Answer Set Programming on Expert Feedback to Populate and Extend
Dynamic Ontologies

Mathias Niepert
Indiana University
Department of Computer Science
mniepert@indiana.edu

Abstract

The next generation of online reference works will re-
quire structured representations of their contents in or-
der to support scholarly functions such as semantic
search, automated generation of cross-references, tables
of contents, and ontology-driven conceptual navigation.
Many of these works can be expected to contain mas-
sive amounts of data and be updated dynamically, which
limits the feasibility of “manually” coded ontologies to
keep up with changes in content. However, relation-
ships relevant to inferring an ontology can be recovered
from statistical text processing, and these estimates can
be verified with carefully-solicited expert feedback. In
this paper, we explain a method by which we have used
answer set programming on such expert feedback to dy-
namically populate and partially infer an ontology for a
well-established, open-access reference work, the Stan-
ford Encyclopedia of Philosophy.

Introduction

The scale, complexity, and dynamic nature of many digi-
tal reference works calls for sophisticated information man-
agement tools to capture and harness their metadata. Struc-
tured representations of their subject domains are required
for scholarly functions such as semantic search, automated
generation of cross-references and tables of contents, and
ontology-driven conceptual navigation (Crampes & Ranwez
2000). Many of these works will contain massive amounts
of data and be updated dynamically to reflect the grow-
ing size and dynamic nature of their subject domains. For
scholarly projects with limited resources, human-intensive
methods for coding, populating, and maintaining ontologies
are not viable. “Social tagging” approaches leading to so-
called “folksonomies” will be useful for some purposes, but
may not meet standards of academic review. We suggest
that dynamic reference works are better served by “dynamic
ontologies” (D’lorio 2003; Brewster, Ciravegna, & Wilks
2003; Niepert, Buckner, & Allen 2007) which are automati-
cally or semi-automatically updated to track changes in pri-
mary content.

The development of dynamic ontologies presents the
knowledge modeler with a number of challenges. First,

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Cameron Buckner
Indiana University
Department of Philosophy
cbuckner@indiana.edu

Colin Allen
Indiana University
Department History & Philosophy of Science
and Program in Cognitive Science
colallen@indiana.edu

dynamic ontologies must be inferred and populated in part
from the reference corpora themselves, but ontological rela-
tionships cannot be directly derived from statistical methods
— estimates generated with these approaches must always
be regarded as uncertain and incomplete. Second, fully au-
tomatic methods for inferring taxonomic relationships be-
tween terms require the modeler to make assumptions about
the structure of the domain or the reference work on which
they operate.

We believe that many online reference works are well-
positioned to address these problems by making use of their
most valuable informational resource: the domain experts
who serve as their editors and contributors. With care, expert
feedback can be obtained to “approve” the recommendations
of automated methods without presuming knowledge of on-
tology design or placing undue demands on the contributors’
time. This feedback can give the modeler a window on the
domain which is likely to be the most objective source of
knowledge available.

This paper describes our application of answer set pro-
gramming to carefully-solicited expert feedback to infer an
ontology for a well-established open-access reference work,
the Stanford Encyclopedia of Philosophy (SEP). Three fea-
tures of the SEP make it an ideal environment for develop-
ing and testing digital tools to learn and manage ontologies.
First, it is substantial and complex: over 900 entries (>9
million words) of sophisticated humanities content that is
beyond the comprehension of any one individual. Second,
the SEP is dynamic: new and revised entries come online
each month. Finally, it is expert-driven: more than 1,100
professional philosophers serve as its editors and authors.
The feedback provided by SEP authors about their areas of
expertise provides an overlapping mosaic of expert knowl-
edge. Answer set programming permits the construction of
a populated global ontology derived from these fragments.

Related Work

The foundations of answer set programming (ASP) were
laid out by Gelfond and Lifschitz (Gelfond & Lifschitz
1988; 1991). We follow their definitions and terminology
throughout the paper. A considerable amount of theoreti-
cal work has been done to leverage ASP for the semantic
web. It can be roughly divided into translations from de-
scription logics to ASP (Heymans, Nieuwenborgh, & Ver-

meir 2005), combining rules and ontologies with semantic
integration (Analyti et al. 2005), and semantic separation
(Eiter ef al. 2004). A variety of other approaches to learn-
ing and populating taxonomies exists. For example, colloca-
tion-based statistics (Caraballo & Charniak 1999) make use
of entropy measures over adjective-noun collocations, and
formal concept analysis (Cimiano, Hotho, & Staab 2005)
generates concept lattices for nouns and verbs. Heteroge-
neous sources of evidence (such as Hearst Patterns (Hearst
1992), hypernymy information from WordNet, and ‘Head-
Matching’ Heuristics (Velardi ef al. 2005)) have been repre-
sented as first-order features and used to train standard clas-
sifiers (Cimiano et al. 2004). Concept hierarchies have been
built upon a formal definition of subsumption (Sanderson
& Croft 1999) and an iterative, top-down approach using
measures of generality and semantic similarity was investi-
gated (Ryu & Choi 2006). Several authors have attempted
to extract ontologies from general linguistic taxonomies like
WordNet(Oltramari et al. 2002).

Preliminaries
Ontology

An ontology O is a six-tuple (C,H¢,Hr,L,Fc,Fr),
where C is the set of concepts, H a taxonomy induced on
the concepts, Hr the set of non-taxonomic relations, £ the
set of terms (lexicals) which refer to concepts and relations,
and F¢, Fr are relations that map the terms in £ to the cor-
responding concepts and relations. If the ontology is dy-
namic all these structures are likely to change over time. For
example, an entirely new concept and new non-taxonomic
relations might be added to the ontology. Individuals of
the ontology are instances of the concepts (also referred to
as classes). Note that, in dynamic ontologies, individuals
might become concepts at later stages and that, generally,
the instance-class distinction is highly domain and applica-
tion dependent. For instance whether to count distributed
representation as an instance of an idea about connectionism
or as a subclass with instances may depend on the amount
of discussion the topic has received among philosophers.
Whether a dynamic process of ontology revision will con-
verge towards the kind of upper level unified ontology that is
preferred by some authors (Smith 2003) remains to be seen,
but for our immediate practical goals, it is necessary first
to understand the feasibility of various methods for revising
ontologies within the domain of philosophy.

Answer Set Programming

Syntax An answer set program II is given by a signature
and a collection of rules. A signature o is a four-tuple con-
sisting of disjoint sets o = (O, F, P, V'), where elements of
O, F, P are called object, function, and predicate sym-
bols, respectively. Predicates name relations holding be-
tween the domain’s objects. Elements of V' are variables
which range over objects in the domain. 7erms are vari-
ables or object constants, and terms not containing variables
are called ground. An atom is an expression of the form
p(t1,t,...,tn), where p € P and ty,...,t, are terms. A
literal is an atom or its negation. The rules of II are of the

form
lo V..V l, — li+1a ceey ln,not ln+17 ...7I10t lz,

where [, ..., 1, are literals of II. For any rule r, {lg,...,1;}
is called the head of r and will be referred to as H(r).
{lix1, ..., 1} is called the positive body of r and will be re-
ferred to as BT (r), and {l,, 41, ..., 1.} is called the negative
body of r and will be referred to as B~ (r). A rule with no
body (such as [. <) is called a fact, and a rule with no head
(such as < [.) is called a constraint.

Semantics The Herbrand universe of a logic program II,
denoted HUrp, is the set of all possible ground terms re-
cursively constructed by using object and function sym-
bols occurring in II. The Herbrand Base of II, denoted
H By, is the set of all possible ground atoms whose pred-
icate symbols occur in II and whose arguments are elements
in HUp. A ground instance of a rule r in II is a rule ob-
tained from r by replacing every variable X in r by ¢(X),
where ¢ is a mapping from all variables occurring in 7 to
terms in the Herbrand universe. The set of all ground in-
stances of r are denoted by ground(r) and ground(II) de-
notes |,y ground(r). A logic program is positive if for
all rules 7 in II, B~ (r) = @. An interpretation I is a set of
ground literals with I C H Byy. An interpretation S is called
closed under IT if for every r € ground(Il), H(r) NS # ()
whenever BT (r) C S. An interpretation S is an answer
set for a positive disjunctive datalog program II if it is min-
imal among all interpretations that are closed under II. The
Gelfond-Lifschitz transform of a ground program II w.r.t.
aset S C HBy is the positive ground program IT°, ob-
tained from II by (i) deleting all rules » € II for which
B~ (r) NS # 0 holds and (ii) deleting the negative body
from the remaining rules. An answer set of a program II is a
set S C H By such that S is an answer set of ground(II)>.

The Indiana Philosophy Ontology

The InPhO has been compiled by our group at Indiana Uni-
versity from a wide variety of sources (Niepert, Buckner,
& Allen 2007). Our ontology is stored in both OWL for-
mat (regular versions of which will be posted on the project
web site!) and in a SQL database. The InPhO contains four
subontologies: person (subclass of FOAF::person?), docu-
ment (from AKT?), organization (from SUMO?%), and idea,
as well as a set of non-taxonomic relations. Only the idea
subontology will concern us here. It contains a taxonomic
decomposition of the space of philosophical ideas according
to the disciplinary relatedness of their contents rather than
according to their structural roles. For example, instead of
dividing idea about philosophy into concept, distinction, ar-
gument, counterexample, and so on, the InPhO decomposes
it into subareas of philosophy—e.g. idea about metaphysics,
idea about epistemology, idea about logic, idea about ethics,
idea about philosophy of mind). Each subarea is in turn de-
composed into a series of issues considered fundamental to

"http://inpho.cogs.indiana.edu
“http://xmlns.com/foaf/spec/
3http://www.aktors.org/publications/ontology/
*http://www.ontologyportal.org/

work in that subarea; for example, idea about philosophy
of mind is decomposed into idea about consciousness, idea
about intentionality, idea about mental content, idea about
philosophy of artificial intelligence, idea about philosophy
of psychology, and idea about metaphysics of mind. The set
of concepts C in the concept hierarchy H¢ in the ontology
is restricted to the set of ideas in philosophy. In the remain-
der of the paper we will omit the prefix idea about when
referring to concepts.

Answer Set Programming to Populate and
Extend Dynamic Ontologies

In this section we describe our approach in which we com-
bine statistical text processing, human expert feedback, and
logic programming to extend and populate the ontology.

The Program

The program consists of three parts: (i) the signature; (ii) a
declaration containing extensional facts; and (iii) the regular
part consisting of datalog rules with negation. The rules of
our program are listed in Figure 1. Note that since it is strat-
ified it has a unique answer set and a polynomial time data
complexity (Apt & Blair 1990).

Signature Here, the signature does not contain function
symbols. Hence, only the set of objects O and set of pred-
icate symbols P require elaboration. The set of objects O
will contain as members terms (here, the word term is used
in the context of IR, i.e., as a lexical entity) referring to
philosophical ideas deemed to be candidates for classes, in-
dividuals or both in the ontology. These terms are part of
a controlled vocabulary which is maintained through statis-
tical methods and author feedback. Since our program be-
longs to the class DATALOG™ (datalog with negation) we
can partition the set of predicates P into (a) the set of exten-
sional predicate symbols Pg representing editor feedback
and the class and is-a relations; (b) the set of intensional
predicate symbols P; denoting the relations links-to and
instance-of ; and (c) the set of auxiliary predicate symbols
P4 which are introduced to represent intermediate results
which are not part of the final output. All predicates are bi-
nary except for the predicate class, which is unary. Their se-
mantics will be explained in detail in the following sections.

Pg ={class, is-a, similarity{o_,A}, more-specific,
more-general, incomparable}

Pr = {instance-of, links-to}, and

P4 = {desc, pins, nins, plink, nlink, sgo.. 4y, ms, mg, ic}.

Given this partition of the predicates one can define
the relational database schemas D;,, and D,,; such that
Rel(D;y,) = Pg and Rel(D,yt) = Pr. The program com-
putes the symmetric closures of the similarity and incom-
parable/either predicates, and the transitive closures of the
more general and more specific predicates (see rules (3)-(6)
in Figure 1). However, to be a program in DATALOG™
no predicate symbol in Pg is allowed to be the head of
a rule, that is, the logic program does not alter Ins(D;y,).
Therefore, the auxiliary predicate symbols syq.. 43, mg, ms,
and ic are introduced as counterparts to similarity(g.. 43,

more-general, more-specific, and incomparable. In the pro-
gram, the set of facts for these predicates is set to the
set of facts (tuples) for the corresponding predicates (rela-
tions) in Ins(D;,). For example, the rule mg(X,Y) «
more-general(X,Y) lets the set of facts composed of the
predicate mg initially be equal to the set of facts composed
of the predicate more-general. Now, when the transitive clo-
sure of mg is computed, no new more-general facts are in-
ferred. The naming of the predicate symbols in Pg and Py
follows their intuitive meaning.

mg(X,Y) «— ms(Y, X) (1)
ms(X,Y) «— mg(Y, X) 2)
ic(X,Y) «—ic(Y,X) 3)
si(X,Y) «— s;(Y,X),5 € {0,...,4} “)
mg(X,Y) — mg(X, 2), mg(Z,Y) 5
ms(X,Y) «— ms(X, Z),ms(Z,Y) 6)
iwe(X,Y) —ms(X,Y),mg(X,Y),s:;(X,Y),1 € {3,4} @)
desc(X,Y) «— isa(X,Y), class(X), class(Y) ®)
desc(X, Z) «— desc(X,Y),desc(Y, Z), class(X), 9)

class(Y'), class(Z)
pins(X,Y) «— s;(X,Y), ms(X,Y), not class(X), (10)
class(Y),not ic(X,Y), i € {3,4}

plink(X,Y) «— s;(Y, X),ms(Y, X), not desc(Y, X), (11)
not ic(Y, X), class(X), class(Y), i € {3,4}

plink(X,Y) «— s4(X,Y),ic(X,Y), not desc(Y, X), class(X) (12)

nins(X,Y) «— pins(X, Z),desc(Z,Y), not class(X), (13)
class(Y), class(Z)

nins(X,Y) — pins(X, Z), plink(Y, Z), not class(X), (14)
class(Y), class(Z)

instance-of (X,Y) «— pins(X,Y), not nins(X,Y) (15)

nlink(X,Y) « instance-of (Y, Z), plink(X, Z), class(X), (16)
not class(Y), class(Z)

nlink(X,Y) « instance-of (Y, Z),desc(Z, X), class(X), 17
not class(Y), class(Z)

nlink(X,Y) « instance-of (Y, X), class(X), not class(Y) (18)

nlink(X,Y) « plink(X, Z),desc(Y, Z), class(X), (19)
class(Y'), class(Z)

nlink(X,Y) «— isa(X, Z), isa(Y, Z), class(X), (20)

class(Y'), class(Z)
links-to(X,Y) « plink(X,Y), not nlink(X,Y) 21)

Figure 1: The rules of the stratified answer set program
which ultimately construct the annotated ontology from the
expert feedback facts. Some rules enforcing the sharp
distinction between intensional, extensional, and auxiliary
predicates are omitted.

Declaration The declaration consists of the extensional
facts, i.e. those composed of extensional predicates and ob-
jects in O. The extensional predicates can be further di-
vided into taxonomic predicates (class, is-a) and expert

feedback predicates (more-specific, more-general, incompa-
rable, similarityg.. 4})-

Regular Part The regular part of our program consists of
a set of datalog rules with negation. The working of these
rules is explained in Section “Populating the Ontology”, and
a full list is shown in Figure 1.

Semantics We largely apply the standard ASP semantics
of Gelfond and Lifschitz; however, instead of considering
each answer set to be a possible world, we consider it to be
a possible populated ontology. Intuitively, each answer set
is a possible set of beliefs one can consistently derive from
the set of facts and rules of the program.

Obtaining Extensional Facts through Statistical
Text Processing and Author Feedback

The concepts in the InPhO idea subontology are related over
the taxonomic is-a relation. Each of these concepts (e.g., ra-
tionalism) is referred to by a term (a text string) in the con-
trolled vocabulary. Therefore, the problem of determining
hierarchical relationships between concepts can be reduced
to that of finding hierarchical relationships between terms,
that is, extracting hypernym and hyponym relations from
text. There are two necessary conditions for a term ¢; to be a
hypernym of term ¢5: it has to be (a) semantically similar to
to and (b) more general than ¢, in the context of the subject
area the terms are used in. Conversely, for a term ¢; to be a
hyponym of term ¢ it has to be (a) semantically similar to ¢
and (b) more specific than t». In the “Related Work™ section
statistical methods are summarized which assign generality
(specificity) scores to terms using text corpora. Addition-
ally, a large number of measures for the semantic similar-
ity between terms exist. In previous work (Niepert, Buck-
ner, & Allen 2007) we combined such measures of similar-
ity and generality to provide, for any given term, a ranking
of possible hyponyms and hypernyms, respectively. Based
on these rankings, article authors are asked, when finaliz-
ing their document for publication, to approve or falsify the
estimates of semantic relatedness and relative generality of
pairs of terms which our algorithms have deemed highly re-
lated to the topic of their article. The relatedness is scored
on a five-point scale from highly related to unrelated, and the
generality question has four options: same level of general-
ity, ideal is more general than idea2, ideal is more specific
than idea2, and the two are incomparable. The generality of
two ideas is incomparable if they are entirely unrelated or if
one idea can be both more and less general than the other,
depending on the context. The feedback is stored as exten-
sional facts in Ins(D;,). For example, when an author pro-
vides the information that the idea neural network is more
specific than connectionism and that they are highly related,
the facts more-specific(neural network, connectionism) and
sq(neural network, connectionism) are added as two new tu-
ples to the current instance of D;,.

At any point in time, the InPhO concept hierarchy is de-
termined by the tuples of the class and is-a relations in
Ins(D;y,). To be dynamic, this taxonomy must be extended
on a regular basis. Whenever a number of new feedback

facts has accumulated, the logic program is run to populate
the idea subontology. The instances I1, ..., I,, of a concept C'
are most likely to become new subconcepts of C'. Because
the relative generality and similarity of pairs in {1, ..., I, }
is evaluated by the authors, we are able to algorithmically
determine a set of sub-concept candidates. Those instances
I which have few or no siblings which are more general (i.e.,
{I : more-general(Iy,I), I, € {I1,....,I,}}| = 0) are
considered candidates. In order to ensure the high quality of
the InPhO, the final decision is made by the subject editors
of the SEP. Their feedback on the automatically generated
suggestions for subconcept candidates creates new is-a and
class facts and thereby extends the taxonomy.

Populating the Ontology

The population of the idea subontology concerns the pro-
cess of finding instances of the taxonomic relations instance-
of and links-to. Given the extensional facts, the unique
answer set is computed and the intensional facts instance-
of and links-to are used to populate the corresponding re-
lations. For example, if the fact instance-of(neural net-
work, connectionism) is contained in the answer set, the
pair (neural network, connectionism) is set to be a tu-
ple in the instance of the relation instance-of. The out-
come of the program is a populated taxonomy with se-
mantic links between classes and between classes and in-
dividuals. We decided to include semantic links (which
are also used in well-known hand-crafted document hierar-
chies’, and provide richer interconnections while preserving
the lattice structure) because the taxonomy will primarily
be used to provide faceted search results and as a tool to
browse the encyclopedia. The logic programming paradigm
provides an elegant way to specify constraints and infer in-
tensional facts, which ultimately model and populate the de-
sired concept hierarchy. The programs are small in size, easy
to read and understand, and rules can be added, changed, and
removed if one wishes to alter the structure and content of
the taxonomy.

Inferring the instance-of Facts Two ideas A and B
are denoted strongly related, if at least one author eval-
uated them as 3 or 4 on the 5-point scale ranging from
0 (unrelated) to 4 (highly related). There is evidence
for (represented with the predicate symbol pins) the fact
instance-of(A, B) if A and B are strongly related, A has been
evaluated as more specific than B, A is not a class, B is a
class and the two ideas are not incomparable (rule 10). There
is strong evidence against (nins) the fact instance-of(A, B)
if there is a class C' which is a descendant (represented with
desc, the transitive closure of is-a, see rules 8 and 9) of
class B, and if there is evidence for the fact instance-of(A,
C) (rule 13). Similarly, there is strong evidence against the
fact instance-of(A, B) if there is a class C and if there is
evidence for the fact links-to(B, C) (rule 14). Finally, the
fact instance-of(A, B) is inferred, if there is evidence for
it and no strong evidence against it (rule 15). In Figure
2 the pins arcs denote that there is evidence for the facts

Shttp://dmoz.org—The Open Directory Project

Philosophy of Mind

—_—) is-a

——e P plink

Philosophy of
Psychology

Artificial Intelligence

nnectionism

Chinese Room Argument Neural Networks

Figure 2: This actual small fragment of our idea subontology
is used as running example to visualize some of the rules.
Circles are classes and squares are individuals. Some of the
inferred pins and plink facts are shown.

Philosophy of Mind

—_—)p is-a

----- p instance-of

—--=—:P links-to

Philosophy of Artificial Intelligence

Psychology -
e
-
/"/
gnitive Science Thinkig§ Machines nnectionism

Chinese Room Argument Neural Networks

Figure 3: The finally inferred instance-of and links-to facts.
One can nicely see how the use of the links-fo relation helps
to minimize the number of lattice arcs while retaining reach-
ability of strongly related ideas.

instance-of{neural networks, connectionism) and instance-
of(neural networks, artificial intelligence). However, since
connectionism is a descendant of artificial intelligence,
there is strong evidence against instance-of(neural net-
works, artificial intelligence). Note that the rules do not
constrain the hierarchy to form a tree but rather a lattice in
which no two classes where one is a descendant of the other
will have the same instance. If an idea A is an instance of
more than one class within a subdiscipline, the decision of
which unique class the individual will be an instance of is
made by subject editors as a post-processing step.

Inferring the links-to Facts The links-to relation models
semantic links between classes or between classes and in-
stances. Since it is difficult to force the concepts of a com-
plex discipline like philosophy into a strictly hierarchical
structure we introduce these links to achieve direct reacha-
bility of highly related ideas even if they are located in differ-
ent subareas. At the same time, we want to avoid too many
superfluous links. Thus, when there is evidence against a
link between ideas A and B (see below), it merely means
that the link would be redundant as there already exists a

link between A and a superclass of B. There is evidence for
a link (plink) from class A to class B if they are strongly
related, B is more specific than A, B not a descendant of
A, and A and B are not incomparable (rule 11). Addition-
ally, there is evidence for a link from class A to class B (or
individual B) if they are very strongly related, B not a de-
scendant of A, and if they are both incomparable (rule 12).
There is strong evidence against a link from class A to class
B (nlink) if (a) there is evidence for a link to a class C' of
which class B is a descendant (rule 19), or (b) if classes A
and B are siblings in the concept hierarchy (rule 20). There
is strong evidence against a link from class A to individual
B if (a) there is evidence for a link from class A to a class
C of which B is an instance (rule 16), or (b) if A has a de-
scending class C of which B is an instance (rule 17), or (c)
if B is an instance of A (rule 18).

In Fig. 2 the plink arcs show the existing evidence for
links from cognitive science. There is evidence for a link
from class cognitive science to class artificial intelligence
and to class thinking machines. However, there is strong
evidence against the link from cognitive science to thinking
machines because thinking machines is a descendant of arti-
ficial intelligence (rule 17). By the same rule, there is strong
evidence against the link from cognitive science to connec-
tionism. There is evidence for the link from class cognitive
science to individual neural networks. However, there is also
strong evidence against it, since there is evidence for the link
from cognitive science to class connectionism of which neu-
ral Networks is an instance (rule 16). Fig. 3 depicts the de-
rived instance-of and links-to facts contained in the answer
set.

Resolving Feedback Inconsistencies In our setting, in-
consistencies among the generality, specificity, and similar-
ity predicates can arise. An inconsistency is called strong if,
for any two terms ¢1, o, the feedback set contains the facts
mg(ty, ta) [ms(ty, t2)] and mg(to, t1) [ms(to, t1)]. Anincon-
sistency is called weak if, for any two terms ¢; and ¢, the
feedback set contains the facts s;(Z1, t2) and s;(t1, t2) with
i # j. If there is a strong inconsistency for two terms ¢1, to
we infer the fact ic(1,t2), that is, we set the two terms to
be incomparable (rule 7). Since one expert judged ¢; to be
more general than ¢y (in some context) and another expert
judged t, to be more general than ¢1, it is concluded that the
two concepts must be incomparable, disallowing instance-
of relations. However, a semantic link between ¢; and %o
is still possible if there exists a very high relatedness score
(rule 12). Weak inconsistencies for terms 1, to are resolved
by only considering the highest similarity score. We justify
this by assuming that experts are more likely to fail to notice
connections than they are to invent them. For example, not
everyone would recognize the relationship of anaphora to
propositional attitudes but we want to capture the informa-
tion provided by those who do.

Experiments

In preliminary experiments, several subjects provided about
2000 evaluations of the relative generality and similarity
of pairs of terms in the areas of Philosophy of Language,

Philosophy of Science, and Philosophy of Mind with the
already existing interfaces (Niepert, Buckner, & Allen
2007). Overlapping evaluations were possible, that is, some
term pairs were evaluated by more than one author. Due to
its superior performance in our tests, we decided to use the
reasoner DLV, Given the approximately 2500 extensional
(input) facts, the reasoning took about one second. The
resulting populated taxonomy can be browsed online’.

Conclusion and Future Work

We believe that we have shown that a combination of
statistical and formal reasoning methods applied to feed-
back from domain experts who are naive about ontology
design can be used efficiently to populate and maintain a
dynamic ontology in a highly abstract domain. Answer
set programming appears to be particularly suitable to this
approach because it is resilient in the face of dynamic and
conflicting feedback. We intend to explore alternative meth-
ods for inferring whole sections of the ontology. One uses
defeasible reasoning methods to obtain a space of possible
populated ontologies, and ranks them according to some
statistically defined criteria. Another uses Markov Logic
Networks (Richardson & Domingos 2006) which combine
first-order knowledge bases with probabilistic (Bayesian)
networks. This method would provide a probabilistic
ranking of the populated ontologies through the assignment
of weights obtained directly from statistical generality and
similarity scores. A significant difference between these
two approaches is that in the latter the populated ontologies
are ranked directly as part of its inductive reasoning method,
while in the former the rankings are computed as an inde-
pendent, post-processing step. We hope to determine which
of these two approaches and the one described in detail in
this paper best serves the needs of a dynamic reference work.
Finally, we would like to extend the reasoner to also derive
non-taxonomic relations among entities in our ontology.

Acknowledgments

This research has been funded by Indiana University under
the grant “New Frontiers in the Arts and Humanities” and by
Digital Humanities Start-up Grant HD-50203-07 from the
National Endowment for the Humanities.

References

Analyti, A.; Antoniou, G.; Damsio, C. V.; and Wagner, G.
2005. Stable model theory for extended rdf ontologies. In
Proceedings of ISWC, 21-36.

Apt, K. R., and Blair, H. A. 1990. Arithmetic classifica-
tion of perfect models of stratified programs. Fundam. Inf.
13(1):1-17.

Brewster, C.; Ciravegna, F.; and Wilks, Y. 2003. Back-
ground and foreground knowledge in dynamic ontology

construction. In Proceedings of the Semantic Web Work-
shop, Toronto, August 2003. SIGIR.

Shttp://www.dbai.tuwien.ac.at/proj/dlv/
http://inpho.cogs.indiana.edu/taxonomy/

Caraballo, S., and Charniak, E. 1999. Determining the
specificity of nouns from text. In Proceedings of EMNLP
and VLC, 63-70.

Cimiano, P.; Pivk, A.; Schmidt-Thieme, L.; and Staab, S.
2004. Learning taxonomic relations from heterogeneous
sources of evidence. In Proceedings of the ECAI Ontology
Learning and Population Workshop.

Cimiano, P.; Hotho, A.; and Staab, S. 2005. Learning
concept hierarchies from text corpora using formal concept
analysis. J. Artif. Intell. Res. (JAIR) 24:305-339.

Crampes, M., and Ranwez, S. 2000. Ontology-supported
and ontology-driven conceptual navigation on the world
wide web. In Proceedings of HYPERTEXT, 191-199.

D’Iorio, P. 2003. Cognitive models of hypernietzsche: Dy-
namic ontology and hyper-learning. Jahrbuch fiir Comput-
erphilologie 5:179—-184.

Eiter, T.; Lukasiewicz, T.; Schindlauer, R.; and Tompits,
H. 2004. Combining answer set programming with de-
scription logics for the semantic web. In Proceedings of
KR, pages 141-151.

Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Proceedings of ICLP,
1070-1080.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3/4):365-386.

Hearst, M. A. 1992. Automatic acquisition of hyponyms

from large text corpora. In Proceedings of COLING, 539—
545.

Heymans, S.; Nieuwenborgh, D. V.; and Vermeir, D. 2005.
Nonmonotonic ontological and rulebased reasoning with
extended conceptual logic programs. In Proceedings of
ESWC, 392-407.

Niepert, M.; Buckner, C.; and Allen, C. 2007. A dynamic
ontology for a dynamic reference work. In Proceedings of
JCDL, 288-297.

Oltramari, A.; Gangemi, A.; Guarino, N.; and Masolo, C.
2002. Restructuring wordnet’s top-level: The ontoclean
approach. In Proceedings of LREC, 17-26.

Richardson, M., and Domingos, P. 2006. Markov logic
networks. Mach. Learn. 62(1-2):107-136.

Ryu, P-M., and Choi, K.-S. 2006. Taxonomy learning
using term specificity and similarity. In Proceedings 2nd
Workshop on Ontology Learning and Population, 41-48.
Sanderson, M., and Croft, B. 1999. Deriving concept hier-
archies from text. In Proceedings of SIGIR, 206-213.
Smith, B. 2003. Ontology. In Floridi, L., ed., Blackwell
Guide to the Philosophy of Computing and Information,
155-166. Oxford: Blackwell.

Velardi, P.; Navigli, R.; Cuchiarelli, A.; and Neri, F. 2005.
Evaluation of ontolearn, a methodology for automatic pop-
ulation of domain ontologies. In Ontology Learning from
Text: Methods, Applications and Evaluation. 10S Press.

