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Guessing, Mind-changing, and the Second Ambiguous
Class

Samuel Alexander

Abstract  In his dissertation, Wadge defined a notion of guessabilitysab-
sets of the Baire space and gave two characterizations efghke sets. A set is
guessable iff it is in the second ambiguous cld!%,(iff it is eventually annihi-
lated by a certain remainder. We simplify this remainder givé a new proof
of the latter equivalence. We then introduce a notion of gingswith an ordinal
limit on how often one can change one’s mind. We show thateryeordinal

a, a guessable set is annihilated dypplications of the simplified remainder if
and only if it is guessable with fewer thanmind changes. We use guessability
with fewer thano mind changes to give a semi-characterization of the Hatéfsdor
difference hierarchy, and indicate how Wadge’s notion aégpability can be
generalized to higher-order guessability, providing aebgarizations oﬂg for

all successor ordinals > 1.

1 Introduction

Let NN be the set of sequences N — N and letN<Y be the set,N" of finite
sequences. < N<N we will write [g for {f € NV : f extendss}. We equipN"
with a second-countable topology by declar{ggto be a basic open set whenever
se N<N,

Throughout the pape8 will denote a subset diY. We say thaS € Ag if Sis
simultaneously a countable intersection of open sets andtable union of closed
sets in the above topology. In classic terminoldgy Ag just in caseSis bothGs
andFg.

The following notion was discovered by Wadd# (pp. 141-142) and indepen-
dently by this authorq]. *
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Definition 1.1 We saySis guessabléf there is a functiorG : N<N — {0,1} such
that for everyf € NV,

lim G(f [ n) = xs(f) =

n—oo

1,iffes
0,if f ¢S

If so, we sayG guesses,dr thatG is anS-guesser

The intution behind the above notion is captured eloquenilyVadge (p. 142,
notation changed):
Guessing sets allow us to form an opinion as to whether anestefrof NY is
in Sor &, given only a finite initial segmertt | n of f.
Game theoretically, one envisions an asymmetric game wihegtbe guesser) has
perfect information| (the sequence chooser) has zero information | Eedvinning
set consists of all sequendes, bg, a1, bs, ...) such thab; — 1 if (ag,a,...) € Sand
bi — 0 otherwise.
The following result was proved ir®] (pp.144—145) by infinite game-theoretical
methods. The present author found a second prfjaiging mathematical logical
methods.

Theorem 1.2 (Wadge) S is guessable if and only iéﬁikg.
Wadge defined (pp. 113—-114) the following remainder op@nati

Definition 1.3 For A,B C NV, define Rng(A,B) = NY. For u > 0 an ordinal,
define

Rmy(A,B) = (RmV(A, B)NANRmMy (A, B)mB) .
v<u

(Herews denotes topological closure.) Write Ri®) for Rmy (S, S°).

By countability considerations, there is some (in fact dabte) ordinalu, de-
pending onsS, such that Rm(S) = Rmy/(S) for all y’ > p; Wadge writes R (S)
for Rmy,(S) for such au. He then proves the following theorem:

Theorem 1.4 (Wadge, attributed to Hausdorff)&SA if and only ifRmgq (S) = 0.

In Section2, we introduce a simpler remaindés, a) — Sy and use it to give a
new proof of Theorem..4.

In Section3, we introduce the notion d being guessable while changing one’s
mind fewer tharo many times ¢ € Ord) and show that this is equivalent$g = 0.

In Section4, we show that for > 0, Sis guessable while changing one’s mind
fewer thana + 1 many times if and only if at least one 8for & is in theath level
of the difference hierarchy.

In Section5, we generalize guessability, introducing the notionugh-order
guessability (I< u < wy). We show thatSis uth-order guessable if and only if
Sed) ;.

2 Guessable Sets and Remainders

In this section we give a new proof of Theordnd. We find it easier to work with
the following remainderwhich is closely related to the remainder defined by Wadge.
For X € N<N, we will write [X] to denote the set of infinite sequences all of whose
finite initial segments lie irX.
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Definition 2.1 Let SC NV, We defineS; € N<N (a € Ord) by transfinite recur-
sion as follows. We defing = N<N, andS, = Np<aSg for every limit ordinalA.
Finally, for every ordina3, we define

Spi1=1{x€Ss : I, X" € [Sg] suchthak C X', xC X", X € S X" ¢ S}.

We write a (S) for the minimal ordinalr such thatS; = Sy1, and we writeS, for

Su(s)

ClearlySy € Sg wheneve3 < a. This remainder notion is related to Wadge's as
follows.

Lemma 2.2 For each ordinala, Rmy (S) = [Sy].

Proof ~ Since Sy C S wheneverp < a, for all a, we haveS, = NgaSp1
(with the convention thah® = N<N).  We will show by induction ona that
RMy (S) = [S] = [ﬂB<aSB+1]-

Supposef € [Ng.aSp41]. Let B < a. Let % be an open set around we
can assumeé is basic open, s@ = [fo], fp a finite initial segment off. Since
f € [Np<aSp11)s fo € Sgya1. Thus there ared,x” € [Ss] extendingfo (hence in
), X €S X" ¢S Inother wordsx € [N,.gS,1]NSandx’ € [N,S/11] NS
By induction, X' € Rmg(S)Nn S andx” € Rmg(S)N'S°. By arbitrariness of#,
f € Rmg(S)NSNRmg(S) NS, By arbitrariness of, f € Rmg(S).

The reverse inclusion is similar. O

Note that Lemm&.2 does not say that RaiS) = 0 if and only if §; = 0. It is (at
least a priori) possible th&, # 0 while [S;] = 0. Lemma2.2does however imply
that Rmp(S) = 0 if and only if S, = 0, since it is easy to see that[8,] = 0 then
Sy11=0. Thus in order to prove Theoreb# it suffices to show thabis guessable
if and only if S, = 0. The=- direction requires no additional machinery.

Proposition 2.3 If S is guessable then,S= 0.

Proof Let G: NN — {0,1} be an S-guesser. Assume (for contradiction)
S. # 0 and letgp € S.. We will build a sequence on whose initial segments
G diverges, contrary to Definitiod.l Inductively suppose we have finite se-
quencesgy C --- Cx Ok In S, such thatv0 < i <k, G(gj) =i mod 2. Since
Ok € So = Sy(g) = Su(g+1, there arer’, 0” € [S»], extendingy, with o’ € S, 0" ¢ S.
Chooseo € {d’,0”} with o € Siff kis even. Then lim.» G(o | n) =k+1 mod 2.
Let 0x,1 C o properly extend such thaG(ok;1) = k+1 mod 2. Notegy 1 € S»
sinceo € [S.).

By induction, there arep C. 01 C --- such that fori > 0, G(g;j) =i mod 2.
This contradicts Definitiod.1since lim_. G((U;io;) | n) ought to converge. O

The < direction requires a little machinery.

Definition 2.4 If 0 € NN, 0 ¢85, let B(g) be the least ordinal such that
9 & Sp(o):

Note that whenever ¢ S,, B(0) is a successor ordinal.

Lemma 2.5 Suppose C 1 are finite sequences. tfe S, theno € So. And if
0 ¢ So, thenp(1) < B(0).
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Proof It is enough to show thatf € Ord, if T € S3 theno € Sz. This is by
induction onf, the limit and zero cases being trivial. Assuifigs successor. If
T € S, this meang € Sz_; and there are’, 1 € [S;_4] extendingr with T’ € S,
" ¢ S. Sincet’ and1” extendt, andt extendso, T’ andt” extendo; and since
0 € S_1 (by induction), this shows € Sg. O

Lemma 2.6 Suppose f N — N, f & [S.]. There is some i such that for allj i,
f1j¢ScandB(f[]j)=pB(fi). Furthermore, fe [Sg(f}i)_1]-

Proof  The first part follows from Lemma&.5 and the well-foundedness of
Ord. For the second part we must shdw k € Sg(fj)_1 for everyk. If k <i,
then f | k € Sg(s}j—1 by Lemma2.5 If k > i, thenf(f | k) = B(f [i) and so
f [ ke Sgfpiy—1 since itis inSg( 1)1 by definition of 3. O

Definition 2.7 If S =0 then we defingGs : N<N — {0,1} as follows. Let
o € NN, SinceS, =0, 0 & So, S00 € S(0)-1\Sp(0)- SiNCeT & Spg), this
means for every two extensiorsx” of g in [Sg(4)_1], eitherx',x” € Sorx’, x" € S°.

So either all extensions af in [Sg ()] are inS, or all such extensions are #i.
(i) If there are no extensions af in [Sg(s)-1], and lengto) > 0, then let
Gs(0) = Gs(o~) whereo~ is obtained fromo by removing the last term.
(i) If there are no extensions af in [Sg(4)—1], and lengtho) = 0, letGs(o) = 0.
(i) If there are extensions ob in [Sg(4)_4] and they are all inS define

Gs(O') =1
(iv) If there are extensions of in [Sg(g)_1] and they are all inS°, define
Gs(O') =0.
Proposition 2.8 If S = 0 then Gs guesses S.

Proof ~ AssumeS, = 0. Letf € S | will show Gg(f [ n) — 1 asn — . Since
f € [Se), leti be as in Lemm&.6. | claim Gg(f [ j) =1 wheneverj >i. Fix j > .
We haveB(f | j) = B(f [ i) by choice ofi, andf € [Sg(}i_1] = [Sp(f}j)-1l- Since
f I j has one extension (namefyitself) in both[Sg ;)1 andS, Gs(f [ j) = 1.
Identical reasoning shows thatfifZ Sthen limy_ Gs(f [ n) = 0. O

Theorem 2.9 Se Adifand only if S, = 0. That is, Theorer.4is true.

Proof By combining Proposition2.3and2.8and Theoreni.2 O

3 Guessing without changing one’s Mind too often

In this section our goal is to tease out additional informataboutAd from the
operation defined in DefinitioR. 1

Definition 3.1 For each functio with domainN<N, if G(f [ (n+1)) # G(f [n)
(f e NN, n € N), we sayG changes its mind on ff(n+1). Now leta € Ord. We
say Sis guessable with< o mind change# there is anS-guesselG along with a
functionH : N<N — a such that the following hold, wheree NN andn € N.

(i) H(f [ (n+1)) <H(f ['n).

(i) If Gchangesits mind ofi [ (n+ 1), thenH(f | (n+1)) <H(f [n).

This notion bears some resemblance to the notion of Z seN being f-c.e. in
[4], org-c.a.in[7].
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Theorem 3.2 For a € Ord, S is guessable witkk a mind changes if and only if
Sy =0.

Proof

(=) AssumeSis guessable withk< o mind changes. LeG,H be as in Definition
3.1 We claim that for all3 € Ord, if 0 € Sg thenH (o) > B. This will prove &)
because it implies that B, # 0 then there is some with H(o) > a, absurd since
codomairiH) = a.

We attack the claim by induction g&. The zero and limit cases are trivial. As-
sumeB = y+1. Suppose € S, 1. There ared, X" € [S/| extendings, X € S, X" ¢S,
Pickx € {X,x"} so thatys(x) # G(o) and picka* € N<N with 0 C o+ C xsuch that
G(ot) = xs(x) (some sucto™ exists sinces guesses). Sincex e [§,], o' €S,.
By induction,H(o™) > y. The factG(o+) # G(o) impliesH (o ™) < H(0o), forcing
H(o)>y+1.

(<) AssumeS; = 0. For allo € N<N, defineH (o) = B(0) — 1 (by definition of
B(0), sinceSy =0, clearlyH (o) € a). | claim Gs,H witness thatSis guessable
with < o mind changes.

By Proposition2.8, Gs guessesS. Let f ¢ N¥, ne N. By Lemma2.5,
H(f | (n+1)) <H(f [ n). Now suppose&ss changes its mind orf | (n+ 1),
we must showH (f | (n+1)) < H(f | n). Assume, for sake of contradiction, that
H(f [ (n+1)) =H(f | n). AssumeGg(f | n) =0, the other case is similar. By
definition of Gs, (x) for every infinite extensiori’ of f | n, if f" € [Sg(fn)_1] then
f’ € §. SinceGs changes its mind offi | (n+ 1), Gg(f | (n+1)) = 1. Thus §x)
for every infinite extensiorf” of f [ (n+1), if " € [Sg(f;mny1))-1] thenf” € S.
And f | (n+ 1) does actually have some such infinite extendi6rbecause if it had
none, that would mak&s(f | (n+ 1)) = Gg(f [ n) by case 1 of the definition dbs
(Definition 2.7). Being an extension of | (n+1), f” also extend$ | n; and by the
assumption thatl (f [ (n+1)) =H(f [ n), " € [Sg(fn)—1]. By (+), " € &, and by
(xx), T € S. Absurd. O

It is not hard to shows is a Boolean combination of open sets if and onhBifs
guessable with< w mind changes, so Theore3ri2and Lemma.2give a new proof
of a special case of the main theorem (p. 1348Bp{gee also2)).

4 Mind Changing and the Difference Hierarchy

We recall the following definition fromq] (p. 175, stated in greater generality—we
specialize it to the Baire space). In this definitidﬁ(NN) is the set of open subsets
of NN, and theparity of an ordinaln is the equivalence class modulo 2rpfwhere
n=A+n,A alimitordinal (orA =0),ne N.

Definition 4.1 Let (A;)nh<e be an increasing sequence of subsetN\ofwith
6 > 1. Define the seDg((A;)n<g) C N by
x € Dg((An)n<p) & X € U An & the leastn < 8 with x € Ay has parity

n<e
opposite to that 06.

Let
Do(Z9)(NY) = {Dg((Ag)n<p) : Ay € Z3(NY), n < 6}.
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This hierarchy offers a constructive characterizatioA$fit turns out that
A3 = Ur<p<w, Do (29 (N")

(see Theorem 22.27 o], p. 176, attributed to Hausdorff and Kuratowski).
For brevity, we will writeDg for Dg (£9)(NVY).

Theorem 4.2 (Semi-characterization of the difference hierarchy) ket 0. The
following are equivalent.

(i) Sisguessable witkx o + 1 mind changes.

(i) SeDgorSeDy.

We will prove Theorend.2by a sequence of smaller results.

Definition 4.3 Fora, 3 € Ord, writea = 8 to indicate thatr andf3 have the same
parity (thatis, 2n—m, wherea = A +nandf =k +m,n.me N, A a limit ordinal
or 0,k a limit ordinal or 0).

Proposition 4.4 Leta > 0. If SE Dq, say S= Dq((Ay)n<a) (Ay C NN open),
then S is guessable with o + 1 mind changes.

Proof Define G: N<N — {0,1} andH : NN — a + 1 as follows. Suppose
o € N<N_ If there is non < a such thafo] C A, letG(g) =0 and letH (o) = a.
If there is ann < a (we may take] minimal) such thafo] C A, then let

[0, ifn=a; _
G(a)—{ 1 ifnza H(o)=n.
Letf:N—N.
Claim1l limp.eG(f [ n)= xs(f).

If f&UpcaAy, thenf & Do ((Ag)n<a) =S andG(f [ n) will always be 0, so
liMne0 G(f [ N)=0= xs(f). Assumef € Uy -qAy, and let < a be minimum such
that f € A,. SinceA, is open, there is som® so large that/n > ng, [f | n] C A,.
For alln > ng, by minimality ofn, [f | n] £ Ay foranyn’ < n, soG(f [ n) =0 if
and only ifn = a. The following are equivalent.

f € Siff f € Da((Aq)n<a)

iff n£a
iff G(f [n)=#£0
iff G(f [n)=1.

This shows lim_,. G(f | n) = xs(f).
Clam2 VneN,H(f [ (n+1)) <H(f [n).

If H(f | n) = a, there is nothing to prove. K (
wheren is minimal such thaff | n] C A,. Since|
[f I (n+1)] CA,, implyingH(f [ (n+1)) <n.
Clam3 VneN,if G(f [ (n+1))#G(f | n),thenH(f | (n+1)) <H(f n).

Assume (for sake of contradictiotj(f [ (n+1)) > H(f [ n). By Claim
2, H(f | (n+1)) = H(f [ n). By definition of H this implies thatvn < a,
[f [ (n+1)] CA,ifandonlyif[f [ n] C A,. ThisimpliesG(f | (n+1)) = G(f [ n),
contradiction.

By Claims 1-3G andH witness thaSis guessable witk: a + 1 mind changes. [

In)<a,thenH(f [n)=n

f
f 1 (n+1)] C[f | n], we have
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Corollary 4.5 Leta > 0. If Se Dq or § € D4 then S is guessable with a + 1
mind changes.

Proof  If S€ Dy this is immediate by Propositich4. If S° € D4 then Proposition
4.4saysS is guessable with< a + 1 mind changes, and this clearly implies tiat
is too. O

Lemma 4.6 Suppose S is guessable witlr mind changes. Let &N<N — {0, 1},

H : N<N - a be a pair of functions witnessing as much (DefinitRd). There is
an H : NN — g such that GH’ also witness that S is guessable witha
mind changes, with H0) = H(0), and with the additional property that for every
f:N— Nandevery re N,

H(f | (n+1)) = H(f [ n)ifand only ifG(f | (n+1)) = G(f | n).

Proof  DefineH’(o) by induction on the length af as follows. LetH’(0) = H (0).

If o+# 0, write 0 = gp —~ n for somen € N (—~ denotes concatenation). If
G(o) = G(0p), let H' (o) = H'(0p). Otherwise, letH’(o) be eitherH (o) or
H(o)+ 1, whichever has parity oppositet(op).

By constructionH’ has the desired parity properties. A simple inductive argu-
ment shows that{) Yo € N<N, H(g) < H'(0) < a. | claim that for allf : N — N
andne N, H'(f | (n+1)) <H'(f [ n), and if G(f [ (n+1)) # G(f | n) then
H'(f I (n+1)) <H'(f I n).

If G(f | (n+1)) =G(f | n), then by definitiorH’(f | (n+1)) =H’(f | n) and the
claimis trivial. Now assum&(f | (n+1)) AG(f [n). f H'(f [ (n+1)) =H(f [ (n+1))
thenH'(f [ (n+1)) <H(f [ n) <H/(f | n) and we are done. Assume

H'(f [ (n+1) £ H(f [ (n+1),
which forces that£x) H'(f | (n+1)) =H(f | (n+1)) + 1. To see that
H'(f [ (n+1)) < H'(f ),
assume not(x *). By Definition3.1, H(f | (n+1)) < H(f [ n), so

H(f In)>H(f [ (n+1))+1 (Basic arithmetic)
=H'(f | (n+1)) (By (+x))
>H'(fn) (By (%))
> H(f [n). (By (+))
Equality holds throughout, artd'(f | (n+1)) = H’(f | n). Contradiction: we chose
H'(f [ (n+ 1)) with parity opposite td1’(f | n). O

Definition 4.7 For all G,H as in Definition 3.1, f € NN, write G(f) for
limpe G(f | n) (so G(f) = xs(f)) and writeH(f) for limp_oH(f [ n). Write
G = H to indicate thatyf € NN, G(f) = H(f); write G # H to indicate that
Ve NV, G(f) #H(f) (we pronounce # H as ‘G is anticongruent té1”).

Lemma4.8  Suppose GN<N — {0,1} and H: N<N — a witness that S is guess-
able with< a mind changes. There is an HN<N — a such that GH’ witness that
S is guessable witkk o mind changes, and such that the following hold.

If G(0) = a thenH #£G. If G(0) # a thenH =G.
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Proof | claim that without loss of generality, we may assume thiowaihg (x):
If G(0) = a thenH (0) # G(0). If G(0) # a thenH (0) = G(0).

To see this, suppose not: eithe(0) = a andH (0) = G(0), or elseG(0) # a and
H(0) £ G(0). In either case (0) = a. If H(0) = a thenH (0)+1+# a, and so, since
H(0) < a,H(0)+ 1< a, meaning we may add 1 té(0) to enforce the assumption.
Having assumeds, we may use Lemma.6to constructH’ : NN — o such
thatG, H’ witness thaSis guessable witkc a mind changesi’(0) = H(0), andH’
changes parity precisely whé&changes parity. The latter facts, combined wit} (
prove the lemma. O

Proposition 4.9 Suppose GN<N — {0,1} and H: N<N — a + 1 witness that S
is guessable witk: a + 1 mind changes. If @) = 0then Sc Dg.

Proof By Lemma4.8we may safely assume the following:

If G(0) = o +1thenH # G. If G(0) # a + 1thenH =G.
In other words,
(x) If G(0) = a thenH = G. (xx) If G(0) £ a thenH # G.
For eachm < a, let
Ay ={feNV:H(f)<n}. (H(f) as in Definition4.7)

I claim S= D¢ ((An)n<a), Which will prove the proposition since eaglj is clearly
open.

Supposef € S, | will show f € Do ((Ag)n<a). Sincef € S H(f) # a, because
if H(f) were= a, this would imply thatG never changes its mind ofy forcing
limpe0 G(f | N) =limp_0 G(0) = 0, contradicting the fact th& guesses.

SinceH(f) # a, H(f) < a. It follows that forn = H(f) we havef € A, andn
is minimal with this property.

Case 1: G(0) =a. By (x), H=G. Sincef € S limp.G(f [ n) =1, so
n =limpH(f [ n)=1. Sincea = G(0) = 0, this showsn # a, putting
f €Da((Ag)n<a)-

Case 2: G(0) # a. By (xx), H# G. Sincef € S limpG(f [ n) =1,
so n = limpseH(f [ N) =0. Sincea # G(0) = 0, this showsn # a, so
f €Da((Ag)n<a)-

Conversely, supposkt e Dq((Ag)n<a), | Will show f € S Let n be minimal such
thatf € A, (by definition ofA,, n = H(f)). By definition ofDqa ((An)n<a), N # .
Case 1G(0)=a. By (x),H=G. Sincelim_H(f [n)=H(f)=n#a=G(0)=0,
we see lim_H(f [ n)=1. SinceH =G, lim_, G(f [ n) =1, forcingf € Ssince
G guesses.

Case 2.G(0) # a. By (xx), H £ G. Since

lim H(f [n) = H(f)=n #a #G(0) =0,

we see lim-H(f [ n) =0. SinceH # G, limp» G(f [ n) = 1, again showing
fes O

Corollary 4.10 If S is guessable witkc a + 1 mind changes, then & Dy or
S € Dyg.



Guessing and Mind-changing 9

Proof  LetG,H witness thaSis guessable witk: a + 1 mind changes. I6(0) =0
thenS e D4 by Propositiond.9. If not, then(1— G),H witness tha is guessable
with < a +1 mind changes, and — G)(0) = 0, soS° € D4 by Propositiord.9. O

Combining Corollarieg.5and4.10proves Theorem.2

5 Higher-order Guessability

In this section we introduce a notion that generalizes @Bty to provide a char-
acterization fol) ; (1< p < wr). We will show thatSe AY,,; if and only if Sis
uth-order guessable. Throughout this sectjprlenotes an ordinal ifi, ¢y ).

Definition 5.1 Let ¥ = (S,S1,...) be a countably infinite tuple of subsets
S C NN,
(i) Foreveryf € N, write.7(f) for the sequencéxs, (f), xs, (f),...) € {0, 1}*.
(i) We say thatSis guessable based o#f if there is a function
G:{0,1}°N = {0,1}
(called anS-guesser based o) such that/f € NY,
lim G(.(f) ) = xs(f).

Game theoretically, we envision a game whie(éhe sequence chooser) has zero
information and| (the guesser) has possiliigtter-than-perfecinformation: Il is
allowed to ask (once per turn) whethés sequence lies in variou. For eachs,
playerl’s act (by answering the question) of committing to play aussge inS or
in § is similar to the act (described i6][ p. 366) of choosing &imposed subgame.

Example 5.2 If . enumerates the sets of the fofthe NV : f(i) = j},i,j € N
then it is not hard to show that S is guessable (in the sensefififlon 1.1) if and
only if S is guessable based ofi.

Definition 5.3 We saySis pth-order guessablé there is some? = (,S,...)
as in Definition5.1 such that the following hold.

(i) Sis guessable based ori.

(i) Vi, S €A, ., for somep; < p.
Theorem 5.4 S isuth-order guessable if and only iféA?Hl.

In order to prove Theorer.4 we will assume the following result, which is a
specialization and rephrasing of Exercise 22.175%f(pp. 172-173, attributed to
Kuratowski).

Lemma 5.5 The following are equivalent.
(i) SEA),1.
(i) There is a sequeno@ )icn, each Ae Ale for somey; < p, such that
S=UMNAn=1U An
n m>n n m>n

Proof of Theorem 5.4
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(=) Let ¥ = (S,S1,...) and G witness thatS is uth-order guessable (so each
Se A?Hl for somey; < ). For allac {0,1} andX C NV, define

xa _ X, if a=1,
T NN\X, ifa=0.

For notational convenience, we will writeG(d) = 1” as an abbreviation for
“0 <ap,...,am-1 <1 andG(ap,...,am-1) = 1,” providedm is clear from con-
text. Observe that for all € NN andme N, G(.(f) | m) = 1 if and only if

m-1 ‘
fe U ﬂS‘T’
G(d)=1]=0

Now, givenf : N — N, f € Sif and only if G((f) | n) — 1, which is true if and
only if Invm>n, G(.(f) | m) = 1. Thus

f € Siff INvm>n, G((f) Im) =1

m-1
iff Invm>n, fe |J S'JSlJ
G(d)=1j=0
m-1

So

At the same time, sinc8(.7(f) | m) — 0 wheneverf ¢ S, we seef € Sif and only
if YnIm > nsuch thaG(.(f) | m) = 1. Thus by similar reasoning to the above,

m-1
s=NU U Ns"
N m>nG(a)

~1j=0
For eachm, Ug(a)-1 ﬂ?‘;ol S‘?j is a finite union of finite intersections of setsllrﬂ,,+1
for variousy’ <, thusUga)-1 Mo S'?j itselfis inAS, . ; for somepy < p. Letting
An=Us@-1N"4S’ Lemma5 5saysSe A) ;.
(<) AssumeSe A) , ;. By Lemma5.5, there argA) )icw, eachA; € AS ; for some
Ui < H, such that

s=UNA=NU An (+)

n m>n n m>n
I claim thatSis guessable based off = (Ag,Ay,...). DefineG: {0,1}<N — {0,1}
by G(ap, . ..,am) = am, | will show thatG is anS-guesser based off.
Supposd € S By (), Ins.t.¥Ym>n, f € Apand thusya,(f) =1. Forallm>n,
G (f) 1 (m+1)) = G(Xao(f), -, Xam(F))

= Xam(f)

= ]_7
S0 liMoe G((f) [ n) = 1. A similar argument shows that if ¢ S then
liMp_e G(.Z(f) [ n) =0. O
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Combining Theorem&.2and5.4, we see thaBis guessable if and only Bis 1st-
order guessable. It is also not difficult to give a direct prafcthis equivalence, and
having done so, Theorem4 provides yet another proof of Theorein®.

Notes

A third independent usage of the tegmessablewith similar but not the same meaning,
appears in§] (p. 1280), where a subs¥tC NN is called guessable if there is a function
g € NN such that for eacl € Y, g(n) = f(n) for infinitely manyn.

In general, there seems to be a correspondence betweaindens orN" and remainders

on N<N that take trees to trees; in the future we might publish mereecal work based
on this observation.
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