
ar
X

iv
:2

11
0.

06
89

0v
2

 [
cs

.A
I]

 1
1

Ja
n

20
22

Extending Environments to Measure

Self-reflection in Reinforcement Learning

Samuel A. Alexander*

Michael Castaneda†

Kevin Compher‡

Oscar Martinez§

Abstract

We consider an extended notion of reinforcement learning in which the envi-

ronment can simulate the agent and base its outputs on the agent’s hypothetical

behavior. Since good performance usually requires paying attention to whatever

things the environment’s outputs are based on, we argue that for an agent to achieve

on-average good performance across many such extended environments, it is nec-

essary for the agent to self-reflect. Thus, an agent’s self-reflection ability can be

numerically estimated by running the agent through a battery of extended envi-

ronments. We are simultaneously releasing an open-source library of extended

environments to serve as proof-of-concept of this technique. As the library is first-

of-kind, we have avoided the difficult problem of optimizing it. Instead we have

chosen environments with interesting properties. We give examples and introduce

a simple transformation which experimentally seems to increase self-reflection.

1 Introduction

An obstacle course might react to what you do: for example, if you step on a certain

button, then spikes might appear. If you spend enough time in such an obstacle course,

you should eventually figure out such patterns. But imagine an “oracular” obstacle

course which reacts to what you would hypothetically do in counterfactual scenarios:

for example, there is no button, but spikes appear if you would hypothetically step on

the button if there was one. Without self-reflecting about what you would hypothet-

ically do in counterfactual scenarios, it would be difficult to figure out such patterns.

This suggests that in order to perform well (on average) across many such obstacle

courses, some sort of self-reflection is necessary.

This is a paper about empirically estimating the degree to which a Reinforcement

Learning (RL) agent is self-reflective. By a self-reflective agent, we mean an agent

*The U.S. Securities and Exchange Commission, samuelallenalexander@gmail.com
†Brooklyn College
‡In-Q-Tel
§The U.S. Securities and Exchange Commission

1

http://arxiv.org/abs/2110.06890v2

which acts not just based on environmental rewards and observations, but also based

on considerations of its own hypothetical behavior. We propose that an RL agent’s

degree of self-reflection can be estimated by running the agent through a battery of en-

vironments which we call extended environments, environments which react not only

to what the agent does but to what the agent would hypothetically do. For good per-

formance averaged over many such environments, an agent would need to self-reflect

about itself, because otherwise, environment responses which depend on the agent’s

own hypothetical actions would often seem random and unpredictable. The extended

environments which we consider are a departure from standard RL environments, but

this does not interfere with their usage for judging standard RL agents: one can run a

standard agent in an extended environment in spite of the latter’s non-standardness.

To understand why extended environments (where the environment reacts to what

the agent would hypothetically do) incentivize self-reflection, consider a game involv-

ing a box. The box’s contents change from playthrough to playthrough, and the game’s

mechanics depend upon those contents. The player may optionally choose to look in-

side the box, at no cost: the game does not change its behavior based on whether the

player looks inside the box. Clearly, players who look inside the box have an advan-

tage over those who do not. The extended environments we consider are similar to this

example. Instead of a box’s contents, the game’s mechanics depend upon the player.

Rather than looking into a box, the environment “looks into” the player (by simulat-

ing a copy of the player) and adjusts its mechanics accordingly. Just as the player in

the example gains advantage by looking in the box, an agent designed for extended

environments could gain an advantage by examining itself, that is, by self-reflecting.

One might try to imitate an extended environment with a non-extended environment

by backtracking—rewinding the environment itself to a prior state after seeing how the

agent performs along one path, and then sending the agent along a second path. But the

agent itself would retain memory of the first path, and the agent’s decisions along the

second path might be altered by said memories. Thus the result would not be the same

as immediately sending the agent along the second path while secretly simulating the

agent to determine what it would do if sent along the first path.

Alongside this paper, we are publishing an MIT-licensed open-source library [1] of

extended environments to “ease adoption by other machine-learning researchers” [23].

We are inspired by similar (but non-extended) libraries and other benchmark collec-

tions [3] [4] [5] [7] [8] [10] [19] [24]. Our library is intended to show that it is possible

to numerically estimate the self-reflectiveness of RL agents. Aside from measuring

self-reflectiveness of individual agents, such a benchmark can also be used to exper-

imentally test agent transformations intended to make agents more self-reflective (we

introduce one such transformation in Section 5).

Our benchmark is based on Legg and Hutter’s theory of universal intelligence mea-

surement [15]. Legg and Hutter argue that to perfectly measure RL agent performance,

one should aggregate the agent’s performance across the whole space of all sufficiently

well-behaved environments, weighted using an appropriate distribution. Rather than a

uniform distribution (susceptible to no-free-lunch theorems), Legg and Hutter suggest

assigning more weight to simpler environments and less weight to more complex en-

vironments. Thus, a high-order approximation of Legg and Hutter’s idealized measure

would need to involve representative environments of several complexities, weighted

2

accordingly. But measuring these complexities is hard and subjective [17], and we

make no attempt to do so. Our library is intended as a rough first-order approxima-

tion, using only n = 25 simple extended environments, each with weight 1/n (all

other environments are considered to have weight 0 6= 1/n, so the distribution is non-

uniform and no-free-lunch does not apply: the same reason why no-free-lunch does

not apply to the ubiquitous Atari benchmark [3]). In choosing those n simple extended

environments, we have sought environments interesting in their own right, exhibiting

paradoxes, interesting thought experiments, or counter-intuitive winning strategies. We

will discuss examples in Section 3.

2 Preliminaries

We take a formal approach to RL to make the mathematics clear. This formality differs

from how RL is implemented in practice. In Section 4 we will discuss a more practical

formalization (which allows non-determinism).

Our formal treatment of RL is based on Section 4.1.3 of [14], except that we as-

sume the agent receives an initial percept before taking its initial action (whereas in

[14], the agent acts first). We will write x1y1 . . . xnyn for the length-2n sequence

〈x1, y1, . . . , xn, yn〉 and x1y1 . . . xn for the length-(2n−1) sequence 〈x1, y1, . . . , xn〉.
In particular when n = 1, we will write x1y1 . . . xn for 〈x1〉, even if y1 is not defined.

We assume fixed finite sets of actions and observations. By a percept we mean a pair

x = (r, o) where o is an observation and r ∈ Q is a reward.

Definition 1. (RL agents and environments)

1. A (non-extended) environment is a function µ which outputs an initial percept

µ(〈〉) = x1 when given the empty sequence 〈〉 as input and which, when given

a sequence x1y1 . . . xnyn as input (where each xi is a percept and each yi is an

action), outputs a percept µ(x1y1 . . . xnyn) = xn+1.

2. An agent is a function π which, given a sequence x1y1 . . . xn as input (each xi a

percept, each yi an action), outputs an action π(x1y1 . . . xn) = yn.

3. If π is an agent and µ is an environment, the result of π interacting with µ is the

infinite sequence x1y1x2y2 . . . defined by:

x1 = µ(〈〉) y1 = π(〈x1〉)

x2 = µ(〈x1, y1〉) y2 = π(〈x1, y1, x2〉)

· · · · · ·

xn = µ(x1y1 . . . xn−1yn−1) yn = π(x1y1 . . . xn)

· · · · · ·

In the following definition, we extend environments by allowing their outputs to

depend also on π. Intuitively, extended environments can simulate the agent. This can

be considered a dual version of AIs which simulate their environment, as in Monte

Carlo Tree Search [6].

3

Definition 2. (Extended environments)

1. An extended environment is a function µ which outputs initial percept µ(π, 〈〉) =
x1 in response to input (π, 〈〉) where π is an agent; and which, when given input

(π, x1y1 . . . xnyn) (where π is an agent, each xi is a percept and each yi is an

action), outputs a percept µ(π, x1y1 . . . xnyn) = xn+1.

2. If π is an agent and µ is an extended environment, the result of π interacting with

µ is the infinite sequence x1y1x2y2 . . . defined by:

x1 = µ(π, 〈〉) y1 = π(〈x1〉)

x2 = µ(π, 〈x1, y1〉) y2 = π(〈x1, y1, x2〉)

· · · · · ·

xn = µ(π, x1y1 . . . xn−1yn−1) yn = π(x1y1 . . . xn)

· · · · · ·

For the sake of simpler mathematics, we have not included non-determinism in our

formal definition, but in practice, agents and environments are often non-deterministic,

so that π and n do not determine x1y1 . . . xnyn (our practical treatment, discussed in

Section 4, does allow non-determinism).

The fact that classical agents can interact with extended environments (Defini-

tion 2 part 2) implies that various universal RL intelligence measures [15] [11] [9]

[16], which measure performance in (non-extended) environments, easily generalize

to measure self-reflective intelligence (performance in extended environments). For

example, Legg and Hutter’s universal intelligence measure Υ(π) is defined to be agent

π’s average reward-per-environment, aggregated over all (non-extended) environments

with suitably bounded rewards, each environment being weighted using the algorith-

mic prior distribution [18]. Simply by including suitably reward-bounded extended

environments, we would immediately obtain a variation Υ′(π) which measures the

performance of π across extended environments—possibly a version of Legg and Hut-

ter’s universal intelligence which measures both intelligence and self-reflection ability.

3 Some interesting extended environments

In this section, we give some examples.

3.1 A quasi-paradoxical extended environment

Example 3. (Rewarding the Agent for Ignoring Rewards) For every percept x = (r, o),
let x′ = (0, o) be the result of zeroing the reward component of x. Fix some observation

O. Define an extended environment µ as follows:

µ(π, 〈〉) = (0, O),

µ(π, x1y1 . . . xnyn) =

{

(1, O) if yn = π(x′

1y1 . . . x
′

n),

(−1, O) otherwise.

4

In Example 3, when the agent takes an action yn, µ simulates the agent in order to

determine: would the agent have taken the same action if the history so far were iden-

tical except all rewards were 0? If so, µ gives the agent +1 reward, otherwise, µ gives

the agent −1 reward. Thus, the agent is rewarded for ignoring rewards. This seems

paradoxical. Suppose an agent guesses the pattern and begins deliberately ignoring re-

wards, as long as the rewards it receives for doing so are consistent with that guess. In

that case, does the agent ignore rewards, or not? The paradox, summarized: “I ignore

rewards because I’m rewarded for doing so.”

We implement Example 3 as IgnoreRewards.py in our library [1].

3.2 A counterintuitive winning strategy

Example 4. (Tempting Button) Fix an observation B (“there is a button”) and an

action A (“push the button”). For each percept-action sequence h = x1y1 . . . xn,

if the observation in xn is not B, then let h′ be the sequence equal to h except that

the observation in xn is replaced by B. Let o0, o1, o2, . . . be observations generated

pseudo-randomly such that for each i, oi = B with 25% probability and oi 6= B
with 75% probability. Let µ(π, 〈〉) = (0, o0), and for each percept-action sequence

h = x1y1 . . . xn and action yn, define µ(π, h ⌢ yn) as follows (where O is the

observation in xn and ⌢ denotes concatenation):

µ(π, h ⌢ yn) =

(1, on) if O = B and yn = A;

(−1, on) if O = B and yn 6= A;

(−1, on) if O 6= B and π(h′) = A;

(1, on) if O 6= B and π(h′) 6= A.

Every turn in Example 4, either there is a button (25% probability) or there is not

(75% probability).

• If there is a button, the agent gets +1 reward for pushing it, −1 reward for not

pushing it.

• If there is no button, it does not matter what the agent does. The agent is rewarded

or punished based on what the agent would do if there was a button. If the

agent would push the button (if there was one), then the agent gets reward −1.

Otherwise, the agent gets reward +1.

Thus, whenever the agent sees a button, the agent can push the button for a free reward

with no consequences presently nor in the future. Nevertheless, it is in the agent’s

best interest to commit to never push the button! Pushing every button yields average

reward 1 · (.25) − 1 · (.75) = −.5 per turn. Never pushing the button yields average

reward +.5 per turn.

The environment does not alter the true agent when it simulates the agent in order to

determine what the agent would do if there was a button. If the agent’s actions are based

on (say) a neural net, the simulation will include a simulation of that neural net, and

that simulated neural net might be altered, but the true agent’s neural net is not. Thus,

unless the agent itself introspects about its own hypothetical behavior (“What would

5

Agent Avg Reward-per-turn ± StdErr

(test repeated with 5 RNG seeds)

Q −0.44858± 0.00044
DQN −0.46687± 0.00137
A2C −0.49820± 0.00045
PPO −0.24217± 0.00793

Table 1: Performance in Example 4 (100k steps)

I do if there was a button here?”), it seems the agent would have no way of realizing

that the rewards in buttonless rooms depend on said behavior. In Table 1 we see that

industry-standard agents perform poorly in Example 4 (these numbers are extracted

from result table.csv in [1], which contains performance details for these agents in all

the environments in our benchmark; see Sections 4 and 6 for more implementation

details).

Example 4 is implemented in our open-source library as TemptingButton.py.

3.3 An interesting thought experiment

Example 5. (Reverse history) Fix some observation O. For every percept-action se-

quence h = x1y1 . . . xn (ending with a percept), let h′ be the reverse of h. Define µ as

follows:

µ(π, 〈〉) = (0, O),

µ(π, h ⌢ y) =

{

(1, O) if y = π(h′),

(−1, O) otherwise.

In Example 5, at every step, µ rewards the agent iff the agent acts as it would act if

history were reversed.

What would it be like to interact with the environment in Example 5? To approx-

imate the experiment, a test subject, commanded to speak backwards, might be con-

stantly rewarded or punished for obeying or disobeying. This might teach the test

subject to imitate backward speech, but then the test subject would still act as if time

were moving forward, only they would do so while performing backward-speech (they

would hear their own speech backwards). But if the experimenter could perfectly sim-

ulate the test subject in order to determine what the test subject would do if time really

was moving backwards, what would happen? Could test subjects learn to behave as if

time was reversed1? Another possibility is that humans might simply not be capable of

performing well in the environment. Our self-reflectiveness measure is not intended to

be limited to human self-reflection levels.

We implement Example 5 as ReverseHistory.py in [1].

1The difference between behaving as if the incentivized experience were its experience and actually

experiencing that as its real experience brings to mind the objective misalignment problem presented in [13].

6

3.4 Some additional examples in brief

We indicate in parentheses where the following examples are implemented in [1].

• (SelfRecognition.py) Environments which reward the agent for recognizing ac-

tions it itself would take. We implement an environment where the agent ob-

serves True-False statements like “If this observation were 0, you would take

action 1,” and is rewarded for deciding whether those statements are true or false.

• (IncentivizeLearningRate.py) Environments which reward the agent for behav-

ing as if the agent were configured with a particular learning rate, suggesting

extended environments can incentivize agents to learn about their own internal

mechanisms, as in [22].

• (AdversarialSequencePredictor.py) Environments in which the agent competes

against a competitor in an adversarial sequence prediction game [12]. This

is done by outsourcing the competitor’s behavior to the agent’s own action-

function, thus avoiding the need to hard-code a competitor into the environment.

4 Extended Environments in Practice

Definitions 1 and 2 are computationally impractical if agents are to run on environments

for many steps. In this section, we will discuss a more practical implementation. Our

reasons for doing this are threefold:

1. The more practical implementation makes it feasible to run industry-standard

agents against our library for many steps. This is important because most industry-

standard agents require many steps to learn the environments they are placed in.

2. We find it interesting in its own right how certain environments can be imple-

mented in a practical way whereas others apparently cannot.

3. Non-determinism is effortless and natural in the practical implementation.

To practically realize extended environments, rather than passing the environment

an agent, we pass the environment an agent-class which can be used to create untrained

copies of the agent, called instances of the agent-class. Libraries like OpenAI Gym [5]

and Stable Baselines3 [21] are similarly class-based: the key difference is that in our

library, one must pass an agent-class to the environment-class’s initiation function.

The instantiated environment can use that agent-class to create copies of the agent in

its internal memory. The extended environment classes in our implementation have the

following methods:

• An init method, used to instantiate an individual instance of the extended

environment class. This method takes an agent-class as input, which the instan-

tiated environment can store and use to create as many independent clones of the

agent as needed.

7

Listing 2 A practical version of Example 3.

c l a s s IgnoreRewards :

def i n i t (s e l f , A) :

C a l l i n g A () c r e a t e s agent −c o p i e s . On

i n i t i a t i o n , t h i s e n v i r o n m e n t s t o r e s

one such copy i n i t s i n t e r n a l memory .

s e l f . sim = A()

def s t a r t (s e l f) :

return 0 # I n i t i a l o b s e r v a t i o n 0

def s t e p (s e l f , a c t i o n) :

At each s t e p , use t h e s t o r e d copy

(s e l f . s im) t o d e t e r m i n e how t h e t r u e

a g e n t would behave i f a l l h i s t o r y so

f a r were t h e same e x c e p t a l l r ewards

were 0 . Assumes s e l f . s im has been

t r a i n e d t h e same as t h e t r u e agent ,

e x c e p t w i t h a l l r ewards 0 .

h y p o t h e t i c a l a c t = s e l f . sim . a c t (obs =0)

reward = 1 i f a c t i o n == h y p o t h e t i c a l a c t \
e l s e −1

To m a i n t a i n above assumpt ion , t r a i n

s e l f . s im as i f c u r r e n t reward were 0 .

True a g e n t w i l l a u t o m a t i c a l l y t r a i n

t h e same way w i t h t h e t r u e reward .

s e l f . sim . t r a i n (o p r e v =0 , a= a c t i o n ,

r =0 , o n e x t =0)

return (reward , 0) # O b s e r v a t i o n =0

• A start method, which takes no input, and which outputs a default observation

to get the agent-environment interaction started (before the agent takes its first

action).

• A step method, which takes an action as input, and outputs a reward and obser-

vation. Class instances can store historical data internally, so there is no need to

pass the entire prior history to this step method.

Agent classes are assumed to have the following methods:

• An init method, used to instantiate instances.

• An act method, which takes an observation and outputs an action. Instances can

store information about history in internal memory, so there is no need to pass

the entire prior history to this method.

• A train method, which takes a prior observation, an action, a reward, and a new

observation. Environments which have instantiated agent-classes can use this

method to train those instances in arbitrary ways, independently of how the true

agent is trained, in order to probe how the true agent would hypothetically behave

in counterfactual scenarios.

8

In Listing 2 we give a practical version of Example 3. The reason it is practical is

because it maintains just one copy of the true agent, and that copy is trained incremen-

tally. Not all extended environments (as in Definition 2) can be realized practically.

Example 5 (Reverse History) apparently cannot be. The reason Example 5 is inher-

ently impractical is because there is no way for the environment to re-use its previous

work to speed up its next percept calculation. Even if the environment retained a simu-

lated agent trained on the previous reverse history h0 = xn−1yn−2 . . . y1x1, in order to

compute the next percept, the environment would need to insert a new percept-action

pair xnyn−1 at the beginning of h0 to get the new reverse history h = xnyn−1 . . . y1x1.

There is no guarantee that the agent’s actions are independent of the order in which it

is trained, so a fresh new agent simulation would need to be created and trained on all

of h from scratch.

This formulation generalizes the Newcomblike environments (or NDPs) of [2] (Def-

inition 2 would too, except for being deterministic). Essentially, NDPs are environ-

ments which may base their outputs on the agent’s hypothetical behavior in alternate

scenarios which differ from the true history only in their most recent observation. Al-

ready that is enough to formalize a version of Newcomb’s paradox [20]. When this

paradox is formalized either with NDPs or extended environments, the optimal strat-

egy becomes clear (namely, the so-called one-box strategy).

4.1 Determinacy and Semi-Determinacy

Unlike mathematical functions, class methods in the computer science sense can be

non-deterministic. They can depend on random number generators (RNGs), time-of-

day, global variables, etc. Our measurement strategy might not make sense for some

non-deterministic agents. For example, if an agent reads and writes files on disk, then

a simulation of that agent might influence the true agent (by altering said files). This

suggests the following definition.

Definition 6. An RL agent-class Π is semi-deterministic if whenever two Π-instances

π1 and π2 have been instantiated within a single run of a larger computer program, and

have been identically trained (within that same run), then they act identically (within

that same run).

For example, rather than invoke the RNG, Π-instances might query a read-only

pool of pre-generated random numbers. Then, within the same run of a larger program,

identically-trained Π-instances would act identically, even if they would not act the

same as identically-trained Π-instances in a different run.

Our measurement technique—measure self-reflectiveness by running the agent through

a battery of extended environments—should work well in the practical framework as

long as the agents are instances of semi-determinstic agent-classes. Whenever an in-

stance π of a semi-determinstic agent-class Π interacts with an extended environment

µ, whenever µ uses a Π-instance π′ to investigate the hypothetical behavior of π, the

semi-determinacy of Π ensures that the behavior µ sees in π′ is indeed π’s hypothetical

behavior.

9

5 Making agents more self-reflective

If we can empirically measure the self-reflection of RL agents, then we can experimen-

tally test whether various transformations make various agents more self-reflective. We

will define what we call the reality check transformation, intended to increase the self-

reflection of certain agents. In Section 6, empirical results will suggest the it works as

intended, at least for self-reflection as measured by our library.

Definition 7. Suppose π is an agent. The reality check of π is the agent πRC defined

recursively by:

• πRC(x1y1 . . . xn) = π(x1y1 . . . xn) if for all 1 ≤ i < n, yi = πRC(x1y1 . . . xi).

• πRC(x1y1 . . . xn) = π(〈x1〉) otherwise.

In response to a percept-action history, πRC first verifies the history’s actions are

those πRC would have taken. If so, πRC acts as π. But if not, then πRC freezes and

thereafter repeats one fixed action. The act of verifying those past actions is an act of

self-reflection, so it seems plausible that at least for certain agents π, πRC should be

more self-reflective than π.

Definition 8. (Informal) By a good classic agent we mean an agent which was designed

to perform well in non-extended environments, but whose designers made no attempt

to make it perform well in extended environments.

Conjecture 9. (Informal) For most good classic agents π, πRC outperforms π on aver-

age across the space of all extended environments (suitably weighted).

We say “most” in Conjecture 9 because an agent, though designed only for non-

extended environments, might accidentally already perform well in extended environ-

ments. We do not claim the reality check operation would further increase such agents’

performance. We will argue for Conjecture 9’s plausibility using the following theo-

rem.

Theorem 10. Let π be any agent.

1. (Alternate definition) An equivalent alternate definition of πRC would be obtained

by changing the condition yi = πRC(x1y1 . . . xi) into yi = π(x1y1 . . . xi).

2. (Idempotence) πRC = (πRC)RC.

3. (Equivalence on genuine history) For every extended environment µ and for ev-

ery odd-length initial segment x1y1 . . . xn of the result of πRC interacting with µ,

πRC(x1y1 . . . xn) = π(x1y1 . . . xn).

4. (Equivalence in non-extended RL) For every non-extended environment µ, the

result of πRC interacting with µ equals the result of π interacting with µ.

See the Appendix for a proof. Note that part 3 shows that πRC never freezes in

reality (if π does not): πRC merely commits to freeze in certain impossible hypothetical

scenarios.

10

Here is why we find Conjecture 9 plausible. An extended environment chooses out-

puts based not only the agent’s actions, but also on how the agent would hypothetically

act in other scenarios. Outputs so determined would be hard to predict if the agent does

not self-reflect on said hypothetical actions. But some extended environments depend,

in particular, on impossible hypothetical scenarios where the agent takes actions the

agent would never take. In those scenarios, πRC’s actions are trivial: blind repetition of

one fixed action. This in turn trivializes those extended environments’ dependency on

said actions, making those extended environments more predictable. And assuming π
is designed to perform well in non-extended environments, presumably π, and thus (by

Theorem 10 part 3), πRC can take advantage of increased predictability.

For example, let π be a deterministic Q-learner and let x1y1 . . . be πRC’s interaction

with Example 3 (“Reward Agent for Ignoring Rewards”). For any particular n, the

environment computes xn+1 = µ(x1y1 . . . xnyn) by checking whether or not yn =
πRC(x

′

1y1 . . . x
′

n), where each x′

i is the percept xi with reward zeroed. If so, xn+1’s

reward is +1, otherwise it is −1 (πRC is rewarded to act as if all past rewards were

0). For large enough n, since π is a Q-learner, there is almost certainly some m < n
such that π(x1y1 . . . xm) 6= π(x′

1y1 . . . x
′

m)—i.e., a Q-learner’s behavior depends on

past rewards. Thus by part 1 of Theorem 10, πRC(x1y1 . . . xn) = πRC(〈x1〉) = y1.

Thus eventually the environment becomes trivial: “reward action y1 and punish all

other actions”. A Q-learner, and thus (by Theorem 10 part 3) πRC, would thrive in such

conditions.

In our library we implement reality-check as a function taking an agent-class Π as

input. It outputs an agent-class Σ. A Σ-instance σ computes actions using a Π-instance

π which it initializes once and then stores. When trained, σ checks if the training data

is consistent with its own action-method. If so, it trains π on that data. Else, σ freezes,

thereafter ignoring future training data and repeating its first action blindly. If Π is

semi-deterministic (Definition 6), it follows that Σ is too.

6 Example measurements

Based on our conviction that self-reflection is needed for good average performance

across many extended environments, self-reflection can be estimated by running an

agent against a battery of extended environments. Our open-source library of extended

environments [1] provides 25 such extended environments, and infrastructure for mea-

suring an agent’s self-reflection by running the agent on all these environments and

their opposites (the opposite of an environment is obtained by multiplying all rewards

by −1). Opposite-environments are included to ensure that agents which ignore the

environment receive score 0, at least if they are semi-deterministic (Definition 6). All

environments in the library output individual rewards of either 1, −1 or 0 every step.

We used our library to measure the self-reflection of the following agents and their

reality-checks:

• Random: An agent who acts randomly.

• Simple: An agent who takes the first available action that never previously re-

sulted in punishment for the observation in question (or action 0 if no such action

11

Agent Good Measure±StdErr Measure±StdErr

Classic (Original Agent) (Reality Check)

Agent?

Random 0.0000± 0.0000 0.0000± 0.0000
Simple 0.7567± 0.0000 0.7146± 0.0031
Q X 0.5395± 0.0030 0.5720± 0.0038
DQN X 0.5174± 0.0068 0.6072± 0.0057
A2C X 0.6145± 0.0061 0.6368± 0.0045
PPO X 0.0696± 0.0005 0.3332± 0.0019

Table 3: Measuring self-reflection of agents and their reality-checks

exists).

• A standard Q-learner with ǫ = .9, α = .1, γ = .9.

• DQN, A2C, and PPO (with MLP policy) from the open-source Stable Baselines3

library [21]. Default parameter values were used except for random seed and

DQN’s learning starts (which we set to 1 to let DQN learn right away). Com-

ments in [1] describe how we made these agents semi-deterministic and enabled

them to run in extended environments.

We ran each agent for 100,000 steps on each environment and its opposite (repeated

with 5 RNG seeds). See Table 3 for the results. See ExampleMeasurements.py in

our library for replication instructions (we used a personal laptop with no GPU). The

table provides evidence for Conjecture 9. That Simple performs so well is a reflection

of the library’s lack of sophistication. In future work, we will compose our library

with others such as the Atari benchmark, e.g.: give the agent two Atari joysticks with

identical gameplay effects, but penalize the agent for (e.g.) using a different joystick

than it would have if all rewards had been zero (see Example 3). Since Simple is not

a good classic agent, Conjecture 9 is not contradicted by that row of Table 3. Table

3 does not prove that, e.g., “A2C is more self-reflective than DQN,” because “A2C”

actually refers to a whole hyperparemtrized family, of which we only measured the

default member.

That πRC improves performance of good classic agents in Table 3 depends, of

course, on which environments are tested against. One could deliberately engineer ex-

tended environments where πRC underperforms, and a library of such would give πRC

a low measurement. For example: an environment which punishes the agent if sim-

ulations thereof appear to freeze in response to impossible percept-action sequences.

But this example is, in our opinion, contrived. We conjecture that, on average, envi-

ronments where πRC underperforms are more contrived than those where πRC overper-

forms. Thus, the former would be given lower weight if extended environments were

suitably weighted, as in [15].

12

7 Conclusion

We introduced extended environments. When computing rewards and observations,

extended environments can consider not only actions the RL agent has taken, but also

actions the agent would hypothetically take in other circumstances.

An agent may find an extended environment hard to predict if the agent only con-

siders what has actually happened, and not its own hypothetical actions in alternate

scenarios. We argued that for good performance (on average) across many extended

environments, an agent would need to self-reflect to some degree. Thus, we propose

that a battery of benchmark extended environments could provide a way of measuring

self-reflection in RL agents. We are simultaneously publishing a rudimentary open-

source library [1] of extended environments as a proof-of-concept. Further work is

needed to obtain a more optimal set of extended environments. For the purposes of

our proof-of-concept, we preferred to focus on extended environments of particular

theoretical interest. Some examples are given in Section 3.

We introduced (in Section 5) a reality check transform π 7→ πRC. We conjectured

(Conjecture 9) that for most good classic agents π (see Definition 8), πRC outperforms

π on average across the space of extended environments, suitably weighted. Numerical

computations (in Section 6) provide empirical evidence for the conjecture.

References

[1] Anon. Extended environments. Code repository (included in supplemental file),

2022.

[2] James Henry Bell, Linda Linsefors, Caspar Oesterheld, and Joar Skalse. Rein-

forcement learning in Newcomblike environments. In NeurIPS, 2021.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade

learning environment: An evaluation platform for general agents. Journal of

Artificial Intelligence Research, 47:253–279, 2013.

[4] Benjamin Beyret, José Hernández-Orallo, Lucy Cheke, Marta Halina, Murray

Shanahan, and Matthew Crosby. The animal-AI environment: Training and test-

ing animal-like artificial cognition. Preprint, 2019.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. OpenAI gym. Preprint, 2016.

[6] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-

Carlo tree search: A new framework for game AI. AIIDE, 8:216–217, 2008.

[7] François Chollet. On the measure of intelligence. Preprint, 2019.

[8] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedu-

ral generation to benchmark reinforcement learning. In International conference

on machine learning, pages 2048–2056. PMLR, 2020.

13

[9] Vaibhav Gavane. A measure of real-time intelligence. Journal of Artificial Gen-

eral Intelligence, 4(1):31–48, 2013.

[10] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robust-

ness to common corruptions and perturbations. In International Conference on

Learning Representations, 2019.

[11] José Hernández-Orallo and David L Dowe. Measuring universal intelligence:

Towards an anytime intelligence test. Artificial Intelligence, 174(18):1508–1539,

2010.

[12] Bill Hibbard. Adversarial sequence prediction. In International Conference on

Artificial General Intelligence, pages 399–403, 2008.

[13] Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott

Garrabrant. Risks from learned optimization in advanced machine learning sys-

tems. Preprint, 2019.

[14] Marcus Hutter. Universal artificial intelligence: Sequential decisions based on

algorithmic probability. Springer, 2004.

[15] Shane Legg and Marcus Hutter. Universal intelligence: A definition of machine

intelligence. Minds and machines, 17(4):391–444, 2007.

[16] Shane Legg and Joel Veness. An approximation of the universal intelligence mea-

sure. In Algorithmic Probability and Friends: Bayesian Prediction and Artificial

Intelligence, pages 236–249. Springer, 2013.

[17] Jan Leike and Marcus Hutter. Bad universal priors and notions of optimality. In

Conference on Learning Theory, pages 1244–1259. PMLR, 2015.

[18] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its

applications. Springer, 2008.

[19] Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman.

Gotta learn fast: A new benchmark for generalization in RL. arXiv preprint

arXiv:1804.03720, 2018.

[20] Robert Nozick. Newcomb’s problem and two principles of choice. In Nicholas

Rescher, editor, Essays in honor of Carl G. Hempel, pages 114–146. Springer,

1969.

[21] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave,

Anssi Kanervisto, and Noah Dormann. Stable Baselines3.

https://github.com/DLR-RM/stable-baselines3, 2019.

[22] Craig Sherstan, Adam White, Marlos C Machado, and Patrick M Pilarski. Intro-

spective agents: Confidence measures for general value functions. In Conference

on Artificial General Intelligence, pages 258–261. Springer, 2016.

14

https://github.com/DLR-RM/stable-baselines3

[23] Soren Sonnenburg, Mikio L Braun, Cheng Soon Ong, Samy Bengio, Leon

Bottou, Geoff Holmes, Yann LeCun, Klaus-Robert Müller, Fernando Pereira,

Carl Edward Rasmussen, Gunnar Rätsch, Bernhard Schölkopf, Alexander Smola,

Pascal Vincent, Jason Weston, and Robert C Williamson. The need for open

source software in machine learning. Journal of Machine Learning Research,

8:2443–2466, 2007.

[24] Roman V Yampolskiy. Detecting qualia in natural and artificial agents. Preprint,

2017.

A Appendix

Proof of Theorem 10. Let D be the set of all sequences x1y1 . . . xn (each xi a percept,

each yi an action).

(Part 1) Define ρ on D by

• ρ(x1y1 . . . xn) = π(x1y1 . . . xn) if for all 1 ≤ i < n, yi = π(x1y1 . . . xi).

• ρ(x1y1 . . . xn) = π(〈x1〉) otherwise.

We must show that ρ = πRC. We will prove by induction that for each x1y1 . . . xn ∈
D, ρ(x1y1 . . . xn) = πRC(x1y1 . . . xn). The base case n = 1 is trivial: ρ(〈x1〉) =
π(〈x1〉) = πRC(〈x1〉) since there is no i such that 1 ≤ i < 1. For the induction step,

assume n > 1, and assume the claim holds for all shorter sequences in D.

Case 1: Assume (∗) for all 1 ≤ i < n, yi = π(x1y1 . . . xi). We claim that for all

1 ≤ i < n, yi = ρ(x1y1 . . . xi). To see this, choose any 1 ≤ i < n. Then for all

1 ≤ j < i, yj = π(x1y1 . . . xj) because otherwise j would be a counterexample to

(∗). Thus

ρ(x1y1 . . . xi) = π(x1y1 . . . xi) (By definition of ρ)

= yi, (By ∗)

proving the claim. Now, since we have proved that for all 1 ≤ i < n, yi = ρ(x1y1 . . . xi),
and since our induction hypothesis guarantees that each such

ρ(x1y1 . . . xi) = πRC(x1y1 . . . xi),

we conclude: for all 1 ≤ i < n, we have yi = πRC(x1y1 . . . xi). Thus

πRC(x1y1 . . . xn) = π(x1y1 . . . xn) = ρ(x1y1 . . . xn)

as desired.

Case 2: Assume there is some 1 ≤ i < n such that yi 6= π(x1y1 . . . xi). We may

choose i as small as possible. Thus, for all 1 ≤ j < i, yj = π(x1y1 . . . xj). By similar

logic as in Case 1, it follows that for all 1 ≤ j < i, yj = ρ(x1y1 . . . xj). Our induction

hypothesis says that for each such j, ρ(x1y1 . . . xj) = πRC(x1y1 . . . xj). So for all 1 ≤
j < i, yj = πRC(x1y1 . . . xj). By definition of πRC, this means πRC(x1y1 . . . xi) =

15

π(x1y1 . . . xi). But yi 6= π(x1y1 . . . xi), so therefore yi 6= πRC(x1y1 . . . xi). Thus,

since 1 ≤ i < n, by definition of πRC, πRC(x1y1 . . . xn) = π(〈x1〉). Likewise, since

1 ≤ i < n, by definition of ρ, ρ(x1y1 . . . xn) = π(〈x1〉). So ρ(x1y1 . . . xn) =
πRC(x1y1 . . . xn) as desired.

(Part 2) To show that each

πRC(x1y1 . . . xn) = (πRC)RC(x1y1 . . . xn),

we use induction on n. For the base case, this is trivial, both evaluate to π(〈x1〉). For

the induction step, assume n > 1 and that the claim holds for all shorter sequences.

Case 1: yi = πRC(x1y1 . . . xi) for all 1 ≤ i < n. Then by induction, yi =
(πRC)RC(x1y1 . . . xi) for all 1 ≤ i < n. By definition of (πRC)RC, this means

(πRC)RC(x1y1 . . . xn) = πRC(x1y1 . . . xn),

as desired.

Case 2: There is some 1 ≤ i < n such that yi 6= πRC(x1y1 . . . xi). By induction,

yi 6= (πRC)RC(x1y1 . . . xi). Thus, (πRC)RC(x1y1 . . . xn) = πRC(〈x1〉) = π(〈x1〉),
which equals πRC(x1y1 . . . xn) since yi 6= πRC(x1y1 . . . xi) and i < n.

(Part 3) Let µ be an extended environment and let x1y1 . . . xn be an odd-length ini-

tial segment of the result of πRC interacting with µ. By induction, we may assume

πRC(x1y1 . . . xi) = π(x1y1 . . . xi) for all i < n. In other words, yi = π(x1y1 . . . xi)
for all i < n. By Part 1, πRC(x1y1 . . . xn) = π(x1y1 . . . xn) as desired.

(Part 4) Let µ be a non-extended environment, let x1y1x2y2 . . . be the result of π
interacting with µ, and let x′

1y
′

1x
′

2y
′

2 . . . be the result of πRC interacting with µ. We

will show by induction that each xn = x′

n and each yn = y′n. For the base case,

x1 = x′

1 = µ(〈〉) (the environment’s initial percept does not depend on the agent), and

therefore y1 = π(〈x1〉) = π(〈x′

1〉) = y′1. For the induction step,

xn+1 = µ(x1y1 . . . xnyn) (Definition 1 part 3)

= µ(x′

1y
′

1 . . . x
′

ny
′

n) (By induction)

= x′

n+1, (Definition 1 part 3)

yn+1 = π(x1y1 . . . xn+1) (Definition 1 part 3)

= π(x′

1y
′

1 . . . x
′

n+1), (Induction plus xn+1 = x′

n+1)

and the latter is πRC(x
′

1y
′

1 . . . x
′

n+1) since for all 1 ≤ i < n, y′i = πRC(x
′

1y
′

1 . . . x
′

i)
since x′

1y
′

1 . . . is the result of πRC interacting with µ. Finally, πRC(x
′

1y
′

1 . . . x
′

n+1) is

y′n+1, so yn+1 = y′n+1.

16

	1 Introduction
	2 Preliminaries
	3 Some interesting extended environments
	3.1 A quasi-paradoxical extended environment
	3.2 A counterintuitive winning strategy
	3.3 An interesting thought experiment
	3.4 Some additional examples in brief

	4 Extended Environments in Practice
	4.1 Determinacy and Semi-Determinacy

	5 Making agents more self-reflective
	6 Example measurements
	7 Conclusion
	A Appendix

