Guessing, Mind-changing, and the Second Ambiguous Class

Samuel Alexander

Abstract In his dissertation, Wadge defined a notion of guessability on subsets of the Baire space and gave two characterizations of guessable sets. A set is guessable iff it is in the second ambiguous class (Δ_2^0), iff it is eventually annihilated by a certain remainder. We simplify this remainder and give a new proof of the latter equivalence. We then introduce a notion of guessing with an ordinal limit on how often one can change one's mind. We show that for every ordinal α , a guessable set is annihilated by α applications of the simplified remainder if and only if it is guessable with fewer than α mind changes. We use guessability with fewer than α mind changes to give a semi-characterization of the Hausdorff difference hierarchy, and indicate how Wadge's notion of guessability can be generalized to higher-order guessability, providing characterizations of Δ_{α}^0 for all successor ordinals $\alpha > 1$.

1 Introduction

Let $\mathbb{N}^{\mathbb{N}}$ be the set of sequences $s: \mathbb{N} \to \mathbb{N}$ and let $\mathbb{N}^{<\mathbb{N}}$ be the set $\cup_n \mathbb{N}^n$ of finite sequences. If $s \in \mathbb{N}^{<\mathbb{N}}$, we will write [s] for $\{f \in \mathbb{N}^{\mathbb{N}} : f \text{ extends } s\}$. We equip $\mathbb{N}^{\mathbb{N}}$ with a second-countable topology by declaring [s] to be a basic open set whenever $s \in \mathbb{N}^{<\mathbb{N}}$.

Throughout the paper, S will denote a subset of $\mathbb{N}^{\mathbb{N}}$. We say that $S \in \Delta_2^0$ if S is simultaneously a countable intersection of open sets and a countable union of closed sets in the above topology. In classic terminology, $S \in \Delta_2^0$ just in case S is both G_{δ} and F_{σ} .

The following notion was discovered by Wadge [9] (pp. 141–142) and independently by this author [1]. ¹

2010 Mathematics Subject Classification: Primary 03E15

Keywords: guessability, difference hierarchy

Definition 1.1 We say *S* is *guessable* if there is a function $G: \mathbb{N}^{<\mathbb{N}} \to \{0,1\}$ such that for every $f \in \mathbb{N}^{\mathbb{N}}$,

$$\lim_{n\to\infty} G(f \upharpoonright n) = \chi_S(f) = \begin{cases} 1, & \text{if } f \in S, \\ 0, & \text{if } f \notin S. \end{cases}$$

If so, we say *G guesses S*, or that *G* is an *S-guesser*.

The intution behind the above notion is captured eloquently by Wadge (p. 142, notation changed):

Guessing sets allow us to form an opinion as to whether an element f of $\mathbb{N}^{\mathbb{N}}$ is in S or S^c , given only a finite initial segment $f \upharpoonright n$ of f.

Game theoretically, one envisions an asymmetric game where II (the guesser) has perfect information, I (the sequence chooser) has zero information, and II's winning set consists of all sequences $(a_0,b_0,a_1,b_1,...)$ such that $b_i \to 1$ if $(a_0,a_1,...) \in S$ and $b_i \to 0$ otherwise.

The following result was proved in [9] (pp.144–145) by infinite game-theoretical methods. The present author found a second proof [1] using mathematical logical methods.

Theorem 1.2 (Wadge) S is guessable if and only if $S \in \Delta_2^0$.

Wadge defined (pp. 113-114) the following remainder operation.

Definition 1.3 For $A,B\subseteq\mathbb{N}^{\mathbb{N}}$, define $\mathrm{Rm}_0(A,B)=\mathbb{N}^{\mathbb{N}}$. For $\mu>0$ an ordinal, define

$$\operatorname{Rm}_{\mu}(A,B) = \bigcap_{\nu < \mu} \left(\overline{\operatorname{Rm}_{\nu}(A,B) \cap A} \cap \overline{\operatorname{Rm}_{\nu}(A,B) \cap B} \right).$$

(Here $\overline{\bullet}$ denotes topological closure.) Write $\operatorname{Rm}_{\mu}(S)$ for $\operatorname{Rm}_{\mu}(S, S^c)$.

By countability considerations, there is some (in fact countable) ordinal μ , depending on S, such that $\operatorname{Rm}_{\mu}(S) = \operatorname{Rm}_{\mu'}(S)$ for all $\mu' \geq \mu$; Wadge writes $\operatorname{Rm}_{\Omega}(S)$ for $\operatorname{Rm}_{\mu}(S)$ for such a μ . He then proves the following theorem:

Theorem 1.4 (Wadge, attributed to Hausdorff) $S \in \Delta_2^0$ if and only if $\operatorname{Rm}_{\Omega}(S) = \emptyset$.

In Section 2, we introduce a simpler remainder $(S, \alpha) \mapsto S_{\alpha}$ and use it to give a new proof of Theorem 1.4.

In Section 3, we introduce the notion of *S* being guessable while changing one's mind fewer than α many times ($\alpha \in \text{Ord}$) and show that this is equivalent to $S_{\alpha} = \emptyset$.

In Section 4, we show that for $\alpha > 0$, S is guessable while changing one's mind fewer than $\alpha + 1$ many times if and only if at least one of S or S^c is in the α th level of the difference hierarchy.

In Section 5, we generalize guessability, introducing the notion of μ th-order guessability ($1 \le \mu < \omega_1$). We show that S is μ th-order guessable if and only if $S \in \Delta_{\mu+1}^0$.

2 Guessable Sets and Remainders

In this section we give a new proof of Theorem 1.4. We find it easier to work with the following remainder² which is closely related to the remainder defined by Wadge. For $X \subseteq \mathbb{N}^{<\mathbb{N}}$, we will write [X] to denote the set of infinite sequences all of whose finite initial segments lie in X.

Definition 2.1 Let $S \subseteq \mathbb{N}^{\mathbb{N}}$. We define $S_{\alpha} \subseteq \mathbb{N}^{<\mathbb{N}}$ ($\alpha \in \text{Ord}$) by transfinite recursion as follows. We define $S_0 = \mathbb{N}^{<\mathbb{N}}$, and $S_{\lambda} = \cap_{\beta < \lambda} S_{\beta}$ for every limit ordinal λ . Finally, for every ordinal β , we define

$$S_{\beta+1} = \{x \in S_{\beta} : \exists x', x'' \in [S_{\beta}] \text{ such that } x \subseteq x', x \subseteq x'', x' \in S, x'' \notin S\}.$$

We write $\alpha(S)$ for the minimal ordinal α such that $S_{\alpha} = S_{\alpha+1}$, and we write S_{∞} for $S_{\alpha(S)}$.

Clearly $S_{\alpha} \subseteq S_{\beta}$ whenever $\beta < \alpha$. This remainder notion is related to Wadge's as follows.

Lemma 2.2 For each ordinal α , $\operatorname{Rm}_{\alpha}(S) = [S_{\alpha}]$.

Proof Since $S_{\alpha} \subseteq S_{\beta}$ whenever $\beta < \alpha$, for all α , we have $S_{\alpha} = \bigcap_{\beta < \alpha} S_{\beta+1}$ (with the convention that $\cap \emptyset = \mathbb{N}^{<\mathbb{N}}$). We will show by induction on α that $\operatorname{Rm}_{\alpha}(S) = [S_{\alpha}] = [\bigcap_{\beta < \alpha} S_{\beta+1}]$.

Suppose $f \in [\cap_{\beta < \alpha} S_{\beta+1}]$. Let $\beta < \alpha$. Let \mathscr{U} be an open set around f, we can assume \mathscr{U} is basic open, so $\mathscr{U} = [f_0]$, f_0 a finite initial segment of f. Since $f \in [\cap_{\beta < \alpha} S_{\beta+1}]$, $f_0 \in S_{\beta+1}$. Thus there are $x', x'' \in [S_{\beta}]$ extending f_0 (hence in \mathscr{U}), $x' \in S$, $x'' \notin S$. In other words, $x' \in [\cap_{\gamma < \beta} S_{\gamma+1}] \cap S$ and $x'' \in [\cap_{\gamma < \beta} S_{\gamma+1}] \cap S^c$. By induction, $x' \in \text{Rm}_{\beta}(S) \cap S$ and $x'' \in \text{Rm}_{\beta}(S) \cap S^c$. By arbitrariness of \mathscr{U} , $f \in \overline{\text{Rm}_{\beta}(S) \cap S} \cap \overline{\text{Rm}_{\beta}(S) \cap S^c}$. By arbitrariness of β , $f \in \text{Rm}_{\alpha}(S)$.

The reverse inclusion is similar.

Note that Lemma 2.2 does not say that $\operatorname{Rm}_{\alpha}(S) = \emptyset$ if and only if $S_{\alpha} = \emptyset$. It is (at least a priori) possible that $S_{\alpha} \neq \emptyset$ while $[S_{\alpha}] = \emptyset$. Lemma 2.2 does however imply that $\operatorname{Rm}_{\Omega}(S) = \emptyset$ if and only if $S_{\infty} = \emptyset$, since it is easy to see that if $[S_{\alpha}] = \emptyset$ then $S_{\alpha+1} = \emptyset$. Thus in order to prove Theorem 1.4 it suffices to show that S is guessable if and only if $S_{\infty} = \emptyset$. The \Rightarrow direction requires no additional machinery.

Proposition 2.3 If S is guessable then $S_{\infty} = \emptyset$.

Proof Let $G: \mathbb{N}^{<\mathbb{N}} \to \{0,1\}$ be an S-guesser. Assume (for contradiction) $S_{\infty} \neq \emptyset$ and let $\sigma_0 \in S_{\infty}$. We will build a sequence on whose initial segments G diverges, contrary to Definition 1.1. Inductively suppose we have finite sequences $\sigma_0 \subset_{\neq} \cdots \subset_{\neq} \sigma_k$ in S_{∞} such that $\forall 0 < i \leq k$, $G(\sigma_i) \equiv i \mod 2$. Since $\sigma_k \in S_{\infty} = S_{\alpha(S)} = S_{\alpha(S)+1}$, there are $\sigma', \sigma'' \in [S_{\infty}]$, extending σ_k , with $\sigma' \in S$, $\sigma'' \notin S$. Choose $\sigma \in \{\sigma', \sigma''\}$ with $\sigma \in S$ iff k is even. Then $\lim_{n \to \infty} G(\sigma \upharpoonright n) \equiv k+1 \mod 2$. Let $\sigma_{k+1} \subset \sigma$ properly extend σ_k such that $G(\sigma_{k+1}) \equiv k+1 \mod 2$. Note $\sigma_{k+1} \in S_{\infty}$ since $\sigma \in [S_{\infty}]$.

By induction, there are $\sigma_0 \subset_{\neq} \sigma_1 \subset_{\neq} \cdots$ such that for i > 0, $G(\sigma_i) \equiv i \mod 2$. This contradicts Definition 1.1 since $\lim_{n \to \infty} G((\cup_i \sigma_i) \upharpoonright n)$ ought to converge.

The \Leftarrow direction requires a little machinery.

Definition 2.4 If $\sigma \in \mathbb{N}^{<\mathbb{N}}$, $\sigma \notin S_{\infty}$, let $\beta(\sigma)$ be the least ordinal such that $\sigma \notin S_{\beta(\sigma)}$.

Note that whenever $\sigma \notin S_{\infty}$, $\beta(\sigma)$ is a successor ordinal.

Lemma 2.5 Suppose $\sigma \subseteq \tau$ are finite sequences. If $\tau \in S_{\infty}$ then $\sigma \in S_{\infty}$. And if $\sigma \notin S_{\infty}$, then $\beta(\tau) \leq \beta(\sigma)$.

Proof It is enough to show that $\forall \beta \in \text{Ord}$, if $\tau \in S_{\beta}$ then $\sigma \in S_{\beta}$. This is by induction on β , the limit and zero cases being trivial. Assume β is successor. If $\tau \in S_{\beta}$, this means $\tau \in S_{\beta-1}$ and there are $\tau', \tau'' \in [S_{\beta-1}]$ extending τ with $\tau' \in S$, $\tau'' \notin S$. Since τ' and τ'' extend τ , and τ extends σ , τ' and τ'' extend σ ; and since $\sigma \in S_{\beta-1}$ (by induction), this shows $\sigma \in S_{\beta}$.

Lemma 2.6 Suppose $f: \mathbb{N} \to \mathbb{N}$, $f \notin [S_{\infty}]$. There is some i such that for all $j \geq i$, $f \upharpoonright j \notin S_{\infty}$ and $\beta(f \upharpoonright j) = \beta(f \upharpoonright i)$. Furthermore, $f \in [S_{\beta(f \upharpoonright i)-1}]$.

Proof The first part follows from Lemma 2.5 and the well-foundedness of Ord. For the second part we must show $f \upharpoonright k \in S_{\beta(f \upharpoonright i)-1}$ for every k. If $k \leq i$, then $f \upharpoonright k \in S_{\beta(f \upharpoonright i)-1}$ by Lemma 2.5. If $k \geq i$, then $\beta(f \upharpoonright k) = \beta(f \upharpoonright i)$ and so $f \upharpoonright k \in S_{\beta(f \upharpoonright i)-1}$ since it is in $S_{\beta(f \upharpoonright k)-1}$ by definition of β .

Definition 2.7 If $S_{\infty} = \emptyset$ then we define $G_S : \mathbb{N}^{<\mathbb{N}} \to \{0,1\}$ as follows. Let $\sigma \in \mathbb{N}^{<\mathbb{N}}$. Since $S_{\infty} = \emptyset$, $\sigma \notin S_{\infty}$, so $\sigma \in S_{\beta(\sigma)-1} \setminus S_{\beta(\sigma)}$. Since $\sigma \notin S_{\beta(\sigma)}$, this means for every two extensions x', x'' of σ in $[S_{\beta(\sigma)-1}]$, either $x', x'' \in S$ or $x', x'' \in S^c$. So either all extensions of σ in $[S_{\beta(\sigma)-1}]$ are in S, or all such extensions are in S^c .

- (i) If there are no extensions of σ in $[S_{\beta(\sigma)-1}]$, and length $(\sigma) > 0$, then let $G_S(\sigma) = G_S(\sigma^-)$ where σ^- is obtained from σ by removing the last term.
- (ii) If there are no extensions of σ in $[S_{\beta(\sigma)-1}]$, and length $(\sigma) = 0$, let $G_S(\sigma) = 0$.
- (iii) If there are extensions of σ in $[S_{\beta(\sigma)-1}]$ and they are all in S, define $G_S(\sigma) = 1$.
- (iv) If there are extensions of σ in $[S_{\beta(\sigma)-1}]$ and they are all in S^c , define $G_S(\sigma)=0$.

Proposition 2.8 If $S_{\infty} = \emptyset$ then G_S guesses S.

Proof Assume $S_{\infty} = \emptyset$. Let $f \in S$. I will show $G_S(f \upharpoonright n) \to 1$ as $n \to \infty$. Since $f \not\in [S_{\infty}]$, let i be as in Lemma 2.6. I claim $G_S(f \upharpoonright j) = 1$ whenever $j \ge i$. Fix $j \ge i$. We have $\beta(f \upharpoonright j) = \beta(f \upharpoonright i)$ by choice of i, and $f \in [S_{\beta(f \upharpoonright i)-1}] = [S_{\beta(f \upharpoonright j)-1}]$. Since $f \upharpoonright j$ has one extension (namely f itself) in both $[S_{\beta(f \upharpoonright j)-1}]$ and S, $G_S(f \upharpoonright j) = 1$. Identical reasoning shows that if $f \not\in S$ then $\lim_{n \to \infty} G_S(f \upharpoonright n) = 0$.

Theorem 2.9 $S \in \Delta_2^0$ if and only if $S_\infty = \emptyset$. That is, Theorem 1.4 is true.

Proof By combining Propositions 2.3 and 2.8 and Theorem 1.2.

3 Guessing without changing one's Mind too often

In this section our goal is to tease out additional information about Δ_2^0 from the operation defined in Definition 2.1.

Definition 3.1 For each function G with domain $\mathbb{N}^{<\mathbb{N}}$, if $G(f \upharpoonright (n+1)) \neq G(f \upharpoonright n)$ $(f \in \mathbb{N}^{\mathbb{N}}, n \in \mathbb{N})$, we say G changes its mind on $f \upharpoonright (n+1)$. Now let $\alpha \in Ord$. We say S is guessable with $< \alpha$ mind changes if there is an S-guesser G along with a function $H: \mathbb{N}^{<\mathbb{N}} \to \alpha$ such that the following hold, where $f \in \mathbb{N}^{\mathbb{N}}$ and $g \in \mathbb{N}$.

- (i) $H(f \upharpoonright (n+1)) \leq H(f \upharpoonright n)$.
- (ii) If G changes its mind on $f \upharpoonright (n+1)$, then $H(f \upharpoonright (n+1)) < H(f \upharpoonright n)$.

This notion bears some resemblance to the notion of a set $Z \subseteq \mathbb{N}$ being f-c.e. in [4], or g-c.a. in [7].

Theorem 3.2 For $\alpha \in \text{Ord}$, S is guessable with $< \alpha$ mind changes if and only if $S_{\alpha} = \emptyset$.

Proof

(⇒) Assume *S* is guessable with < α mind changes. Let G,H be as in Definition 3.1. We claim that for all $\beta \in \text{Ord}$, if $\sigma \in S_{\beta}$ then $H(\sigma) \geq \beta$. This will prove (⇒) because it implies that if $S_{\alpha} \neq \emptyset$ then there is some σ with $H(\sigma) \geq \alpha$, absurd since codomain(H) = α .

We attack the claim by induction on β . The zero and limit cases are trivial. Assume $\beta = \gamma + 1$. Suppose $\sigma \in S_{\gamma+1}$. There are $x', x'' \in [S_{\gamma}]$ extending $\sigma, x' \in S, x'' \notin S$. Pick $x \in \{x', x''\}$ so that $\chi_S(x) \neq G(\sigma)$ and pick $\sigma^+ \in \mathbb{N}^{<\mathbb{N}}$ with $\sigma \subseteq \sigma^+ \subseteq x$ such that $G(\sigma^+) = \chi_S(x)$ (some such σ^+ exists since G guesses S). Since $x \in [S_{\gamma}], \sigma^+ \in S_{\gamma}$. By induction, $H(\sigma^+) \geq \gamma$. The fact $G(\sigma^+) \neq G(\sigma)$ implies $H(\sigma^+) < H(\sigma)$, forcing $H(\sigma) \geq \gamma + 1$.

(\Leftarrow) Assume $S_{\alpha} = \emptyset$. For all $\sigma \in \mathbb{N}^{<\mathbb{N}}$, define $H(\sigma) = \beta(\sigma) - 1$ (by definition of $\beta(\sigma)$, since $S_{\alpha} = \emptyset$, clearly $H(\sigma) \in \alpha$). I claim G_S, H witness that S is guessable with $< \alpha$ mind changes.

By Proposition 2.8, G_S guesses S. Let $f \in \mathbb{N}^{\mathbb{N}}$, $n \in \mathbb{N}$. By Lemma 2.5, $H(f \upharpoonright (n+1)) \leq H(f \upharpoonright n)$. Now suppose G_S changes its mind on $f \upharpoonright (n+1)$, we must show $H(f \upharpoonright (n+1)) < H(f \upharpoonright n)$. Assume, for sake of contradiction, that $H(f \upharpoonright (n+1)) = H(f \upharpoonright n)$. Assume $G_S(f \upharpoonright n) = 0$, the other case is similar. By definition of G_S , (*) for every infinite extension f' of $f \upharpoonright n$, if $f' \in [S_{\beta(f \upharpoonright n)-1}]$ then $f' \in S^c$. Since G_S changes its mind on $f \upharpoonright (n+1)$, $G_S(f \upharpoonright (n+1)) = 1$. Thus (**) for every infinite extension f'' of $f \upharpoonright (n+1)$, if $f'' \in [S_{\beta(f \upharpoonright (n+1))-1}]$ then $f'' \in S$. And $f \upharpoonright (n+1)$ does actually have some such infinite extension f'', because if it had none, that would make $G_S(f \upharpoonright (n+1)) = G_S(f \upharpoonright n)$ by case 1 of the definition of G_S (Definition 2.7). Being an extension of $f \upharpoonright (n+1)$, f'' also extends $f \upharpoonright n$; and by the assumption that $H(f \upharpoonright (n+1)) = H(f \upharpoonright n)$, $f'' \in [S_{\beta(f \upharpoonright n)-1}]$. By (*), $f'' \in S^c$, and by (**), $f'' \in S$. Absurd.

It is not hard to show S is a Boolean combination of open sets if and only if S is guessable with $< \omega$ mind changes, so Theorem 3.2 and Lemma 2.2 give a new proof of a special case of the main theorem (p. 1348) of [3] (see also [2]).

4 Mind Changing and the Difference Hierarchy

We recall the following definition from [5] (p. 175, stated in greater generality—we specialize it to the Baire space). In this definition, $\Sigma_1^0(\mathbb{N}^\mathbb{N})$ is the set of open subsets of $\mathbb{N}^\mathbb{N}$, and the *parity* of an ordinal η is the equivalence class modulo 2 of n, where $\eta = \lambda + n$, λ a limit ordinal (or $\lambda = 0$), $n \in \mathbb{N}$.

Definition 4.1 Let $(A_{\eta})_{\eta < \theta}$ be an increasing sequence of subsets of $\mathbb{N}^{\mathbb{N}}$ with $\theta > 1$. Define the set $D_{\theta}((A_{\eta})_{\eta < \theta}) \subseteq \mathbb{N}^{\mathbb{N}}$ by

$$x \in D_{\theta}((A_{\eta})_{\eta < \theta}) \Leftrightarrow x \in \bigcup_{\eta < \theta} A_{\eta}$$
 & the least $\eta < \theta$ with $x \in A_{\eta}$ has parity opposite to that of θ .

Let

$$D_{\theta}(\mathbf{\Sigma}^{0}_{1})(\mathbb{N}^{\mathbb{N}}) = \{D_{\theta}((A_{\eta})_{\eta < \theta}) : A_{\eta} \in \mathbf{\Sigma}^{0}_{1}(\mathbb{N}^{\mathbb{N}}), \, \eta < \theta\}.$$

This hierarchy offers a constructive characterization of Δ_2^0 : it turns out that

$$\mathbf{\Delta}_2^0 = \cup_{1 \le \theta \le \omega_1} D_{\theta}(\mathbf{\Sigma}_1^0)(\mathbb{N}^{\mathbb{N}})$$

(see Theorem 22.27 of [5], p. 176, attributed to Hausdorff and Kuratowski). For brevity, we will write D_{α} for $D_{\alpha}(\mathbf{\Sigma}_{1}^{0})(\mathbb{N}^{\mathbb{N}})$.

Theorem 4.2 (Semi-characterization of the difference hierarchy) Let $\alpha > 0$. The following are equivalent.

- (i) S is guessable with $< \alpha + 1$ mind changes.
- (ii) $S \in D_{\alpha}$ or $S^c \in D_{\alpha}$.

We will prove Theorem 4.2 by a sequence of smaller results.

Definition 4.3 For $\alpha, \beta \in \text{Ord}$, write $\alpha \equiv \beta$ to indicate that α and β have the same parity (that is, 2|n-m, where $\alpha = \lambda + n$ and $\beta = \kappa + m$, $n, m \in \mathbb{N}$, λ a limit ordinal or 0, κ a limit ordinal or 0).

Proposition 4.4 Let $\alpha > 0$. If $S \in D_{\alpha}$, say $S = D_{\alpha}((A_{\eta})_{\eta < \alpha})$ $(A_{\eta} \subseteq \mathbb{N}^{\mathbb{N}} \ open)$, then S is guessable with $< \alpha + 1$ mind changes.

Proof Define $G: \mathbb{N}^{<\mathbb{N}} \to \{0,1\}$ and $H: \mathbb{N}^{<\mathbb{N}} \to \alpha+1$ as follows. Suppose $\sigma \in \mathbb{N}^{<\mathbb{N}}$. If there is no $\eta < \alpha$ such that $[\sigma] \subseteq A_{\eta}$, let $G(\sigma) = 0$ and let $H(\sigma) = \alpha$. If there is an $\eta < \alpha$ (we may take η minimal) such that $[\sigma] \subseteq A_{\eta}$, then let

$$G(\sigma) = \left\{ egin{array}{ll} 0, & ext{if } \eta \equiv lpha; \ 1, & ext{if } \eta
otin lpha, \end{array}
ight. \hspace{2cm} H(\sigma) = \eta \, .$$

Let $f: \mathbb{N} \to \mathbb{N}$.

Claim 1 $\lim_{n\to\infty} G(f \upharpoonright n) = \chi_S(f)$.

If $f \not\in \cup_{\eta < \alpha} A_{\eta}$, then $f \not\in D_{\alpha}((A_{\eta})_{\eta < \alpha}) = S$, and $G(f \upharpoonright n)$ will always be 0, so $\lim_{n \to \infty} G(f \upharpoonright n) = 0 = \chi_S(f)$. Assume $f \in \cup_{\eta < \alpha} A_{\eta}$, and let $\eta < \alpha$ be minimum such that $f \in A_{\eta}$. Since A_{η} is open, there is some n_0 so large that $\forall n \geq n_0$, $[f \upharpoonright n] \subseteq A_{\eta}$. For all $n \geq n_0$, by minimality of η , $[f \upharpoonright n] \not\subseteq A_{\eta'}$ for any $\eta' < \eta$, so $G(f \upharpoonright n) = 0$ if and only if $\eta \equiv \alpha$. The following are equivalent.

$$f \in S \text{ iff } f \in D_{\alpha}((A_{\eta})_{\eta < \alpha})$$

 $\text{iff } \eta \not\equiv \alpha$
 $\text{iff } G(f \upharpoonright n) \not= 0$
 $\text{iff } G(f \upharpoonright n) = 1.$

This shows $\lim_{n\to\infty} G(f \upharpoonright n) = \chi_S(f)$.

Claim 2 $\forall n \in \mathbb{N}, H(f \upharpoonright (n+1)) \leq H(f \upharpoonright n).$

If $H(f \upharpoonright n) = \alpha$, there is nothing to prove. If $H(f \upharpoonright n) < \alpha$, then $H(f \upharpoonright n) = \eta$ where η is minimal such that $[f \upharpoonright n] \subseteq A_{\eta}$. Since $[f \upharpoonright (n+1)] \subseteq [f \upharpoonright n]$, we have $[f \upharpoonright (n+1)] \subseteq A_{\eta}$, implying $H(f \upharpoonright (n+1)) \le \eta$.

Claim 3 $\forall n \in \mathbb{N}$, if $G(f \upharpoonright (n+1)) \neq G(f \upharpoonright n)$, then $H(f \upharpoonright (n+1)) < H(f \upharpoonright n)$.

Assume (for sake of contradiction) $H(f \upharpoonright (n+1)) \ge H(f \upharpoonright n)$. By Claim 2, $H(f \upharpoonright (n+1)) = H(f \upharpoonright n)$. By definition of H this implies that $\forall \eta < \alpha$, $[f \upharpoonright (n+1)] \subseteq A_{\eta}$ if and only if $[f \upharpoonright n] \subseteq A_{\eta}$. This implies $G(f \upharpoonright (n+1)) = G(f \upharpoonright n)$, contradiction.

By Claims 1–3, G and H witness that S is guessable with $< \alpha + 1$ mind changes. \square

Corollary 4.5 Let $\alpha > 0$. If $S \in D_{\alpha}$ or $S^c \in D_{\alpha}$ then S is guessable with $< \alpha + 1$ mind changes.

Proof If $S \in D_{\alpha}$ this is immediate by Proposition 4.4. If $S^c \in D_{\alpha}$ then Proposition 4.4 says S^c is guessable with $< \alpha + 1$ mind changes, and this clearly implies that S is too.

Lemma 4.6 Suppose S is guessable with $< \alpha$ mind changes. Let $G: \mathbb{N}^{<\mathbb{N}} \to \{0,1\}$, $H: \mathbb{N}^{<\mathbb{N}} \to \alpha$ be a pair of functions witnessing as much (Definition 3.1). There is an $H': \mathbb{N}^{<\mathbb{N}} \to \alpha$ such that G, H' also witness that S is guessable with $< \alpha$ mind changes, with $H'(\emptyset) = H(\emptyset)$, and with the additional property that for every $f: \mathbb{N} \to \mathbb{N}$ and every $n \in \mathbb{N}$,

$$H(f \upharpoonright (n+1)) \equiv H(f \upharpoonright n)$$
 if and only if $G(f \upharpoonright (n+1)) = G(f \upharpoonright n)$.

Proof Define $H'(\sigma)$ by induction on the length of σ as follows. Let $H'(\emptyset) = H(\emptyset)$. If $\sigma \neq \emptyset$, write $\sigma = \sigma_0 \frown n$ for some $n \in \mathbb{N}$ (\frown denotes concatenation). If $G(\sigma) = G(\sigma_0)$, let $H'(\sigma) = H'(\sigma_0)$. Otherwise, let $H'(\sigma)$ be either $H(\sigma)$ or $H(\sigma) + 1$, whichever has parity opposite to $H'(\sigma_0)$.

By construction H' has the desired parity properties. A simple inductive argument shows that (*) $\forall \sigma \in \mathbb{N}^{<\mathbb{N}}$, $H(\sigma) \leq H'(\sigma) < \alpha$. I claim that for all $f : \mathbb{N} \to \mathbb{N}$ and $n \in \mathbb{N}$, $H'(f \upharpoonright (n+1)) \leq H'(f \upharpoonright n)$, and if $G(f \upharpoonright (n+1)) \neq G(f \upharpoonright n)$ then $H'(f \upharpoonright (n+1)) < H'(f \upharpoonright n)$.

If $G(f \upharpoonright (n+1)) = G(f \upharpoonright n)$, then by definition $H'(f \upharpoonright (n+1)) = H'(f \upharpoonright n)$ and the claim is trivial. Now assume $G(f \upharpoonright (n+1)) \neq G(f \upharpoonright n)$. If $H'(f \upharpoonright (n+1)) = H(f \upharpoonright (n+1))$ then $H'(f \upharpoonright (n+1)) < H(f \upharpoonright n) \leq H'(f \upharpoonright n)$ and we are done. Assume

$$H'(f \upharpoonright (n+1)) \neq H(f \upharpoonright (n+1)),$$

which forces that (**) $H'(f \upharpoonright (n+1)) = H(f \upharpoonright (n+1)) + 1$. To see that

$$H'(f \upharpoonright (n+1)) < H'(f \upharpoonright n),$$

assume not (***). By Definition 3.1, $H(f \upharpoonright (n+1)) < H(f \upharpoonright n)$, so

$$H(f \upharpoonright n) \ge H(f \upharpoonright (n+1)) + 1 \qquad \qquad \text{(Basic arithmetic)}$$

$$= H'(f \upharpoonright (n+1)) \qquad \qquad \text{(By (***))}$$

$$\ge H'(f \upharpoonright n) \qquad \qquad \text{(By (***))}$$

$$\ge H(f \upharpoonright n) . \qquad \qquad \text{(By (**))}$$

Equality holds throughout, and $H'(f \upharpoonright (n+1)) = H'(f \upharpoonright n)$. Contradiction: we chose $H'(f \upharpoonright (n+1))$ with parity opposite to $H'(f \upharpoonright n)$.

Definition 4.7 For all G,H as in Definition 3.1, $f \in \mathbb{N}^{\mathbb{N}}$, write G(f) for $\lim_{n\to\infty} G(f \upharpoonright n)$ (so $G(f) = \chi_S(f)$) and write H(f) for $\lim_{n\to\infty} H(f \upharpoonright n)$. Write $G \equiv H$ to indicate that $\forall f \in \mathbb{N}^{\mathbb{N}}$, $G(f) \equiv H(f)$; write $G \not\equiv H$ to indicate that $\forall f \in \mathbb{N}^{\mathbb{N}}$, $G(f) \not\equiv H(f)$ (we pronounce $G \not\equiv H$ as "G is anticongruent to H").

Lemma 4.8 Suppose $G: \mathbb{N}^{<\mathbb{N}} \to \{0,1\}$ and $H: \mathbb{N}^{<\mathbb{N}} \to \alpha$ witness that S is guessable with $< \alpha$ mind changes. There is an $H': \mathbb{N}^{<\mathbb{N}} \to \alpha$ such that G, H' witness that S is guessable with $< \alpha$ mind changes, and such that the following hold.

If
$$G(\emptyset) \equiv \alpha$$
 then $H' \not\equiv G$. If $G(\emptyset) \not\equiv \alpha$ then $H' \equiv G$.

Proof I claim that without loss of generality, we may assume the following (*):

If
$$G(\emptyset) \equiv \alpha$$
 then $H(\emptyset) \not\equiv G(\emptyset)$. If $G(\emptyset) \not\equiv \alpha$ then $H(\emptyset) \equiv G(\emptyset)$.

To see this, suppose not: either $G(\emptyset) \equiv \alpha$ and $H(\emptyset) \equiv G(\emptyset)$, or else $G(\emptyset) \not\equiv \alpha$ and $H(\emptyset) \not\equiv G(\emptyset)$. In either case, $H(\emptyset) \equiv \alpha$. If $H(\emptyset) \equiv \alpha$ then $H(\emptyset) + 1 \neq \alpha$, and so, since $H(\emptyset) < \alpha$, $H(\emptyset) + 1 < \alpha$, meaning we may add 1 to $H(\emptyset)$ to enforce the assumption.

Having assumed (*), we may use Lemma 4.6 to construct $H': \mathbb{N}^{<\mathbb{N}} \to \alpha$ such that G, H' witness that S is guessable with $< \alpha$ mind changes, $H'(\emptyset) = H(\emptyset)$, and H' changes parity precisely when G changes parity. The latter facts, combined with (*), prove the lemma.

Proposition 4.9 Suppose $G: \mathbb{N}^{<\mathbb{N}} \to \{0,1\}$ and $H: \mathbb{N}^{<\mathbb{N}} \to \alpha + 1$ witness that S is guessable with $< \alpha + 1$ mind changes. If $G(\emptyset) = 0$ then $S \in D_{\alpha}$.

Proof By Lemma 4.8 we may safely assume the following:

If
$$G(\emptyset) \equiv \alpha + 1$$
 then $H \not\equiv G$. If $G(\emptyset) \not\equiv \alpha + 1$ then $H \equiv G$.

In other words,

(*) If
$$G(\emptyset) \equiv \alpha$$
 then $H \equiv G$. (**) If $G(\emptyset) \not\equiv \alpha$ then $H \not\equiv G$.

For each $\eta < \alpha$, let

$$A_{\eta} = \{ f \in \mathbb{N}^{\mathbb{N}} : H(f) \le \eta \}.$$
 ($H(f)$ as in Definition 4.7)

I claim $S = D_{\alpha}((A_{\eta})_{\eta < \alpha})$, which will prove the proposition since each A_{η} is clearly open.

Suppose $f \in S$, I will show $f \in D_{\alpha}((A_{\eta})_{\eta < \alpha})$. Since $f \in S$, $H(f) \neq \alpha$, because if H(f) were $= \alpha$, this would imply that G never changes its mind on f, forcing $\lim_{n \to \infty} G(f \upharpoonright n) = \lim_{n \to \infty} G(\emptyset) = 0$, contradicting the fact that G guesses S.

Since $H(f) \neq \alpha$, $H(f) < \alpha$. It follows that for $\eta = H(f)$ we have $f \in A_{\eta}$ and η is minimal with this property.

Case 1: $G(\emptyset) \equiv \alpha$. By (*), $H \equiv G$. Since $f \in S$, $\lim_{n \to \infty} G(f \upharpoonright n) = 1$, so $\eta = \lim_{n \to \infty} H(f \upharpoonright n) \equiv 1$. Since $\alpha \equiv G(\emptyset) = 0$, this shows $\eta \not\equiv \alpha$, putting $f \in D_{\alpha}((A_{\eta})_{\eta < \alpha})$.

Case 2: $G(\emptyset) \not\equiv \alpha$. By (**), $H \not\equiv G$. Since $f \in S$, $\lim_{n \to \infty} G(f \upharpoonright n) = 1$, so $\eta = \lim_{n \to \infty} H(f \upharpoonright n) \equiv 0$. Since $\alpha \not\equiv G(\emptyset) = 0$, this shows $\eta \not\equiv \alpha$, so $f \in D_{\alpha}((A_{\eta})_{\eta < \alpha})$.

Conversely, suppose $f \in D_{\alpha}((A_{\eta})_{\eta < \alpha})$, I will show $f \in S$. Let η be minimal such that $f \in A_{\eta}$ (by definition of A_{η} , $\eta = H(f)$). By definition of $D_{\alpha}((A_{\eta})_{\eta < \alpha})$, $\eta \not\equiv \alpha$. Case 1: $G(\emptyset) \equiv \alpha$. By (*), $H \equiv G$. Since $\lim_{n \to \infty} H(f \upharpoonright n) = H(f) = \eta \not\equiv \alpha \equiv G(\emptyset) = 0$, we see $\lim_{n \to \infty} H(f \upharpoonright n) = 1$. Since $H \equiv G$, $\lim_{n \to \infty} G(f \upharpoonright n) = 1$, forcing $f \in S$ since G guesses S.

Case 2: $G(\emptyset) \not\equiv \alpha$. By (**), $H \not\equiv G$. Since

$$\lim_{n\to\infty} H(f \upharpoonright n) = H(f) = \eta \not\equiv \alpha \not\equiv G(\emptyset) = 0,$$

we see $\lim_{n\to\infty} H(f \upharpoonright n) = 0$. Since $H \not\equiv G$, $\lim_{n\to\infty} G(f \upharpoonright n) = 1$, again showing $f \in S$.

Corollary 4.10 If S is guessable with $< \alpha + 1$ mind changes, then $S \in D_{\alpha}$ or $S^c \in D_{\alpha}$.

Proof Let G, H witness that S is guessable with $< \alpha + 1$ mind changes. If $G(\emptyset) = 0$ then $S \in D_{\alpha}$ by Proposition 4.9. If not, then (1 - G), H witness that S^c is guessable with $< \alpha + 1$ mind changes, and $(1 - G)(\emptyset) = 0$, so $S^c \in D_{\alpha}$ by Proposition 4.9. \square

Combining Corollaries 4.5 and 4.10 proves Theorem 4.2.

5 Higher-order Guessability

In this section we introduce a notion that generalizes guessability to provide a characterization for $\Delta_{\mu+1}^0$ ($1 \le \mu < \omega_1$). We will show that $S \in \Delta_{\mu+1}^0$ if and only if S is μ th-order guessable. Throughout this section, μ denotes an ordinal in $[1, \omega_1)$.

Definition 5.1 Let $\mathscr{S} = (S_0, S_1, ...)$ be a countably infinite tuple of subsets $S_i \subseteq \mathbb{N}^{\mathbb{N}}$.

- (i) For every $f \in \mathbb{N}^{\mathbb{N}}$, write $\mathscr{S}(f)$ for the sequence $(\chi_{S_0}(f), \chi_{S_1}(f), \ldots) \in \{0, 1\}^{\mathbb{N}}$.
- (ii) We say that S is guessable based on $\mathcal S$ if there is a function

$$G: \{0,1\}^{<\mathbb{N}} \to \{0,1\}$$

(called an *S*-guesser based on \mathscr{S}) such that $\forall f \in \mathbb{N}^{\mathbb{N}}$,

$$\lim_{n\to\infty} G(\mathscr{S}(f)\upharpoonright n) = \chi_S(f).$$

Game theoretically, we envision a game where I (the sequence chooser) has zero information and II (the guesser) has possibly better-than-perfect information: II is allowed to ask (once per turn) whether I's sequence lies in various S_i . For each S_i , player I's act (by answering the question) of committing to play a sequence in S_i or in S_i^c is similar to the act (described in [6], p. 366) of choosing a I-imposed subgame.

Example 5.2 If \mathscr{S} enumerates the sets of the form $\{f \in \mathbb{N}^{\mathbb{N}} : f(i) = j\}$, $i, j \in \mathbb{N}$ then it is not hard to show that S is guessable (in the sense of Definition 1.1) if and only if S is guessable based on \mathscr{S} .

Definition 5.3 We say S is μ th-order guessable if there is some $\mathcal{S} = (S_0, S_1, ...)$ as in Definition 5.1 such that the following hold.

- (i) S is guessable based on \mathcal{S} .
- (ii) $\forall i, S_i \in \Delta^0_{u_i+1}$ for some $\mu_i < \mu$.

Theorem 5.4 S is μ th-order guessable if and only if $S \in \Delta^0_{\mu+1}$.

In order to prove Theorem 5.4 we will assume the following result, which is a specialization and rephrasing of Exercise 22.17 of [5] (pp. 172–173, attributed to Kuratowski).

Lemma 5.5 The following are equivalent.

- (*i*) $S \in \Delta_{u+1}^{0}$.
- (ii) There is a sequence $(A_i)_{i\in\mathbb{N}}$, each $A_i\in\Delta^0_{\mu_i+1}$ for some $\mu_i<\mu$, such that

$$S = \bigcup_{n} \bigcap_{m \ge n} A_m = \bigcap_{n} \bigcup_{m \ge n} A_m.$$

Proof of Theorem 5.4

(⇒) Let $\mathscr{S} = (S_0, S_1, ...)$ and G witness that S is μ th-order guessable (so each $S_i \in \Delta^0_{\mu_i+1}$ for some $\mu_i < \mu$). For all $a \in \{0,1\}$ and $X \subseteq \mathbb{N}^\mathbb{N}$, define

$$X^a = \left\{ egin{array}{ll} X, & ext{if } a = 1; \\ \mathbb{N}^{\mathbb{N}} \backslash X, & ext{if } a = 0. \end{array} \right.$$

For notational convenience, we will write " $G(\vec{a}) = 1$ " as an abbreviation for " $0 \le a_0, \ldots, a_{m-1} \le 1$ and $G(a_0, \ldots, a_{m-1}) = 1$," provided m is clear from context. Observe that for all $f \in \mathbb{N}^{\mathbb{N}}$ and $m \in \mathbb{N}$, $G(\mathscr{S}(f) \upharpoonright m) = 1$ if and only if

$$f\in\bigcup_{G(\overrightarrow{a})=1}\bigcap_{j=0}^{m-1}S_j^{a_j}.$$

Now, given $f: \mathbb{N} \to \mathbb{N}$, $f \in S$ if and only if $G(\mathscr{S}(f) \upharpoonright n) \to 1$, which is true if and only if $\exists n \forall m \geq n$, $G(\mathscr{S}(f) \upharpoonright m) = 1$. Thus

$$\begin{split} f \in S \text{ iff } \exists n \forall m \geq n, & G(\mathcal{S}(f) \upharpoonright m) = 1 \\ \text{ iff } \exists n \forall m \geq n, & f \in \bigcup_{G(\vec{a}) = 1} \bigcap_{j = 0}^{m - 1} S_j^{a_j} \\ \text{ iff } f \in \bigcup_n \bigcap_{m \geq n} \bigcup_{G(\vec{a}) = 1} \bigcap_{j = 0}^{m - 1} S_j^{a_j}. \end{split}$$

So

$$S = \bigcup_{n} \bigcap_{m \ge n} \bigcup_{G(\vec{a})=1} \bigcap_{j=0}^{m-1} S_j^{a_j}.$$

At the same time, since $G(\mathscr{S}(f) \upharpoonright m) \to 0$ whenever $f \notin S$, we see $f \in S$ if and only if $\forall n \exists m \geq n$ such that $G(\mathscr{S}(f) \upharpoonright m) = 1$. Thus by similar reasoning to the above,

$$S = \bigcap_{n} \bigcup_{m \ge n} \bigcup_{G(\vec{a})=1} \bigcap_{j=0}^{m-1} S_j^{a_j}.$$

For each m, $\bigcup_{G(\vec{a})=1} \bigcap_{j=0}^{m-1} S_j^{a_j}$ is a finite union of finite intersections of sets in $\Delta_{\mu'+1}^0$ for various $\mu' < \mu$, thus $\bigcup_{G(\vec{a})=1} \bigcap_{j=0}^{m-1} S_j^{a_j}$ itself is in $\Delta_{\mu_m+1}^0$ for some $\mu_m < \mu$. Letting $A_m = \bigcup_{G(\vec{a})=1} \bigcap_{j=0}^{m-1} S_j^{a_j}$, Lemma 5.5 says $S \in \Delta_{\mu+1}^0$.

(⇐) Assume $S \in \Delta_{\mu+1}^0$. By Lemma 5.5, there are $(A_i)_{i \in \mathbb{N}}$, each $A_i \in \Delta_{\mu_i+1}^0$ for some $\mu_i < \mu$, such that

$$S = \bigcup_{n} \bigcap_{m \ge n} A_m = \bigcap_{n} \bigcup_{m \ge n} A_m. \tag{*}$$

I claim that S is guessable based on $\mathscr{S}=(A_0,A_1,\ldots)$. Define $G:\{0,1\}^{<\mathbb{N}}\to\{0,1\}$ by $G(a_0,\ldots,a_m)=a_m$, I will show that G is an S-guesser based on \mathscr{S} .

Suppose $f \in S$. By (*), $\exists n$ s.t. $\forall m \ge n$, $f \in A_m$ and thus $\chi_{A_m}(f) = 1$. For all $m \ge n$,

$$G(\mathscr{S}(f) \upharpoonright (m+1)) = G(\chi_{A_0}(f), \dots, \chi_{A_m}(f))$$
$$= \chi_{A_m}(f)$$
$$= 1,$$

so $\lim_{n\to\infty} G(\mathscr{S}(f) \upharpoonright n) = 1$. A similar argument shows that if $f \notin S$ then $\lim_{n\to\infty} G(\mathscr{S}(f) \upharpoonright n) = 0$.

Combining Theorems 1.2 and 5.4, we see that *S* is guessable if and only if *S* is 1st-order guessable. It is also not difficult to give a direct proof of this equivalence, and having done so, Theorem 5.4 provides yet another proof of Theorem 1.2.

Notes

- 1. A third independent usage of the term *guessable*, with similar but not the same meaning, appears in [8] (p. 1280), where a subset $Y \subseteq \mathbb{N}^{\mathbb{N}}$ is called guessable if there is a function $g \in \mathbb{N}^{\mathbb{N}}$ such that for each $f \in Y$, g(n) = f(n) for infinitely many n.
- In general, there seems to be a correspondence between remainders on N^N and remainders on N^{<N} that take trees to trees; in the future we might publish more general work based on this observation.

References

- [1] Alexander, S., "On Guessing Whether a Sequence has a Certain Property," *Journal of Integer Sequences* vol. 14 (2011), 12 pp.
- [2] Allouche, J., "Note on the constructible sets of a topological space," *Annals of the New York Academy of Science* vol. 806 (1996), pp. 1–10.
- [3] Dougherty, R., and C. Miller, "Definable Boolean combinations of open sets are Boolean combinations of open definable sets," *Illinois Journal of Mathematics* vol. 45 (2001), pp. 1347–1350.
- [4] Figueira, S., Hirschfeldt, D., Miller, J., Ng, K., and A. Nies, "Counting the changes of random Δ_2^0 sets," to appear in *Journal of Logic and Computation*, published online 2013, doi: 10.1093/logcom/exs083.
- [5] Kechris, A., "Classical Descriptive Set Theory," Springer-Verlag, 1995.
- [6] Martin, D., "Borel determinacy," Annals of Mathematics vol. 102 (1975), pp. 363-371.
- [7] Nies, A., "Calibrating the complexity of Δ_2^0 sets via their changes," preprint, arXiv: http://arxiv.org/abs/1302.0454.
- [8] Tsaban, B., and L. Zdomskyy, "Combinatorial Images of Sets of Reals and Semifilter Trichotomy," *Journal of Symbolic Logic* vol. 73 (2008), pp. 1278–1288.
- [9] Wadge, W., "Reducibility and Determinateness on the Baire Space," PhD dissertation, UC Berkeley (1983).

Acknowledgments

We acknowledge Tim Carlson, Chris Miller, Dasmen Teh, and Erik Walsberg for many helpful questions and suggestions. We are grateful to a referee of an earlier manuscript for making us aware of William Wadge's dissertation. Department of Mathematics The Ohio State University 231 West 18th Ave Columbus OH 43210 USA alexander@math.ohio-state.edu