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Abstract

We consider an extended notion of reinforcement learning in which the
environment can simulate the agent and base its outputs on the agent’s
hypothetical behavior. Since good performance usually requires paying
attention to whatever things the environment’s outputs are based on, we
argue that for an agent to achieve on-average good performance across
many such extended environments, it is necessary for the agent to self-
reflect. Thus, an agent’s self-reflection ability can be numerically estimated
by running the agent through a battery of extended environments. We are
simultaneously releasing an open-source library of extended environments
to serve as proof-of-concept of this technique. As the library is first-of-kind,
we have avoided the difficult problem of optimizing it. Instead we have
chosen environments with interesting properties. Some seem paradoxical,
some lead to interesting thought experiments, some are even suggestive of
how self-reflection might have evolved in nature. We give examples and
introduce a simple transformation which experimentally seems to increase
self-reflection.

1 Introduction
An obstacle course might react to what you do: for example, if you step on a
certain button, then spikes might appear. If you spend enough time in such an
obstacle course, you should eventually figure out such patterns. But imagine an
“oracular” obstacle course which reacts to what you would hypothetically do in
counterfactual scenarios: for example, there is no button, but spikes appear if you
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would hypothetically step on the button if there was one. Without self-reflecting
about what you would hypothetically do in counterfactual scenarios, it would
be difficult to figure out such patterns. This suggests that in order to perform
well (on average) across many such obstacle courses, some sort of self-reflection
is necessary.

This is a paper about empirically estimating the degree to which a Reinforce-
ment Learning (RL) agent is self-reflective. By a self-reflective agent, we mean
an agent which acts not just based on environmental rewards and observations,
but also based on considerations of its own hypothetical behavior. We propose
that an RL agent’s degree of self-reflection can be estimated by running the
agent through a battery of environments which we call extended environments,
environments which react not only to what the agent does but to what the
agent would hypothetically do. For good performance averaged over many such
environments, an agent would need to self-reflect about itself, because otherwise,
environment responses which depend on the agent’s own hypothetical actions
would often seem random and unpredictable. The extended environments which
we consider are a departure from standard RL environments, but this does not
interfere with their usage for judging standard RL agents: one can run a standard
agent in an extended environment in spite of the latter’s non-standardness.

To understand why extended environments (where the environment reacts
to what the agent would hypothetically do) incentivize self-reflection, consider
a game involving a box. The contents of the box change from playthrough to
playthrough, and the game’s mechanics depend upon those contents. The player
may optionally choose to look inside the box, at no cost: the game does not change
its behavior based on whether the player looks inside the box. Clearly, the player
has an incentive to look inside the box. The extended environments we consider
are similar to this example. Instead of a box’s contents, the game’s mechanics
depend upon the player. Rather than looking into a box, the environment “looks
into” the player (by simulating a copy of the player) and adjusts its mechanics
accordingly. Just like the player in the above game is incentivized to look in the
box, an agent designed to perform in extended environments is incentivized to
examine itself, that is, to self-reflect.

One might try to imitate an extended environment with a non-extended
environment by backtracking—rewinding the environment itself to a prior state
after seeing how the agent performs along one path, and then sending the agent
along a second path. But the agent itself would retain memory of the first
path, and the agent’s decisions along the second path might be altered by said
memories. Thus the result would not be the same as immediately sending the
agent along the second path while secretly simulating the agent to determine
what it would do if sent along the first path.

Alongside this paper, we are publishing an MIT-licensed open-source library
[2] of extended environments to “ease adoption by other machine-learning re-
searchers” [31]. We are inspired by similar (but non-extended) libraries and other
benchmark collections [4] [5] [6] [8] [9] [12] [24] [33]. Our library is intended show
that it is possible to numerically estimate the self-reflectiveness of RL agents.
Aside from measuring self-reflectiveness of individual agents, such a benchmark
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can also be used to experimentally test agent transformations intended to make
agents more self-reflective (we introduce one such transformation in Section 5).

Our benchmark is based on Legg and Hutter’s theory of universal intel-
ligence measurement [18]. Legg and Hutter argue that to perfectly measure
RL agent performance, one should aggregate the agent’s performance across
the whole space of all sufficiently well-behaved environments, weighted using
an appropriate distribution. Rather than a uniform distribution (susceptible
to no-free-lunch theorems), Legg and Hutter suggest assigning more weight to
simpler environments and less weight to more complex environments. Thus, a
high-order approximation of Legg and Hutter’s idealized measure would need to
involve representative environments of several complexities, weighted accordingly.
But measuring these complexities is hard and subjective [20], and we make no
attempt to do so. Our library is intended as a rough first-order approximation,
using only n = 25 simple extended environments, each with weight 1/n (all
other environments are considered to have weight 0 6= 1/n, so the distribution
is non-uniform and no-free-lunch does not apply). In choosing those n simple
extended environments, we have sought environments interesting in their own
right1, exhibiting paradoxes, interesting thought experiments, counter-intuitive
winning strategies, or even shedding light on how self-reflection might have
evolved in nature. We will discuss examples in Section 3.

2 Preliminaries
A formal, theoretical treatment of RL is necessary to make the mathematics
behind extended environments clear. This formal version of RL differs signifi-
cantly from how RL is implemented in practice. In our library [2] we implement
a more realistic and practical formalization (including non-deterministic agents
and environments). We discuss the more practical formalization in Section 4.

Our formal treatment of RL is based on Section 4.1.3 of [17], except that
we assume the agent receives an initial percept before taking its initial action
(whereas in [17], the agent acts first). We will write x1y1 . . . xnyn for the length-
2n sequence 〈x1, y1, . . . , xn, yn〉 and x1y1 . . . xn for the length-(2n− 1) sequence
〈x1, y1, . . . , xn〉. In particular when n = 1, we will write x1y1 . . . xn for 〈x1〉,
even if y1 is not defined. We assume fixed finite sets of actions and observations.
By a percept we mean a pair x = (r, o) where o is an observation and r ∈ Q is a
reward.

Definition 1. (RL agents and environments)

1. A (non-extended) environment is a function µ which outputs an initial
percept µ(〈〉) = x1 when given the empty sequence 〈〉 as input and which,
when given a sequence x1y1 . . . xnyn as input (where each xi is a percept
and each yi is an action), outputs a percept µ(x1y1 . . . xnyn) = xn+1.

1We would compare our library with benchmarks like the ubiquitous Atari benchmark [4].
Arguably that benchmark uses the same strategy, choosing its n environments not based on
theoretical interest but on which video-games were developed and marketed for the Atari 2600.
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2. An agent is a function π which, given a sequence x1y1 . . . xn as input (each
xi a percept, each yi an action), outputs an action π(x1y1 . . . xn) = yn.

3. If π is an agent and µ is an environment, the result of π interacting with
µ is the infinite sequence x1y1x2y2 . . . defined by:

x1 = µ(〈〉) y1 = π(〈x1〉)
x2 = µ(〈x1, y1〉) y2 = π(〈x1, y1, x2〉)
x3 = µ(〈x1, y1, x2, y2〉) y3 = π(〈x1, y1, x2, y2, x3〉)
· · · · · ·

xn = µ(x1y1 . . . xn−1yn−1) yn = π(x1y1 . . . xn)

· · · · · ·

In the following definition, we extend environments by allowing their outputs
to depend not only on x1y1 . . . xnyn but also on an agent π. Intuitively, extended
environments are environments with the ability to simulate the agent2.

Definition 2. (Extended environments)

1. An extended environment is a function µ which outputs initial percept
µ(π, 〈〉) = x1 in response to input (π, 〈〉) where π is an agent; and which,
when given input (π, x1y1 . . . xnyn) (where π is an agent, each xi is a percept
and each yi is an action), outputs a percept µ(π, x1y1 . . . xnyn) = xn+1.

2. If π is an agent and µ is an extended environment, the result of π interacting
with µ is the infinite sequence x1y1x2y2 . . . defined by:

x1 = µ(π, 〈〉) y1 = π(〈x1〉)
x2 = µ(π, 〈x1, y1〉) y2 = π(〈x1, y1, x2〉)
x3 = µ(π, 〈x1, y1, x2, y2〉) y3 = π(〈x1, y1, x2, y2, x3〉)
· · · · · ·

xn = µ(π, x1y1 . . . xn−1yn−1) yn = π(x1y1 . . . xn)

· · · · · ·

The reader might notice that it is superfluous for µ to depend both on π and
x1y1 . . . xnyn since, given just π and n, one can reconstruct x1y1 . . . xnyn. We
intentionally choose the superfluous definition because it better captures our
intuition (and makes clear the similarity to Definition 1). For the sake of simpler
mathematics, we have not included non-determinism in our formal definition,
but in practice, agents and environments are often non-deterministic, so that π
and n do not determine x1y1 . . . xnyn (our practical treatment in [2], discussed
in Section 4, does allow non-determinism).

2This can be considered a dual version of AIs which simulate their environment, as in
Monte Carlo Tree Search [7].
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The fact that classical agents can interact with extended environments (Defi-
nition 2 part 2) implies that various universal RL intelligence measures [1] [11]
[13] [10] [18] [19], which measure performance in (non-extended) environments,
easily generalize to measure self-reflective intelligence (performance in extended
environments)3. For example, Legg and Hutter’s [18] universal intelligence mea-
sure Υ(π) is defined to be agent π’s average reward-per-environment, aggregated
over all (non-extended) environments with suitably bounded rewards, each envi-
ronment being weighted using the algorithmic prior distribution [21]. Simply
by including suitably reward-bounded extended environments, we immediately
obtain a variation Υ′(π) which measures the performance of π across extended
environments—apparently a version of Legg and Hutter’s universal intelligence
which measures both intelligence and self-reflection ability.

3 Some interesting extended environments
In this section, we exhibit some interesting examples of extended environments.

3.1 A quasi-paradoxical extended environment
Example 3. (Rewarding the Agent for Ignoring Rewards) For every percept
x = (r, o), let x′ = (0, o) be the result of zeroing the reward component of x.
Fix some observation O. Define an extended environment µ as follows, where
x1y1 . . . xnyn ranges over percept-action sequences ending in an action:

µ(π, 〈〉) = (0, O),

µ(π, x1y1 . . . xnyn) =

{
(1, O) if yn = π(x′1y1 . . . x

′
n),

(−1, O) otherwise.

In Example 3, every time the agent takes an action yn, µ simulates the agent
in order to determine: would the agent have taken the same action if the history
so far were identical except for all rewards being 0? If so, then µ gives the agent
+1 reward, otherwise, µ gives the agent −1 reward. Thus, the agent is rewarded
for ignoring rewards. Example 3 seems paradoxical: suppose an agent guesses
the pattern and begins deliberately ignoring rewards, so long as the rewards
it receives for doing so remain consistent with that guess. In that case, does
the agent ignore rewards, or not? The paradox can be summarized: “I ignore
rewards because I’m rewarded to do so.”

Example 3 is implemented in [2] as IgnoreRewards.py. A key strength of the
formalism in Definition 2 is that by explicitly defining an extended environment,
as in Example 3, we avoid ambiguity inherent in everyday language. If one merely
said informally, “reward the agent for ignoring rewards”, that could be interpreted
in various different ways. To show this, we implement two other interpretations

3To quote Legg and Veness: “Having a suite of such tests, with each emphasizing different,
measurable aspects of intelligence, would clearly help the community build more powerful and
robust general agents” [19].
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as IgnoreRewards2.py (which interprets the English phrase by reading “reward”
as “positive reward”, i.e., as opposed to “punishment”) and IgnoreRewards3.py
(which interprets the phrase as “reward agent if agent’s nth action equals the
nth action the agent would take in the all-reward-0 environment”).

3.2 A counterintuitive winning strategy
Example 4. (Tempting Button) Fix an observation B (thought of as “there is
a button”) and an action A (“push the button”), and assume there is at least
one other observation and one other action. For each percept-action sequence
h = x1y1 . . . xn, if the observation in xn is not B, then let h′ be the sequence
equal to h except that the observation in xn is replaced by B. Let o0, o1, o2, . . . be
observations generated pseudo-randomly such that for each i, oi = B with 25%
probability and oi 6= B with 75% probability. Let µ(π, 〈〉) = (0, o0), and for each
percept-action sequence h = x1y1 . . . xn and action yn, define µ(π, h _ yn) as
follows (where O is the observation in xn):

µ(π, h _ yn) =


(1, on) if O = B and yn = A;
(−1, on) if O = B and yn 6= A;
(−1, on) if O 6= B and π(h′) = A;
(1, on) if O 6= B and π(h′) 6= A.

In Example 4, if we think of the agent wandering from room to room:

• Each room either has a button (with 25% probability) or does not have a
button (75% probability).

• In a room with a button, the agent gets +1 reward for pushing the button,
−1 reward for not pushing it.

• In a room with no button, it does not matter what the agent does. The
agent is rewarded or punished based on what the agent would do if there
was a button. If the agent would push the button (if there was one), then
the agent gets reward −1. Otherwise, the agent gets reward +1.

Thus, whenever the agent sees a button, the agent can push the button for
a free reward with no consequences presently nor in the future; nevertheless,
it is in the agent’s best interest to commit itself to never push the button!
Pushing every button yields an average reward of 1 · (.25)− 1 · (.75) = −.5 per
turn, whereas a policy of never pushing the button yields an average reward of
−1 · (.25) + 1 · (.75) = +.5 per turn.

In Example 4, when the environment simulates the agent in order to determine
whether the agent would press the button if there was a button, the true agent is
not altered by the simulation. If the agent’s actions are based on a Q table or a
neural net, the simulation will include a simulation of that Q table or neural net,
and that simulated Q table or neural net might be updated, but the true agent’s
Q table or neural net is not directly updated by the simulation. Thus, unless the
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Table 1: Performance in Example 4 (100k steps)
Agent Avg Reward-per-turn ± StdErr

(test repeated with 5 RNG seeds)

Q −0.44858 ± 0.00044
DQN −0.46687 ± 0.00137
A2C −0.49820 ± 0.00045
PPO −0.24217 ± 0.00793

agent itself introspects about its own hypothetical behavior (“What would I do
if there was a button here?”), it seems the agent would have no way of realizing
that the rewards in buttonless rooms depend on said behavior. Indeed, in Table
1 we see that industry-standard agents perform poorly in Example 4 (these
numbers are extracted from result_table.csv in [2], which contains performance
details for these and other agents on all the environments in our benchmark; see
Sections 4 and 6 for more implementation details).

Example 4 is implemented in our open-source library as TemptingButton.py.

3.3 An interesting thought experiment
Example 5. (Reverse history) Fix some observation O. Define an extended
environment µ as follows:

µ(π, 〈〉) = (0, O),

µ(π, x1y1 . . . xnyn) =

{
(1, O) if yn = π(xnyn−1xn−1yn−2 . . . y1x1),
(−1, O) otherwise.

In Example 5, whenever the agent takes an action yn, µ simulates the agent
in order to determine: would the agent have taken that same action if everything
earlier had happened in reverse? If so, reward the agent, otherwise, punish the
agent. Thus, the agent is rewarded for acting the same way that it would act if
time were reversed.

It is interesting to think about what it would be like to interact with the
environment in Example 5. It would be like wearing a shock collar which
shocks one whenever one acts differently than one would act if time were moving
backwards. To approximate the experiment, a test subject, commanded to speak
backwards, might be constantly rewarded or punished for obeying or disobeying.
This might teach the test subject to imitate backward speech, but then the
test subject would still act as if time were moving forward, only they would
do so while performing backward-speech (they would hear their own speech
backwards). But if the experimenter could perfectly simulate the test subject
in order to determine what the test subject would do if time really was moving
backwards, what would happen? Could test subjects learn to behave as if time
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was reversed4? For example, by forward-speaking a monologue of a person
suffering a backwards-speech hallucination? (“Hello. Hey, why does my voice
sound so weird?!”) Another possibility is that humans might simply not be
capable of performing well in the environment. Our self-reflectiveness measure is
not intended to be limited to human self-reflection levels.

We implement Example 5 as ReverseHistory.py in [2].

3.4 Additional examples in brief
Here are a few additional extended environment examples, without full details.
We indicate in parentheses where these environments are implemented in [2].

• (SelfRecognition.py) Environments which reward the agent for recognizing
actions it itself would take. We implement an environment where the
agent sees observations which encode True-False statements such as “If this
observation were 0, you would take action 1,” and so on, and the agent is
rewarded for deciding whether those statements are true or false.

• (IncentivizeLearningRate.py) Environments which reward the agent for
behaving as if the agent were configured with a particular learning rate
(suggesting that extended environments can incentivize agents to learn
about their own internal mechanisms, as in [29]). Note that this requires a
more practical RL formalization than that of Definition 2; we discuss the
more practical formalization in Section 4.

• (AdversarialSequencePredictor.py) Environments which pit the agent against
a competitor in an adversarial sequence prediction game [15]. This is done
by outsourcing the competitor’s behavior to the agent’s own action-function
(a technique we will explore in more detail in Example 8), thus avoiding
the need to hard-code a competitor into the environment.

• (RuntimeInspector.py) Environments which reward the agent for respond-
ing quickly. In our implementation, we use Python’s debugger (pdb) to
count the number of steps the agent takes to act.

• (DeterminismInspector.py) Environments which reward the agent for being
deterministic. In our implementation, the environment calls the agent’s
action-function redundantly to check whether it returns the same action.

4 Extended Environments in Practice
Definitions 1 and 2 are computationally impractical if agents are to run on
environments for many steps. Even just maintaining long enough percept-action
sequences can be prohibitive, not to mention computing actions and percepts from

4The difference between behaving as if the incentivized experience were its experience and
actually experiencing that as its real experience brings to mind the objective misalignment
problem presented in [16].
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those sequences. In this section, we will discuss a more practical formalization
of extended environments. Our reasons for doing this are fourfold:

1. The more practical implementation allows our library to run quickly enough
that it becomes feasible to run industry-standard agents against it for many
steps. This is important because most industry-standard agents require
many steps to learn the environments they are placed in.

2. Certain environments have much clearer formulations using the practical
framework. They could still be formulated using the theoretical framework,
but doing so would involve lots of tedious mathematical notation.

3. We find it interesting in its own right how certain environments can be
implemented in a practical way whereas others apparently cannot.

4. Non-determinism is effortless and natural in the practical implementation.

In actual practice, RL works more like the following.

• An environment responds to individual actions rather than to histories,
but while doing so, it may update aggregate historical information in its
internal memory (e.g., in the fields of a Python class instance).

• An agent has two fundamental operations. First, it chooses actions in
response to individual observations (not histories). These actions may also
depend on the contents of the agent’s internal memory5 (e.g., the fields
of a Python class instance, which may include Q tables, neural network
weights, and so on). The agent does not update its internal memory during
the process of acting. The agent only updates its internal memory during
the second fundamental operation, training6. The agent trains in response
to a transition, consisting of a previous observation, an action, a reward,
and a next observation (the intuition being that the agent took the action
in response to the previous observation, received the reward for doing so,
and observed the next observation afterward). During training, the agent
may update its internal memory (for example, updating neural network
weights, adding the transition to a limited set of experiences for experience
replay [23], and so on).

Because of how practical RL agents’ actions depend on internal memory, some
care is needed in order to make extended environments practical. In order for
an environment to ask, “What would the agent do in response to such-and-such
hypothetical history?”, the environment would have to train the agent with

5Usually, a practical agent’s total memory usage will be bounded, if not outright constant;
in fact, even the runtime of the agent’s action-function is often bounded or constant. A
practical agent attempts to “behave as well as possible given its computational resources” [28].

6Indeed, it is common to pre-train a general-purpose agent on a particular environment—“a
single function in isolation” [32]—and publish the resulting action-function as a special-purpose
solution exclusively for that one environment, with the no-longer-needed training operation
stripped away.
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such-and-such hypothetical history (being unable to simply feed the hypothetical
history to the agent’s action-function as in Examples 3–5). But training the
actual agent would alter the agent’s internal memory, an unintended side effect
which would compromise the whole idea of extended environments.

Thus, to practically realize extended environments in [2], rather than passing
the environment an agent, we pass the environment an agent-class (or agent-
factory) which may be used to create untrained copies of the agent, called
instances of the agent-class. This actually turns out to be quite convenient be-
cause many industry-standard RL agents really do come from such factories (e.g.,
Python classes which one instantiates to get an actual agent). The environment
can use the agent-class to create as many copies of the agent as needed, storing
them in its internal memory. Since agents’ action-functions are functions of
single observations, not entire histories, environments such as Example 3 must
instead train simulated agents with said histories. Of course, to train a fresh new
simulated agent with an entire history at every step would be impractical. This
can often be avoided by maintaining a simulated agent and training it gradually:
there is no need to repeat trainings performed earlier, if the trained simulation
is still available. To illustrate this, here is a practical version of Example 3.

Example 6. The following Python code is a practical version of Example 3.

class IgnoreRewards :
def __init__( s e l f , A) :

# Ca l l i n g A() c r ea t e s agent−cop ie s . On
# in i t i a t i o n , t h i s environment s t o r e s
# one such copy in i t s i n t e r na l memory .
s e l f . sim = A()

def s t a r t ( s e l f ) :
return 0 # I n i t i a l ob se rva t i on 0

def s tep ( s e l f , a c t i on ) :
# At each step , use the s to red copy
# ( s e l f . sim ) to determine how the t rue
# agent would behave i f a l l h i s t o r y so
# far were the same excep t a l l rewards
# were 0 . Assumes s e l f . sim has been
# tra ined the same as the t rue agent ,
# excep t with a l l rewards 0 .
hypothet i ca l_act = s e l f . sim . act ( obs=0)
reward = 1 i f ac t i on==hypothet i ca l_act \

else −1
# To maintain above assumption , t r a in
# s e l f . sim as i f current reward were 0 .
# True agent w i l l au tomat i ca l l y t r a in
# the same way with the t rue reward .
s e l f . sim . t r a i n ( o_prev=0, a=act ion ,

r=0, o_next=0)
return ( reward , 0) # Observat ion=0

Unfortunately, not all extended environments (as in Definition 2) can be
realized in a practical way. But surprisingly many of them can be. We originally
wrote our library [2] to directly implement a variation of Definition 2, but the
library was slow. To make environments practical, we had to convert them to
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the more practical framework, replacing expensive computations π(x1y1 . . . xn)
with gradual, reusable training, as in Example 6. We feared that for many
environments, this would not be possible. But it turned out to be possible
for 23 out of 25 environments. The two exceptions were the Reverse History
environment (Example 5) and an environment based on Déjà Vu.

The reason Example 5 is inherently impractical is because there is no way
for the environment to re-use its previous work to speed up its next percept
calculation. Even if the environment retained a simulated agent trained on the
previous reverse history h0 = xn−1yn−2 . . . y1x1, in order to compute the next
percept, the environment would need to insert a new percept-action pair xnyn−1
at the beginning of h0 to get the new reverse history h = xnyn−1 . . . y1x1. There
is no guarantee that the agent’s actions are independent of the order in which it
is trained, so a fresh new agent simulation would need to be created and trained
on all of h from scratch. Similar remarks go for the Déjà Vu environment, which
involves inserting new percept-action pairs in the middle of the previous training
sequence. Our library retains ReverseHistory.py and DejaVu.py, but marked
as “slow” (to exclude them from the benchmark); we replaced them with other
environments to keep the benchmark size equal to 25.

4.1 Newcomb’s Paradox
We find it insightful to use the framework we have developed to formalize a
variation of Newcomb’s paradox [25]. This is a well-known paradox in which a
player is confronted with two boxes, a transparent box which visibly contains
$1000 and an opaque box which may contain a million dollars ($1M) or nothing.
The player must choose whether to take both boxes, or to only take the opaque
box. The player knows that the opaque box’s contents have been determined by
a reliable predictor, who predicted what the player would do: if the predictor
predicted the player will take both boxes, then the predictor put nothing in the
opaque box; but if the predictor predicted the player will take just the opaque
box, then the predictor put $1M in the opaque box. In describing the paradox,
Nozick reported that “To almost everyone, it is perfectly clear and obvious what
should be done. The difficulty is that these people seem to divide almost evenly
on the problem, with large numbers thinking that the opposing half is just being
silly” [25].

The paradox does not exactly fit within reinforcement learning because it
involves the player having knowledge, whereas an RL agent merely acts and
trains and does not officially know anything (it can act as if it knows things,
but it seems to us that the whole point of Newcomb’s paradox is that no-one
agrees what exactly it means to act as if knowing what the player in Newcomb’s
paradox knows). Thus, for RL, it is more appropriate to imagine the player
playing the game over and over again many times, and instead of assuming that
the player knows anything, we consider that the player could potentially infer
patterns in the game.
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Example 7. (Newcomb’s Paradox) The following Python code formalizes an
RL variation of Newcomb’s paradox.

TAKE_ONE_BOX, TAKE_BOTH_BOXES = 0 , 1
OBS = 0 # Opaque box + transparent box w/$1000

class NewcombEnvironment :
def __init__( s e l f , A) :

s e l f . sim = A() # Create copy o f agent

def s t a r t ( s e l f ) :
pred ic ted_act ion = s e l f . sim . act (OBS)
i f pred ic ted_act ion == TAKE_BOTH_BOXES:

s e l f . opaque_contents = 0
else :

s e l f . opaque_contents = 1000000
return OBS # Show p layer two boxes

def s tep ( s e l f , a c t i on ) :
i f ac t i on == TAKE_BOTH_BOXES:

reward = 1000 + s e l f . opaque_contents
else :

reward = s e l f . opaque_contents

s e l f . sim . t r a i n ( o_prev=OBS,
a=act ion , r=reward , o_next=OBS)

s e l f . s t a r t ( ) # Repopulate opaque box

return ( reward , OBS)

In Example 7, although the environment keeps track of the contents of the
opaque box, those are not shown to the agent—the box is opaque. Thus, the
agent always sees the same observation. It is an example of an RL environment
in which there is state that is not visible to the agent. One of the key strengths
of our framework is that by formalizing environments concretely as in Example 7,
ambiguities in natural language are annihilated. Thus, it is unambiguous that if
A1 is an agent-class whose instances always take the opaque box only, then A1’s
instances will get 1000000 reward per turn in Example 7. If A2 is an agent-class
whose instances always take both boxes, then A2’s instances will get 1000 reward
per turn. Of course, we do not claim that this solves the original Newcomb’s
paradox, since the original paradox involves knowledge, which does not fit in
the RL framework. In fact, interestingly, when we run standard RL agents on
Example 7, the subtle nuances of Newcomb’s Paradox are lost on them: despite
having no knowledge of how the environment works, they quickly learn that it’s
better to take only the opaque box.

4.2 An extended environment of biological interest
“It is only when people are embedded in a complex competitive social
environment that the goal of interacting with others requires them
to anthropomorphise their own actions. This recursive modelling
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gives rise to an understanding of selfhood, an appreciation of the
first-person experiential self.”—Maguire et al [22]

Extended environments offer an elegant solution to a difficult problem that
arises in measuring RL intelligence. The problem, described in [14], is that
“the probability of other agents appearing on the scene or having some social
interaction is almost 0”: building a sophisticated competitor (or collaborator)
RL agent into a standard RL environment would increase the complexity of that
environment (because the environment would include said competitor agent’s
source-code). Thus, intelligence measures based on giving more weight to simpler
environments would give little weight to environments with sophisticated built-in
RL agents. Such measures might therefore fail to capture social aspects of
intelligence. The following example shows that a relatively simple extended
environment can include other agents of arbitrary complexity, by outsourcing
those other agents’ actions to the agent whose intelligence is being measured.

Example 8. (Crying Baby) The following code defines an environment which
consists of a baby, and the agent must decide when to feed the baby. The agent is
rewarded when the baby laughs, punished when the baby cries. The baby’s behavior
(whether to laugh or cry) is computed by simulating the agent to determine what
the agent would do if the agent were in the baby’s position.

FEED, DONTFEED = LAUGH, CRY = 0 , 1
class CryingBaby :

def __init__( s e l f , A) :
# Obtain baby by s imu la t ing agent
s e l f . baby = A( )
s e l f . f u l l = 5 # Nutr i t i on
s e l f . prev_baby_obs = FEED

def s t a r t ( s e l f ) :
return LAUGH # Fir s t obs i s l au gh t e r

def s tep ( s e l f , a c t i on ) :
i f ac t i on == FEED:

s e l f . f u l l = min( s e l f . f u l l +1, 9)
else :

s e l f . f u l l = max( s e l f . f u l l −1, 0)
baby_act = s e l f . baby . act ( obs=ac t i on )
parent_reward = 1 i f ( baby_act==LAUGH)\

else −1
baby_reward = 1 i f (2 < s e l f . f u l l < 8)\

else −1
parent_obs , baby_obs = baby_act , a c t i on
s e l f . baby . t r a i n (

o_prev=s e l f . prev_baby_obs ,
a=baby_act , r=baby_reward ,
o_next=baby_obs )

s e l f . prev_baby_obs = baby_obs
return ( parent_reward , parent_obs )

Obviously, Example 8 is a gross over-simplification of parent-child dynamics,
but it illustrates how multi-agent non-extended environments can be transformed
into single-agent extended environments, by letting the same agent play all the
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different roles. One might be tempted to visualize a bunch of identical twins
interacting, but that would be misleading. To quote Silver et al: “The agent
consists solely of the decision-making entity; anything outside of that entity
(including its body, if it has one) is considered part of the environment” [30].
Thus in Example 8, when an A-instance plays the parent’s role, its actions
control the parent’s body. When another A-instance plays the baby’s role, its
actions control the baby’s body. The environment could even be modified to
include decades worth of turns before the baby arrives, to capture the realistic
fact that a parent has more life experience than a baby (and acts accordingly),
even while still using the same agent-class for both roles.

With the above in mind, extended environments might shed light on how
living organisms evolve self-reflection. Assume that descendants’ policy source-
codes are approximately equal to their recent ancestors’ policy source-codes.
Then whenever an organism interacts with similar organisms, it interacts with
an environment whose reactions depend (via those other organisms’ actions)
approximately on that organism’s own source-code. The closer the organism is
related to the other organisms with which it interacts, the better the approxima-
tion. A human interacting with another human might achieve better results by
self-reflectively considering, “What would I do in this other person’s position?”

The idea behind Example 8 would easily generalize to allow relatively simple
single-agent extended environments equivalent to multi-agent environments with
many, possibly highly complicated, interacting agents (even a whole society of
interacting agents, who “define their own rewards and punishments because they
themselves assist in the rewards and punishments” [26]).

We implement Example 8 as CryingBaby.py in [2].

4.3 Determinacy and Semi-Determinacy
For the sake of simpler mathematics, we have been formally working in a deter-
ministic version of RL. This simplifies the mathematics because mathematical
functions are deterministic by definition. Functions in the computer-programming
sense have no determinism requirement: their output may depend on random
number generators (RNGs), time-of-day, global variables, system calls, 3rd-party
libraries, or even on responses from a remote server or from a human being. Our
proposed method of measuring agent self-reflection could still be applied even to
non-deterministic agents: run the agent on a battery of extended environments
and estimate its self-reflection by averaging the resulting rewards. Depending
on the nature of the non-determinism, this measurement might not make much
sense. For example, if an agent operates by reading and writing files on disk,
then a simulation of that agent might influence the true agent (by altering said
files), which would make the results of our self-reflection technique meaningless.
Our technique should not be used to measure agents capable of inadvertently
influencing other copies of themselves like in the above disk-writing example.

Definition 9. (Informal) Suppose Π is a practical RL agent-class (as in [2]).
We say Π is semi-deterministic if the following property holds. Any time two
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instances π1 and π2 of Π have been instantiated within a single run of a larger
computer program, and have been identically trained (within that same run), then
they shall act identically (within that same run).

For example, rather than directly invoking the RNG, instances of Π might
systematically read random numbers from a common read-only store of random
numbers pre-generated using the RNG when the larger computer program began
its current run. In this way, within a particular run of the larger program,
identically-trained Π-instances would act identically, even though they would
not necessarily act the same way as identically-trained Π-instances in a different
run of the larger program.

Our measurement technique—measure an agent’s self-reflectiveness by run-
ning the agent through a battery of extended environments—should work well in
the practical framework as long as the agents are instances of semi-determinstic
agent-classes. Whenever an instance π of a semi-determinstic agent-class Π
interacts with an extended environment µ, whenever µ uses a Π-instance π′ to
investigate the hypothetical behavior of π, the semi-determinacy of Π ensures
that the behavior µ sees in π′ is indeed the hypothetical behavior of π.

5 Making agents more self-reflective
One advantage of empirically measuring the self-reflection of RL agents is that
it provides a way to experimentally test whether various transformations make
various agents more self-reflective. To illustrate this, we will define a simple
transformation, the reality check transformation, intended to increase the self-
reflection of certain agents. In Section 6, empirical results will suggest the
transformation works as intended, at least for self-reflection as measured by our
library.

Definition 10. Suppose π is a deterministic agent. The reality check of π is
the agent πRC defined recursively by:

πRC(x1y1 . . . xn) =

{
π(x1y1 . . . xn) if yi = πRC(x1y1 . . . xi) for all 1 ≤ i < n,
π(〈x1〉) otherwise.

In other words, πRC is the agent which, in response to a percept-action history,
first reviews all the actions in that history, and verifies that those are the actions
which πRC would have taken. If so, then πRC acts as π would act. But if any
action in the history is not the action πRC would have taken at that point, then
πRC freezes up and forever thereafter repeats one fixed action. Loosely, πRC is
like an agent who considers the possibility it might be dreaming, and asks: “How
did I get here?” For example, suppose π(x1) = y′1 where y′1 6= y1. In other words,
in response to history 〈x1〉, π would take action y′1, not y1. Then for any history
x1y1 . . . xn beginning with x1y1, by definition πRC(x1y1 . . . xn) = π(〈x1〉): πRC
is like a version of π which notices that the input history cannot possibly be real
(because π would never take action y1 in response to subhistory 〈x1〉), concludes
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“since this history is impossible, I must be a simulation,” and deliberately freezes
in order to avoid giving information to whoever is simulating it.

Since the act of reviewing actions and verifying that they are indeed the
actions one would have taken, is an act of self-reflection, it seems plausible that
at least for certain agents π, πRC should be more self-reflective than π.

Definition 11. (Informal) By a good classic agent we mean an agent which
was designed to perform well in non-extended environments, but whose designers
made no attempt to make it perform well in extended environments.

Conjecture 12. (Informal) For most good classic agents π, πRC outperforms
π on average across the space of all extended environments (suitably weighted).

We say “most” in Conjecture 12 because it is possible that an agent, designed
only to perform well in non-extended environments, might accidentally already
perform well in extended environments. We do not claim that the reality check
operation would necessarily further increase the performance of such agents. In
the next section, we will see that experimental evidence supports Conjecture 12.
We would like to explain why the conjecture is plausible. To do that, it will be
helpful to refer to some properties of the reality check operation.

Proposition 13. Let π be any agent.

1. (Alternate definition) An equivalent alternate definition of πRC is:

πRC(x1y1 . . . xn) =

{
π(x1y1 . . . xn) if yi = π(x1y1 . . . xi) for all 1 ≤ i < n,
π(〈x1〉) otherwise.

2. (Idempotence) πRC = (πRC)RC.

3. (Equivalence on genuine history) For every extended environment µ and for
every odd-length initial segment x1y1 . . . xn of the result of πRC interacting
with µ, πRC(x1y1 . . . xn) = π(x1y1 . . . xn).

4. (Equivalence in non-extended RL) For every non-extended environment µ,
the result of πRC interacting with µ equals the result of π interacting with
µ.

We prove Proposition 13 in Appendix A. Note that part 3 shows that πRC
never freezes up in reality (if π does not): rather, πRC merely commits to freeze
up in certain hypothetical scenarios which cannot occur in reality.

Suppose π is a good classic agent (Definition 11). The reason why we suspect
πRC should outperform π (on average over the space of extended environments
suitably-weighted) is as follows. Extended environments depend not only on
what the agent does, but also on what the agent would hypothetically do.
To an agent that does not self-reflect, such environmental behavior would be
difficult to predict. But a nontrivial subset of extended environments depend, in
particular, on what the agent would do in hypothetical scenarios that involve
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the agent taking actions which the agent would never take. By design, πRC’s
hypothetical behavior in those scenarios is trivial: πRC would blindly repeat one
fixed action in such scenarios. Because πRC’s own actions in such scenarios are
trivial, that trivializes those extended environments’ dependency thereon, making
those extended environments more predictable. And since we are assuming π is
designed to perform well in non-extended environments, presumably π, and thus
(by Proposition 13 part 3), πRC should be able to take advantage of increased
predictability.

The above reasoning becomes clear if we let π be a deterministic Q-learner
and consider the interaction of πRC with Example 3 (“Reward the Agent for
Ignoring Rewards”). Let x1y1 . . . be that interaction. For any particular n, the
environment computes xn+1 = µ(x1y1 . . . xnyn) by simulating πRC to determine
whether or not yn = πRC(x′1y1 . . . x

′
n), where each x′i is the percept xi with

reward zeroed. If so, xn+1’s reward is +1, otherwise xn+1’s reward is −1 (πRC
is rewarded to act as if history were identical except for all past rewards being
0). For sufficiently large n, since π is a Q-learner, there is almost certainly
some m < n such that π(x1y1 . . . xm) 6= π(x′1y1 . . . x

′
m)—this is essentially just

the statement that a Q-learner’s behavior depends on past rewards7. By part
1 of Proposition 13, for any such n, πRC(x1y1 . . . xn) = πRC(〈x1〉) = y1. Thus
eventually the environment’s paradoxical behavior collapses and becomes trivial:
“reward action y1 and punish all other actions”. A Q-learner, and thus (by
Proposition 13 part 3) πRC, would thrive in such conditions.

We implement the reality-check operation in [2] in reality_check.py. The
implementation is a function which takes an agent-class Π as input and outputs
an agent-class Σ. Upon instantiation, a Σ-instance σ instantiates a Π-instance π,
which is stored in σ’s memory so that σ can compute actions using π—thus, an
extended environment simulating a Σ-instance indirectly simulates a Π-instance:
a simulation within a simulation. When trained on given data, σ checks whether
that data is consistent with its own actions. If so, it trains π on the given
data. But if not, then σ flips into a different mode, whereafter all its future
actions repeat its first action and all future training data is ignored. If Π is
semi-deterministic (Definition 9), then the identical actions of identically-trained
Π-instances which Σ-instances use to compute their actions, implies the identical
actions of identically-trained Σ-instances: in short, if Π is semi-deterministic,
then Σ is too.

6 Example measurements
Based on our conviction that self-reflection is necessary in order for an agent
to achieve good average performance across many extended environments, self-
reflection can be estimated by running an agent against some standard battery

7Alexander and Hutter show [3] that if the background model of computation is unbiased in
a certain sense then all reward-ignoring agents have Legg-Hutter intelligence 0. This suggests
that any π successfully designed to perform well in non-extended environments must base its
actions on its rewards.
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of extended environments. Our open-source library of extended environments
[2] provides a battery of 25 such extended environments, and infrastructure
for measuring an agent’s self-reflection by running the agent on all these en-
vironments and their opposites (by the opposite of an environment we mean
the environment obtained by multiplying all rewards by −1). Including these
opposite-environments serves to normalize agent performance in the following
sense. If an agent blindly acts, ignoring the environment, then, a priori, that
agent might achieve some nonzero score by blind luck. By including opposite-
environments, we ensure that whenever a blind agent gains points by blind
luck from one environment, it loses the same points by blind misfortune from
the opposite environment. This ensures that such blind agents receive score
0, at least if they are semi-deterministic (Definition 9)8. For uniformity, all
environments in the library output individual rewards of either 1, −1 or 0 every
step.

We have used our library to measure the self-reflection of semi-deterministic
versions of the following agents:

• Random: An agent who acts randomly.

• Constant: An agent who always takes the same action.

• Simple: An agent who takes the first available action that has never
previously resulted in a punishment for the observation in question (or
action 0 if no such action exists).

• A standard Q-learner with ε = .9, α = .1, γ = .9.

• DQN, A2C, and PPO agents (with MLP policy) from the open-source
Stable Baselines3 library [27]. All parameters were kept at default value
except for random seed and DQN’s learning_starts (which we set to 1 to
let DQN begin learning right away). We used various tricks to make these
agents semi-deterministic and enable them to run in extended environments,
see DQN_learner.py, A2C_learner.py, and PPO_learner.py in [2].

• The reality checks of all the above (Section 5).

Table 2 summarizes how the agents performed. We used [2] to measure each
agent for 100,000 steps on each extended environment and its opposite. This
was all done 5 times with different random number seeds and Table 2 averages
the 5 resulting measurements for each agent, with corresponding standard error.
See ExampleMeasurements.py in our library for instructions to replicate the
experiment. Computations were performed on a consumer-grade laptop with no
GPU. The table provides experimental evidence in support of Conjecture 12. The
fact that Simple performs so well is a reflection of the lack of sophistication of the
environments in our library. This is not surprising, since we have not attempted
to optimize the library, instead preferring to fill it with extended environments

8See [3] for discussion of why it is natural and reasonable to expect an average-performance
intelligence measure to give blind agents reward 0.
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Table 2: Measuring self-reflection of some agents and their reality-checks
Agent Good Classic Measure ± StdErr Measure ± StdErr

Agent? (Original Agent) (Reality Check)

Random 0.0000± 0.0000 0.0000± 0.0000
Constant 0.0000± 0.0000 0.0000± 0.0000
Simple 0.7567± 0.0000 0.7146± 0.0031
Q X 0.5395± 0.0030 0.5720± 0.0038
DQN X 0.5174± 0.0068 0.6072± 0.0057
A2C X 0.6145± 0.0061 0.6368± 0.0045
PPO X 0.0696± 0.0005 0.3332± 0.0019

of theoretical interest. The fact that reality-check does not improve Simple
illustrates that if an agent is not capable of significant learning then it does not
benefit from the increased predictability added by reality-check (this does not
contradict Conjecture 12, because Simple is not a good classic agent). Table 2
should not be used to make conclusions such as “A2C is more self-reflective than
DQN,” because e.g. “A2C” actually refers to a whole hyperparameter-indexed
family of agents, of which we only measured one—the relative performance of
DQN, A2C and PPO in Table 2 is probably more of an indicator of the relative
suitability of those families’ default hyperparameters for the environments in our
library. What we do see from Table 2 is that for all the good classic agents there
(Q, DQN, A2C, and PPO), the reality-check operation does indeed increase their
measures.

That πRC improves performance of good classic agents in Table 2 is, of course,
a function of which environments are tested against. One could deliberately
engineer extended environments in which πRC performs poorly, and a library
of such would give πRC a poor numerical measurement. An example of such
an environment would be an environment which punishes the true agent if
simulations thereof appear to freeze in response to percept-action sequences
with actions the agent would not take. But this example is, in our opinion,
highly contrived. We conjecture more generally that, on average, environments
where πRC underperforms π are more contrived than environments where πRC
overperforms π. Thus, the former would be given lower weight if extended
environments were suitably weighted (following the logic of [18]).

7 Conclusion
We introduced what we call extended environments, RL environments which are
capable of simulating the agent. When computing rewards and observations,
extended environments can consider not only the actions the agent has taken,
but also actions which the agent would hypothetically take in counterfactual
circumstances. Despite not being designed with such environments in mind, RL
agents can nevertheless interact with such environments.
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If an agent tries to learn an extended environment, only taking into consider-
ation what has actually happened, the agent might find the environment hard
to predict, if the environment is basing its responses on what the agent itself
would hypothetically do in alternate scenarios. It seems that in order to achieve
good performance (on average) across many extended environments, an agent
would need to engage in some degree of self-reflection. Therefore, we propose
that a battery of benchmark extended environments could provide a way of
measuring self-reflection in RL agents. We are simultaneously publishing an
open-source library [2] of extended environments to serve as a proof-of-concept.
This library is rudimentary, and further work is needed to obtain a more optimal
set of extended environments. For the purposes of our proof-of-concept, we
preferred to focus on extended environments of particular theoretical interest.
Some examples are given in Section 3.

We introduced (in Section 5) a reality check transformation, which takes an
agent π and transforms it into a new agent πRC. We conjectured (Conjecture 12)
that for most good classic agents π (see Definition 11), πRC outperforms π on
average across the space of extended environments, suitably weighted. Numerical
computations (in Section 6) provide empirical evidence for the conjecture.
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A Proof of Proposition 13
Proof of Proposition 13. Let D be the set of all sequences x1y1 . . . xn (each xi a
percept, each yi an action).
(Part 1) Define ρ on D by

ρ(x1y1 . . . xn) =

{
π(x1y1 . . . xn) if yi = π(x1y1 . . . xi) for all 1 ≤ i < n,
π(〈x1〉) otherwise.

We must show that ρ = πRC. We will prove by induction that for each
x1y1 . . . xn ∈ D, ρ(x1y1 . . . xn) = πRC(x1y1 . . . xn). The base case n = 1 is
trivial: ρ(〈x1〉) = π(〈x1〉) = πRC(〈x1〉) since there is no i such that 1 ≤ i < 1.
For the induction step, assume n > 1, and assume the claim holds for all shorter
sequences in D.

Case 1: Assume (∗) for all 1 ≤ i < n, yi = π(x1y1 . . . xi). We claim that for
all 1 ≤ i < n, yi = ρ(x1y1 . . . xi). To see this, choose any 1 ≤ i < n. Then for all
1 ≤ j < i, yj = π(x1y1 . . . xj) because otherwise j would be a counterexample to
(∗). Thus

ρ(x1y1 . . . xi) = π(x1y1 . . . xi) (By definition of ρ)
= yi, (By ∗)

proving the claim. Now, since we have proved that for all 1 ≤ i < n, yi =
ρ(x1y1 . . . xi), and since our induction hypothesis guarantees that each such
ρ(x1y1 . . . xi) = πRC(x1y1 . . . xi), we may conclude that for all 1 ≤ i < n,
yi = πRC(x1y1 . . . xi). Thus πRC(x1y1 . . . xn) = π(x1y1 . . . xn) = ρ(x1y1 . . . xn)
as desired.

Case 2: Assume there is some 1 ≤ i < n such that yi 6= π(x1y1 . . . xi). We
may choose i as small as possible. Thus, for all 1 ≤ j < i, yj = π(x1y1 . . . xj). By
similar logic as in Case 1, it follows that for all 1 ≤ j < i, yj = ρ(x1y1 . . . xj). Our
induction hypothesis says that for each such j, ρ(x1y1 . . . xj) = πRC(x1y1 . . . xj).
So for all 1 ≤ j < i, yj = πRC(x1y1 . . . xj). By definition of πRC, this means
πRC(x1y1 . . . xi) = π(x1y1 . . . xi). But yi 6= π(x1y1 . . . xi), so therefore yi 6=
πRC(x1y1 . . . xi). Thus, since 1 ≤ i < n, by definition of πRC, πRC(x1y1 . . . xn) =
π(〈x1〉). Likewise, since 1 ≤ i < n, by definition of ρ, ρ(x1y1 . . . xn) = π(〈x1〉).
So ρ(x1y1 . . . xn) = πRC(x1y1 . . . xn) as desired.
(Part 2) To show that each πRC(x1y1 . . . xn) = (πRC)RC(x1y1 . . . xn), we use
induction on n. For the base case, this is trivial, both evaluate to π(〈x1〉).
For the induction step, assume n > 1 and that the claim holds for all shorter
sequences.
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Case 1: yi = πRC(x1y1 . . . xi) for all 1 ≤ i < n. Then by induction, yi =
(πRC)RC(x1y1 . . . xi) for all 1 ≤ i < n. By definition of (πRC)RC, this means
(πRC)RC(x1y1 . . . xn) = πRC(x1y1 . . . xn), as desired.

Case 2: There is some 1 ≤ i < n such that yi 6= πRC(x1y1 . . . xi). By in-
duction, yi 6= (πRC)RC(x1y1 . . . xi). Thus, (πRC)RC(x1y1 . . . xn) = πRC(〈x1〉) =
π(〈x1〉), which equals πRC(x1y1 . . . xn) since yi 6= πRC(x1y1 . . . xi) and i < n.

(Part 3) Let µ be an extended environment and let x1y1 . . . xn be an odd-
length initial segment of the result of πRC interacting with µ. By induction,
we may assume πRC(x1y1 . . . xi) = π(x1y1 . . . xi) for all i < n. In other words,
yi = π(x1y1 . . . xi) for all i < n. By Part 1, πRC(x1y1 . . . xn) = π(x1y1 . . . xn) as
desired.

(Part 4) Let µ be a non-extended environment, let x1y1x2y2 . . . be the result of
π interacting with µ, and let x′1y′1x′2y′2 . . . be the result of πRC interacting with
µ. We will show by induction that each xn = x′n and each yn = y′n. For the base
case, x1 = x′1 = µ(〈〉) (the environment’s initial percept does not depend on the
agent), and therefore y1 = π(〈x1〉) = π(〈x′1〉) = y′1. For the induction step,

xn+1 = µ(x1y1 . . . xnyn)

= µ(x′1y
′
1 . . . x

′
ny
′
n) (By induction)

= x′n+1,

yn+1 = π(x1y1 . . . xn+1)

= π(x′1y
′
1 . . . x

′
n+1), (Induction plus xn+1 = x′n+1)

and the latter is πRC(x′1y
′
1 . . . x

′
n+1) since for all 1 ≤ i < n, y′i = πRC(x′1y

′
1 . . . x

′
i)

since x′1y′1 . . . is the result of πRC interacting with µ. Finally, πRC(x′1y
′
1 . . . x

′
n+1)

is y′n+1, so yn+1 = y′n+1.
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