r}, \hat{t}\}$ for the gravity force and the dynamic Equations 3, we can infer what the $M B$ for each current classical state is. Because the next state is univocally determined, the current $M B_{k+1}^{k}$ contains only one state, viz $\underline{s}_{k+1}=e \underline{A}^{A} \Delta \underline{s}_{k}$. Even more, unless initially the rod is vertical and in repose $\left(\underline{s}_{0}=[0,0]^{T}\right)$-in which case there is no evolution- no two previous and current MBs have common states. And, because position and momentum are components of the classical state, both are determined not only for the current actual state but for every potential state well before they become actual. In fact, in agreement with SCHR3, "a complete set of variables" have "definite numerical values" at "each moment". Furthermore, they are determined all the way back to the initial state and well beyond into the future (while the system remains closed). Obviously, though we already proved that stochasticity is not the culprit for Schrödinger's denounced conflict, he had determinism in mind when describing "the classical concept of state". Let us now prove that no state à la QT can be conceived for a deterministic system.

1.2.3.1 There is no State à la QT for the Deterministic Evolution of the Pendulum

Let us understand the difference between the concepts of state in Classical and Quantum theories by contriving a state à la QT for the deterministic pendulum. Please note that I am not trying to prove how its deterministic evolution can be obtained using the QT formalism. Indeed, in the latter, Newton's Second Law takes the form $d\langle\mathcal{P}\rangle / d t=-\langle\partial \mathcal{V} / \partial q\rangle$ with \mathcal{P} and \mathcal{V} the momentum and potential operators. Under appropriate conditions (typically valid for macrosystems only if heat dissipation is negligible), the expression becomes $d\langle\mathcal{P}\rangle / d t=-\partial\langle\mathcal{V}\rangle / \partial\langle q\rangle$ which is our equation $\dot{p}+(m g / L) q=0-$ if we think of p and q as the mean values of their respective random variables. What I am trying to do, instead, is to show that it is impossible to use the concept of quantum state to directly describe the dynamics of a deterministic system.

Loosely using Dirac's ket-notation, we will refer to such state as $\left|s_{k}\right\rangle$ ('quantic' state at time $k \Delta t$). Per QT, any representation of this 'quantic' current state would have to directly reflect the transition probability to the next state $\left|s_{k+1}\right\rangle$ via a linear relation between the two. Also, this new state would have to indirectly reflect the components of the classical state \underline{s}_{k}, not as its own components but as physical properties associated with it. But being the classical theory deterministic, $M B_{k+1}^{k}=\left\{\left|s_{k+1}\right\rangle\right\}$ and the probability for the transition from the current state to the only next state must be unity. Hence, the coefficient for the inevitable next state in the superposition must be unity. In symbols, to meet those QT requirements, we set the following correspondences, leading to a trivial and absurd state-transition equation:

$$
\begin{array}{ccc}
\left|s_{k}\right\rangle \leftrightarrow \underline{s}_{k}=e^{\underline{A} \Delta t} \underline{S}_{k-1} & ; & \left|s_{k+1}\right\rangle \leftrightarrow \underline{s}_{k+1}=e^{\underline{A} \Delta t} \underline{s}_{k} \\
\operatorname{Pr}\left(\underline{s}_{k} / \underline{s}_{k-1}=1\right) & ; & \operatorname{Pr}\left(\underline{s}_{k+1} / \underline{s}_{k}=1\right) \\
& \Downarrow \\
& \left|s_{k}\right\rangle=1 .\left|s_{k+1}\right\rangle \tag{5}
\end{array}
$$

This is of course pure nonsense because, despite the bottom state-transition equation saying that our concocted 'quantic' state does not change with time, the physical properties q and p (the components of the classical state) do change deterministically via the correspondences in the first line. Such a description would certainly be incomplete as EPR claimed [1] [3] [4]. The reason is that in QT the state-transition equation (superposition) is a relation among the current state and the probable next states, not between actual different states. In QT/TOPI jargon: next and current states can be equal only when the current state belongs to the current $M B$ while, in this system, contiguous $M B$ s are disjoint (except, when the bob starts from repose in the vertical position). As long as both q and p have different "definite numerical values" at "each moment" (SCHR3), the state-transition Equation 5 (bottom) will remain absurd when describing a deterministic system.

Wrapping up, from the two macrosystems we have so far discussed, conventional wisdom seems to suggest that Schrödinger's conflict with the classical concept of state may only appear in the microworld. To debunk such a belief and uncover the origins of the quantic concept of a pure state, we need to look at macro-objects whose extrapolation down to the single quanton is (unlike for the pendulum and the quincunx) not only conceptually sensible but technologically feasible. High-intensity light and atomic beams are cases in point.

1.2.4 Milieu Bases for High-Intensity Light

Only in our macroworld is the notion of electric and magnetic fields propagating as a wave valid to describe/explain light. Math depiction of electric fields includes complex numbers, whose moduli and phases allow us to describe/understand their interference, after which the squared modulus of the net electric field (light intensity) at different places on a screen is responsible for the distinctive light/dark pattern upon diffraction. Despite the aura of magic Born's Rule enjoys, the underscored 'squared' and 'net' qualifiers for the field is all we need to understand why such rule governs the microworld in a way that everything we know of the macroworld still is valid.

Light emission is a non-continuous process because a real monochromatic source, instead of an infinitely long harmonic wave (an obvious abstraction), intermittently emits trains made of millions of cycles with random and abrupt changes in phase. In addition, because a real light source comprises trillions of atoms whose radiations are uncorrelated, the electric vector does not stay in the same plane while spatially oscillating but varies haphazardly from train to train. This is so for the sun, flames, and incandescent lamps, and we say such light is unpolarized. We also say the macro-object called light is in a mixed state because it can be represented as a uniform mixture of all possible linear polarizations -- i.e. the electric vector oscillates along straight lines which, from train to train, make all possible angles with respect to a reference in the plane orthogonal to the propagation axis. The distance the wave travels with the same polarization/phase is the 'coherence length' (a few micrometers for sunlight). Laser light is so special precisely because it can sustain extended temporal and spatial coherence.

Despite wave propagation being tridimensional, its polarization can be fully described in a plane. Besides, any linearly polarized wave can be expressed as a combination of two waves linearly polarized in two orthogonal directions with the same phase. It can also be expressed as a superposition of right-handed and left-handed circularly polarized waves in equal proportions and appropriate phases and, by varying those proportions and phases, any elliptically polarized wave can be obtained. Conversely, any circularly/elliptically polarized wave can be synthesized by suitably combining two orthogonal linearly polarized waves with an appropriate phase difference. Tersely: the state-space for the polarization of high-intensity light is bidimensional.

1.2.4.1 Polarizing Filters

Sunglasses transmit vertically polarized light and absorb horizontally polarized light. They are made of a plastic sheet with long molecular chains, which has been heated, mechanically stretched to align the molecules, cemented to a rigid plastic, and dipped into a solution of iodine. If the light's electric field is parallel to the molecular chain (stretch direction), valence electrons from the iodine dopant oscillate, energy is degraded into heat, and light is absorbed; if the field is orthogonal to the stretch direction, electrons hardly oscillate, energy is not degraded, and light goes through. Thus, the material's transmission (optic) axis is orthogonal to its stretch (absorption) axis. A plastic sheet so made is called a polarizing filter (PF) with the following general behavior: 1) the intensity coming out of the PF is a maximum when perpendicular to the light propagation axis; 2) the electric vector after the PF is along its optic axis and, ergo, light comes out fully and linearly polarized; 3) rotating the PF while perpendicular to the light propagation axis changes the output intensity; and 4) the rest of the light intensity is absorbed by the PF, degrading into heat.

Once the input electric vector is projected along the plane defined by the PF , it can be decomposed along any two independent (non-parallel) directions in such a plane (a basis for \mathbb{R}^{2}); however, there is one distinct basis: the stretch (absorption) and its orthogonal (transmission) axes. Those two directions can be represented by unit-vectors, i.e. vectors whose Euclidean norm is unity and for which, despite still dealing with legions of photons, I will use Dirac's ket-notation (you will see why). Let us call $|t\rangle$ the transmission and $|a\rangle$ the absorption axes so that $M B=$ $\{|t\rangle,|a\rangle\}$. This basis is defined in our physical space exclusively by the light's milieu (PF), irrespectively of the light's input electric field. Correspondingly, and because light intensity is proportional to the squared modulus of the electric field, we define the light input state $|s\rangle$ also as a unit-vector via the Euclidean norm. Doing so, the square of each of its components is the ratio between the intensities of component and total input fields with their sum equal to unity. This is drastically different to the quincunx's state, in which the straight sum of its components was unity.

Figure 2 (top right) shows how the input (current) state $|s\rangle$ is expressed as a superposition of the eigenstates in the $M B$, where θ is the angle between the input electric vector \vec{E}_{i} and the PF's optic axis $|t\rangle$. Clearly, once light went through a PF at a given orientation, it will go fully through subsequent PFs with the same orientation $(\theta=0)$, preserving its polarization. In such a case, light's input state belongs to the $M B$ and passes through without changing its state, i.e. the current state is an eigenstate for the $P I$, and the $G I$ is a $T M$. Note the difference with the quincunx and the pendulum, whose current state never is in the current $M B$ (except for the non-evolution case). It also shows that, because the component of the current state along $|a\rangle$ is absorbed into heat, the output (next) state is $|t\rangle$, so that $\langle t \mid s\rangle=\cos \theta$ (dotted black curve) and the ratio of intensities is $\langle t \mid s\rangle\langle s \mid t\rangle=\cos ^{2} \theta$ (solid red curve). The latter is known as 'Malus Law'. Note as well that the
next state is a 'collapsed' version of the current state. Also, because the mean value of $\cos ^{2} \theta$ is $1 / 2$, and unpolarized light is a uniform mixture of all polarization angles θ, an ideal PF -regardless of its orientation in space- transmits 50% and absorbs 50% of the incoming light intensity. The PI between sunlight and a PF is thus sui generis: it is selectively binary by equally distributing a continuит of input polarization directions among two (discrete) privileged directions defined by the PF's $M B$, of which only one goes through as light.

Remarkably, even though the current state of light (before the current PI) appears to depend on θ, it is fully determined by the previous PI. This is because the state -by its very ontic natureencompasses all reactions to all possible PIs (all possible orientations of the milieu) and it is the expression of the state in terms of the $M B$ that makes explicit the value of θ. This angle is a property of neither light nor its milieu (PF) but of the spatial relation between them. Only after the $M B$ is singled out by the milieu, the angle θ is defined and the expansion of the current state in terms of the members of the $M B$ is determined. Of course, any other basis for the state-space could legitimately be used, but $M B$ is the one that cogently relates the theory's Ontology, Foundation, and Structure -- allowing for straight prediction and explanation [3]. Yet, it is unwarranted to assert that $M B$ and its associated superposition are 'physical' or the 'realized' basis and superposition.

As an example, to the right of the plot, Figure 2 depicts in dotted line a large PF sheet on the side of the light source (behind the page) whose optic axis is horizontal, and a smaller PF sheet on our side in solid line whose optic axis is vertical. Ergo, light between the PFs is horizontally (H) polarized and fully absorbed by the second PF. No light can go through two PFs whose optic axes are orthogonal. Formally, to find the state after the $P I$ with the first PF, we express the input state in terms of the first $M B$, light leaving in a state along the PF optic eigenstate; we then express this latter eigenstate of the first $M B$ in terms of the eigenstates in the new $M B$ (second PF), light being fully absorbed $\left(\cos ^{2} \pi / 2=0\right)$. But, had the angle been 45°, we would have had for the second PF: $|s\rangle=(\sqrt{2} / 2)|t\rangle+(\sqrt{2} / 2)|a\rangle ; \vec{E}_{o} /\left\|\vec{E}_{i}\right\|=(\sqrt{2} / 2)|t\rangle ;\left|s_{o}\right\rangle=\vec{E}_{o} /\left\|\vec{E}_{o}\right\|=|t\rangle$; and for the ratio of intensities: $\left\|\vec{E}_{o}\right\|^{2} /\left\|\vec{E}_{i}\right\|^{2}=1 / 2$. Thus, 50% of the light would have been absorbed and 50% transmitted. Notice the crucial difference between this $50 / 50$ behavior being only valid for $\theta=45^{\circ}$, and the 50/50 behavior of unpolarized light occurring regardless of the PF's orientation.

Below the plot, a third PF -whose optic axis is diagonal- is inserted between the previous two showing that light reappears: the 'horizontal' light out of the first ' H ' filter does have a diagonal component, which goes through the interposed oblique ' D ' filter. But now this diagonal component does have a 'vertical' component, which goes through the ' V ' filter. From the vector diagrams, the electric fields spatially 'interfere' to produce a perplexing behavior of intensities. Let us now allow the so far 'absorbed' state $|a\rangle$ to 'show up' as light.

1.2.4.2 Beam Splitters

A beam splitter (BS) is an optical device that spatially splits each of two input high-intensity light beams into two shared output beams. In a common embodiment, two triangular glass prisms are glued together. Another variation is the so-called half-silvered mirror, a sheet of glass or plastic with a thin reflective metal coating. Again, the state in each output channel is the 'collapsed' version of the input state as spanned in the BS's $M B$, but now the two outcoming electric vectors coexist in actuality because light, as a macro-object, does split into two measurable beamlets, one in each physical channel. Depending on the BS's type, there may be different phase shifts between
outputs and inputs. For a lossless BS, and expanding input states $\left|i_{1}\right\rangle$ and $\left|i_{2}\right\rangle$ in the $M B$ defined by the output states $\left(M B=\left\{\left|o_{1}\right\rangle,\left|o_{2}\right\rangle\right\}\right)$, the following matrix equations are valid:

$$
\begin{align*}
& {\left[\begin{array}{l}
\left|i_{1}\right\rangle \\
\left|i_{2}\right\rangle
\end{array}\right]=\left[\begin{array}{cc}
t_{11} e^{i \varphi_{11}} & r_{12} e^{i \varphi_{12}} \\
r_{21} e^{i \varphi_{21}} & t_{22} e^{i \varphi_{22}}
\end{array}\right]\left[\begin{array}{l}
\left|o_{1}\right\rangle \\
\left|o_{2}\right\rangle
\end{array}\right]=\underline{B S}\left[\begin{array}{l}
\left|o_{1}\right\rangle \\
\left|o_{2}\right\rangle
\end{array}\right]} \\
& \mathbb{\imath} \tag{6}\\
& {\left[\begin{array}{l}
\left|o_{1}\right\rangle \\
\left|o_{2}\right\rangle
\end{array}\right]=\left[\begin{array}{cc}
t_{11} e^{-i \varphi_{11}} & r_{21} e^{-i \varphi_{21}} \\
r_{12} e^{-i \varphi_{12}} & t_{22} e^{-i \varphi_{22}}
\end{array}\right]\left[\begin{array}{l}
\left|i_{1}\right\rangle \\
\left|i_{2}\right\rangle
\end{array}\right]=\underline{B S}^{\dagger}\left[\begin{array}{l}
\left|i_{1}\right\rangle \\
\left|i_{2}\right\rangle
\end{array}\right]}
\end{align*}
$$

No bijection exists among input/output pairs because any input high-intensity beam can split, and any output beam may come from any or both input beams. However, Equations 6, as a transformation between input and output column vectors, is unitary because $\underline{B S}^{-1}=\underline{B S}^{\dagger}$. This reversible transformation can be viewed as taking place between previous and current MBs.

Energy conservation and reciprocity demand: $t_{11}=t_{22}=T$ and $r_{12}=r_{21}=R$ for the transmission and reflection coefficients; $T^{2}+R^{2}=1$; and the sum of the phase difference between the reflected and transmitted states in each output channel equal to 180°, i.e. $\left(\varphi_{12}-\varphi_{11}\right)+$ $\left(\varphi_{21}-\varphi_{22}\right)=\delta_{1}+\delta_{2}=\pi$. For instance, as depicted in the above diagram, per Fresnel Equations, for a mirror with a substrate of glass and a dielectric coating with a refractive index (RI) somewhere between that of glass and air, input state $\left|i_{1}\right\rangle$ hits the coating from air (low to high RI) with the transmitted state $\left|o_{1}\right\rangle$ in phase with the input ($\varphi_{11}=0$), and the reflected state $\left|o_{2}\right\rangle$ with opposite phase $\left(\varphi_{12}=\pi\right)$-- making $\delta_{1}=\pi$. Instead, input state $\left|i_{2}\right\rangle$ hits first the glass and then the coating (high to low RI) so both the transmitted state $\left(\left|o_{2}\right\rangle\right)$ and the reflected state $\left(\left|o_{1}\right\rangle\right)$ are in phase with the input ($\varphi_{21}=\varphi_{21}=\delta_{2}=0$) -- making $\delta_{1}+\delta_{2}=\pi$. Such a BS is asymmetric, while a symmetric BS would have $\delta_{1}=\delta_{2}=\pi / 2$.

1.2.4.3 Polarizing Beam Splitters

An important type of BS is the Polarizing Beam Splitter (PBS). Ideally, all the intensity of the input light is split into two output beams, each fully polarized along orthogonal directions. As with the PF, the input field can be decomposed into two orthogonal directions defined by the PBS so that the input state $|i\rangle=\cos \theta\left|o_{1}\right\rangle+\sin \theta\left|o_{2}\right\rangle$. And, because the mean value of both $\cos ^{2}$ and $\sin ^{2}$ functions is $1 / 2$, when receiving unpolarized light, 50% of a PBS' input light intensity goes through one of its output channels and the other 50% of the light goes through the other channel. Ergo, if the input light is fully polarized along one of the PBS optic axes, all light comes out with the same polarization in one channel, and no light goes through the other channel. But, if the incoming light is polarized with say 30° relative to the transmission axis, then the ratio between the magnitudes of the transmitted field and the incoming field is $\cos \left(30^{\circ}\right)=\sqrt{3} / 2$, while the ratio for the deflected field and the incoming field is $\sin \left(30^{\circ}\right)=1 / 2$. The sum of their squares is (ideally) unity. Polarization and physical channel are correlated: which channel (transmitted or deflected) tells you which polarization. But, despite its physical significance, it is unjustifiable to affirm that the $M B$ and associated superposition are real: light, its states/properties, and the milieu (PBS) are the ones that are real. Bases and superpositions are abstract tools.

As shown graphically and symbolically below, a PBS may have two inputs $\left|i_{1}\right\rangle$ and $\left|i_{2}\right\rangle$, with the transmission and deflection axes for each input channel being orthogonal. In this case, the same output channel may carry light with orthogonal polarizations from different inputs. Understanding how this two-input PBS works is crucial for our probing and proving the ontic character of probability in Section 3. By design, the transmission and deflection axes for $\left|i_{2}\right\rangle$ are rotated 90° from those for $\left|i_{1}\right\rangle$. Ergo, the transmission axis for $\left|i_{1}\right\rangle$ and the deflection axis for $\left|i_{2}\right\rangle$ are collinear, while the deflection axis for $\left|i_{1}\right\rangle$ and the transmission axis for $\left|i_{2}\right\rangle$ are anti-collinear. Hence, spatially orienting the PBS so the transmission axis for $\left|i_{1}\right\rangle$ is vertical, the transmitted light has vertical polarization (\uparrow) and the deflected light has horizontal polarization (\rightarrow) for each of the input channels. Expressing both input states in the basis defined by the $\operatorname{PBS}\left(M B=\left\{\left|o_{1}\right\rangle,\left|o_{2}\right\rangle\right\}\right)$, calling θ the angle formed by $\left|i_{1}\right\rangle$ with its transmission axis (equivalently, $\left|i_{2}\right\rangle$ with its deflection axis), and grouping again input and output states as column vectors, we obtain Equations 7.

$$
\begin{align*}
& {\left[\begin{array}{l}
\left|i_{1}\right\rangle \\
\left|i_{2}\right\rangle
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\left|o_{1}\right\rangle \\
\left|o_{2}\right\rangle
\end{array}\right]=\underline{P B S}\left[\begin{array}{l}
\left|o_{1}\right\rangle \\
\left|o_{2}\right\rangle
\end{array}\right]} \\
& {\left[\begin{array}{l}
\left|o_{1}\right\rangle \\
\left|o_{2}\right\rangle
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\left|i_{1}\right\rangle \\
\left|i_{2}\right\rangle
\end{array}\right]=\underline{P B S^{+}}\left[\begin{array}{l}
\left|i_{1}\right\rangle \\
\left|i_{2}\right\rangle
\end{array}\right]} \tag{7}
\end{align*}
$$

1.2.5 Milieu Bases for High-Intensity Electron Beams

Figure 2 (bottom right) sketches the famous Stern-Gerlach (SG) experiment, which involved: 1) a vertical magnetic field increasing in intensity from the ' N ' pole towards the ' S ' pole but uniform otherwise; 2) a collimated horizontal beam of silver atoms traversing the field; and 3) the atoms depositing on a screen after passing the field. From the electronic shell structure of silver, its spin is due to the $1 / 2$-spin of its outer electron [23] [2]. Based on random thermal effects in the oven producing the silver vapor, the atomic magnetic axes were assumed randomly distributed so Classical Physics predicted that the atoms would smoothly spread throughout a vertical line on the screen. Reality did not agree: instead of a vertical diffusion of the beam, two beamlets came out of the magnet with the silver atoms sharply depositing as two well-separated clusters on the screen.

In the first sketch on the left, the beam (straight from the oven) comprises a uniform random distribution of spins -- with two $50 / 50$ beamlets coming out, one with spins collinear to the magnetic field, and the other anti-collinear to it. It is evident the homology with the split of unpolarized light along two privileged directions defined by a PBS. Hence, we could again define two spin eigenstates $|c\rangle$ and $|a\rangle$ representing the two privileged directions (collinear and anticollinear) defined by the milieu (magnetic field). Note though that these two unit-vectors represent anti-collinear directions $\left(180^{\circ}\right)$, while those defined by a polarizing filter/splitter are orthogonal $\left(90^{\circ}\right)$. Hence, were $|c\rangle$ and $|a\rangle$ regular vectors in our physical space, being anti-collinear, they could not be independent; let alone could they be orthogonal in the classical sense of the word. This tells us that $|c\rangle$ and $|a\rangle$ cannot be ordinary vectors in our physical space, i.e. the state-space of the atomic beam's spin is not a Euclidean space (as it was for the light beam's polarization).

The eigenstates are associated with the two directions of a given straight line in our local Euclidean space, but they cannot be pictured as 'arrows' along those opposite directions. The state-space is a 2-D Hilbert complex space and the $M B$ defined by the magnetic field is $M B=\{|c\rangle,|a\rangle\}$.

In the sketch on the right, the SG magnet is fed with one of the two atomic beamlets obtained after the beam from the oven passed through an SG with its magnetic field horizontally oriented. The input beam has now all its atoms with the same horizontal spin, and the magnetic field is still vertical; nonetheless, the field splits the input beam again in two $50 / 50$ beamlets along its collinear and anti-collinear directions. This is again homologous to a light beam with polarization forming an angle of 45° with one optic axis of a PBS and, in general, there is a partial isomorphism between the descriptions of light polarization and of $1 / 2$-spin, provided we replace θ in the former with $\theta / 2$ in the latter. We could thus express the spin state entering a SG magnet as $|s\rangle=\cos \theta / 2|c\rangle+$ $\sin \theta / 2|a\rangle$. Being again the mean value of $\cos ^{2} \theta / 2$ and of $\sin ^{2} \theta / 2$ equal to $1 / 2$, and being the random spin-distribution coming out of the oven uniform, the 50/50 split is explained for both cases (uniform random spins and all spins orthogonal to the field). Notice that the state in each output channel is the 'collapsed' version of the input state as spanned in the $M B$ and that, for a high-intensity beam, both states coexist in actuality because the beam, as a macro-object, does split into two measurable beamlets -- one in each physical channel. Spin and output channel are correlated: which channel tells you which spin.

The $M B$ is determined exclusively by the direction of the external field and not by the input beam. Even though the current state of the beam (before the current PI) appears to depend on θ, it is fully determined by the previous PI. Again, this is because the state -by its very ontic natureencompasses all reactions to all possible PIs (all orientations of the magnet) and it is the expression of the state in terms of the $M B$ that makes explicit the value of θ. This angle is a property of neither the beam nor its milieu (the magnet) but of the spatial relation between them. Only after the $M B$ is singled out by the milieu (magnet), the angle θ is defined and the expression of the current state in terms of $M B$ is determined. Of course, any other basis for the state-space could legitimately be used, but $M B$ is the one that cogently relates the theory's Ontology, Foundation, and Structure -allowing for straight prediction and explanation [3]. Again, it is unjustified to assert that the $M B$ and its associated superposition are 'physical' or somehow 'realized'. This is now true a fortiori, because the identification between our local Euclidean space and the spin state-space is lost.

Let me also emphasize that it is incorrect to treat these optical and magnetic PIs as ordinary measurements. They are GIs and no improvement whatsoever of our experimental techniques could convert them into $T M$ s. The underlying physical interactions are distinctively peculiar and only when the current input state is in the $M B$, the GI is a TM. But, of course, we understand and characterize the GIs by measuring (in the ordinary sense of the word) the high-intensity light or atomic beamlets after the PIs. Now back to Schrödinger's conflict as described in SCHR3.

1.2.6 Schrödinger's Idea of State Fails even in the Macroworld

Once light has passed a PF adopting a polarization along $|t\rangle$, of course it can be arbitrarily decomposed along any pair of non-parallel directions, so that no polarization along other than $|t\rangle$ is univocally defined per se. Likewise, once light has split after a PBS, one beam has the state $|t\rangle$ and the other $|d\rangle$. Each of the two states can be decomposed at will along any pair of non-parallel directions, so that no polarization property other than the one each channel has is univocally defined per se. As for the atomic beam, once it has split after the SG magnet, one beamlet has the
state $|c\rangle$ and the other $|a\rangle$. Again, each state can be decomposed along any pair of independent spin states, but no spin property other than the one each channel has is univocally defined per se.

We conclude that what Schrödinger called "the classical concept of state" in SCHR3 is not valid for polarization/spin of macro-objects like high-intensity light/electron beams. Even at our common level of experience, his classical concept of state may "become lost" because there is no "complete set of properties" to which "definite numerical values can be assigned" without conflict. Furthermore, two milieus with, say, PFs with different optical axes or SG magnets along different directions are clearly epistemically incompatible, i.e. we cannot arrange for a beam of light/atoms to interact with both milieus at once. Nonetheless, the state of the light and atomic beams does encompass their response to all possible milieus. And notice that we have yet not made use of the notion of probability at all. Time to go down to the single quanton.

1.2.7 Dimming Intensity down to a Single Quanton

We can go from the macroworld down to the microcosm by reducing the intensity of a monochromatic light, i.e. by decreasing the trillions upon trillions of photons per second until we start 'seeing' individual photons scintillating on a fluorescent screen, say, once every 10 seconds. This latter sparkling frequency has nothing to do with the frequency of the light source and all to do with its faint intensity. The radiation source's frequency was not modified and that is why we can sensibly talk about the frequency f of a single photon and its energy $E=h f$. Likewise for its wavenumber \vec{k} and momentum $\vec{p}=h \vec{k}$, though the latter depend on the medium (milieu) via the propagation velocity (which may also depend on the frequency).

Louis de Broglie initially conjectured that when two intensity-dimmed monochromatic waves were superposed, the single photon would have energy and momentum somewhere between those of the two waves. However, he soon admitted that the very photoelectric effect proved that Born's Rule, not his, was the correct one: when the two monochromatic waves (both of sufficiently high frequencies f_{1} and f_{2}) hit a metal plate, only electrons of either energy $h f_{1}$ or energy $h f_{2}$ were ejected. Furthermore, when the f_{1}-wave was twice as intense as the f_{2}-wave, then twice as many electrons were ejected with energy $h f_{1}$ as those with energy $h f_{2}$ [23] [2].

From above and the known relation between high-intensity light and its electric field, the number density of photons on a screen spot must be proportional to the squared amplitude of the electric field. Ergo, for the single photon case, a 'probability amplitude' can be defined as a complex number the squared modulus of which gives the probability of its landing on such spot, and whose phase depends on the frequency of the photon's source, the propagation speed, and the covered distance. This is nothing but the mystically revered Born's Rule. In this fashion, the soconceived micro-phenomenon of quantic interference becomes responsible for, and consistent with, the well-known macro-phenomenon of high-intensity interference. Likewise for the coherence feature of a high-intensity light wave whose analog in the microworld is the phase coherence of the photon's quantic state.

For instance, being unpolarized, we can say sunlight has a 50% probability of passing through a linear PF regardless of its spatial orientation, and that number is a collective property of an ensemble of photons with a uniform distribution of all possible linear polarizations. Any use of probability in such a case is epistemic. However, if after dimming sunlight to a single photon at a time and passing through a PF, we fed it to a second PF at 45° with the first, we would again find that 50% of the photons (all entering the second PF with the same polarization) are transmitted
and 50% are absorbed -- which prevents us from attributing such statistics to the ensemble, while forcing us instead to ontically assign the 50/50 chance to each individual quanton/milieu. This probability clearly depends upon the initial polarization state of the photon relative to the milieu (θ), with the mean for the polarization property equal to $+1 \cos ^{2}(\theta)-1 \sin ^{2}(\theta)=\cos 2 \theta$ [2].

Same rationale is valid to assign probability amplitudes and phase to an electron. For instance, based on the mean of $\cos ^{2}(\theta / 2)$ over θ, we explained the statistical 50/50 distribution we found for the atomic beam coming out of the oven. However, such average over the angles must not be confused with the mean of the spin property as a random variable for a single electron: if we dimmed the atomic beam intensity so that a single atom traversed the magnetic field at a time, we could not say that each atom had an ontic probability of 0.5 to go up and of 0.5 to go down. The 50/50 split was a collective property of the ensemble, not of each atom in the beam. If used, probability in such a case is epistemic. But feeding the vertical magnet with atoms all coming one by one from a previous horizontally oriented magnet $(\theta=\pi / 2)$, we still found a $50 / 50$ split -what prevents us from attributing such statistics to the ensemble, while steering us instead to ontically assign the probability to each individual quanton/milieu. This ontic probability clearly depends upon the initial spin state of the atom relative to the field, and the Mean for the spin property is $+1 \cos ^{2}(\theta / 2)-1 \sin ^{2}(\theta / 2)=\cos \theta$ [2].

Strikingly, we find that the same $M B$ defined by the milieu (polarizer, splitter, magnetic field, etc.) we used to mathematically represent macro-objects like high-intensity light or electron beams serves also as the $M B$ for the state-space of a single quanton's polarization or spin. The milieu (a macro-object) top-down influences the quanton by defining its probable next states, and the quanton's current state bottom-up influences the milieu: upon a $G I$, there is a correlation between the quanton's post-GI state and the milieu's post-GI macrostate (the result of the so-called 'measurement') [2] [3] [4].

Once a photon/electron undergoes a $G I$ adopting a polarization/spin eigenstate in the $M B$, of course, such state can be decomposed at will along any other set of independent polarization/spin states, but no polarization/spin property other than the one it has can be univocally assigned to the acquired state. Schrödinger was right in SCHR3: "The classical concept of state becomes lost" because there is no "complete set of properties" to which "definite numerical values can be assigned". Attempting to do so, a "conflict with some portion of quantum theoretical assertions" would certainly be in place. Yet, he was wrong because, as we proved, the macroworld versions of photons and electrons (high-intensity beams) already had this widely unnoticed 'unclassical' feature for their states. In QT parlance, for swarms of independent photons and electrons, the Hamiltonian Operator for the composite wavefunction is the sum of the individual Hamiltonians and -from the solution of Schrödinger's Equation- the wavefunction for the platoon of quantons is the product of the individual wavefunctions. Hence, in this special cases, the wavefunction of a single quanton is a bona fide representative of the squad, and the much-higher-dimension configuration space could be conceptually reduced to our 3D physical space -- justifying the early futile attempts to consider the wavefunction as a real classical wave [34].

We have shown, via the ontic probability interpretation of scaled-down high-intensity light and atomic beams, that the ontic state of a single quanton can be conceived so that predictions accurately agree with experiment, while correctly scaling-up to our common level of experience. In fact, we devised the single quanton's state from the collective state of platoons of quantons, so no wonder the concept still is valid for high-intensity beams. But, in the process of developing QT,
its pioneers were bound to find in the microworld behaviors even stranger than the ones we scaleddown from high-intensity light and atomic beams and, falsely assuming that reductionism implies straightforward constructionism, some philosophers/scientists -infatuated with linearity and Schrödinger's Equation- staunchly expected that the description/explanation of those sui generis micro-phenomena had to scale-up to the macroworld without exception. Others, knowing such scale-up was clearly invalid, tried desperately to -paraphrasing Feynman [33]- conceive quanticlike "wheels and gears" processes to explain the difference. We thus fell in the trap of centurylong mostly misguided philosophical discussions on the link between the micro and macro worlds.

2. TOPI: The Quanton's Ontic State/Properties and Physical Interactions

TOPI is a metatheory: a theory about the meaning of Quantum Theory. To deeply dive into the heart of TOPI -when unambiguous- we will not explicitly distinguish between abstract states/properties (QT's Foundation) and real states/properties (QT's Ontology) [3]. TOPI agrees with Einstein in that "there is something like the 'real state' of a physical system, which independent of any observation or measurement exists objectively and which can in principle be described by means of physical terms" [1]. TOPI disagrees with Einstein and Schrödinger in that the stochastic makeup and "spooky action at a distance" of QT imply its incompleteness. In fact, we will argue in future articles that Einstein's RT is incomplete. It is ironic that, using Einstein's own necessary condition for completeness [1] [3], if RT forbids nonlocality (amply confirmed over four decades [35] [36] [37]), then RT must be incomplete. Saying that what RT only forbids is faster-than-light signaling amounts to another strawman argument: Reality is that spacelike interactions do take place in our Universe, and RT does not seem to predict them [38] [39] [4].

From Part I [3] and Part II [4], a quanton interacts with its milieu and has: (a) the ontic current state/properties attained from the previous PI; and (b) the ontic current PDs for the transition to its next states/properties. The next state and next properties are random variables. The current state belongs to the $M B$ for the previous PI. All probable next states belong to the $M B$ for the current $P I$. We refer to them as previous $M B$ and current $M B$. The so-called pure state $|s\rangle$ of an isolated quanton is represented in QT by a unit-vector in Hilbert Space, i.e. a complex vector whose 2norm $(+\sqrt{\langle s \mid s\rangle})$ is unity. A pure state is expressible in any orthonormal basis for the state-space as a 2 -superposition of eigenstates, i.e. the sum of the squared moduli of its coefficients is unity.

We will say that a state, property, $P D$, etc. are determined when a) they are defined, i.e. they have physical meaning; and b) they have definite values. By a 'definite value' I mean much more than the "definite numerical value" requested by EPR [1] and Schrödinger in SCHR3: I mean a number, a function, a vector, an operator, whatnot -- depending upon the nature of the physical magnitude and its possibility space. The quanton's current state is always defined and determined; not all the quanton's properties are defined in the current state; the current state and values for all its defined properties are determined by the previous PI; the current $M B$ is determined by the current milieu (PI); the transition PD for the next states is jointly determined by the current state and current $M B$; only those properties whose operators share the eigenvectors in the current $M B$ (commutative operators) are defined as next properties, with their transition PDs determined by the current state and the corresponding operator.

The ontic current state encompasses the quanton's reaction to all possible milieus and because each milieu defines an $M B$, the current state encompasses all possible state-transition PDs. Ergo,
all next states are defined but may be undetermined: it is the milieu $(P I)$ that determines which the next probable states are (elements of $M B$). As for the properties, depending on both previous and current $M B$ s, a property which is defined/undefined for the current state can be undefined/defined for the next states. Different milieus (different PIs) entail different MBs but the reality of the quanton state is prior to, and independent of, any future PI. The physical state is non-contextual simply because it includes all possible contexts; its mathematical representation using the $M B$ is the one that is different for each context (milieu). The distinction between the all-encompassing ontic state and its specific (partial) mathematical depiction should be kept in mind. TOPI asserts that current and next states are all ontic (irrespective of our existence and knowledge), while their symbolic representations are epistemic. This is not incompatible with the impossibility of globally assigning "definite numerical values" to all properties for a given state [24] [25] [26].

The quanton's state is ontic but not a beable (in Bell's sense of the word [40]); our quanton is the beable, and it can display local as well as nonlocal behaviors [4] [2]. And being the current state all-inclusive, all next states in all possible $M B \mathrm{~s}$ and all state-transition $P D \mathrm{~s}$ are (paraphrasing SCHR3) "determining parts" of the current state and, ergo, ontic as well. But, despite its ontic comprehensive character, in our attempts to formally depict the state, our mathematical treatment is necessarily limited to specific aspects of the full state/properties, e.g. the polarization state of a photon (Figure 2/top-right) or the spin state of a two-electron quanton (Figure 3). In such cases, the state encompasses all possible milieus relevant to either polarization (e.g. all PF's orientations) or spin (e.g. all spatial orientations of two SG magnets). All other categories of states and properties the quanton may have or milieus may encounter, though still part of the ontic state, are unnecessary for understanding/predicting the quanton's behavior under those circumstances.

2.1 Actual States and Probable States

To be real in Classical Physics, all states and properties had to be/become actual, viz: they had to be, could have been, or could be observed and/or measured in our RT's spacetime. Contrariwise, under QT/TOPI, probability is the hallmark of Nature's modus operandi: there is a point at which, between current and next states, "there are no wheels and gears" in spacetime [33]. Previous, current, and next states can be actual or probable, with the latter as real as, and more fundamental than, the former. Moreover, the actual is the unsubtle manifestation of the probable: there is more in this Universe of ours than what we can directly observe/measure. Observation and measurement are anthropic: the Universe is out there with or without our cognitive endeavors. The actual relative frequency of an event in our RT-spacetime, obtained via the statistical analysis of multiple experimental runs, is only one (direct) manifestation of the ontic character of probability, assisting us in validating its reality [17] [18] [2]. We will soon see other much subtler manifestations.

When I say a current state/attribute is 'probable' I do not mean that it is 'actual' though we do not know its value (EPR's Conceptual Confusion [3]); that would be the epistemic meaning of probability. Neither do I simply mean that it may become actual in the future. What I mean is that the current state is one of the probable states for the quanton's previous PI. Notice I said: "it is one of the probable states...", not "it was one of the probable states...". Only when it is actual, the current state was probable for the previous PI; otherwise, it is probable. Again, probable states/properties and actual states/properties are equally real under TOPI.

Being probable and actual states equally real, the former can evolve, interact, and transform as the latter do. And being the state ontic, the $P D$ defined jointly with the $M B$ is also ontic
regardless of whether the transition to an actual state occurs or not. When the actual transition occurs, because actual states directly manifest in RT-spacetime, only one of the next states in the $P D$ becomes actual. Otherwise, all next states are probable, irrespective of whether the current state is actual or probable. Furthermore, because a quanton has no size or shape, its milieu may be an extended network of local PIs which may be spacelike-separated in our RT-spacetime. Ergo, stunningly against our prejudices, the co-extant probable states of a single quanton may undergo different PIs (with different $M B \mathrm{~s}$) at different locations in the network.

From above, the qualifiers 'previous', 'current', and 'next' applied to PIs, states, and MBs have a significance that transcends our classical notion of time. In RT, time (RT-time) is operationally defined and, thus, it can only be correlated to actual (not probable) states. Hence, only for actual states/properties, the adjectives 'previous', 'current', and 'next' have the meaning with respect to time that we accept in our common level of experience. That is not the case for probable states so, until we tackle the incompleteness of RT in future articles of this series, when our discourse calls for assigning a 'time' to a probable state, I will use the idiom 'QT-time'. Notice that I am not implying there are two different types of time; I am implying that RT is incomplete, and the notion of time should be reconceived so that what I call now 'QT-time' as a mere faute de mieux would be integrated into a revised RT. To be able to proceed, we must also tighten the semantics underlying English words that normally refer indifferently to space or to time: we convene in that the terms 'first', 'intermediate', 'last', 'input', 'before', 'output', 'after', 'serial', and 'parallel' refer only to the topology of PIs in our physical space (not to RT-time).

Hence, the words 'previous', 'current', and 'next', may refer to RT-time (if actual states are involved) or to QT-time (if probable states are at play). The current state is the joint (stochastic) result of the previous state and previous $M B$, while the current $M B$ and current state jointly determine the $P D$ for the next states and properties. A quanton's current state is probable or actual because of a previous PI -- but such character is irrelevant for the current PI. If the quanton's current state is probable/actual, so are its current (if defined) properties. No actual transition is necessarily implied by the current state and its milieu, so all next states/properties are prima facie probable -- except when the current state is in the current $M B$, in which case the $S D$ of the $P D$ vanishes and, for an actual current state, the next state is also actual. When current and next states are all probable, no RT-times can be assigned to them.

For instance, after a ${ }^{1 / 2}$-spin quanton went through a Stern-Gerlach (SG) setup (Figure 2, bottom right), if detected, its spin would be +1 if it came out collinear with the magnetic field and -1 if it came out anti-collinear with the field [4]. If the current state entering the SG milieu was actual, both next probable states were determined by the milieu via an actual $P D$. Instead, the next spin along any other direction was undetermined. If each one of the two physical output channels is connected to a different SG magnet, the probable state correlated with each channel plus the new $M B$ define a new probable $P D$ for the next probable states in each channel. Note that, because each of the output states from the first SG magnet is probable, the $P D$ for each of the two SG subsequent magnets is probable as well. Even $P D$ s can be actual or probable. In both cases they are determined.

2.2 Probability Invariance buried in an Infinitude of Symbolic Depictions

Under TOPI, the $M B$ plays a preferred role but only epistemically -- and the interwoven ontic and epistemic reasons have been explained via multiple concrete examples in both the macro and the micro worlds. The $M B$ is special because: a) its elements are the next states; and b) using the
$M B$ to expand the current state (if pure) the coefficients of the 2-superposition are the probabilityamplitudes, whose squared moduli make up the $P D$ for the next states of the quanton.

The transitions (probable or actual) from the current state to the next states are from an eigenstate in the previous $M B$ towards eigenstates in the current $M B$. Calling \underline{s}_{c} the column vector for the current ontic state in the current $M B\left\{\left|c_{j}\right\rangle\right\}$, and \underline{s}_{a} the same current state in any basis $\left\{\left|a_{j}\right\rangle\right\}$, they are related as follows:
$\underline{S}_{c}=\underline{C}_{a}^{\dagger} \underline{S}_{a}=\underline{A}_{c} \underline{S}_{a} \Leftrightarrow \underline{S}_{a}=\underline{A}_{c}^{\dagger} \underline{S}_{c}=\underline{C}_{a} \underline{S}_{c} \Rightarrow\left(\underline{C}_{a}\right)_{i j}=\left\langle a_{i} \mid c_{j}\right\rangle ;\left(\underline{A}_{c}\right)_{i j}=\left\langle c_{i} \mid a_{j}\right\rangle$
Where \underline{C}_{a} is a unitary matrix whose columns are the components of the eigenstates in $\left\{\left|c_{j}\right\rangle\right\}$ spanned in terms of the eigenstates in $\left\{\left|a_{j}\right\rangle\right\}$; and mutatis mutandis for \underline{A}_{c}. This is also valid for continuous physical states/attributes. Via the bijections $\left\{\left|a_{j}\right\rangle\right\} \leftrightarrow\{q\}$ (position basis) and $\left\{\left|c_{j}\right\rangle\right\} \leftrightarrow$ $\{p\}$ (momentum basis), we obtain the following correspondences:

$$
\begin{gather*}
\left(\underline{C}_{a}\right)_{i j}=\left\langle a_{i} \mid c_{j}\right\rangle \Leftrightarrow\langle q \mid p\rangle=\frac{1}{\sqrt{2 \pi}} e^{i p q / \hbar} ;\left(\underline{A}_{c}\right)_{i j}=\left\langle c_{i} \mid a_{j}\right\rangle \Leftrightarrow\langle p \mid q\rangle=\frac{1}{\sqrt{2 \pi}} e^{-i p q / \hbar} \\
\underline{S}_{c}=\underline{C}_{a}^{\dagger} \underline{S}_{a}=\underline{A}_{c} \underline{S}_{a} \quad \Leftrightarrow \quad\langle p \mid s\rangle=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-i p q / \hbar}\langle q \mid s\rangle d q \tag{9}
\end{gather*}
$$

$$
\underline{S}_{a}=\underline{A}_{c}^{\dagger} \underline{S}_{c}=\underline{C}_{a} \underline{S}_{c} \quad \Leftrightarrow \quad\langle q \mid s\rangle=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{i p q / \hbar}\langle p \mid s\rangle d p
$$

We see that the momentum eigenstates projected onto the position eigenstates $(\langle q \mid p\rangle)$ are the elements of an infinite continuous matrix. Likewise for the position eigenstates projected onto momentum eigenstates $(\langle p \mid q\rangle)$. Clearly, the two infinite continuous matrices are Hermitian conjugates as are their discrete versions. The second line (right) of Equations 9 relates the projection of any ontic state $|s\rangle$ onto the momentum eigenstates $(\langle p \mid s\rangle)$ as a superposition of the projections of the same ontic state onto the position eigenstates ($\langle q \mid s\rangle$). Mutatis mutandis for the third line. Clearly, the position and momentum bases are interchangeable despite that, for a particular $P I$, only one of them can be the $M B$ (their operators do not commute).

Any two bases are thus related via a unitary transformation, so all bases are equally valid to depict any ontic state. Also, because only moduli and relative phases of the probability-amplitudes have physical significance, multiplying them by a common phase factor ($e^{i \delta}, \delta$ real) changes nothing [2]. Therefore, we conclude that an ontic state has an infinitude of symbolic depictions: (a) one for each of the continuum of bases in the quanton's state-space; and (b) for each of those bases, one for each of the continuum of phase factors. The case (a) is archetypical of theories whose Structure [3] includes vector spaces, and proves that the ontic state includes all quanton's reactions to a class of PIs (one for each $M B$). The case (b) is common among mathematical tools (QT's Structure [3]): they may represent more than what is physically meaningful.

But being ontic, for a current state and milieu, the state-transition PD (not the next state/properties) must be an invariant -- not only under changes of the spacetime reference frame
(future article) but also under changes of the basis used to represent the state in each frame. Because the $M B$ is the set of eigenvectors for the property's operator \mathcal{P}, whether the chosen basis is $M B$ or not, the Mean of the property's $P D$ is the inner product of the current state $|s\rangle$ with its image via \mathcal{P}; likewise, the square of the SD is the inner product of the current state with its image via the square of the Mean-shifted operator [2]; and so forth for all moments of the PD. Equivalent basis-independent statements can be made for all PD's moments using the 'trace' ($t r$) operation, the density operator (ρ), and the property operator (\mathcal{P}). In symbols for the first two moments:

$$
\begin{equation*}
\langle\mathcal{P}\rangle_{|s\rangle}=\langle s| \mathcal{P}|s\rangle=\operatorname{tr}\{\rho \mathcal{P}\} ; \Delta \mathcal{P}_{|s\rangle}^{2}=\langle s|\{\mathcal{P}-\langle\mathcal{P}\rangle \mathcal{J}\}^{2}|s\rangle=\operatorname{tr}\left\{\rho\{\mathcal{P}-\langle\mathcal{P}\rangle \mathcal{J}\}^{2}\right\} \ldots \tag{10}
\end{equation*}
$$

Because inner product and trace operation are invariant under a change of basis, for the current state and milieu, the state-transition $P D$ is invariant and the quanton's properties are split in two groups: those whose transition $P D$ s are determined and those which are undetermined. Any two operators (properties) inside the first group are commutative (same $M B$), and any two operators from different groups are noncommutative. The milieus for two noncommutative operators are epistemically incompatible, i.e. we cannot arrange for the quanton to jointly interact with both milieus (PIs). Yet, they are ontically consistent because all milieus (all MBs, and all PDs) are encompassed by the quanton's ontic state.

Succinctly: the real state (actual or probable) comprises all its depictions, one for each $M B$ in a multitude of PIs (milieus). It encapsulates all possible behaviors of the quanton when interacting with such large class of milieus. Given the ontic state and a PI, all bases are valid -- but Born's rule is applicable as such only to the $M B$ defined by the PI. Using any other basis is equally legitimate, though it requires a basis transformation (Equations 9) before applying Born's Rule.

2.3 Mixed States, Convex States, Pure States, and Co-States

As said, pure states are represented by unit-vectors in Hilbert Space and correspond to isolated quantons. The states/properties of different (with no common history) isolated quantons are of course uncorrelated and, if they are viewed as a composite quanton, then it is said that the latter is in a product state because it can be expressed as the product of the sub-quantons' pure states. But, in general, sub-quantons of a composite quanton do interact and -depending upon the global milieu- their behavior may be correlated in various degrees. We say the sub-quantons are entangled, and the composite state is an entangler state. Despite being entangled (i.e. not isolated), the sub-quantons' behavior may be uncorrelated for some milieu(s), in which case the composite state is again expressible as a product. 'Entangled' and 'correlated' are not synonyms; 'not correlated' and 'isolated' are not synonyms either. 'Entangled' and 'isolated' are antonyms.

As any state, the entangler state is ontic, probabilistically determined by the previous PI, and determines jointly with the current PI (milieu) how much correlation the sub-quantons display -from non-correlation through maximal correlation. The sub-quantons' states cannot be represented by a unit vector in their individual state-spaces because entangled quantons lose their isolation. We say that entangled sub-quantons are in co-states though, in the literature, are called 'mixed states'. The 'mixed' adjective was chosen because their mathematical depiction is like the one for the mixed state of some macro-objects as explained in Section 1.2 (e.g. sunlight). Yet, they are utterly different because the latter mixed state characterizes not a single quanton but an ensemble of quantons with unknown pure states. Even when dealing with a single quanton, if we do not know its pure state, we may epistemically resort to represent it through a probabilistic mixture of
pure states. In those cases probability has, for each quanton, the classical 'ignorance' meaning, i.e. Schrödinger's "merely not exactly known to me". It is also the tenet of the Statistical Interpretation of QT [41], which claims that QT describes only ensembles, to wit, that it is a kind of quantum statistical mechanics.

Because sub-quantons are as real as the composite quanton, their co-states are as ontic as the composite's pure state. But despite their core differences, convex states, mixed states, and costates are all representable by 1 -superpositions (not by 2 -superpositions). A central difference between the Quincunx ball's convex state and the co-state of a sub-quanton in a pure composite quanton is that, upon a GI, the former adopts another convex state, while the latter switches to a pure state. An interesting finding, vital to understand Schrödinger's hellish machine, is that the state of a radioactive nucleus cannot be represented by a 2 -superposition either (i.e. such a state is, against conventional wisdom, not pure but convex). In sum, mixed states are epistemic; convex, pure, and co-states are ontic.

For a local PI, the sub-quanton's co-state and the composite state determine the state-transition $P D$ towards the eigenstates in the local $M B$. This local $P D$ is as ontic as the $P D$ for a global $P I$ is. But, not being pure, a co-state does not belong to any local $M B$, i.e. it is not an eigenstate for any local $P I$ and, ergo, no $G I$ can be a $T M$ (no $P D$ has nil $S D$). Born's Rule does not rule; no 2superposition is possible, except for those global milieus for which the two quantons are uncorrelated (despite being entangled). The pure eigenstates the sub-quantons could have been in before getting entangled are inaccessible until detangling.

If the composite state is actual (probable), both co-states are actual (probable) -- while the eigenstates in the local $M B$ s are always probable. Upon a local $G I$ on one of the sub-quantons, its co-state and that of the other sub-quanton mutually detangle and morph into isolated actual pure states -- with the composite entangler state becoming an actual product state [4] [2]. Let us exemplify pure states and co-states with the famous EPRB experiment.

2.3.1 EPRB Instantiation of Pure States and Co-States

In the EPRB setup (Figure 3), from Part II [4], the composite state can be expressed:

$$
\begin{gathered}
|s\rangle=\frac{\sqrt{2}}{2} \sin \left(\frac{\theta}{2}\right)\left|s_{A 1}\right\rangle\left|s_{B 1}\right\rangle+\frac{\sqrt{2}}{2} \cos \left(\frac{\theta}{2}\right)\left|s_{A 1}\right\rangle\left|s_{B 2}\right\rangle-\frac{\sqrt{2}}{2} \cos \left(\frac{\theta}{2}\right)\left|s_{A 2}\right\rangle\left|s_{B 1}\right\rangle-\frac{\sqrt{2}}{2} \sin \left(\frac{\theta}{2}\right)\left|s_{A 2}\right\rangle\left|s_{B 2}\right\rangle \\
\Downarrow \\
\operatorname{Pr}\left(\left|s_{A 1}\right\rangle\left|s_{B 1}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{A 2}\right\rangle\left|s_{B 2}\right\rangle\right)=\frac{1}{2} \sin ^{2}\left(\frac{\theta}{2}\right) \quad ; \operatorname{Pr}\left(\left|s_{A 1}\right\rangle\left|s_{B 2}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{A 2}\right\rangle\left|s_{B 1}\right\rangle\right)=\frac{1}{2} \cos ^{2}\left(\frac{\theta}{2}\right) \\
\Downarrow \\
\operatorname{Pr}\left(\left|s_{A 1}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{A 1}\right\rangle\left|s_{B 1}\right\rangle\right)+\operatorname{Pr}\left(\left|s_{A 1}\right\rangle\left|s_{B 2}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{A 2}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{A 2}\right\rangle\left|s_{B 1}\right\rangle\right)+\operatorname{Pr}\left(\left|s_{A 2}\right\rangle\left|s_{B 2}\right\rangle\right)=1 / 2 \\
\operatorname{Pr}\left(\left|s_{B 1}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{A 1}\right\rangle\left|s_{B 1}\right\rangle\right)+\operatorname{Pr}\left(\left|s_{A 2}\right\rangle\left|s_{B 1}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{B 2}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{A 1}\right\rangle\left|s_{B 2}\right\rangle\right)+\operatorname{Pr}\left(\left|s_{A 2}\right\rangle\left|s_{B 2}\right\rangle\right)=1 / 2
\end{gathered}
$$

\Downarrow

$$
\left\langle\mathcal{P}_{A}\right\rangle=\left\langle\mathcal{P}_{B}\right\rangle=0 ; \Delta \mathcal{P}_{A}=\Delta \mathcal{P}_{B}=1 \forall \theta \quad ; \quad\left\langle\mathcal{P}_{A} \mathcal{P}_{B}\right\rangle=-\cos \theta ; \Delta\left\{\mathcal{P}_{A} \mathcal{P}_{B}\right\}=|\sin \theta|
$$

Figure 3: Upon a local GI, Co-States morph into Actual isolated Pure States
Evidently, the sub-quantons are entangled, i.e. they are not isolated because the probabilities for each composite eigenstate (pair of eigen-spins) depend upon both local MBs. Furthermore, no common cause or dynamic causal interaction between the sub-quantons in RT's spacetime can explain the correlations in toto (violation of a Boole-Bell inequality for some milieus). Even so, per equations in lines 3 and 4 of Equations 11, the local spins are perfectly random for any local magnet orientation (local $M B$). The local $M B$ contains the probable next states, but the transition $P D(50 / 50)$ is independent of the local $M B$.

If we wanted to express qubit-A's state as a 2 -superposition, it could be: $\left|s_{A}\right\rangle=\sqrt{2} / 2\left|s_{A 1}\right\rangle \pm$ $\sqrt{2} / 2\left|s_{A 2}\right\rangle$, whose 2-norm is unity and the $P D$ is $50 / 50$ regardless of the local magnet's orientation. Likewise for $\left|s_{B}\right\rangle$. However, because such a representation would imply they are isolated qubits in pure states (unity 2-norm), they could not be correlated, i.e. $\left\langle\mathcal{P}_{A} \mathcal{P}_{B}\right\rangle-\left\langle\mathcal{P}_{A}\right\rangle\left\langle\mathcal{P}_{B}\right\rangle$ would be zero for any pair of local PIs, instead of depending upon the angle between the distant magnets via $-\cos \theta$ as Equations 11 (bottom) shows and, hence, only for the cases $\theta=\pi / 2 ; 3 \pi / 2 ; 5 \pi / 2 \ldots$ is there no correlation between the sub-quantons' behavior. Clearly, the two qubits cannot be in pure states: a pure ontic state must encompass all possible milieus, and no 2-superposition can accomplish that when the sub-quantons are entangled.

Because, per TOPI, probable states are as real as actual states, the condition in a conditional probability can be an actual or a probable state. We can therefore affirm from Equations 11:

$$
\begin{equation*}
\operatorname{Pr}\left(\left|s_{B 1}\right\rangle /\left|s_{A 1}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{A 1}\right\rangle /\left|s_{B 1}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{B 2}\right\rangle /\left|s_{A 2}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{A 2}\right\rangle /\left|s_{B 2}\right\rangle\right)=\sin ^{2}(\theta / 2) \tag{12}
\end{equation*}
$$

$$
\operatorname{Pr}\left(\left|s_{B 2}\right\rangle /\left|s_{A 1}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{A 1}\right\rangle /\left|s_{B 2}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{B 1}\right\rangle /\left|s_{A 2}\right\rangle\right)=\operatorname{Pr}\left(\left|s_{A 2}\right\rangle /\left|s_{B 1}\right\rangle\right)=\cos ^{2}(\theta / 2)
$$

Equations 12 clearly show the entanglement between the two qubits because their probabilities are mutually interdependent through θ, which is a joint property of both local milieus. They also tell us what would happen if one of the qubits underwent a GI: a) the one that did would adopt one of the eigenstates in its GI's $M B$ becoming a pure actual state and, ergo, detangling from the other qubit; and b) the probability for the other qubit to transition (upon a future GI) to one of the eigenstates in its GI's MB would not be 50% anymore because Equations 12 include θ and correspond to the behavior of an isolated qubit when the angle between its spin and the magnetic field is $\theta+\pi$. This proves the two qubits are detangled, and the opposite of the actual state adopted by the one that underwent the first GI is teleported to the other, which is the manifestation in our RT-spacetime of an already existing reciprocal tele-interaction between the co-states. And this actual teleportation of the opposite state occurs even if the other qubit never undergoes a GI. Thus, if the other qubit interacts with a field collinear or anti-collinear to the one with which the first qubit interacted, its pre-GI state is an eigenstate of the local $M B$ and its post- $G I$ state is the same, i.e. the GI is a TM. This was the crux of Einstein's incompleteness/non-locality dilemma [3] [4].

Remarkably -whether the qubits are spacelike-separated or not- it is immaterial which one undergoes a GI first, even though -before their Gls- the first one would have been in a co-state (whose $P D$ does not depend upon the local milieu) and the second in a pure state (whose $P D$ depends upon the local milieu). This clearly is not a causal relation in RT-spacetime. Epistemically, were we to conduct many experiments under the same (arbitrary) θ and chronology between GIs, both sites would see a dull (50/50) sequence of $+1 /-1$ (same $P D$) regardless of the actual orientation of each local magnet (but same arbitrary θ between them) and which GI is first (Equations 11/lines 3 and 4). However, if for each θ, upon getting together, the results in one site were grouped in subsets that corresponded to a given result in the other site, each experimenter would find a $P D$ per Equations 12 -- again regardless of which $G I$ was the first. So, at least in this respect, QT is compatible with RT because -for spacelike events- 'the first' in one inertial frame could be 'the second' in another. Furthermore, even though single actual results differ in a given inertial frame and a fortiori in different frames, the PDs are clearly invariant under a change of inertial frame -- adding to the rationale behind the 'Ontic Probability' descriptor in the name (TOPI) for our physical interpretation of QT.

Applying the Density Operator formalism, the EPRB experiment is carefully dissected from the TOPI perspective in Appendix A, clearly showing the sub-quantons can be uncorrelated not because they are isolated but because they are entangled while interacting with a unique global milieu. All the richly intertwined described behavior is displayed by the global attribute $\mathcal{P}_{A} \mathcal{P}_{B}$, while the local properties \mathcal{P}_{A} and \mathcal{P}_{B} are fully random for any possible configuration of the magnets. As we saw, changing the magnets configuration does not stop the local spin records from being an amorphous sequence of $+1 s$ and $-1 s$; only their product shows an abundance of statistical patterns, for the recognition of which the two experimenters need to compare their
records by human communication. Failing to do that, in a very peculiar way, the two subsystems are entangled but disconnected.

Ironically, this seemingly mesmeric interaction between sub-quantons could accurately describe the legendary Bohr/Einstein debate: had they known/understood that such an astonishing nonlocal bond between systems could be part of Reality -as we do know now- much less sterile argumentation with much more mutual understanding of their respective philosophical stances would have ensued. It takes two to tango: they were very engaged (entangled) but never communicated (connected) one to another. Of course, those titans of Science did not have the benefit of hindsight we do almost a century later [2].

2.4 Categories of Physical Interactions

In Part I we anthropically defined a 'Gauge Interaction' (GI) and a 'True Measurement' (TM), but we emphasized that they occur all the time in Nature [3]. The reality of probable states and properties has been elusive for so long because it cannot be grasped directly from a $G I$ (which can only produce actual state/properties). The ontic character of probability can solely be recognized via the consistency and predictive/explanatory power of its positing. To this purpose, we need to formally propose five fundamental types of PIs that occur with or without our intervention.

2.4.1 Quanton Emission Interaction (QEI)

A QEI produces one or more quantons. It can be natural as sunlight; or as when radioactivity spontaneously produces α, β or γ quantons (Section 5.1); or when, due to Bohr's spontaneous electron drops to lower-energy orbits, an atom emits a photon; or via the spontaneous emission Einstein conceived to derive Planck's Radiation Law. It can also be anthropic as when we shine a piece of metal with high-energy photons to emit electrons via the photoelectric effect; or when we provoke the stimulated emission Einstein also used to derive Planck's Law and predict laser technology; or with the electron gun of the old TV set [17] [18] [2] [13].

2.4.2 Pure-Detection Interaction (PDI)

A PDI is a sine qua non for what the QT literature calls a 'measurement'. A PDI is non-linear and irreversible; ergo, Schrödinger's Equation cannot govern such PI: detectors are purposely designed to behave nonlinearly so unitarity, superposition, entanglement, etc. are not realistic concepts [12] [13] [42]. When a quanton undergoes a PDI, its only next state is always actual irrespective of its current state being actual or probable. It is thus a transition from a single probable or actual state to a single actual state, not from many actual states to one actual state (as the 'measurement problem' is typically articulated). The actual state-transition in a PDI is achieved via a physical detection and amplification process (e.g. photomultiplier, Geiger counter, plant leaf, animal's eye) that produces a macroscopic record in RT-spacetime. Actuality (events) goes hand in hand with RT's spacetime. An RT-time can be assigned before a PDI only if the current state is actual, while it can always be assigned afterwards.

GIs (and hence TMs) must include at least one PDI to either register a spontaneous transition or to force a transition and record it. This is simply because, if anthropic, the GI's purpose is to empirically corroborate the $P D$ predicted by QT -- which we accomplish through the statistical data analysis of numerous presumed-equal experimental setups. PDIs occur all the time without our intervention and are the triggers of actuality in Nature. A PDI may be destructive or not [41] [33] [43]: the former absorbs the quanton with no further interactions possible; the latter leaves
the quanton in an actual state and capable of further interactions. For instance, in a bubble chamber, upon a sequence of interactions with the quanton, the superheated liquid locally and irreversibly transitions to a stable gaseous phase, detecting, amplifying, and registering the quanton's path. Epistemically, the lack of a PDI as the last PI for a quanton amounts to a destructive PDI, so an actual state/RT-time can be assigned after the last PI despite the absence of a PDI. This implicit assignment is routinely applied by quantum engineers [44] [45] [2].

As explained, different probable states of a single quanton may be correlated to spacelikeseparated PIs; ergo, if one of these PIs is a PDI, the corresponding probable state becomes actual and all other probable states for the quanton are neither probable nor actual (only one in the $M B$ may be actual). This is explained by realizing that a) the quanton is the real object; and b) its states and properties are also real, but they evolve as the quanton interacts with its milieu. Subconsciously thinking of the photon as a localized object with only actual states/properties, which finally shows up in only one of those spacelike-separated PIs, led Einstein to demand a "spooky action at a distance" even for a single quanton [17] [18] [2].

2.4.3 Pure-Transformation Interaction (PTI)

A PTI is purely transformational and lacks a PDI. When a quanton undergoes a PTI, if its current state is probable, its next states are all probable; if its current state is actual and belongs to the $M B$, its only next state is actual; otherwise its next states are all probable. Unless the current state is already actual and a member of the current $M B$, the $P D$ is not actualized because there is no physical detection ($P D I$). In general, the next states are all real probable states with different probabilities. Note that in the Many Worlds Interpretation (MWI), the current state in the previous $M B$ and next states in the current MB are purportedly all actual (though in different 'worlds').

Whether the current state is mixed, convex, pure, or a co-state, its expression as a superposition of states in the current $M B$ can be seen as transforming the current state (actual or probable) into several probable next states -- from one next state if the current state is in the current $M B$, up to as many next states as the MB's cardinality. All transitions between current and next states in a PTI are probable; no actual transitions occur. Per TOPI, these probable states are (paraphrasing Schrödinger) "determining parts" of the ontic current state which are elicited by the current milieu. Obviously, as described, this transformation is not one-to-one but one-to-many; otherwise QT would be deterministic. However, if the current state (a member of the previous MB) is probable, all other states in the previous $M B$ are also probable and 'determining parts' of the previous state.

Combining all the one-to-many transformations (one for each state in the previous MB), we obtain a unitary transformation between previous and current MBs, i.e. a basis transformation \mathcal{U} which is linear, deterministic, and reversible with $\mathcal{U}^{-1}=\mathcal{U}^{\dagger}$. That is true e.g. for the BS and PBS equations when both input states $\left|i_{1}\right\rangle$ and $\left|i_{2}\right\rangle$ belong to a single quanton's previous $M B$. But any transformation U between two bases used to represent a single state can be viewed as a transformation between two states under a single basis. Furthermore, the components of those two states in the single basis transform as the bases do, i.e. under \mathcal{U}. Ergo, \mathcal{U} can also be interpreted as transforming the previous state into the current state or, equivalently, as transforming (as a whole) the components of the previous state into the components of the current state -- and mutatis mutandis between current and next states. Hence, despite the stochasticity of QT, \mathcal{U} is interpretable as a linear, reversible, deterministic evolution of probable states.

Stunningly, despite all states in a PTI being (in general) probable, the last interpretation allows for a deterministic reversible relation between previous, current, and next states, implying that a quanton under a given milieu may evolve without revealing itself in our RT-spacetime (no PDI). We referred to this in our Part I as 'quantic determinism' [3]. That is precisely what Schrödinger's Equation does when the single $M B$ is the Hamiltonian Basis and previous, current, and next states are infinitesimally close: it describes one type of deterministic evolution for the quanton's energy probability distribution. Clearly thus, such 'evolution' cannot be in RT-time but in QT-time.

In brief, a PTI deals in general with probable states, so it cannot be of the dynamic type in RT's spacetime: without a PDI, RT-time (actual by Einstein's conception) is meaningless, explaining why a PTI is considered the quintessence of quantum oddities. The shocking reality of PTIs has been proven beyond doubt by modern quantum cryptography and quantum computer technologies [2] [45] [44]. We will use it to probe and prove the reality of probable states.

2.4.4 Pure Entanglement Interaction (PEI)

This is a GI jointly experienced by two or more independent quantons after which they become entangled. Thus, comprising at least one PDI, this PI is non-linear and irreversible. The states in the $M B$ for a $P E I$ are composite states. Before the PEI, each quanton has its own pure state. After the PEI, the composite quanton is in a pure state with each of the sub-quantons in a co-state. A $P E I$ converts the pure product state of the input composite quanton into a pure entangler state; as for the sub-quantons, a PEI transforms their pure states into co-states. No unitary transformation could produce co-states from pure states (or vice versa). The phase coherence characteristic of a pure state in which the quantons were before a PEI is totally lost after they entangle -- with the created composite state being the one that is pure and coherent. Interference for the sub-quantons as individuals is impossible: their incoherence is the byproduct of their entanglement.

For two qubits with individual state-spaces A and B, there is a $P E I$ called the 'Bell Interaction' whose Milieu Basis is $M B=\{|B 1\rangle,|B 2\rangle,|B 3\rangle,|B 4\rangle\}$ (the 'Bell Basis'). These eigenstates are:

$$
\begin{align*}
|B 1\rangle= & \sqrt{2} / 2\left\{\left|s_{A 1}\right\rangle\left|s_{B 2}\right\rangle-\left|s_{A 2}\right\rangle\left|s_{B 1}\right\rangle\right\} \\
|B 3\rangle= & ;|B 2\rangle=\sqrt{2} / 2\left\{\left|s_{A 1}\right\rangle\left|s_{B 2}\right\rangle+\left|s_{A 2}\right\rangle\left|s_{B 1}\right\rangle\right\} \tag{13}\\
& \langle B 1 \mid B 2\rangle=\langle B 1 \mid B 3\rangle=\langle B 1 \mid B 4\rangle=\langle B 2 \mid B 3\rangle=\langle B 2 \mid B 4\rangle=\langle B 3 \mid B 4\rangle=0
\end{align*}
$$

The eigenstates $|B 1\rangle$ and $|B 3\rangle$ are the maximally entangled spin states $(\theta=0$ and $\theta=\pi)$ in Equations 11 (top line). In the literature, $|B 1\rangle$ is called the 'singlet' and the other three are called the 'triplet' states. The orthogonality relations at the bottom confirm that the four Bell States constitute a basis for $S_{A} \otimes S_{B}$. Thus, any $G I$ with the Bell Basis as its $M B$ is a PEI that will haphazardly leave the composite quanton in an actual state (one of those four Bell states). Any PTI (no $P D I$) with such $M B$ will set all those eigenstates as probable composite states.

A PEI can be natural, e.g. when the product of radioactivity is a pair of entangled photons. It can also be anthropic, e.g. when we design a Spontaneous Parametric Down-Converter (SPDC) or when we direct two optical fiber cables into an optical coupler. Two quantons can also become entangled without having a common past (common source) or interacting directly, e.g. when each one is entangled with one of two quantons submitted to a 'Bell Interaction' [35].

2.4.5 Intrinsic Tele-Interaction (ITI)

This is an immanent (constitutional) PI between probable states of a single quanton or between sub-quantons of a composite quanton in an entangler state. In the first simple case, the interaction resides in the conditional-probability relations between all probable states in the $M B$ throughout the quanton's evolution: any conditional probability for a probable state which is not the condition itself is nil; otherwise, it is unity. Consequently, when the quanton undergoes a PDI, only one of the probable states becomes actual and manifests in our RT-spacetime. Einstein denounced this 'abhorrent one-particle nonlocality' at the Solvay 1927 meeting but, per TOPI, it is a degenerate case of entanglement that exists innately between the probable states of a single quanton.

As for the multiple-quanton case, because the sub-quantons could be spacelike separated, ITIs achieve Einstein's and Schrödinger's ultimate anathema: "spooky action at a distance" between quantons. Ergo, like PTIs, an ITI is not of the dynamic type in RT-spacetime: sub-quantons’ eigenstates and their reciprocal conditional probabilities are all real and probable, becoming actual only if and when any one of the sub-quantons undergoes a $G I$ with its local milieu. For instance, in EPRB (Figure 3), when Qubit-A undergoes a GI, the opposite of its post-GI (now pure) state is teleported to Qubit-B, so the latter's state is (whether it may eventually undergo a GI or not) as actual as Qubit-A state is after its GI. The tele-interaction existed all along while the composite quanton was isolated and consisted of the reciprocal probability interrelationship between the eigenstates of the sub-quantons' co-states (Equations 12) -- irrespective of any of them ever undergoing a $G I$. When a $G I$ does happen, the actual teleportation does happen.

Notice that we cannot control which actual state is teleported, so no human information can be spookily transmitted. What is called 'teleportation' in the literature is 'teleportation at will' so, because quantons cannot be cloned, it requires also ordinary human communication between the spacelike-separated sites. Notice as well that TOPI's teleportation occurs even when the two subquantons would manifest in our RT-spacetime as uncorrelated. As explained, in such a case, the sub-quantons' behaviors are uncorrelated not because they are isolated but because they are entangled while interacting with a unique global milieu ($\theta=\pi / 2$ or $3 \pi / 2$ in EPRB).

2.4.6 Generic Physical Interactions

Most PIs are combinations of the prior five PIs, so we can now further elaborate on the EPRB experiment. Were the first local GI non-destructive, subsequent $T M s$ on the now-independent quantons would simply detect their antipodal actual states; any other $G I$ would produce a random actual state with a $P D$ determined by the quanton's actual pre-GI state and the GI's $M B$. A $P T I$ whose $M B$ did not contain the quanton's actual state would transform it into as many probable states as the $M B$ cardinality; a $P T I$ whose $M B$ contained the quanton's actual state would leave the quanton in the same actual state. But, had the very original GI underwent by Qubit-A been a $P T I$ (no $P D I$), all its next states would have been probable and its entanglement with Qubit-B would have not ceased. Qubit-A and Qubit-B would have continued being co-states. Both spacelike subquantons stay entangled until one of them experiences a $P D I$ (explicit or implicit), which transforms its co-state and the co-state of the other into actual pure isolated states.

The so-called state-preparation process, obviously anthropic by name, is conceived to deliver the quanton in an actual or probable state; the difference is that we do know what that state is before it undergoes further interactions. But state-preparation can also be natural, like when radioactive elements are created during supernovae explosions or when stable isotopes interact
with high-energy quantons. Anthropic or natural, state preparation can be the result of a $Q E I$, a non-destructive PDI, a PTI, a PEI, an ITI, or their combinations. Note that, even when a state is probable, it can be known by us. For instance, in a Stern-Gerlach setup (Figure 2 bottom-right), we say an atom, if detected in the upper beam, was 'prepared' in the 'up' spin state and, if detected in the lower beam, was 'prepared' in the 'down' spin state. But, until detection occurs, both states are probable and, being correlated to different paths, we know what those probable states are. The same can be said when a photon enters a PF: the probable state in the output channel corresponds to a polarization along the optic axis of the PF.

2.5 Instantiation of QEIs, PDIs, PTIs, PEIs, and ITIs

The magnetic-spin instantiation of QEIs, PDIs, PTIs, PEIs, and ITIs was tacitly done while discussing mixed, convex, pure, and co-states. Let us now do so with light quanta.

2.5.1 Photonic Instantiation of QEIs, PDIs, PTIs, PEIs, and ITIs

Figure 4 outlines four possible cases for an open network of PIs: (a) a laser embodying a QEI; (b) a Spontaneous Parametric Down-Converter (SPDC) embodying a PEI that creates a pair of entangled photons; (c) a BS instantiating a $P T I$ and the internal $I T I$ between the photon's probable states; and (d) three photo-detectors D_{R}, D_{1}, and D_{2} embodying three PDIs. The SPDC is a nonlinear birefringent crystal that, upon receiving an ultraviolet photon, emits two lower-energy photons. The laser feeds the SPDC with trillions of photons per second, producing about 4 entangled pairs per million laser's photons. The two photons are correlated in time, momentum, and energy. Also, due to the crystal's refractive index varying with the photons' polarizations, the latter property can also be correlated.

The firing of D_{R} attests for the creation of a photon pair and the entrance of a photon to the $\mathrm{BS} ; D_{1}$ detects photons transmitted through and D_{2} reports photons deflected from the BS. Fired detectors are displayed in solid green. After statistically analyzing firing coincidences, it is concluded that only the top two and not the other two cases in Figure 4 occur, viz: once a photon has entered the beam splitter, either D_{1} or D_{2} fires but not both. In fact, the authors in [46] found that "whether the separation between detectors is timelike or spacelike, the number of coincidences is three orders of magnitude smaller than what would be expected had the events been uncorrelated". In sum, for this $G I$ (one PTI plus two PDIs), based on actual data, the two paths seem to be mutually exclusive as for the quincunx's ball after hitting a pin.

The absence of D_{1} and D_{2} coincidences is interpreted as proof of the existence and discrete character of the photon. Were it an actual wave, say its de Broglie wave [18] [2], either both detectors would fire at once or a 'spooky action at a distance' would occur so that when one detector fires, the wave would instantly disappear from everywhere. Likewise, were the photon an actual Schrödinger's wave-packet, the BS would split it into two actual wave-packets concurrently traveling towards D_{1} and D_{2} and, because only one detector fires, again a sort of nonlocal effect would be in place. With only 20 meters between detectors, had the disappearance of the wavepacket traveling towards D_{1} been caused in RT-spacetime by the firing of D_{2} (or vice versa), such a cause-effect 'signal' would have had to travel about 20 times faster than light -- against RT [47]. Per TOPI, instead, an ITI between probable states of a single quanton exists all along the photon's evolution, which results in only one of them being actual when undergoing a $P D I$.

Figure 4: Photonic Instantiation of QEI, PEI, PTI, ITI, and PDIs
Of course, being 'discrete' does not mean the photon is a classical particle with only actual states. By recombining the transmitted and deflected paths (e.g. with two perfect mirrors) into a second BS, the combined PTI the photon undergoes before detection is radically changed. Such a composite milieu for a photon is known as the Mach-Zehnder Interferometer (MZI). We will soon see that the second BS is exposed to two probable states of a single photon and, being probable states as ontic as actual states, a dumbfounding nonlocal/interference phenomenon may take place, forcefully preventing any naïve interpretation of the photon as the traditional actual particle or actual wave we are accustomed to in our macroworld.

3. TOPI: Probing and Proving the Reality of Probable States/Properties

As we saw in Figure 4, different milieus imposing different PIs for a quanton can be spatially networked establishing a composite milieu, which defines a global $P I$ whose state-transition $P D$ varies with the network topology. Individual PIs (nodes of the network) may involve several probable states of a single quanton. The network with its nodes and connections may be physical as such (Figure 4) or representational, e.g. when we analyze how light reflects from the two outer surfaces of a piece of glass [33], in which case the surfaces would be the nodes in the network.

If all PIs in a network are PTIs and the input state(s) is(are) probable, no actual states exist throughout the network irrespective of its spatial extension and, ergo, no RT-time can be assigned
to any intermediate PTI. An RT-time can be assigned to the first PTI only when the input state (or one of them) is actual. As for the last PTI, as we said, the lack of a PDI amounts to a destructive PDI, so an actual output state/RT-time can be assigned after the last PTI despite the absence of a physical last PDI. Once again: when all PIs between two RT-times involve only probable states, no narrative of the 'wheels and gears' type can be verisimilar because a part of Reality is ignored.

If a quanton undergoes several serial/parallel PTIs, the state-transition $P D$ from the input state (before the first PTI) to the output states (after the last PTI) is not determined by the interaction of intermediate actual states (there are none) but by the interplay among the multiple intermediate probable states the quanton has. This interplay between probable states involves ITIs and, not taking place in RT-spacetime, it is empirically inaccessible as such. The only way to empirically verify/infer such interactions is by adding a PDI after the last $P T I$ (i.e. by making the last $P I$ a $G I$) so we acquire actual data. Attempting otherwise by inserting an intermediate non-destructive PDI, we would modify the quanton's global milieu, actualizing some otherwise intermediate probable state and influencing all other PIs in the network. By its very nature, the reality of a probable state must be inferred via experiments that do not convert it into an actual state.

As we learned, these PTIs involving only probable states are dictated by the network's topology but not in RT-time. From the individual state-transition PDs for the PTIs (nodes) and the topology of their milieus, QT/TOPI predicts the overall state-transition PD: there is no storyline of intermediate events in RT-time (i.e. actual events). This is only true if no PDIs occur between the network's input and output states, namely if the quanton never adopts an intermediate actual state. The insertion of an intermediate PDI would effectively create another RT-time between input and output RT-times. This is the essence of the clash between QT and RT. Let me emphasize again that when I say that the 'evolution' of probable states occurs in QT-time (not in RT-time), I am not endorsing the existence of two types of time; I am instead saying that Einstein's operational definition of time in RT is insufficient to fully represent Reality -- the subject of future articles.

3.1 Probing the Reality of the Photon's Probable States/Properties

In Figure 5, besides the arrows indicating the polarization state, we use ' p ' and ' a ' to indicate probable and actual states. When two or more actual states correspond to the same quanton with the same $M B$ they are dot-encircled to indicate that only one of them exists. Figure 5 (top-left) displays a PBS with the polarization for input $\left|i_{1}\right\rangle$ in solid black and for input $\left|i_{2}\right\rangle$ in dotted-red. We also assumed that, if their corresponding states are both actual, they do correspond to the same quanton with the same previous milieu (both 'a' are dot-encircled). As for the PBS output channels $\left|o_{1}\right\rangle$ and $\left|o_{2}\right\rangle$, they are both probable states for the same quanton. By their very nature, probable states of the same quanton/milieu do coexist; actual states of the same quanton/milieu do not. Note that the same output contains (\uparrow) and (\rightarrow) probable states (one for each input) because a deflected state for one input is a transmitted state for the other. But after the quanton undergoes a PDI (one photodetector fires), the quanton's probable state on that physical channel becomes actual and, ergo, its state in the other is neither probable nor actual.

In Figure 5 (top-middle), we assume the two PDIs after the PBS are non-destructive and we close the topology by getting both output channels of the PBS to (via perfect mirrors) enter a second PBS with the same spatial orientation as the first one. The states out of the first PBS are both probable but, because of the PBS operation, the state in the upper path has (\uparrow) polarization (solid-black arrow) and the one in the lower path has (\rightarrow) polarization (dotted-red arrow).

Polarization and path are correlated. And, due to the PDIs in the loop, only one of the states enters the second PBS as actual, i.e. the second PBS interacts either with the quanton in a (\uparrow) state (upper path) or with the quanton in a (\rightarrow) state (lower path). In the first case, the photon is transmitted and the lower photodetector fires; in the second case, the photon is deflected firing the same lower $P D I$. The upper-right photodetector never fires. In rigor, only one $P D I$ is strictly necessary in the loop because, upon the only (ideal) PDI interacting with the probable state in that physical channel, if the detector fires, the latter becomes actual; if it does not, the probable state in the other channel is the one that becomes actual. After a multitude of single-photon runs, each one with a polarization forming an angle of, say 30° with the first PBS transmission axis, about 75% $\left(\cos ^{2} 30^{\circ}\right)$ of the photons will come out with (\uparrow) polarization (solid-black arrows) and about 25% with (\rightarrow) polarization (dotted-red arrows).

Figure 5: Probable (p) vs. Actual (a). Top: MZI with PBS; Bottom: Double-Slit as an MZI
As an experimental proof of the last assertion, replacing the detector in the firing channel with a third PBS (with the same spatial orientation), it would transmit all 75% of the photons with (\uparrow) polarization and deflect all 25% of the photons with (\rightarrow) polarization. But if we rotated this third PBS 30° to align its transmission axis with the polarization of the photon when entered the first PBS, the 75% of photons with (\uparrow) polarization will now split $56.25 \% ~(75 \%$ of 75%) as transmitted and 18.75% (25% of 75%) as deflected. The remaining 25% of photons with (\rightarrow) polarization will split 6.25% (25% of 25%) as transmitted and 18.75% (75% of 25%) as deflected. Adding the
photons in each output, we would obtain 62.5% of the photons polarized at 30° and 37.5% polarized at 120° (relative to the orientation of the two PBSs inside the loop). Being all states actual, we simply multiplied all probabilities for conjunctive states in each of the disjunctive states and added them all -- as we did with the quincunx. As with epistemic probabilities, the probabilities are the ones that intermingle, not the probability-amplitudes; however, probability is still ontic: it is the presence of a PDI acting on one of the two probable states that effectively converts them into a single actual state, obliterating any direct evidence for their reality, and allowing us to think of probability as simply 'lack of knowledge'.

3.2 Proving the Reality of the Photon's Probable States/Properties

Here is how we prove the reality of the probable states: we now remove both PDIs in the loop so all states in it remain probable throughout the network (Figure 5/top-right). This is a PBS version of the well-known Mach-Zehnder Interferometer (MZI). If probable states are a merely helpful figment of our intellect (epistemic) and only actual states/properties are real, since actual states are mutually exclusive, the second PBS would only interact with one state via one input, and we would be in the same situation as described in the previous section. If, instead, probable states are real and ontically more fundamental than actual states, there must be an experimental difference when those probable states are converted into actual upon a PDI outside the loop. Let us first see if QT predicts something different to when there was a PDI inside the loop.

Using PBS Equations 7 (top), we first express the only input state $|s\rangle$ to the MZI in the $M B$ of the first PBS $(M B=\{|t\rangle,|d\rangle\})$ to get $|s\rangle=\cos \theta|t\rangle+\sin \theta|d\rangle$. The states $|t\rangle$ and $|d\rangle$ are respectively those of the photon in the upper (transmitted) and lower (deflected) channels. But $|t\rangle$ becomes $\left|i_{2}\right\rangle$ of the second PBS while $|d\rangle$ becomes its $\left|i_{1}\right\rangle$, so -using again PBS Equations 7- we can express both intermediate probable states in the basis $M B=\left\{\left|o_{1}\right\rangle,\left|o_{2}\right\rangle\right\}$ of the second PBS:

$$
\begin{gather*}
|s\rangle=\cos \theta|t\rangle+\sin \theta|d\rangle=\cos \theta\left\{-\sin \theta\left|o_{1}\right\rangle+\cos \theta\left|o_{2}\right\rangle\right\}+\sin \theta\left\{\cos \theta\left|o_{1}\right\rangle+\sin \theta\left|o_{2}\right\rangle\right\} \\
\Downarrow \tag{14}\\
|s\rangle=\{-\sin \theta \cos \theta+\sin \theta \cos \theta\}\left|o_{1}\right\rangle+\left\{\cos ^{2} \theta+\sin ^{2} \theta\right\}\left|o_{2}\right\rangle=0\left|o_{1}\right\rangle+1\left|o_{2}\right\rangle
\end{gather*}
$$

Given the MBs for each of the nodes (PIs) in the network and its topology, the photon's input state $|s\rangle$ is expressible as a 2 -superposition of its two output states. In such symbolic state manipulation, it is easy to see that now the probability-amplitudes (not the probabilities) are the ones that are multiplied for conjunctive states in each of the disjunctive states and finally added. The final state-transition equation shows that, regardless of the polarization (θ) of the photon entering the MZI, it comes out in the lower stream with the same polarization $\left(\left|o_{2}\right\rangle=|s\rangle\right)$ and fires the lower detector. QT thus predicts that, after many one-photon runs, each one with a polarization forming an angle of say 30° with the first PBS transmission axis, 100% of the photons coming out will have polarizations not (\uparrow), not (\rightarrow), but forming the same angle of 30° with the transmission axes of both polarizing beam splitters. Remarkably, the first PBS decomposed the original actual polarization (\nearrow) associated with a single (input) physical channel into two probable polarizations: one (\uparrow) and one (\rightarrow), each one correlated to only one of the two physical channels in the loop; and the second PBS composed them back to the original single probable polarization correlated again to a single (output) physical channel. Having removed all PDIs (no actual states), the global milieu to which the photon was exposed constituted a PTI, within which (except for the
input which could have been actual) all probable states coexisted. Finally, the lower PDI (the photodetector) converted the probable state into actual, manifesting itself in our RT-spacetime.

To experimentally prove this QT prediction, we replace the PDI in the firing channel with a third PBS spatially rotated 30° with respect to the other two and find that 100% of the photons are transmitted. This result is in stark contrast with the only 62.5% of photons that would have been transmitted had probable states had no reality. Clearly, interaction between two probable states of a single photon (an ITI) has occurred -- with undeniable empirical (actual) consequences. For high-intensity light under the wave theory, we would say that the beams going through the second PBS have constructively interfered in one of the outputs and destructively interfered in the other.

Some authors interpret the above astounding experimental evidence as proving the reality of superpositions per se [35] [48] [49] [50]. But we know that, even though only the superposition obtained with the $M B$ explicitly reveals the next probable states and their probability amplitudes for each PI in the network, any other superposition is equally legitimate (though more burdensome) to represent the state. Per TOPI, the states/properties (actual or probable) are the ones which are real -- as features of the entities in the theory's Ontology, viz the quantons [3]. Superpositions are merely clever mathematical representations of the ontic states, so conceived to expedite and efficiently handle any topology of PIs to which the quanton could be exposed -- as we did intuitively with the high-intensity light/atomic beams, the quincunx, and will do as well for Schrödinger's diabolic machine.

3.3 Further Proof: The Iconic Young's Double-Slit Experiment

When technology managed to dim light intensity down to a single photon, the 'double-slit experiment' became the epitome of quantum interference [33] [17] [18] [2]. The polarization states did not critically depend on the distance between nodes of the network, only upon its topology. Instead, for the 'double-slit experiment', distance is crucial because the relevant features of a single photon are the quantic versions of phase and coherence for a macro-object: the electric field.

From Figure 5 (bottom half/top middle and right plots), the state of a single-frequency photon at the source ' S ' can be decomposed into a disjunctive continuum of conjunctive continuous statetransitions (paths to the detector), two disjoint subsets of which include the passage through the slits. Each slit constitutes a local PTI. The size of and distance between slits is small enough that the probabilities for the photon to reach the detector via the lower slit (upper slit closed) and via the upper slit (lower slit closed) are about the same. This is because in both cases the transit RTtimes to the detector differ little and both are local extrema, so both probabilities are mostly determined by those paths [33] [18]. Pithily: those two subsets of possible paths constitute the relevant milieu for the photon. This 'ability' to spread (lower slit open), known as diffraction for high-intensity light, is implied by the misnamed 'Principle of Uncertainty' [3] [2]. Epistemically, for many single-photon experiments, the ratio between the number of clicks by the detector and the number of photons from the source is roughly the same when any but only one slit is open.

But both slits are supposed to be open and, were those state-transitions (paths) actual, they would be mutually exclusive (Figure 4) and the two-slit probability to reach the detector would be the sum of the one-slit probabilities. Equivalently, the number of clicks for the same large number of single-photon runs would roughly duplicate. That is experimentally confirmed when inserting non-destructive ideal (100% reliable) detectors after the slits (Figure 5, $1^{\text {st }}$ setup) because the two probable paths of the photon are converted into a single actual path (only one detector fires). Small
variations of the distance between slits would be irrelevant. As with the PBS-based MZI, only one (ideal) $P D I$ is needed because its non-firing implies that the state in the other path is actual.

But, removing those PDIs (Figure 5, $2^{\text {nd }}$ setup), both paths are probable. The probability for the final detector to fire varies with the position of, say, the lower slit (i.e. the source/detector distance for the lower path): tiny changes in the slits’ spacing alter the probability periodically from zero, through the sum of the one-slit probabilities, to about double that sum. In the first case, no clicks ever occur, i.e. the photon does not show up; this is full destructive interference between its two probable states (the case depicted). In the second case, the photon behaves like a macroobject, i.e. as if it only had actual states (like the ball in the bean machine); no interference exists. In the third case, the number of clicks is double the clicks in the second case. This is full constructive interference between the two probable states of a single quanton. Initial state and milieu (distance between slits and from them to the detector) jointly determine the behavior.

Because it is not the probabilities (nonnegative real numbers) but the probability-amplitudes (complex numbers with phases) the ones that intermingle (as electric fields do for high-intensity light), the final probability of a single photon (number of photons per unit area for high-intensity light) -determined via the squared modulus of the net amplitude- can be weakened or amplified. An elaborate $I T I$ among probable states 'takes place' - with the latter idiom very appropriate because probable states are correlated with locations. And, for a fixed distance between the slits, interference phenomena manifest differently for different positions of the final detector (different spots on a photo-sensitive screen), building up the well-known interference pattern [2].

3.3.1 The Double-Slit Experiment as a Mach-Zehnder Interferometer

Per the above analysis, the gist of Young's iconic experiment can be reduced to a double-path MZI setup in which the basic module is a BS with two inputs and two outputs (lower half of Figure 5/top-left). We set the homology as follows: a) because the MZI has two outputs, we focus on one of them (asterisked in homologous setups); b) the effect of adjusting the gap between slits is attained by tweaking the length of the upper arm in the MZI.

Per Equations 6, to complete the homology between double-slit and MZI setups, we choose both splitters $\left(\underline{B S_{1}}\right.$ and $\left.\underline{B S_{2}}\right)$ to be $50 / 50(T=R=\sqrt{2} / 2)$ as well as, for simplicity, to be both symmetric $\left(\delta_{1}=\delta_{2}\right)$. Hence, Equations 6 specialize to Equations 15, with the phase shift between transmitted and reflected states for both inputs equal to $\pi / 2$:

$$
\underline{B S}_{1}=\underline{B S_{2}}=\underline{B S}=\frac{\sqrt{2}}{2}\left[\begin{array}{ll}
1 & i \tag{15}\\
i & 1
\end{array}\right] \quad \Leftrightarrow \quad \underline{B S}^{\dagger}=\underline{B S}_{2}^{\dagger}=\underline{B S}^{\dagger}=\frac{\sqrt{2}}{2}\left[\begin{array}{rr}
1 & -i \\
-i & 1
\end{array}\right]
$$

Such a symmetric BS shows that, for both inputs states, transmitted and input states are in phase, while reflected and input states are in quadrature. These phase relations for the first BS intermingle with those of the second BS because the former's outputs become the latter's inputs. The perfect identical mirrors (PTIs) in both arms of the MZI impose the same phase shifts upon reflection so that their effects cancel out and can be ignored. But, besides the phase gained upon reflection from the BSs and perfect mirrors, there are other contributions to the final phase of each probable state coming out of the MZI, which are: a) the small phase gained inside the two BSs upon transmission; and b) the phase gained along the arms themselves. Both types are equal to 2π times the respective pathlength divided by the wavelength.

Notice that the concept of wavelength involves the notion in our macroworld of 'traveling' speed, which allows us to predict the phase of a probable state at the entrance of the second BS -given the phase of a probable state right after the photon 'leaving' the first BS. Hence, adjusting the length of say the upper arm, we can introduce a phase shift at will between the two MZI probable output states $\left|o_{1}\right\rangle$ and $\left|o_{2}\right\rangle$ before reaching the detectors. However, we cannot think of the probable states in each arm as 'objects' traveling in our RT-spacetime that meet at the second BS to interfere: such 'object' in the longer arm would take longer to 'arrive' -- reinforcing our stance that 'evolutions' in PTIs and their associated ITIs do not occur in RT-time.

Let us call θ the phase shift imparted to the photon in the upper arm. Three cases are displayed in Figure $5 /$ Bottom: $0^{\circ}, 90^{\circ}$, and 180°. Before analyzing them in depth, we imagine inserting ideal detectors (PDIs) in the arms (the homologous double-slit setup is shown in the top-middle plot). Because a single photon enters the MZI at a time, either the two inputs for both splitters are probable or only one is actual, the latter being the case for the second BS when a PDI is inserted in at least one of the arms. Analyzing many single-photon experiments, the 50% in each arm after the first BS splits $25 / 25$ on the second BS so, focusing on the detector for $\left|o_{1}\right\rangle$ (asterisked), the number of clicks (50% of total inputs photons) is double the number of clicks when one of the arms is blocked (25% of total input photons). In probability terms, probabilities for mutually exclusive actual states do add, as they did for the double-slit setup when comparing the only-one-slit-open case with the two-slit-open setup and a PDI in at least one of the slits. Let us now find the MZI global state-transition in terms of its local state-transitions when $n \boldsymbol{n}$ internal PDIs exist.

As with the PBS-MZI, we first express the only input state $|s\rangle$ in the $M B$ of the first BS (MB = $\{|t\rangle,|r\rangle\})$ to get $|s\rangle=\sqrt{2} / 2(|t\rangle+i|r\rangle)$. The probable states $|t\rangle$ and $|r\rangle$ are respectively those of the photon in the upper (transmitted) and lower (reflected) channels. Because of the phase shift θ included in the upper arm, $|t\rangle$ is transformed into $e^{i \theta}|t\rangle$, which becomes $\left|i_{2}\right\rangle$ of the second BS, while $|r\rangle$ becomes its $\left|i_{1}\right\rangle$, so we can express both states in its basis $M B=\left\{\left|o_{1}\right\rangle,\left|o_{2}\right\rangle\right\}$:

$$
\begin{gather*}
|s\rangle=\frac{\sqrt{2}}{2}\left\{e^{i \theta}|t\rangle+i|r\rangle\right\}=\frac{\sqrt{2}}{2}\left\{e^{i \theta}\left[i \frac{\sqrt{2}}{2}\left|o_{1}\right\rangle+\frac{\sqrt{2}}{2}\left|o_{2}\right\rangle\right]+i\left[\frac{\sqrt{2}}{2}\left|o_{1}\right\rangle+\frac{\sqrt{2}}{2} i\left|o_{2}\right\rangle\right]\right\} \\
\Downarrow \tag{16}\\
|s\rangle=\left\{\frac{i e^{i \theta}}{2}+\frac{i}{2}\right\}\left|o_{1}\right\rangle+\left\{\frac{e^{i \theta}}{2}-\frac{1}{2}\right\}\left|o_{2}\right\rangle=\frac{i}{2}\left\{e^{i \theta}+1\right\}\left|o_{1}\right\rangle+\frac{1}{2}\left\{e^{i \theta}-1\right\}\left|o_{2}\right\rangle
\end{gather*}
$$

From Equations 16 (bottom) we easily find the input state as a 2 -superposition of the output states for $\theta=0, \pi / 2, \pi$. Namely:
$\theta=0:$ Constructive Interference for $\left|o_{1}\right\rangle$ (Destructive for $\left|o_{2}\right\rangle$)

$$
|s\rangle=i\left|o_{1}\right\rangle+0\left|o_{2}\right\rangle \quad \text { (Lower half of Figure } 5 \text { Bottom-Left) }
$$

We see that no photon goes through channel 2 so the detector in channel 1 clicks as many times as the number of single-photon experiments. The phase of $\left|o_{1}\right\rangle$ is the result of a $\pi / 2$ shift in the lower arm (reflection in the first BS) and a $\pi / 2$ shift in the upper arm (reflection in the second BS). Both contributions being in phase, the number of clicks in that detector is double the number
when a $P D I$ is included (quadruple the number when only one arm exists). Notice the phase of $\left|o_{2}\right\rangle$ is the result of a π shift (two BS reflections) in the lower arm and no phase shift in the upper arm (two BS transmissions), hence, they are in contra-phase and no clicks occur.

$$
\begin{array}{r}
\boldsymbol{\theta}=\boldsymbol{\pi} / \mathbf{2}: \mathbf{5 0} / \mathbf{5 0} \text { Split between }\left|o_{\mathbf{1}}\right\rangle \text { and }\left|o_{\mathbf{2}}\right\rangle \\
|S\rangle=\frac{1}{2}(i-1)\left|o_{1}\right\rangle+\frac{1}{2}(i-1)\left|o_{2}\right\rangle \quad \text { (Lower half of Figure } 5 \text { Bottom-Middle) }
\end{array}
$$

The photon has equal probabilities to be in each state, so the asterisked detector clicks 50% of the time. The phase of $\left|o_{1}\right\rangle$ is the result of a $\pi / 2$ shift in the lower arm (reflection in the first BS) and a π shift in the upper arm (arm's extra length plus reflection in the second BS). Both contributions being in quadrature, the number of clicks in that detector is double the number obtained when only one arm exists. This is the homologue of including a detector in at least one of the slits (top-middle double-slit diagram). Note the phase of $\left|o_{2}\right\rangle$ is the result of a π shift (two reflections) in the lower arm and a $\pi / 2$ shift in the upper arm (arm's extra length), hence, they are in quadrature as well.

$\theta=\pi:$ Destructive Interference for $\left|o_{1}\right\rangle\left(\right.$ Constructive for $\left.\left|o_{2}\right\rangle\right)$

$$
|s\rangle=0\left|o_{1}\right\rangle-1\left|o_{2}\right\rangle \quad(\text { Lower half of Figure } 5 \text { Bottom-Right })
$$

No photon goes through channel 1 so the detector in channel 2 clicks as many times as the number of single-photon experiments. The phase of $\left|o_{1}\right\rangle$ comes from a $\pi / 2$ shift in the lower arm (reflection in the 1st BS) and a $3 \pi / 2$ shift in the upper arm (extra length plus reflection in the 2 nd BS). Both contributions being in contra-phase, no clicks in that detector occur. Notice the phase of $\left|o_{2}\right\rangle$ is the result of a π shift (two BS reflections) in the lower arm and a π shift in the upper arm (extra length), hence, they are in phase and the number of clicks in that detector is double the number when a $P D I$ is included (quadruple the number when only one arm exists). Our previous proof of the reality of probable states is hereby further strengthened. Ironically, equating Reality with actuality cannot explain actual data, justifying the century-long philosophical struggle.

3.4 Two Philosophical Enigmas

Two philosophical puzzles have, throughout the last hundred years, incited great minds to issue a cornucopia of anthropocentric claptrap, videlicet: blaming our consciousness for the so-called 'collapse of the wavefunction' (Section 4.3); the photon 'explores all possible paths'; 'observation destroys interference'; 'the lack of information for the photon's path causes interference', etc. The first conundrum is articulated as: how does the photon 'know' beforehand its final phase at the detector's location for every possible path from the source if, in fact, it does not go through them? The second enigma can be voiced (using Einstein's allegorical lingo) as: why the "subtle Lord" seems to be so "malicious" that each time we try to find out which slit the photon goes through, interference disappears? Per TOPI, both mysteries are the result of our conflating Reality with Actuality. As we explained, the actual is real but not everything real is actual.

3.4.1 Macro and Micro Objects as 'Universe Explorers'

Surprisingly, this 'mystery' goes back to the first century AD with the principles of 'Shortest Path' (Hero of Alexandria, Optics), 'Least Time' (Pierre de Fermat, Optics), 'Least Action'
(Maupertuis, Optics/Mechanics) and Hamilton's 'Stationary Action' (Mechanics) [18]. Those 'principles' are not principles (not even new laws) but alternative teleological reformulations of the classical dynamical equations, i.e. mathematical expressions intimating that a final purpose (extremizing a certain magnitude) to be realized in the future is guiding the present behavior of the object -- as if the future affected the present. But all laws expressed via differential equations can be redressed as 'stationary principles', i.e. we can appropriately conceive a magnitude such that it is always a local extreme, giving the impression that the Universe is 'intelligently' pursuing a pre-conceived goal. Unfortunately for all those philosophical stances, the existence of stationary principles is true not only for Newton's equations, but for Einstein's General Relativity equations, Maxwell's equations, Schrödinger's wave equation, and whatnot. It is a mathematical feature of differential equations [23]. Reality and its mathematical description are not the same [18] [2].

Likewise, instead of: 'the evolution of a macro-object is determined by its initial position and velocity' we could say: 'the evolution of the object is determined by its terminal positions and its transit time'. The dynamic equations are such that fixing the initial and final positions, there is only one trajectory joining them in a fixed time -- of course if the system stays isolated [16]. Both narratives are equivalent; the former gives us the false impression that the future is not involved at all in what the object does in the present (due to the notion of derivative of a continuous variable); the latter brings the future to the fore in the present. In Classical Physics, the first (Newtonian) narrative is accepted as more realistic -- while the second (Aristotelian) is dismissed as a merely mathematical feature. So, despite popular belief, this conundrum is not unique to QT.

But what shocks scientists and philosophers alike is that neither of the above narratives is valid in QT: actual trajectory and velocity are emergent concepts valid in our macroworld but ill-defined for a single quanton. We use the macro-concept of alternative trajectories (sequences of ball/pin interactions in the quincunx) as a tool to predict the probability for a micro-object to transition from a current state to a next state (Feynman's path integral). However, no actual trajectory exists: all trajectories are probable and made of co-extant probable transitions. We stated when analyzing the double-slit experiment that the probability for the photon to reach the detector was "mostly determined" by those 'trajectories' around the one for which the transit time was an extremum: it is for those 'trajectories' that the final disjunctive probable states differ little in phase and interfere constructively (increasing the probability) [33] [18]. For a macro-object, such unique trajectory would be actual (the deterministic solution between two points); for the photon, there is no actual trajectory between source and detector: the latter simply clicks with a probability calculable by integrating all disjunctive probable 'trajectories' (sets of conjunctive probable transitions).

In sum, because of the teleological dressing of always-conceivable stationary principles, our anthropomorphic mindset plays games with our pretensions to be rational by querying in shock: how can any object know beforehand which path is the one producing an extreme for the 'optical path', 'time of travel', Action, etc., unless it explores in advance all the infinite possibilities? Our blunder consists in thinking and talking as if the object were intelligent. The object does not, of course, know what it is doing; it simply behaves with a regularity which can be articulated in among others- a manner which resembles how humans plan their future and conduct their lives.

3.4.2 The "Subtle but Not Malicious Lord"

We expressed this puzzle as: why the "subtle Lord" seems to be so "malicious" that each time we try to find out which slit the photon goes through, interference disappears? The solution again
resides in understanding that because it is directly accessible to us, Actuality is just the unsubtle manifestation of Reality. There is more to the latter than what the former directly reveals.

When the non-destructive PDIs were inserted in the double-slit experiment, the milieu changed: two additional PIs were probable and, upon firing only one of the (ideal) detectors, all probable states for the quanton morphed into a single actual state; the situation then became equivalent to the one-slit milieu. For real detectors though, they can fail to fire/not fire, so there are new probable states because the final detector now may fire while both intermediate detectors not firing (one of them failing to perform as designed). The latter situation is (for a single quanton) equivalent to the no-intermediate-PDIs milieu and, in fact, were both detectors 100% unreliable, full interference would show up, with the probability for the final detector to fire oscillating (by changing the slits' separation) between zero and double the sum of the one-slit probabilities. Any failure rate lower than 100% (e.g. avalanche photodiodes are 80% reliable) would show up as a lesser interference in the sense that, when running many single-photon experiments, the maximum number of clicks at the final detector would be larger than zero and lower than double the sum of clicks when opening the slits one at a time.

Succinctly, the ontic character of a probable state -by its very nature- must be inferred from experimental setups that do not alter its probable nature. Understanding our Universe requires direct and indirect evidence -- with the latter demanding more inference than the former. Einstein was right: "The Lord is subtle but not malicious". However, 'The Lord' is much subtler than what Einstein and Schrödinger could have ever accepted (without the abundant evidence we have now).

4. The 'Basis' and 'Measurement' Pseudo-Problems

We have shown that abstract states/attributes in QT/TOPI's Foundation do have their real counterparts in QT/TOPI's Ontology, which are the real states/properties of the assumed real quantons [3]. TOPI is in utter contrast with other interpretations, e.g. with de Ronde's "Logos Categorical" interpretation [51] in which "there are no systems, no states nor properties involved" [52], all terms of a superposition are "existent in potentiality" [53], and in which "immanent powers with definite potentia" are the extant "things" [54]. For Rovelli, "Quantum weirdness isn't weird - if we accept objects don't exist" [55] [56]. For others, e.g. the "Statistical Interpretation", what they call the state of a system "is not a property of the considered system in itself, but it characterizes the statistical properties of the real or virtual ensemble (or sub-ensemble) to which this system belongs... the expression 'the state of the system' is doubly improper in quantum physics... although we cannot help to use it in teaching" [41]. Other interpretations relate superpositions to "many worlds" [57] [58] [59] [60], "many minds" [61], or "many histories" [62] [63] [64] [65]; all of them aiming at solving the 'measurement problem' and, in the process, facing the "preferred basis problem".

It is curious to claim an expression is "doubly improper" while asserting "we cannot help to use it in teaching". TOPI takes a diametrically opposed attitude. Inappropriately used words or expressions were either eliminated or redefined, explaining their new specific meaning and, when new concepts required new words, we sensibly created them. Quantons, their states and properties (probable or actual) are ontic -- while superpositions are only mathematical entities belonging to the Structure of QT, with no corresponding real entities in QT's Ontology [3].

We also explained that the quanton's ontic current state encompasses the quanton's reaction to all future PIs (contexts) and that our symbolic depiction may only include certain types of
states/milieus as a pragmatic (epistemic) necessity. Besides, for all those types of states/milieus that our symbolic depiction does incorporate, the fact that the expression for the current state in a basis points explicitly to the probable next states and their probability-amplitudes only for a $P I$ whose $M B$ is that basis, does not imply that all other milieus (PIs) are not included in the ontic state: they are indeed, and recoverable via a unitary transformation of bases in the state-space. Being TOPI a theory about the meaning of QT, the solution to the so-called 'basis problem' will follow directly from TOPI's tenets.

As for the so-called 'measurement problem', it is usually articulated as 'why the measurement of an object in a state of superposition always produces a definite outcome', or 'why the measurement produces a single result instead of a superposition of them' [66], or 'how the unitary evolution of the state changes to a single eigenstate when an observation is made'. Besides dogmatically accepting Schrödinger's Equation as universally valid, all these utterances presume a quantum object can be in a 'state of superposition', which leads some to wonder why when playing Russian roulette and surviving we only remember being alive! My mind cannot imagine what a 'superposition' as a measurement result or remembering being in a superposition could mean. So presented, the 'problem' will be easy to solve within TOPI. There is a different query though, also referred to as the 'measurement problem', which -properly reformulated- poses a real and interesting puzzle.

4.1 TOPI's Resolution of the so-called "Preferred Basis Problem"

It is a commonplace in the literature to state that QT offers no rationale for the infinitude of possible bases in terms of which the quanton's state can be represented as a superposition, that these bases are "incompatible", and that we are compelled to choose one 'preferred' basis for each experimental situation (context). This basis is sometimes referred to as the "basis which gets actualized" [67]; it is also asserted that a superposition "is not reducible to one single state, and there is no obvious interpretation of such superposition" [68]. Hence, many authors conclude that those numerous representations cannot describe a single physical reality, attempting to resolve the matter by postulating that only one basis is physical, e.g. Bohm's position basis [69], Dieks' Schmidt's basis [70] [71] [72], the 'stable under environmental decoherence' basis [57], or the basis obtained via 'environmentally induced selection' [73].

Our detailed description and application of TOPI to a variety of physical situations allow us to close the subject matter in a few paragraphs. The $M B$ is undoubtedly an epistemically preferred basis though certainly not an actual one: were the current state (probable or actual) not in MB, and the PI a PTI, no next state would be actual, let alone could the basis to which it belongs be. Ergo, to assign ontology (actual or probable) to a mathematical superposition and not to the others is unwarranted -- even if it is assigned to the one obtained via the $M B$. The current state is ontic and, for a given $P I$ (milieu), the states in the $M B$ are co-extant ontic probable next states until the quanton undergoes a $P D I$, upon which only one of them becomes actual. However, all representations of the current state via superpositions of eigenstates in all possible bases are epistemically equivalent mathematical entities.

The fact that there is -for each PI experienced by a quanton in a pure state- one basis in the state-space for which Born's Rule (as such) is applicable, does not constitute a 'problem' but an epistemic blessing. It is only natural that the quanton's evolution may depend on its state plus its milieu and, in most cases, the milieu alone determines the quanton's probable next states. The
milieus corresponding to noncommutative operators (properties) are epistemically incompatible, but they are ontically compatible because all milieus are encompassed by the quanton's ontic state. That is what the idea of 'state of an entity' conveys in its most intuitive meaning (even for us humans when we talk about our 'state of body/mind'). Besides, for a given ontic current state and milieu, the transition $P D$ is ontic and basis-invariant, so all representations (superpositions) do describe the same Reality.

Closing: the so-called 'Basis Problem' is misguided; under TOPI, all bases are legitimate regardless of state and milieu. For each milieu, the $M B$ is preferred for the same reason that decomposing the gravity force along the rod and its perpendicular directions is preferred for the pendulum (it facilitates the application of Newton's gravity and motion laws). Of course, the separate problem of determining the $M B$ for each PI does remain. We saw how the physical designs of $P F \mathrm{~s}, B S \mathrm{~s}, P B S \mathrm{~s}$, and SG magnets singled out their $M B \mathrm{~s}$, making it clear that this problem is specific to each $\underline{P I}$ and neither is part nor lessens the verisimilitude of QT -- in the same way that the problem of determining the specific classical Hamiltonian for each PI (Equations 3/top-left for the pendulum) is neither part -nor lowers the validity- of Hamiltonian Equations 3 (top-middle and top-right). Furthermore, from all the above, bases are not physical entities and, ergo, there cannot exist a dynamic process in RT-spacetime that selects or leads to one basis instead of another.

Before facing the so-called 'Measurement Problem', we need to further discuss "some sort of ultimate quasi-religious truth".

4.2. The Temporal Schrödinger's Equation

I could not agree more with Nicolas Gisin when he said in [11]:
Apparently, the many followers of today's trend elevate (unconsciously) the linearity of the Schrödinger equation and the superposition principle to some sort of ultimate quasi-religious truth, some truth in which they believe even more than in their own free will.

Schrödinger conceived his famous (non-relativistic) wave equation as a hybrid that integrated Classical Wave Theory with Planck/Einstein/de Broglie's quantic innovative relations between frequency and energy and between wavelength and momentum. These relations made possible the so-called 'quantization' process, which transcribes a classical particle equation into a quantic wave equation (i.e. containing Planck's constant h). Pauli completed the equation by including his three famous spin matrices and the external magnetic field into the Hamiltonian. This non-relativistic Schrödinger-Pauli equation predicted correctly the non-zero magnetic moment of the hydrogen atom, all the Stern-Gerlach results, and the Anomalous Zeeman Effect [2] [23].

However, such equation could not be more than an approximation valid only when the underlying hypotheses were good enough and when describing akin physical situations. Even so, because its application quickly scored many successes with considerably less calculation efforts than the equivalent Matrix Mechanics, the Copenhagen's school adopted it -- though with the probabilistic interpretation proposed by Max Born. That is why it has survived the test of time as an abstract tool while gradually becoming a "quasi-religious truth". Reality is that, even today, nothing but empirical success justifies its validity [23] [34] [74] [2].

Regardless of which the $M B=\left\{\left|m_{k}\right\rangle\right\}$ for the PI is, the temporal Schrödinger's Equation rules the dynamics of the quanton's state via the Hamiltonian Operator \mathcal{H}, whose eigenvectors define
the Hamiltonian Basis (HB). Assuming there is a realistic Hamiltonian which does not depend explicitly on time (the quanton is in a conservative field), Schrödinger's Equation and solution are:

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}|s(t)\rangle=\mathcal{H}|s(t)\rangle \Rightarrow|s(t)\rangle=\left|s_{0}\right\rangle e^{-\frac{i}{\hbar} \mathcal{H} t} \Rightarrow|s(t)\rangle=\sum_{k=1}^{n}\left\langle E_{k} \mid s_{0}\right\rangle e^{-\frac{i}{\hbar} E_{k} t}\left|E_{k}\right\rangle \tag{17}
\end{equation*}
$$

First and second Equalities 17 are equation and solution in operator form; third equality expresses the solution in the Hamiltonian (Energy) basis $H B=\left\{\left|E_{k}\right\rangle\right\}$, where $\left|E_{k}\right\rangle$ and E_{k} are respectively the (presumed discrete) eigenvectors and eigenvalues of \mathcal{H}-- which are solutions of the time-independent Schrödinger's Equation: $\mathcal{H}|s\rangle=E|s\rangle$. The Hamiltonian Operator \mathcal{H} may be obtained by heuristically transforming the classical magnitudes in the classical Hamiltonian $H(q, p)$ into Hermitian operators via the conversion key: $p^{n} \rightarrow(\hbar / i)^{n} \partial^{n} / \partial^{n} q$, a process which may or may not be successful. Evidently, even if we ignore Born's a posteriori probabilistic interpretation, the foundation for this iconic equation is quite precarious.

The quanton/milieu interaction that Schrödinger's Equation governs is a type of PTI, viz no PDIs are involved. Much of the conceptual confusion surrounding Born's stochastic interpretation of Equations 17 exists because they rule the deterministic infinitesimal transition from a single previous state (actual or probable) to a single current probable state, the latter being expressed in terms of its many probable next states in a single milieu characterizable by \mathcal{H}. Pithily: when valid, Schrödinger's Equation rules the evolution of the probability-amplitudes for all next probable energy states (the energy's $P D$), while the quanton/milieu system remains closed. But if $\left|s_{0}\right\rangle$ is not actual (and if it is, the infinitesimal next state will be not), Equation 17/right conveys not one but n superpositions because $\left|s_{0}\right\rangle$ can be any of the n eigenstates in the previous $M B$ (the probable states for the previous $P I$) so it conveys n^{2} probable transitions -- like Equations 6 (BS) and 7 (PBS) regulate four probable transitions in a 2-D state-space. Thus, per TOPI, Schrödinger's Equation governs the unitary 'temporal' evolution of probable states and, ergo, such 'time' cannot be RT-time which -by conception- is actual. It is QT-time (future papers).

As always, the equation's verisimilitude can only be tested via the statistical analysis of many equivalent runs, all characterized by the same initial actual state achieved via an initial $P D I$, the same milieu, and the same elapsed RT-time defined via a final PDI, delivering for each run one of the initially probable states as a final actual state. The ratio between the actual number obtained for each of the probable states and the actual number of runs should agree with the probabilities predicted for each one of them. The RT-time interval between initial and final actual states can be as narrow as desired (and experimentally possible) but any 'time' between them is QT-time.

Equations 17 (left and middle) tell us that the transition from the pure state $\left|s_{0}\right\rangle$ towards any future pure state $|s(t)\rangle$ is governed by the operator $\mathcal{U}(t)=\exp [-i(\mathcal{H} / \hbar) t]$, which is unitary $\left(U^{\dagger}=\mathcal{J}\right)$. The 2-superposition in Equations 17 (right) tells us that the initial expansion of the quanton's state in $H B$ evolves in QT-time by simply multiplying each component by the phase factor $\exp \left[-i\left(E_{k} / \hbar\right) t\right]$. Thus, the components' phases evolve, but their moduli do not. Ergo, if $M B=H B$, then the components are the probability-amplitudes for the next probable energy states, Born's Rule applies, and the energy's $P D$ does not change with QT-time. It is the energy $P D$ (not the specific energy values) that is conserved, which is consistent with TOPI's tenet that the $P D$ for a physical attribute (not its values) is the ontic property of a quanton. Equivalently: when property
\mathcal{P} and \mathcal{H} operators commute, all moments of the $P D$ are QT-time-independent, e.g. for the first moment: $d\langle\mathcal{P}\rangle / d t=\langle[\mathcal{P}, \mathcal{H}]\rangle / i \hbar=0$.

We also see that: a) as it must be: $\||s(t)\rangle \|=1 \forall t$; b) if $\left|s_{0}\right\rangle=\left|E_{k}\right\rangle$ for some k, then $|s(t)\rangle=$ $\exp \left[-i\left(E_{k} / \hbar\right) t\right]\left|s_{0}\right\rangle=\left|s_{0}\right\rangle$, so the ontic state does not evolve in QT-time; c) if $\left|s_{0}\right\rangle$ comprises two or more eigenstates, it could not morph into only one eigenstate; and d) though the relative phases do evolve in QT-time, they do not disappear, so a pure state does not decohere, i.e. it remains pure. These features clearly explain why Schrödinger's Equation cannot govern a PDI.

If $M B \neq H B$ (i.e. if $[\mathcal{H}, \mathcal{P}] \neq 0$), we obtain the state's evolution in $M B$ by transforming the solution in $H B$ (Equation 17/right) into its expression in $M B$. After doing so, Born's Rule can be applied to each component, obtaining the evolution for the state-transition $P D$. Calling \underline{s}_{H} and \underline{s}_{M} the column state vectors in bases $H B$ and $M B$ respectively, and using Equations 8 for the transformation of bases, we get:

$$
\begin{align*}
&|s(t)\rangle= \sum_{k=1}^{n}\left\langle E_{k} \mid s_{0}\right\rangle e^{-\frac{i}{\hbar} E_{k} t}\left|E_{k}\right\rangle \quad \Rightarrow \quad \underline{s}_{H}(t)=\left[\begin{array}{c}
\left\langle E_{1} \mid s_{0}\right\rangle e^{-\frac{i}{\hbar} E_{1} t} \\
\vdots \\
\left\langle E_{n} \mid s_{0}\right\rangle e^{-\frac{i}{\hbar} E_{n} t}
\end{array}\right] \\
& \Downarrow \\
& s_{M}(t)=\left[\begin{array}{ccc}
\left\langle m_{1} \mid E_{1}\right\rangle & \cdots & \left\langle m_{1} \mid E_{n}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle m_{n} \mid E_{1}\right\rangle & \cdots & \left\langle m_{n} \mid E_{n}\right\rangle
\end{array}\right]\left[\begin{array}{c}
\left\langle E_{1} \mid s_{0}\right\rangle e^{-\frac{i}{\hbar} E_{1} t} \\
\vdots \\
\left\langle E_{n} \mid s_{0}\right\rangle e^{-\frac{i}{\hbar} E_{n} t}
\end{array}\right]=\left[\begin{array}{l}
\sum_{j=1}^{n}\left\langle m_{1} \mid E_{j}\right\rangle\left\langle E_{j} \mid s_{0}\right\rangle e^{-\frac{i}{\hbar} E_{j} t} \\
\vdots \\
\sum_{j=1}^{n}\left\langle m_{n} \mid E_{j}\right\rangle\left\langle E_{j} \mid s_{0}\right\rangle e^{-\frac{i}{\hbar} E_{j} t}
\end{array}\right] \\
& \| \tag{18}\\
&|s(t)\rangle= \sum_{k=1}^{n}\left\langle E_{k} \mid s_{0}\right\rangle e^{-\frac{i}{\hbar} E_{k} t}\left|E_{k}\right\rangle=\sum_{k=1}^{n}\left\langle\left. m_{k}\left\{\sum_{j=1}^{n}\left\langle E_{j} \mid s_{0}\right\rangle e^{-\frac{i}{\hbar} E_{j} t}\left|E_{j}\right\rangle\right\} \right\rvert\, m_{k}\right\rangle
\end{align*}
$$

The last line in Equations 18 shows the ontic state expressed in both bases and, clearly, the components' moduli in $M B$ do change with QT-time so the $P D$ for any property whose operator does not commute with the Hamiltonian does evolve. Now: a) $\||s(t)\rangle \|=1 \forall t$ as it should; b) if $\left|s_{0}\right\rangle=\left|m_{k}\right\rangle$ for some k, then $|s(t)\rangle=\left\langle m_{k}\left\{\sum_{j=1}^{n}\left\langle E_{j} \mid m_{k}\right\rangle \exp \left[-i\left(E_{j} / \hbar\right) t\right]\left|E_{j}\right\rangle\right\} \mid m_{k}\right\rangle$ so, unlike for the ' $M B=H B^{\prime}$ case, the quanton's state does evolve; c) if $\left|s_{0}\right\rangle$ comprises two or more eigenstates, like for the ' $M B=H B^{\prime}$ case, it could not morph into only one eigenstate; and d) as for the ' $M B=$ $H B^{\prime}$ case as well, relative phases do evolve in QT-time without decoherence, i.e. the state remains pure. We conclude again that Schrödinger's Equation cannot govern any PDI.

4.3 TOPI's Resolution/Reformulation of the so-called 'Measurement Problem'

We saw in Parts I and II of this series that the term 'measurement' in the literature does not correspond to the conventional meaning of the word. We created the locution 'Gauge Interaction' (GI) to replace 'measurement' and pointed out that, in QT, only when the current state is pure and
belongs to the current $M B$, the quanton's state does not change and the $G I$ becomes a 'True Measurement' (TM). Recklessly considering GIs (needed to assess quantum phenomena) as fullfledged conventional measurements is one of the reasons behind the hogwash surrounding the 'Uncertainty Principle' and the so-called 'measurement problem'. We are collecting experimental data related to the interaction between the quanton and its milieu, but we cannot assert that such data always allow us to infer what the state of the quanton was before the interaction (as with an ordinary measurement).

By a poor choice of words (not unusual in Science), Dirac inaugurated in 1930 the infamous (still among us) 'collapse of the wavefunction' when he said (underscore is mine):
DIRA1: When we make the photon meet a tourmaline crystal, we are subjecting it to an observation. We are observing whether it is polarized parallel or perpendicular to the optic axis. The effect of making this observation is to force the photon entirely into the state of parallel or entirely into the state of perpendicular polarization. It has to make a sudden jump from being partly in each of these two states to being entirely in one or the other of them. Which of the two states it will jump cannot be predicted, but is governed only by probability laws. [75]

Though tacitly, Dirac implies that the photon is detected (via some PDI), so there is more to Dirac's statement than the PTI a photon experiences when meeting a crystal. In the light of TOPI, the conceptual mistakes in DIRA1 are: (a) when a photon meets a tourmaline crystal we are not "observing whether it is polarized parallel or perpendicular to the optic axis"; (b) the $G I$ with the crystal does not "force the photon entirely into..."; and (c) the actual state transition ("jump") the photon experiences upon detection is not from "being partly in each of these two states to being entirely in one or the other of them". Mathematical depiction and Reality are not the same. The latter is out there and unique, the former is created by us and admits multiple interpretations -even when it perfectly agrees with experimental data.

Regarding (a), unless the current state is in the $M B$ defined by the crystal, the actual next state is not the same, so the GI is not a TM. As for (b), the photon's current state could be already one of the two probable next states and the GI would be a TM. Concerning (c), during the PTI part of the $G I$ (before detection) the current state comprises two probable next states (the ones in the $M B$); upon detection (the PDI part), the actual transition ("jump") is from a single state (the current state) to a single state (the next actual state) -- via the conversion into actual of one of the probable states or, equivalently, by only one of the two probable transitions becoming actual. Which one of the two is actualized (both were real already) is stochastically governed by the ontic $P D$ determined by the current state and the polarization property operator (Equations 10).

Unfortunately, by taking DIRA1 literally, the question about the specific nature of such a weird physical 'jump' from "being partly in each of these two states to being entirely in one or the other of them" and the supposedly need for the mathematical 'collapse' of the wavefunction appeared on stage. In 1932, von Neumann, in his famous Mathematical Foundations of Quantum Mechanics, introduced the idea of the 'wavefunction of the Universe' and gave credibility to the incipient 'measurement problem' with his formal introduction of the 'projection postulate'. He also stated that the quantic state could change via two fundamentally different processes that he set apart with the vague notion of 'measurement': between 'measurements' the quantum object evolved deterministically 'in time' (continuously, linearly, and reversibly); upon a 'measurement' the change of the state was stochastic, discontinuous, and irreversible, i.e. with a 'collapse'. Not realizing that probability was embedded in the deterministic evolution governed by Schrödinger's

Equation (per TOPI, any equation governing a $P T I$), chance was exclusively assigned to the 'measurement' process (whatever that was) and, inexplicably, a theory supposed to be about Reality, became a theory about the anthropic 'measurement'. To convolute matters, von Neumann argued that the 'collapse' could be placed anywhere between the measuring device and the deeply mysterious consciousness of ours.

The official birth certificate for the 'measurement problem' was stamped by EPR and Schrödinger's papers [1] [9] [7] [8] [5], after which the peculiar phenomenon of entanglement was labeled as the hallmark of -and a sine qua non for- every physical interaction. And, given that nobody knew what a 'measurement' was, the quantum object supposedly got entangled with the 'measuring' device, which supposedly was entangled with the environment, which supposedly was... moving the supposedly stochastic 'collapse' via an infinite regress to the 'supreme' being: the 'observer' (as intimated by von Neumann). And, until reaching this mighty 'collapsor' (capable of stopping further entanglement), Schrödinger's Equation was the entangler par excellence and ruled the quantum world by despotic fiat. Joining von Neumann, Eugene Wigner, Fritz London, and Edmond Bauer became believers, with Wigner still defending such a stance as late as in the early 1990s. Alternatively, other equally intelligent thinkers believed (with adherents now steadily growing) that the 'collapse' is only apparent because the rest of the states in the superposition do also 'occur'... though in other never-to-interact-again worlds [57] [58] [59] [60]. We already mentioned other proposals [52] [53] [54] [41] [61] [62] [63] [64] [65].

4.3.1 Common Articulation of the 'Measurement Problem'

As said, the 'measurement problem' is usually articulated as 'why the measurement of an object in a state of superposition always produce a definite outcome' or 'why the measurement produces a single result instead of a superposition of them'. However: (a) what does it mean for a quantum object to be in a state of superposition? And (b) what does it mean for a 'measurement' to produce a superposition? Nobody could answer (a), except by pointing to the mathematical expression itself -- while timidly but mystically implying the object was in all those actual states 'at once'. Likewise for (b), though Louis de Broglie's had conjectured in the late 1920s that when two monochromatic waves were superposed and intensity-dimmed, the single photon would have an energy somewhere between those of the two waves (determined by their frequencies) so that, upon photoelectricity manifesting in our RT-spacetime, electrons with intermediate energies would emerge. But he quickly recanted because Millikan in 1914 had confuted such idea with accurate experimental data (disgruntledly confirming Einstein's predictions).

From above, the question that has survived till today is 'why the measurement of a quantum object in a state of superposition always produces not some combination of the superposed states but one of them as a definite outcome'. Furthermore, it was implicit that an acceptable answer had to involve a physical 'mechanism' to convert 'a superposition' into 'a single value' (the infamous 'collapse') -- something we proved Schrödinger's Equation (the supposedly universal entangler) cannot do. Many researchers then conceived spontaneous localization (position collapse) theories (GWR theory [76]), modifications of Schrödinger's Equation to include the collapse via nonlinear stochastic differential equations [77] [78], and combinations thereof [79] [80] [81].

Another 'mechanism' to explain the appearance of a 'collapse' was Decoherence, tacitly existing in Bohm's well-known hidden-variable theory (1952) and in Everett's also well-known MWI (1957). It became popular in the 1980 and remains so until today. The fallacious underlying
premise is that any interaction between a quanton and its global milieu ('measurement' apparatus plus its macro-environment) quickly results in the quantic entanglement between the two, i.e. that the composite system is in a quantic pure state and the quanton as well as the 'apparatus plus environment' are in co-states (mixed states in the literature). In brief, the dynamics of the whole is unjustifiably assumed unitary (2-superpositions) and, from what we learned for the EPRB composite of two qubits, both the quanton and its macro-environment are expected to behave nonunitarily (convex superpositions) losing quantic coherence while remaining correlated. Hence, decoherence at most could explain the transition of the 'measured' quanton from its presumed pure state to a mixture of states that correspond to the possible 'measured' results: all decoherence could do is to destroy phase coherence of the quanton's current pure state, leaving intact all its next probable states, viz with $\boldsymbol{n} \boldsymbol{n}$ infamous 'collapse' of the wavefunction. Combined with unitary dynamics, decoherence has also been used to unsuccessfully derive the macroworld straight from the (presumably universal) quantum laws of the microworld [82] [73] [41].

But, under TOPI, a 'measurement' (our GI) comprises at least one PDI, which is non-linear and irreversible, so Schrödinger's (or Dirac's) Equation cannot govern such a PI. If the PI does include a PDI, the transition to an actual state occurs from the current state to one of the probable next states, i.e. from a single actual or probable state to a single actual state -- not 'from a superposition of states to a single state' as popularly stated. Whether those two states are (given a basis) mathematically represented via a superposition or not is irrelevant: the physical state is not a superposition per se; its mathematical representations are.

Consequently, the so-called "measurement problem", as usually stated, is a pseudo-problem because the premise is false. The eigenstates in the superposition represent ontic probable states, not actual states. The expression "the system is in a superposition of states" has no physical meaning; the quanton is in a well-defined actual or probable ontic state which can be symbolically depicted in infinite ways. Superpositions are mere mathematical depictions of an ontic state. The current milieu (i.e. the type of $P I$) determines the current $M B$ or, equivalently, the transformation to be applied to the previous $M B$ so that the new probable next states are exposed and their probability distribution (not their values) determined by Born's Rule. If one of the next states becomes actual (after a PDI on an actual or a probable state), then of course we experimentally see only one state; otherwise (upon a PTI), all next states are probable and the number of them depends upon the current $M B$ (from one eigenstate up to the dimension of the space).

Closing, this pseudo-problem is the result of conflating (a) Reality with Actuality and (b) the quanton with its states. Per TOPI, those states appearing in the superposition obtained using the $M B$ are real but not actual; and there are physical interactions (PDIs, mostly non-anthropic) that convert all those probable states comprising the quanton's current state into one actual next state. The PDI uncovers the ontic character of probability by partially manifesting it in our RT-spacetime with (of course) only one actual state and values for the properties compatible with the $M B$ (Section 3). States are dynamic features of the quanton, so they come and go with its evolution. Hence, there is need to conceive neither a physical nor a metaphysical "collapse" process that would purportedly convert many (purportedly actual but they are not) states into a single actual state.

4.3.2 Reformulation of the 'Measurement Problem' in the Light of TOPI

Apparently against our stance, in 2017, Gisin stated that the 'measurement problem' was a "serious physics problem" -- though he wisely articulated it as: "What configuration of atoms and
photons characterize measurements setups?" [11]. The reason this variant is still referred to as the 'measurement problem' is because by 'measurement setup' it is understood any physical arrangement that delivers results (events) in our RT-spacetime (whether it is a measurement in the conventional sense or not) and, in all such cases, the alleged 'collapse' is supposed to occur. But asking why and how a hypothetic 'collapse' occurs (prevalent articulation) is different from asking what type of experimental setup displays what is referred to (correctly or not) as 'a collapse'.

So presented by Gisin, even with the vague "measurements setups", and assuming there are setups that are not 'measurement setups', this variant of the 'measurement problem' is a different, valid, important, and thought-provoking conundrum. Reformulated in non-anthropic terms vis à vis TOPI, it consists in understanding when a $P I$ is or includes a $P D I$. However, as such, it is not part of QT per se (at least not of what we call QT today) and will be tackled in future papers. For now, let us elaborate a little further about the traits of a PDI as opposed to those of a PTI.

George Ellis asks why photodiodes or chlorophyll in plant leaves do not behave reversibly or simply why they do not emit light rather than absorbing it. He thinks the answer must be in the anisotropic spatial structures those systems define jointly with the local context plus their initial conditions -- leading to non-linear behavior. He concludes that "we have no evidence that the universe as a whole behaves as a Hamiltonian system" [83]. I would say there is plenty of evidence it does not. Barbara Drossel gives "Ten reasons why a thermalized system cannot be described by a many-particle wave function" [12]. They, as co-authors, explain in [13] why, despite abundant experimental proof of macroscopic entanglement, QT is not universally valid (underscore is mine):

> Such situations are attained only by sufficiently isolating the system from interactions with the rest of the world, and in particular from interaction with heat baths. This requires low temperatures, or, in the case of long-distance entanglement experiments, time scales that are shorter than the characteristic time for interaction with a heat bath. This is in total contrast to the measurement process, where interaction with the heat bath is the core of what is happening.

And, regarding the 'heat bath' (essential component of a $P D I$), they explain why its evolution cannot be unitary (and ergo its interaction with the quanton cannot be a PTI):

Due to the emission of photons a fully quantum mechanical description of the heat bath by unitary time evolution would need to include an ever increasing entanglement with the external world. Claiming that such a unitary time evolution occurs nevertheless has no basis in physics as an empirical science. The wave function of the heat bath plus environment can neither be controlled nor measured, not even in principle... The thermal time and length thus describe the temporal and spatial range over which quantum coherence occurs... Only the electron can be described by a wave function, not the combined system... Moreover, it is experimentally completely unrealistic to assume that the apparatus has been initially prepared in a pure state.

Clearly, despite interacting with macro-objects, the interaction among the quanton's probable states in PTIs occurs either within the microcosm or -under exceptionally extreme/controlled situations- within the macrocosm though, always, with extreme isolating techniques to minimize decoherence phenomena (e.g. a SQUID superconductor macro-ring). In sum, linearity in the macroworld may emerge from linearity in the microworld but it is the conspicuous exception, with nonlinearity being the rule [42] [84] [85]. PDIs (necessary for a quanton to leave a record in our RT-spacetime) are inherently non-linear (non-unitary) and irreversible (dissipative) -- rendering Schrödinger's Equation (or equivalent) useless.

Wrapping up, the detection/amplification process in a $P D I$ creates a macro-state for the milieu (correlated to the quanton's state) and does occur in RT-spacetime, but it is highly specific to the PDI and -if anthropic- to our detection instrumentation [2] [86]. The prevalent idea that QT provides per se a theory of 'quantum measurement' is as nonsensical as to affirm that Classical Physics provides a theory of 'classical' measurement. Observation and measurement are crucial for theory validation but do not belong to a fundamental theory because every measurement is specific to the physical property being measured and based on its own specific theory [3] [4] [86].

5. Schrödinger's "Hellish" Machine

Schrödinger's satire of QT highlights the following elements: a) a living cat locked up in a room with opaque walls; b) a tiny piece of radioactive material; c) a causal macro-mechanism comprising a Geiger counter, a relay, a hammer, and a fragile container of prussic acid; d) leaving the entire contraption alone for an hour, within which there is 50% chance for an atom of the radioactive material to decay and trigger the causal chain in RT-spacetime -- leading to the demise of the unfortunate cat; and e) the groundless hypothesis that the whole contrivance can be mathematically represented by a ψ-function (a pure state) which he, right before opening the enclosure, sarcastically interprets as a "mixture of a living and a dead cat". We start by understanding what radioactivity is and how is mathematically described and explained.

5.1 Nuclear Decay/Atomic Radiation vis à vis TOPI

The Curies concluded that the intensity of radioactivity did not depend on the element's chemical form, ambient temperature, pressure, near electromagnetic fields, illumination, what have you; only the type and number of atomic nuclei determined the radiation intensity. They said: "Radioactivity is an atomic property...its spontaneity is an enigma; a subject of profound astonishment". The nucleus decay process is also a $Q E I$ because, upon decay, the nucleus emits a 'radiated' quanton (α, β or γ 'rays') by the detection of which (a PDI), Rutherford found that equal fractions of the nuclei population disintegrated in equal times, with a decay rate characteristic of the chemical element. The how and when for the disintegration of a single nucleus was not predictable, but the statistical behavior of a large population was. The Curie's spontaneity was quantified as the statistical property of a large population and, hence, creeping down to a single nucleus with the notion of probability. Atomic spontaneous/stimulated emissions behaved equally. Nuclear disintegration and atomic radiation are sheer stochastic processes [18].

Under QT/TOPI, the relation between Statistics and Probability is reversed: each nucleus has a characteristic ontic probability to decay, which is the reason for (not the result of) the persistent relative frequencies in long sequences of detected decay events. Calling N_{0} the initial number of undecayed atoms and $N(t)$ the number of undecayed nuclei at RT-time t, and (to apply Calculus) letting $N \rightarrow \infty$ and $\Delta t \rightarrow 0$, Rutherford's "equal fractions in equal times" becomes the differential equation $d N / d t=-N / \tau$, with the constant τ characteristic of the radioactive element [18]. Its solution is: $N(t)=N_{0} e^{-t / \tau}$. This function thus governs the time evolution of an ensemble of atoms and, by the Law of Large Numbers, the RT-time for a single disintegration event (decay) is a random variable $T \in[0, \infty)$ whose probability density distribution is $d_{T}(t)=1 / \tau e^{-t / \tau}$. Ergo, the following probability equations for the nucleus disintegration can be established:

$$
\operatorname{Pr}\{0 \leq T \leq t\}=\int_{0}^{t} 1 / \tau e^{-t^{\prime} / \tau} d t^{\prime}=\left(1-e^{-t / \tau}\right) \quad \Rightarrow \quad \operatorname{Pr}\{T>t\}=e^{-t / \tau}
$$

$$
\begin{gather*}
\operatorname{Pr}\{t \leq T \leq t+\Delta t\}=\int_{t}^{t+\Delta t} 1 / \tau e^{-t^{\prime} / \tau} d t^{\prime}=e^{-t / \tau}\left(1-e^{-\Delta t / \tau}\right) \tag{19}\\
\Downarrow \\
\operatorname{Pr}\{[t \leq T \leq t+\Delta t] /[T>t]\}=\frac{\operatorname{Pr}\{t<T \leq t+\Delta t\}}{\operatorname{Pr}\{[T>t]\}}=\left(1-e^{-\Delta t / \tau}\right)
\end{gather*}
$$

Equation 19 (top left) presumes the nucleus has been set (via a natural or anthropic process) in a metastable state at $t=0$. It tells us that the probability of decay increases exponentially with RT-time, approaching unity as $t \rightarrow \infty$. Equivalently (top right), the probability for not decaying decreases exponentially with RT-time. Equation 19 (middle line) quantifies the probability for the decay event to occur within the interval $t \leq T \leq t+\Delta t(\Delta t$-interval at time $t)$. It says that the longer the time horizon t, the lower the probability is that the atom will decay within a Δt-interval after it, simply because the higher the probability is that the event may occur before.

Equation 19 (bottom) assumes that $T>t$, i.e. that the nucleus has not decayed during the interval $[0, t]$. We see that the conditional probability becomes only dependent upon the size Δt of the time interval (not upon RT-time per se). The nucleus seems not to have 'memory' and not to 'age'. This is in stark contrast with the macroworld (where things and humans do age). Note again that the probability for the nucleus to remain undecayed ('survive') decreases monotonically with the elapsed time (Equation 19/top right). The conditional probability for decaying within Δt is the same as time passes, but the probability for such condition ('survival') decreases with time.

It is straightforward to prove that τ is both the Mean $\langle T\rangle$ (lifetime or mean life) and the SD of the distribution for decay times. For instance, the lifetime for Uranium-238 is 6,500 million years; for Radon only 5.5 days; and for the Muon is just 2,200 nanoseconds. From Equation 19 (top left), we see that τ is also the time for which the probability of decaying before it is $1-e^{-1}=0.632$. Statistically, after time τ, out of a large sample of radioactive material, 63.2% of the nuclei will have decayed. Oftentimes the term half-life $\left(\tau_{1 / 2}\right)$ is also used, which is the time for half of the population to decay. They are related by $\tau_{1 / 2}=(\ln 2) \tau$. The case imagined by Schrödinger in SCHR1 could correspond approximately (there were of course many atoms in his "tiny amount") to some of the highly radioactive isotopes of Neptunium (Np), with a half-life around 50 minutes or less. Let us now look at Equations 19 through the QT formalism.

5.2 Quantic State Transition for the Nucleus

We call $D P=\left(1-e^{-\Delta t / \tau}\right)$ the 'ageless' conditional probability of Decaying ('Dying') and $S P=(1-D P)=e^{-\Delta t / \tau}$ that of not decaying ('Surviving') within Δt. From Equations 19 (middle line), the probability to die within Δt starting at time t is the probability $e^{-t / \tau}$ to survive until time t times the probability $D P$ to 'die' within Δt. Note it is the probabilities that are directly multiplied. Let us discretize time so that $t=k \Delta t ; k=0,1,2, \ldots$ Rewriting Equations 19 we get:

$$
\begin{equation*}
\operatorname{Pr}\{k \Delta t \leq T \leq(k+1) \Delta t\} /[T>k \Delta t]=D P ; \operatorname{Pr}\{T>(k+1) \Delta t\} /[T>k \Delta t]=S P \tag{20}
\end{equation*}
$$

$$
\operatorname{Pr}\{k \Delta t \leq T \leq(k+1) \Delta t\} /[T \leq k \Delta t]=0 ; \operatorname{Pr}\{T>(k+1) \Delta t\} /[T \leq k \Delta t]=0
$$

Where $k=0$ corresponds to when the nucleus adopted its metastable state. Being $t=k \Delta t$, the Δt-interval moves with k, defining a grid of actual states/times -- as we did with the quincunx. The nucleus can be in one of two actual states at $t=k \Delta t$: the metastable 'Not Decayed' or the stable 'Decayed'. If in the former, it may decay within Δt with probability $D P$ and may survive with probability $S P=1-D P$ (Equations 20 top); if in the latter, no further change may occur (Equations 20 bottom).

The decay event is an internal PI spontaneously experienced by the nucleus. Dogmatically following the QT formalism, the actual metastable state the nucleus is in before decaying could be expressed as a superposition of two probable next states: 'Not Decayed' (ND) and 'Decayed' (D). The actual decay event can occur at any RT-time $t=k \Delta t$ so, for each k, the nucleus is in a welldetermined (actual) state: either in the original metastable (undecayed) state or in the 'decayed' stable state. By reducing Δt, the RT-time resolution could be made as high as experimentally possible so, like for the quincunx, the probable status of those two states would be limited to a vanishingly narrow RT-time interval out of which the decay event would happen or not. Per TOPI, though ephemeral, the two probable next states would be real, coexisting as 'determining parts' of the current state. The question now is whether the proposed superposition is a 2 -superposition (like for a pure state) or a 1 -superposition (convex like for the quincunx's ball), namely:
$|s\rangle=s_{1}|N D\rangle+s_{2}|D\rangle ; s_{1} s_{1}^{*}=S P ; s_{2} s_{2}^{*}=D P \quad$ or $\quad[s]=S P[N D]+D P[D]$
But the decay process is quite singular because, per Curie's finding, the milieu does not single out any $M B$, so our choice of basis $(\{|N D\rangle,|D\rangle\}$ or $\{[N D],[D]\})$ seems to be quite arbitrary and unaffected by any milieu manipulation. Until the nucleus decays, even though its state $(|N D\rangle$ or $[N D]$) belongs to the adopted basis, the probability $D P$ to decay (transition to $|D\rangle$ or $[D]$) is still the same and not unity; only if the nucleus has already decayed, then the next state is the same as the current state with unity probability. It is thus evident that none of those linear equations could be valid until the nucleus does decay and the reason is because RT-time does not appear in them. Making RT-time (actual by conception) part of the state converts a non-event (metastable \rightarrow metastable) and (stable \rightarrow stable) into an actual transition. Also, realizing that the superpositions depend on whether the nucleus has decayed or not, our possible superpositions in matrix form are:

2-Superpositions (ontic pure states)

$$
\left[\begin{array}{c}
|k, N D\rangle \tag{22}\\
|k, D\rangle
\end{array}\right]=\left[\begin{array}{cc}
s_{1} & s_{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
|k+1, N D\rangle \\
|k+1, D\rangle
\end{array}\right] ;\left[\begin{array}{c}
|k+1, N D\rangle \\
|k+1, D\rangle
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{s_{1}} & \frac{-s_{2}}{s_{1}} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
|k, N D\rangle \\
|k, D\rangle
\end{array}\right] ; s_{1} s_{1}^{*}=S P ; s_{2} s_{2}^{*}=D P
$$

or

1-Superpositions (ontic convex states)

$$
\left[\begin{array}{c}
{[k, N D]} \\
{[k, D]}
\end{array}\right]=\left[\begin{array}{cc}
S P & D P \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
{[k+1, N D]} \\
{[k+1, D]}
\end{array}\right] \quad ; \quad\left[\begin{array}{c}
{[k+1, N D]} \\
{[k+1, D]}
\end{array}\right]=\left[\begin{array}{cc}
1 / S P & -D P / S P \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
{[k, N D]} \\
{[k, D]}
\end{array}\right]
$$

Note both matrices are not unitary and that now all bases depend on time, e.g. for the presumed pure state $|k, N D\rangle$, the basis is $M B=\{|k+1, N D\rangle,|k+1, D\rangle\}$. The current state is not in the current $M B$ any longer, so that both types of superposition make sense for a given k. However, if the transition equations are to be valid for all RT-times, when using them recursively, the 2-norm for $|k, N D\rangle$ and/or the sum of the coefficients for $[k, N D]$ should be equal to unity for all RT-times (as the 2-norm of the solution of Schrödinger's Equation does). Let us express the original metastable state $|0, N D\rangle$ after k time intervals:

$$
\begin{gather*}
|0, N D\rangle=s_{1}|1, N D\rangle+s_{2}|1, D\rangle=s_{1}\left\{s_{1}|2, N D\rangle+s_{2}|2, D\rangle\right\}+s_{2}|2, N D\rangle= \\
s_{1}^{2}|2, N D\rangle+\left\{s_{1} s_{2}+s_{2}\right\}|2, D\rangle=s_{1}^{3}|3, N D\rangle+s_{2}\left\{s_{1}^{2}+s_{1}+1\right\}|3, D\rangle \tag{23}\\
\vdots \\
|0, N D\rangle=s_{1}^{k}|k, N D\rangle+\left\{s_{2} \sum_{j=0}^{k-1} s_{1}^{j}\right\}|k, D\rangle \Rightarrow\left|s_{2} \sum_{j=0}^{k-1} s_{1}^{j}\right|^{2}=1-\left|s_{1}^{k}\right|^{2}=1-S P^{k} \quad \forall k
\end{gather*}
$$

It can be proven that there is no pair of complex numbers s_{1} and s_{2} that would verify the condition in Equation 23 (bottom right) needed for the 2-norm of $|0, N D\rangle$ to always remain unity. In fact, the condition is verified for $k \leq 2$ if $s_{1}=i \sqrt{S P}$ and $s_{2} s_{2}^{*}=D P$ but fails for $k \geq 3$. Notice that: (a) $k \Delta t$ represents RT-time; and (b) the temporal evolution of such a presumed-pure state (as $\Delta t \rightarrow 0$) does not obey Schrödinger's Equation; and c) time in the latter equation is QT-time.

Instead, despite not obeying Schrödinger's Equation either, it is easy to prove that the corresponding condition for convex superpositions is automatically verified for all times:

$$
\begin{equation*}
[0, N D]=S P^{k}[k, N D]+\left\{D P \sum_{j=0}^{k-1} S P^{j}\right\}[k, D]=S P^{k}[k, N D]+\left\{1-S P^{k}\right\}[k, D] \quad \forall k \tag{24}
\end{equation*}
$$

Equation 24 simply says that: (a) the probability to survive k time steps is the product of the identical k probabilities to survive each step, i.e. $\prod_{j=1}^{k} e^{-j \Delta t / \tau}=e^{-k \Delta t / \tau}=e^{-t / \tau}$; and (b) the probability to decay at time k is the sum of the probabilities to decay in the first step, to survive in one step and decay, to survive in two steps and decay, and so forth up to surviving in $k-1$ steps and decaying. Figure 6 depicts the state-transition graph, bases transformations, and initial state expression for the first three time-steps. Notice the differences with the graph for the quincunx.

Failure of Equations 23 and success of Equations 24 clearly say that the state of a metastable radioactive nucleus cannot be quantically pure (coherent) but, instead, it behaves as a convex state (i.e. with no interaction between its probable states) when it has not decayed, and as a deterministic stable state after it has decayed. This is the direct result of Curie's and Rutherford's research, i.e. of Equations 19. Therefore, the quantic state of a radioactive nucleus -the intrinsically stochastic component of Schrödinger's hellish machine- is not pure but convex, and its time evolution is not governed by his iconic equation.

It is a commonplace in the literature to assume that mixed states are epistemic simply because its probabilities are Kolmogorovian; per TOPI, epistemic probabilities are Kolmogorovian, but the
reverse is not necessarily true, e.g. the quincunx's convex states and co-states of a composite quanton -- whose probabilities we contended are ontic. The same literature uncritically assumes that the nucleus' state is pure and that because probabilities are then non-Kolmogorovian, they do not accept an epistemic interpretation [49] [87]. The conclusion is correct, but the assumption is not. We have proved that the state of a radioactive nucleus cannot be pure though it is as ontic as a pure state: it simply does not accept the 2 -superposition symbolic depiction. These insights have been ignored for almost a century. Now we can unravel the poorly understood and mystically abused Schrödinger's "diabolic" device, which plays Russian roulette with his mythical cat.

Figure 6: $M B$ independent of Milieu. $[k, N D]$ is Convex and $[k, D]$ is Deterministic

5.3 Final Analysis

On top of the conceptual revelations of previous sections, it is important to understand that to link the fate of Schrödinger's cat to the nucleus decay event, the quanton spontaneously emitted by the nucleus must be first detected via a PDI, i.e. it must manifest somehow in our RT-spacetime. And, to pinpoint how sardonic Schrödinger was and how nonsensical have scientists/philosophers been for the last 90 years, we will simply change the "room of steel" with a room of plexiglass.

Under QT/TOPI, the direction of the radiated quanton is a random variable so, upon the nucleus' decay event, the state of the radiated quanton can be decomposed in a continuum of probable trajectories whose integration gives a definite probability for the quanton to be absorbed
by the detector. Until this absorption occurs, the radiated quanton's state does evolve according to Schrödinger's Equation -- as the photon in the double-slit experiment does until detected (Figure $5 /$ bottom). Upon detection, one of the radiated quanton's probable states becomes actual.

The Geiger counter imagined in SCHR1 is the detector that absorbs the radiated micro-object and amplifies the event via a bottom-up ionization causal process in RT's spacetime, ending up with an electronic pulse powerful enough to activate a standard macro-mechanism that could move the imaginary hammer and break the fictional poison container. This is a "wheels and gears" type of dynamic process, which is causal, highly non-linear, and irreversible; ergo: Schrödinger's Equation cannot rule it. It is the direct result of having a $P D I$ (the Geiger counter) which, together with the diabolic mechanism and the cat's biological response constitute a causal chain which is assumed flawless, i.e. there is -allowing for a brief ailment process for the poor cat if the nucleus decayed- a perfect correlation between the decayed/non-decayed state of the nucleus and the dead/alive state of the cat. Notice though that the nucleus is not part of the causal chain.

The detector's state could also be described in a basis $D B=\{|N F\rangle,|F\rangle\}$ with presumed-pure states corresponding to 'Not Fired' and 'Fired'. For a 100% reliable detector, the counter's firing event ensures that the nucleus' actual transition $[k, N D] \rightarrow[k+1, D]$ has occurred. The nucleus' decay and the emission of its byproduct are correlated but it is unwarranted to assume that nucleus and its byproduct were entangled quantons because the latter did not exist until the former decayed. At most, they could be entangled upon the QEI accompanying the decay. Likewise, despite the correlation, and being the nucleus state not pure, it is unjustifiable to assume that the mere presence of a detector (a macro-object) close by where the byproduct may appear makes the nucleus, the radiated quanton, and the detector to be quantically entangled. Entanglement in general implies correlation but not the reverse though, in any case, such a hypothetical entanglement would be broken upon detection leaving a record of their correlation and revealing the actual 'decayed' state.

Just as incongruously, we could overly simplify the complex physical state of the cat by assuming it is quantically pure and, by adopting the arbitrary basis $C B=\{|C A\rangle,|C D\rangle\}$ for 'Cat Alive' and 'Cat Dead', we could now replace Equation 21 (left) by:

$$
\begin{equation*}
|s\rangle=s_{1}|N D\rangle|N F\rangle|C A\rangle+s_{2}|D\rangle|F\rangle|C D\rangle \quad ; \quad s_{1} s_{1}^{*}=S P \quad ; \quad s_{2} s_{2}^{*}=D P \tag{25}
\end{equation*}
$$

Via a pure composite state, Equation 25 would expose the entanglement (hence correlation) between the nucleus decay and the cat's misfortune. But despite lacking any foundation for the pureness of the nucleus' state (much less for the detector/amplifier/cat) and thus for considering such entanglement between the nucleus (a micro-object) and the cat (a macro-object) as real, it is clear from previous discussions that such hypothetical entanglement would break down upon the detector clicking. The latter is a PDI and, ergo, a non-linear and irreversible process that delivers an actual detector's state that triggers a dynamic causal chain in RT-spacetime culminating in an actual state for the cat -- irrespective of whether the machine walls are transparent, whether we are looking through them, or whether Wigner, his friend, or the rest of humanity are aware of the events. Even so, the term 'cat states' for entangled states was coined and used till today.

And it does not matter a bit whether we have in the "room of steel" a living organism with a brain [42] or an inert macro-object: we could simply watch for the container's broken/unbroken state. To confirm, simply stay looking through the plexiglass walls until the Geiger counter clicks and we see the broken container. And that could happen in the first second of the "one hour" we
were supposed to wait before entering the originally opaque room. What other reason did Schrödinger have to choose a "room of steel"? And, please, let us not suggest that our looking somehow "collapses the wavefunction" -- a wavefunction we proved cannot represent the radioactive nucleus state in any sensible way, let alone the whole system (which inevitably must include a $P D I$ at the very start of the causal chain). Or that our frequent peeking delays or accelerates the collapse through the Zeno/anti-Zeno effects. Or that the cat who I see dead in our world is seen alive by a copy of myself in another world or, equivalently, that the cat is immortal because there will always be a world in which s/he survives [88] [59] [60]. At some point we, scientists/philosophers, must come to our senses. A century is a long time, as our astonishing technological progress attests.

6. Conclusions

Reductionism does not imply straightforward constructionism, but some philosophers and scientists, infatuated with linearity and Schrödinger's Equation, obstinately expected that all those sui generis micro-phenomena had to scale-up to the macroworld without exception. Others, knowing such scale-up was clearly invalid, tried desperately to conceive quantic-like processes to explain the difference. We thus fell in the trap of century-long mostly misguided philosophical discussions on the link between the microcosm and the macroworld.

The 'weirdness' of the quantum world is the result of conflating Reality with Actuality and the quanton with its states. The actual is real but not everything real is actual: observation and measurement are anthropic; the Universe is out there with or without our cognitive endeavors. The ontic character of probable states can only be inferred from experimental setups that do not convert them into actual. The real state comprises all its depictions, one for each $M B$ in a multitude of PIs. Given the ontic state and a $P I$, all bases are valid. Using a basis other than $M B$ requires a basis transformation. Because inner product and trace operation are basis-invariant, for a current state and milieu, the transition $P D$ is ontic and basis-invariant, so all representations do describe the same Reality. States, properties, and milieu are real; bases and superpositions are abstract tools. Being probable and actual states real, the former can evolve and interact as the latter do. When an actual transition occurs, only one of the probable next states becomes actual. Because a quanton has no size or shape, its milieu may be a network of local PIs which are spacelike-separated. Ergo, the co-extant probable states of a single quanton may undergo different local PIs and interact among themselves via ITIs. Likewise for probable states of sub-quantons in a composite quanton.

A PDI is a sine qua non for what the QT literature calls a "measurement". A PDI is non-linear and irreversible; ergo, it cannot be governed by Schrödinger's Equation. PDIs manifest in our spacetime and are the triggers of actuality. A PTI, instead, is purely transformational upon which, unless the current state is already actual and belongs to the $M B$, the $P D$ is not actualized. All transitions in a PTI are probable, the quanton evolving without revealing itself in our spacetime. Previous and current $M B$ s are related via a unitary transformation, which can be viewed as a state transformation under a single basis -- with the state's components transforming as the bases do. Ergo, the basis transformation also rules how the components of the previous state morph into the components of the current state and the latter into the components of the next state. Hence, despite the stochasticity of QT, such transformation is interpretable as a linear, reversible, deterministic evolution of probable states. This is what Schrödinger's Equation does: it describes the deterministic 'time' evolution for the quanton's energy probability distribution. Therefore, such 'time' cannot be RT-time. It is QT-time (next article).

The so-called 'Basis Problem' is misguided; under TOPI, all bases are legitimate regardless of state and milieu. For each milieu, the $M B$ is preferred for the same reason that decomposing the gravity force along the rod and its perpendicular directions is preferred for the pendulum (it facilitates the application of Newton's gravity and motion laws). Of course, the separate problem of determining the $M B$ for each $P I$ does remain. Bases are not physical entities and, ergo, there cannot exist a dynamic process in RT-spacetime that leads to one basis instead of another.

The so-called 'measurement problem', as typically articulated, is a pseudo-problem because its premise is false. The states in the superposition represent ontic probable states, not actual states. The expression "the system is in a superposition of states" has no physical meaning; the quanton is in a well-defined actual or probable ontic state which can be symbolically depicted in infinite ways. Superpositions are mere mathematical depictions of an ontic state. If one of the next states becomes actual (after a $P D I$), then of course we experimentally see only one state; otherwise (upon a PTI), all next states are probable and real. There is need to conceive neither a physical nor a metaphysical "collapse" process that would convert many states into a single state. Under TOPI, a more sensible variant of the 'measurement problem' can be reformulated in non-anthropic terms as a real problem, namely: when a PI is or includes a PDI. However, as such, it is not part of QT per se (at least not of what we call QT today) and will be tackled in future papers.

Against conventional wisdom, the state of a radioactive nucleus is ontic but not pure. Hence, the only innately stochastic part of Schrödinger's hellish machine is not pure, and its evolution is not governed by his iconic equation. Likewise, the detector -if fired- triggers a "wheels and gears" process in our RT-spacetime that is causal, highly non-linear, and irreversible, so Schrödinger's Equation cannot rule it either. It culminates in an actual state for the cat -- irrespective of whether the machine walls are transparent, we are looking through them, or whether Wigner, his friend, or the rest of humanity are aware of the events. And it does not matter a bit whether we have in the "room of steel" a living organism with a brain or merely an inert breakable poison container.

Future articles will reveal how many other so-called 'paradoxes' of QT are fully explained under TOPI, demonstrating its soundness and potential for nurturing further theoretical and technological advance.

APPENDIX

Dissection of EPRB with the Density Operator Formalism

Let us apply the density operator formalism and conceptually dissect the EPRB experiment in the light of TOPI. The composite state $|s\rangle$ is pure, so its density operator $\rho=|s\rangle\langle s|$ is simply its own projector, i.e. there is a basis in which the convex superposition has only one term with unity coefficient. Equivalently, for such basis, the density matrix $\underline{\rho}$ is diagonal with one element equal to one and all others equal to zero. Using Equations 11 (top line), we calculate the density matrix $\underline{\rho}$ and its diagonal version $\underline{\rho}_{D}$ for the composite quanton:

$$
\underline{\rho}=\left[\begin{array}{cccc}
\frac{1}{2} \sin ^{2}\left(\frac{\theta}{2}\right) & \frac{1}{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) & -\frac{1}{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) & -\frac{1}{2} \sin ^{2}\left(\frac{\theta}{2}\right) \\
\frac{1}{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) & \frac{1}{2} \cos ^{2}\left(\frac{\theta}{2}\right) & -\frac{1}{2} \cos ^{2}\left(\frac{\theta}{2}\right) & -\frac{1}{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \\
-\frac{1}{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) & -\frac{1}{2} \cos ^{2}\left(\frac{\theta}{2}\right) & \frac{1}{2} \cos ^{2}\left(\frac{\theta}{2}\right) & \frac{1}{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \\
-\frac{1}{2} \sin ^{2}\left(\frac{\theta}{2}\right) & -\frac{1}{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) & \frac{1}{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) & \frac{1}{2} \sin ^{2}\left(\frac{\theta}{2}\right)
\end{array}\right] \Rightarrow \underline{\rho}_{D}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

From Equations 12, the matrices $\underline{\rho}_{A}$ and $\underline{\rho}_{B}$ for the qubits' co-states and their squares are:
$\underline{\rho}_{A}=\left[\begin{array}{cc}1 / 2 & -\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \\ -\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) & 1 / 2\end{array}\right] \quad ; \quad \underline{\rho}_{B}=\left[\begin{array}{cc}1 / 2 & \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \\ \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) & 1 / 2\end{array}\right]$
\Downarrow
$\underline{\rho}_{A}{ }^{2}=\left[\begin{array}{cc}1 / 4+\sin ^{2}\left(\frac{\theta}{2}\right) \cos ^{2}\left(\frac{\theta}{2}\right) & -\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \\ -\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) & 1 / 4+\sin ^{2}\left(\frac{\theta}{2}\right) \cos ^{2}\left(\frac{\theta}{2}\right)\end{array}\right] ; \underline{\rho}_{B}{ }^{2}=\left[\begin{array}{cc}1 / 4+\sin ^{2}\left(\frac{\theta}{2}\right) \cos ^{2}\left(\frac{\theta}{2}\right) & \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \\ \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) & 1 / 4+\sin ^{2}\left(\frac{\theta}{2}\right) \cos ^{2}\left(\frac{\theta}{2}\right)\end{array}\right]$
We see that $\operatorname{tr}\left(\underline{\rho}_{A}\right)=\operatorname{tr}\left(\underline{\rho}_{B}\right)=1$ as it should be for density matrices. However, in general, $\underline{\rho}_{A}^{2} \neq \underline{\rho}_{A}, \operatorname{tr}\left(\underline{\rho_{A}^{2}}\right)<1, \underline{\rho_{B}^{2}} \neq \underline{\rho}_{B}$, and $\operatorname{tr}\left(\underline{\rho_{B}^{2}}\right)<1$, so neither quanton A nor quanton B are in ontic pure states but in ontic entangled states, i.e. co-states. Diagonalizing $\underline{\rho}_{A}$ and $\underline{\rho_{B}}$ we get:
$\underline{\rho}_{A D}=\left[\begin{array}{cc}1 / 2+\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) & 0 \\ 0 & 1 / 2-\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)\end{array}\right] ; \underline{\rho}_{B D}=\left[\begin{array}{cc}1 / 2-\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) & 0 \\ 0 & 1 / 2+\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)\end{array}\right]$
From the diagonalized matrices, we see that, in general, no unity eigenvalue exists, confirming again that co-states are entangled. Inspecting the common trace of the squared matrices, based on the global milieu (θ), the sub-quantons display different degrees of correlation:

$$
\operatorname{tr}\left\{\underline{\rho}_{A}^{2}\right\}=\operatorname{tr}\left\{\underline{\rho}_{B}^{2}\right\}=1 / 2+2 \sin ^{2}\left(\frac{\theta}{2}\right) \cos ^{2}\left(\frac{\theta}{2}\right)=\left\{\begin{array}{l}
<1 \text { for } \theta \neq \frac{\pi}{2} ; \frac{3 \pi}{2} ; \frac{5 \pi}{2} ; \frac{7 \pi}{2} \ldots \text { (Correlated) } \tag{A3}\\
=1 \text { for } \theta=\frac{\pi}{2} ; \frac{3 \pi}{2} ; \frac{5 \pi}{2} ; \frac{7 \pi}{2} \ldots \text { (Uncorrelated) }
\end{array}\right.
$$

$\theta=0$ or $\theta=\pi$ (A and B in entangled states with maximal correlation)
$\underline{\rho}_{A}=\underline{\rho}_{B}=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right] ; \underline{\rho}_{A}^{2}=\underline{\rho}_{B}^{2}=\left[\begin{array}{cc}1 / 4 & 0 \\ 0 & 1 / 4\end{array}\right] ; \operatorname{tr}\left\{\underline{\rho}_{A}{ }^{2}\right\}=\operatorname{tr}\left\{\underline{\rho}_{B}{ }^{2}\right\}=1 / 2<1$
For both global milieus, the spins out of the two magnets keep the same relation to their local magnetic fields because the teleported spin is always anti-collinear to the spin randomly assumed by the quanton that first undergoes a $G I$ (Figure 3). The local density matrices are diagonal and
identical, with the trace of their square smaller than unity $(1 / 2)$-- confirming they are not isolated but entangled co-states with maximal correlation.

For $\theta=0$, the global state assumes the form $|s\rangle=\sqrt{2} / 2\left|s_{A 1}\right\rangle\left|s_{B 2}\right\rangle-\sqrt{2} / 2\left|s_{A 2}\right\rangle\left|s_{B 1}\right\rangle$, which is typically referred to in the literature as the singlet state (Figure 3). Again, per TOPI, the ontic composite state is one and the same; it is the global milieu that has specialized the mathematical description. The Mean of the global property $\mathcal{P}_{A} \mathcal{P}_{B}$ is equal to -1 with nil $S D$ (Equations 11/last line), viz it behaves deterministically despite the full randomness local ones (\mathcal{P}_{A} and \mathcal{P}_{B}) exhibit. There is a maximal negative correlation among physical properties $\left(\left\langle\mathcal{P}_{A} \mathcal{P}_{B}\right\rangle-\left\langle\mathcal{P}_{A}\right\rangle\left\langle\mathcal{P}_{B}\right\rangle=-1\right)$.

For $\theta=180^{\circ}$, the composite state becomes $|s\rangle=\sqrt{2} / 2\left|s_{A 1}\right\rangle\left|s_{B 1}\right\rangle-\sqrt{2} / 2\left|s_{A 2}\right\rangle\left|s_{B 2}\right\rangle$. The Mean is unity with nil $S D$ and, again, the global property behaves deterministically despite the local ones behaving with full randomness. The two physical properties are maximally correlated $\left(\left\langle\mathcal{P}_{A} \mathcal{P}_{B}\right\rangle-\left\langle\mathcal{P}_{A}\right\rangle\left\langle\mathcal{P}_{B}\right\rangle=1\right)$. This agrees with Figure 3 after rotating one of the magnets by 180°.

$$
\theta \neq \frac{\pi}{2} ; \frac{3 \pi}{2} ; \frac{5 \pi}{2} ; \frac{7 \pi}{2} \ldots(A \text { and } B \text { in entangled states with partial correlation) }
$$

For $\theta: 0 \rightarrow \pi / 2$, the correlation goes from (-1) $\rightarrow 0$, while local SDs increase from $0 \rightarrow 1$. For $\theta: \pi / 2 \rightarrow \pi$, the correlation goes from $0 \rightarrow 1$, while local $S D$ s decrease towards zero again. For $\theta: \pi \rightarrow 3 \pi / 2$, the correlation goes from $1 \rightarrow 0$, while local SDs increase from $0 \rightarrow 1$. For $\theta: 3 \pi / 2 \rightarrow 2 \pi$, the correlation varies from $0 \rightarrow-1$, while local $S D$ s decrease from $1 \rightarrow 0$. The trace of the squared density matrices is always smaller than unity. The sub-quantons' states are correlated in different degrees from maximally anti-correlated $(\theta=0)$ to maximally correlated $(\theta=\pi)$. Let us instantiate the case $\theta=50^{\circ}$ using Equations 11/top:

$$
\begin{gather*}
|s\rangle=0.2988\left|s_{A 1}\right\rangle\left|s_{B 1}\right\rangle+0.641\left|s_{A 1}\right\rangle\left|s_{B 2}\right\rangle-0.641\left|s_{A 2}\right\rangle\left|s_{B 1}\right\rangle-0.2988\left|s_{A 2}\right\rangle\left|s_{B 2}\right\rangle \\
\underline{\rho}_{A}=\left[\begin{array}{cc}
1 / 2 & -0.383 \\
-0.383 & 1 / 2
\end{array}\right] ; \underline{\rho}_{A D}=\left[\begin{array}{cc}
0.883 & 0 \\
0 & 0.117
\end{array}\right] ; \underline{\rho}_{B}=\left[\begin{array}{cc}
1 / 2 & 0.383 \\
0.383 & 1 / 2
\end{array}\right] ; \underline{\rho}_{B D}=\left[\begin{array}{cc}
0.117 & 0 \\
0 & 0.883
\end{array}\right] \\
\operatorname{Corr}=\left\langle\mathcal{P}_{A} \mathcal{P}_{B}\right\rangle-\left\langle\mathcal{P}_{A}\right\rangle\left\langle\mathcal{P}_{B}\right\rangle=-\cos \left(50^{\circ}\right)-0=-0.6428 \\
\boldsymbol{\theta}=\boldsymbol{\pi} / \mathbf{2}, 3 \pi / \mathbf{3}, \ldots \text { (A and B in entangled states but uncorrelated) } \\
\boldsymbol{\theta}=\boldsymbol{\pi} / \mathbf{2} \Rightarrow \underline{\rho}_{A}=\underline{\rho}_{A}{ }^{2}=\left[\begin{array}{rr}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right] ; \underline{\rho}_{B}=\underline{\rho}_{B}^{2}=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right] ; \operatorname{tr}\left\{\underline{\rho}_{A}{ }^{2}\right\}=\operatorname{tr}\left\{\underline{\rho}_{B}^{2}\right\}=1 \\
\underline{\rho}_{A} \xrightarrow{\text { Diagonalizing }} \underline{\rho}_{A D}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad ; \quad \underline{\rho_{B}} \xlongequal{\text { Diagonalizing }} \underline{\rho}_{B D}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \quad \text { (A5) } \tag{A5}
\end{gather*}
$$

Equation 11/top $\Rightarrow \quad|s\rangle=\left\{\frac{\sqrt{2}}{2}\left|s_{A 1}\right\rangle-\frac{\sqrt{2}}{2}\left|s_{A 2}\right\rangle\right\}\left\{\frac{\sqrt{2}}{2}\left|s_{B 1}\right\rangle+\frac{\sqrt{2}}{2}\left|s_{B 2}\right\rangle\right\} \quad$ (Product State)
$\boldsymbol{\theta}=\mathbf{3} \boldsymbol{\pi} / \mathbf{2} \Rightarrow \underline{\rho}_{A}=\underline{\rho}_{A}^{2}=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right] ; \underline{\rho}_{B}=\underline{\rho}_{B}^{2}=\left[\begin{array}{rr}1 / 2 & -1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right] ; \operatorname{tr}\left\{\underline{\rho}_{A}^{2}\right\}=\operatorname{tr}\left\{\underline{\rho}_{B}^{2}\right\}=1$

$$
\underline{\rho}_{A} \xrightarrow{\text { Diagonalizing }}\left[\begin{array}{ll}
0 & 0 \tag{A6}\\
0 & 1
\end{array}\right] \quad ; \quad \underline{\rho_{B}} \xrightarrow{\text { Diagonalizing }}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Equations 11/top $\Rightarrow \quad|s\rangle=\left\{\frac{\sqrt{2}}{2}\left|s_{A 1}\right\rangle+\frac{\sqrt{2}}{2}\left|s_{A 2}\right\rangle\right\}\left\{\frac{\sqrt{2}}{2}\left|s_{B 1}\right\rangle-\frac{\sqrt{2}}{2}\left|s_{B 2}\right\rangle\right\} \quad$ (Product State)
For $\theta=90^{\circ}$ and $\theta=270^{\circ}$ the global Mean is nil, and the global SD is unity, which means that the global property $\mathcal{P}_{A} \mathcal{P}_{B}$ alternates between +1 and -1 with equal probability. Local and global properties are all perfectly random (50/50) and, apparently, they are fully decoupled. In fact, the global state can be expressed as a product of pure local states corresponding to 90° and 270° relative to their local magnets (Equations 19 and 20/bottom). As explained before, this lack of correlation does not imply a lack of entanglement: because the teleported spin is always anticollinear to the spin randomly assumed by the quanton that first undergoes a $G I$, when the second qubit (now isolated) experiences a $G I$ with a global milieu of $\theta=\pi / 2(3 \pi / 2)$ the second magnet is oriented $3 \pi / 2(\pi / 2)$ with respect to the second qubit and, hence, the $S D$ for all local and global properties are zero. The qubits' behaviors are uncorrelated not because they are isolated but because they are entangled while interacting with a unique global milieu. The composite state can be expressed as a product of two pure states as confirmed by their diagonalized density matrices whose diagonal has one unity eigenvalue and the other is zero. However, they do not represent ontic pure states for the qubits because those 2 -superpositions are only valid for $\theta=\pi / 2$ and $\theta=$ $3 \pi / 2$ but fail for any other global milieu. Both qubits are in ontic co-states (entangled) and remain as such until one of the qubits undergoes a GI.

Acknowledgments

I am indebted for their insightful comments to Riccardo Fortunati (New Zealand), Nicholas Alba (USA), Liana Amidžić (Bosnia and Herzegovina), and Melvin Holmes (UK).

References

[1] A. Einstein, B. Podolsky and N. Rosen, "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?," Physical Review, vol. 47, pp. 777-780, 1935.
[2] F. Alba-Juez, Elements of REALITY - 1925-1935: The Onset of an Unfinished Philosophical Struggle, Saint George, Utah: Felix Alba-Juez, Publisher, 2019.
[3] F. Alba-Juez, "The Ontic Probability Interpretation of Quantum Theory - Part I: The Meaning of Einstein's Incompleteness Claim," 5 February 2020. [Online]. Available: https://philpapers.org/rec/ALBTOP-2.
[4] F. Alba-Juez, "The Ontic Probability Interpretation of Quantum Theory - Part II: Einstein's Incompleteness/Nonlocality Dilemma," 5 February 2020. [Online]. Available: https://philpapers.org/rec/ALBTOP.
[5] E. Schrödinger, "The Present Status of Quantum Mechanics," Die Naturwissenschaften, vol. 23, no. 48, 49, 50, pp. 807-812 / 823-828 / 844-849, 1935.
[6] G. Brassard and A. A. Methot, "Can quantum-mechanical description of physical reality be considered incomplete?," 30 December 2006. [Online]. Available: http://arxiv.org/abs/quant-ph/0701001v1.
[7] E. Schrödinger, "Discussion of probability relations between separated systems," Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 555-563, 1935.
[8] E. Schrödinger, "Probability relations between separated systems," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 32, no. 03, pp. 446-452, 1936.
[9] E. Schrödinger, "Are there quantum jumps?," The British Journal for the Philosophy of Science, vol. III, no. 11, pp. 233-242, 1952.
[10] A. Suarez, "Decision at the beam-splitter, or decision at detection, that is the question," 15 April 2013. [Online]. Available: arXiv:1204.5848v2.
[11] N. Gisin, "Collapse. What else?," 25 April 2017. [Online]. Available: http://arxiv.org/abs/1701.08300v2.
[12] B. Drossel, "Ten reasons why a thermalized system cannot be described by a many-particle wave function," 31 January 2017. [Online]. Available: https://arxiv.org/abs/1509.07275.
[13] B. Drossel and G. Ellis, "Contextual Wavefunction Collapse: An integrated theory of quantum measurement," 24 November 2018. [Online]. Available: arXiv:1807.08171v2.
[14] F. Alba-Juez, Relativity free of Folklore \#2 (The Perception of Time... and its Measurement), vol. 2, Salt Lake City, USA: Felix Alba-Juez, Publisher, 2011.
[15] F. Alba-Juez, Relativity free of Folklore \#3 (The Perception of Space... and its Measurement), vol. 3, Salt Lake City, USA: Felix Alba-Juez. Publisher, 2011.
[16] F. Alba-Juez, Records of the Future - Classical Entropy, Memory, and the 'Arrow of Time', Salt Lake City: Felix Alba-Juez, Publisher, 2013.
[17] F. Alba-Juez, Aiming at REALITY - Statistical Entropy, Disorder, and the Quantum, Salt Lake City: Felix Alba-Juez, Publisher, 2017.
[18] F. Alba-Juez, Nighing REALITY: Quantum Fusion after 25 Years of Confusion, Saint George, Utah, USA: Felix Alba-Juez, Publisher, 2018.
[19] N. Gisin, "Time Really Passes, Science Can't Deny That," 30 January 2016. [Online]. Available: http://arxiv.org/abs/1602.01497v1.
[20] A. Grünbaum, Philosophical Problems of Space and Time, New York: Alfred A. Knopf, Inc., 1963.
[21] A. Grünbaum, "The Nature of Time," Frontiers of Science and Philosophy, 1962.
[22] F. Alba-Juez, "Quantum Physics free of Folklore \#1 - Records of the Future - Classical Entropy, Memory, and the 'Arrow of Time'," 2013. [Online]. Available: http://a.co/am8MWzr.
[23]
A. d'Abro, The Rise of the New Physics - Its Mathematical and Physical Theories. Vol. II, New York: Dover Publications, 1951.
[24] J. S. Bell, "On the Einstein Podolsky Rosen Paradox," Physics, vol. 1, pp. 195-200, 1964.
[25] S. Kochen and S. E.P., "The Problem of Hidden Variables in quantum mechanics," Journal of Mathematics and Mechanics, vol. 17, no. 1, pp. 59-87, 1967.
[26] J. S. Bell, "On the problem of hidden variables in quantum mechanics," vol. 38, pp. 447452, 1966.
[27] K. R. Popper, "Quantum Mechanics without the Observer," [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.23\&rep=rep1\&type=pdf. [Accessed 2 February 2016].
[28] K. R. Popper, Quantum Theory and the Schism in Physics, London: Routledge, 1982.
[29] K. R. Popper, "The Propensity Interpretation of Probability," The British Journal for the Philosophy of Science, vol. 10, no. 37, pp. 25-42, 1959.
[30] N. Gisin, "Real Numbers are the Hidden Variables of Classical Mechanics," 10 September 2019. [Online]. Available: http://arxiv.org/abs/1909.04514v1.
[31] N. Gisin, "Classical and intuitionistic mathematical languages shape our understanding of time in physics," 4 February 2020. [Online]. Available: http://arxiv.org/abs/2002.01653v1.
[32] N. Gisin, "Indeterminism in Physics, Classical Chaos and Bohmian Mechanics: Are Real Numbers Really Real?," 23 October 2019. [Online]. Available: https://doi.org/10.1007/s10670-019-00165-8.
[33] R. P. Feynman, QED - the strange theory of light and matter, Princeton, New Jersey, USA.: Princeton University Press, 1985.
[34] H. Reichenbach, Philosophic Foundations of Quantum Mechanics, Mineola, New York: Dover Publications,Inc., 1944.
[35] A. Zeilinger, Dance of the Photons - From Einstein to Quantum Teleportation, New York: Farrar, Strauss and Giroux, 2010.
[36] K. e. a. Lee, "Entangling macroscopic diamonds at room temperature," Science, vol. 334, no. 6060, pp. 1253-1256, 2011.
[37] C. Abellán, A. Acín and A. e. a. Alarcón, "Challenging local realism with human choices," Nature, vol. 557, pp. 212-216, 2018.
[38] N. Gisin, "Can relativity be considered complete ? - From Newtonian nonlocality to quantum nonlocality and beyond," 20 December 2005. [Online]. Available: arXiv:quant$\mathrm{ph} / 0512168 \mathrm{v} 1$.
[39] N. Gisin, "On the Impossibility of Covariant Nonlocal "hidden" variables in Quantum Physics," 6 February 2010. [Online]. Available: arXiv:1002.1390v1.
[40] J. S. Bell, "Beables for quantum field theory," in Quantum Implications - Essays in Honour of David Bohm, London and New York, Routledge \& Kegan Paul, 1987, pp. 227-234.
[41] A. E. Allahverdyan, R. Balian and T. M. Nieuwenhuizen, "Understanding quantum measurement from the solution of dynamical models," 1 February 2013. [Online]. Available: arXiv:1107.2138v4.
[42] G. F. Ellis, "On the limits of quantum theory: Contextuality and quantum-classical cut," 8 May 2012. [Online]. Available: http://arxiv.org/abs/1108.5261v4.
[43] C. Anastopoulos, "Classical Vs Quantum Probability in Sequential Measurements," 4 September 2006. [Online]. Available: http://arxiv.org/abs/quant-ph/0509019v2.
[44] S. Loepp and W. K. Wooters, Protecting Information - From Classical Error Correction to Quantum Cryptography, New York: Cambridge University Press, 2006.
[45] IBM Cloud, "The World First Quantum Computing Platform delivered via the IBM Cloud," 4 May 2016. [Online]. Available: http://www.research.ibm.com/quantum/.
[46] T. Guerreiro and e. al, "Single-photon space-Like antibunching," 8 April 2012. [Online]. Available: arXiv:1204.1712v1 [quant-ph] 8 Apr 2012.
[47] A. Jabs, "Quantum mechanics in terms of realism," Physics Essays, vol. 9, no. 354, pp. 3695, 1996.
[48] C. de Ronde, "Quantum Superpositions do Exist!," 2015. [Online]. Available: http://philsci-archive.pitt.edu/11330/.
[49] C. de Ronde, "Quantum Superpositions and the Representation of Physical Reality Beyond Measurement Outcomes and Mathematical Structures," Foundations of Science, vol. 23, p. 621-648, 2018.
[50] C. de Ronde, "Measuring Quantum Superpositions (Or, "It is only the theory which decides what can be observed.")," 2 July 2020. [Online]. Available: http://arxiv.org/abs/2007.01146v1.
[51] C. de Ronde, "The Logos Categorical Approach to Quantum Mechanics: I. KochenSpecker Contextuality and Global Intensive Valuations," 1 January 2018. [Online]. Available: http://arXiv:1801.00446v1.
[52] C. de Ronde, "Representing Quantum Superpositions: Powers, Potentia, and Potential Effectuations," 27 December 2013. [Online]. Available: http://arxiv.org/abs/1312.7322v1.
[53] C. de Ronde, "Defense of of the Paraconsistent Approach to Quantum Superpositions," 17 February 2015. [Online]. Available: http://arxiv.org/abs/1404.5186v2.
[54] C. de Ronde, ""Probabilistic Knowledge as Objective Knowledge in Quantum Mechanics: Potential Immanent Powers instead of Actual Properties," in Probing the Meaning of Quantum Mechanics: Superpositions, Semantics, Dynamics and Identity,, Singapore, World Scientific; D. Aerts, C. de Ronde, H. Freytes and R. Giuntini (Eds.), 2016, pp. 141178.
[55] C. Rovelli, "Quantum Weirdness isn't weird - if we accept objects don't exist," NewScientist, 10 March 2021.
[56] C. Rovelli, "Relational Quantum Mechanics," February 24 1997. [Online]. Available: http://arxiv.org/abs/quant-ph/9609002v2.
[57] S. Saunders, J. Barrett, A. Kent and D. Wallace, Many Worlds? Everett, Quantum Theory, \& Reality, Oxford: Oxford University Press, 2012.
[58] M. Tegmark, "The Interpretation of Quantum Mechanics: Many Worlds or Many Words?," 15 September 1997. [Online]. Available: arXiv:quant-ph/9709032v1.
[59] D. Deutsch, The Fabric of Reality - The Science of Parallel Universes and Its Implications, New York: Penguin Books, 1997.
[60] S. Carroll, Something deeply Hidden - Quantum Worlds and the Emergence of Spacetime, Dutton, 2019.
[61] D. Z. Albert and B. Loewer, "Interpreting the Many Worlds Interpretation," Synthese, vol. 77, pp. 195-213, 1988.
[62] R. B. Griffiths, Consistent quantum theory,, Cambridge: Cambridge University, 2002.
[63] J. Hartle, "Living in a Quantum Superposition," 2015. [Online]. Available: qquantph/arXiv:1511.01550.
[64] R. Omnès, Quantum Philosophy - Understanding and Interpreting Contemporary Science, Princeton and Oxford: Princeton University Press, 2002.
[65] R. Omnès, Understanding Quantum Mechanics, Princeton, New Jersey: Princeton University Press, 1999.
[66] C. de Ronde, "The (Quantum) Measurement Problem in Classical Mechanics," 1 January 2020. [Online]. Available: arXiv:2001.00241v1 [quant-ph].
[67] C. de Ronde, "The Contextual and Modal Character of Quantum Mechanics, PhD Dissertation," 2011. [Online]. Available: https://dspace.library.uu.nl/handle/1874/212787.
[68] C. de Ronde, "The Paraconsistent Logic of Quantum Superpositions," 13 June 2013. [Online]. Available: http://de.arxiv.org/abs/1306.3121v1.
[69] D. Bohm, Quantum Theory, Englewood Cliffs, NJ: Prentice-Hall, 1951.
[70] D. Dieks, "Information and the Quantum World," Entropy, vol. 18, no. 26, 2016.
[71] D. Dieks, "Niels Bohr and the Formalism of Quantum Mechanics," January 2016. [Online]. Available: https://www.researchgate.net/publication/306228312.
[72] D. Dieks, "Quantum Mechanics, Chance and Modality," Philosophica, vol. 83, pp. 117137, 2010.
[73] R. E. Kastner, "'Einselection' of Pointer Observables: The New H-Theorem?," 16 June 2014. [Online]. Available: https://arxiv.org/abs/1406.4126.
[74] J. Briggs and J. M. Rost, "On the Derivation of the Time-Dependent Equation of Schrödinger," Foundations of Physics, vol. 31, no. 4, pp. 693-712, 2001.
[75] P. M. Dirac, The Principles of Quantum Mechanics, Oxford, 1930.
[76] G. Ghirardi, R. A. and W. T., "Unified Dynamic for Microscopic and Macroscopic Systems," Physical Review D, vol. 34, pp. 470-491, 1986.
[77] N. Gisin, "Stochastic Quantum Dynamics and Relativity," Helvetica Physica Acta, vol. 62, pp. 363-371, 1989.
[78] N. Gisin, "The Free Will Theorem, Stochastic Quantum Dynamics and True Becoming in Relativistic Quantum Physics," 6 February 2010. [Online]. Available: arXiv:1002.1392v1.
[79] A. Bassi and G. Ghirardi, "Dynamical Reduction Models," Physics Reports, vol. 379, pp. 257-426, 2003.
[80] G. R. Ghirardi GC. and P. P., "Relativistic Dynamical Reduction Models: General Framework and Examples," Foundations of Physics 1990 , vol. 20, pp. 1271-1316, 1990.
[81] G. Ghirardi, "Entanglement, Nonlocality, Superluminal Signaling and Cloning," 17 May 2013. [Online]. Available: arXiv:1305.2305v2.
[82] C. de Ronde, "Representational Realism, Closed Theories and the Quantum to Classical Limit," 17 February 2016. [Online]. Available: http://arxiv.org/abs/1602.05405v1.
[83] G. Ellis, "The arrow of time and the nature of spacetime," 1 March 2013. [Online]. Available: arXiv:1302.7291v2 [gr-qc].
[84] G. F. R. Ellis, "Top-down causation and emergence: some comments on mechanisms," Interface Focus, vol. 2, pp. 126-140, 2012.
[85] G. Ellis, "The arrow of time, the nature of spacetime, and quantum measurement," 7 October 2011. [Online]. Available: http://www.math.uct.ac.za/sites/default/files/image_tool/images/32/Staff/Emeritus_Profes sors/Prof_George_Ellis/Overview/Quantum_arrowoftime_gfre.pdf.
[86] M. Bunge, Controversias en Fisica, Madrid, Spain: Editorial Technos, S.A., 1983.
[87] G. Buonocore, "Realism and AntiRealism in Physical and Biological Sciences. Two Cases: Quantum Mechanics and Evolutionary Biology," UNIVERSITÀ DEGLI STUDI DI PADOVA - Munich Center for Mathematical Philosophy, Munich, 2018.
[88] M. Tegmark, Our Mathematical Universe - My Quest for the Ultimate Nature of Reality, New York: Alfred A. Knopf, 2014.

