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Abstract 

 
The aim of this paper is to summarize a particular approach of doing metaphysics through physics - the 

primitive ontology approach. The idea is that any fundamental physical theory has a well-defined 

architecture, to the foundation of which there is the primitive ontology, which represents matter. 

According to the framework provided by this approach when applied to quantum mechanics, the wave 

function is not suitable to represent matter. Rather, the wave function has a nomological character, given 

that its role in the theory is to implement the law of evolution for the primitive ontology.  

 

 

1. Introduction 

The primitive ontology (PO) approach, first formulated in [Goldstein 1998], and then 

developed in [AGTZ 2008, 2011, 2014], [Allori 2013a,b], provides a characterization of 

what it takes for a fundamental theory to be satisfactory when used to ‘read off’ the 

metaphysics from the physics. Thus, the approach is normative: it tells us what 

structure proper fundamental physical theories ought to have. In this paper, I will not 

motivate or defend the view against possible objections because this has been done 

elsewhere (see [Allori 2013 a,b]). Instead, I will articulate and summarize the main 

ingredients behind the idea of PO, and I will review what implications this approach 

has in the case of quantum mechanics. 

 According to the PO approach, all fundamental physical theories have a common 

structure, which provides a general explanatory schema with which the theory accounts 

for what the world is like. According to this approach, any satisfactory fundamental 

physical theory, if taken from a realist point of view, contains a metaphysical 

hypothesis about what constitutes physical objects, the PO, which lives in three-

dimensional space or space-time and constitutes the building blocks of everything else. 

In the formalism of the theory, the variables representing the PO are called the 

primitive variables. In addition, there are other variables necessary to implement the 

dynamics for the primitive variables: these non-primitive variables could be interpreted 

as law-like in character. Once the primitive and the non-primitive variables are 

specified, one can construct an explanatory scheme based on the one that is already in 

use in the classical framework. This allows determining, at least in principle, all the 
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macroscopic properties of familiar physical objects in terms of the PO. This structure 

holds for classical as well as for quantum theories.  

 Here is the outline of the paper. In Section 2 I sketch the relationship between 

physics and metaphysics in this account. Then In sections 3 through 9, I present the 

various ingredients of the PO approach: first the requirements that the primitive 

variables are defined in three-dimensional space and on the microscopic level, the 

distinction between the primitive and the non-primitive variables, the connection 

between the PO and local beables, how theories with the same evolution of the PO are 

the same theory, how one can generate new theories mixing up different primitive 

variables and different evolutions, and how symmetries are properties of the PO. Then, 

in Sections 10, 11 and 12 I apply the PO approach to quantum theories, focusing on the 

characterization of the fundamental features of the various theories, the meaning of the 

wave function, and of Bell’s alternatives. Then I discuss how the PO approach can be 

helpful in theory evaluation and in constructing a future relativistic invariant quantum 

theory. I conclude with a section in which I summarize the main ingredients of the PO 

framework. 

2. Physics and Metaphysics 

The starting point of this approach is a realist conception of fundamental physical 

theories, namely the assumption that the picture of reality provided by our best theories 

is accurate, and thus we can use physics as a guide to metaphysics. The relationship 

between physics and metaphysics is complicated, and surely deserves more exploration 

that the one I will provide here. Nevertheless, the main idea behind this framework is 

that one should not do metaphysics ‘from the armchair,’ so to speak, but rather one 

should take fundamental physical theories to investigate what the world is like. This 

does not mean, though, that a fundamental physical theory is completely void of 

metaphysical commitments to start with. Rather, when building a fundamental physical 

theory, the theoretician typically already has a metaphysical picture in mind, and if the 

theory turns out to be empirically adequate, then one will take it to inform us about 

metaphysics. This relationship is not one way, though. In fact, as it is known, 

fundamental physical theories are underdetermined by empirical data: many 

incompatible ontologies can give rise to the same empirical predictions, and thus one 

cannot rely simply on empirical virtues to select one ontology over another.  

Metaphysical criteria such as simplicity, explanatory power, or the like can help us with 

theory selection, so that in this sense metaphysics is also a guide to physics.  

3. Primitive Ontology 

The minimal requirement to even start this enterprise of inferring what the world is like 

from a fundamental physical theory is that there has to be something in the formalism 

of the theory that connects it to the world. That is, any fundamental physical theory 

should have a clear ontology. If the ontology of a theory is not clear, then it is not clear 

what entities the theory is assuming to exist, and then it is hard to see how one could 
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even begin to do metaphysics starting from it. To specify what the ontology of a theory 

is amounts to selecting which variables, among all of them in the theory, are to be taken 

as representing what exists in the world. For instance, consider classical mechanics. 

Arguably, the ontology of this theory is given by particles, with position and 

momentum.  

 Until now, nothing much is new. What changes in the PO approach is that one 

should also specify, among the elements in the ontology, which variables are primitive 

and thus constitute the PO of the theory. The discussion in the literature has focused 

mostly on the situation in quantum mechanics but the approach aims to be general (see, 

e.g. [Allori 2013 b]). The basic idea is that, when we are using a fundamental physical 

theory to figure out what the physical world is like, among the variables that represent 

the ontology of a theory, one can distinguish between primitive and non-primitive 

variables. In a sense, some part of the ontology is ‘more important’ than other parts: the 

primitive variables represent matter, what physical objects like tables and chairs are 

made of, the non-primitive variables in contrast do not. Rather, they are what is needed 

to complete the theoretical description of the world. In the case of classical mechanics, 

arguably, particles’ positions are the primitive variables, momenta are not; however one 

needs momenta to complete the description, to implement the law of motion for the 

particles. Thus, the qualification ‘primitive ontology’ instead of just ‘ontology’ comes 

from the idea that the PO does not exhaust all the ontology but it rather just accounts 

for physical (namely material) objects. As we will see in Section 11, in quantum 

mechanics the wave function is a non-primitive variable, and it is arguably more 

similar, in kind, to laws than to material objects.  

Let us now focus on the PO itself: the idea of dividing the ontology into primitive 

and non-primitive is rightfully puzzling and as such requires more exploration. For one 

thing, this separation does not mean that primitive variables are ‘more real’ than non-

primitive ones. Rather, it is a statement about what is material and what is not, without 

restricting ourselves to say that everything there is has to be material. Other things 

might exist (numbers, mathematical objects, abstract entities, laws of nature, and so on), 

and some of them (like natural laws) might be described by other variables, namely the 

non-primitive variables, in the ontology of a fundamental physical theory. Thus, the 

primitive variables are primitive in a variety of senses. First, they are ontologically 

primitive, given that they represent matter and they provide the fundamental entities 

the theory describes. But also, they are epistemically primitive: representing matter, 

they are the variables that directly accessible to us, contrarily to non-primitive variables 

that may represent laws of nature. In addition, they are structurally (or architecturally) 

primitive, in the sense that they constitute the building blocks of everything else, and in 

virtue of that and of being in three-dimensional space (or space-time) they ground the 
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explanatory scheme with which the theory describes and account for macroscopic 

physical reality2.  

 Notice that the primitive variables are not typically chosen a posteriori, once the 

formalism of the theory has been specified. Rather, there is already a natural 

interpretation for each mathematical object present in the theory, namely the one the 

proponent of the theory intended to give them. The scientist's choice of what physically 

exists in the world will more or less automatically determine the mathematical object to 

represent it. If one wanted matter to be made, say, of point-like particles, then the 

natural way to mathematically describe them would be using points in three-

dimensional space. Sometimes, though, like in the case of quantum mechanics, the 

situation is more complicated, since it is not clear what the initial metaphysical 

hypothesis behind the construction of the theory is. Thus, we find ourselves with the 

‘bare’ formalism, and we are obliged to ‘interpret’ it a posteriori. This is one reason why 

only in the quantum framework, in contrast with what happens in the classical theories, 

we have so many possible theories, as we will see in Section 11. The PO approach will 

allow ruling out at least some of the proposed theories, namely those which will have 

the wave function as primitive variable. Other considerations come into play in 

evaluating theories with different POs. For more on this, see [Allori forthcoming 2].  

Be that as it may, in the next two sections we will see what it takes for a variable to 

be a suitable PO and why.    

4. Three-Dimensionality 

A suitable PO needs to be (1) defined in three-dimensional space (or space-time) rather 

than being more complicated mathematical objects, and (2) it needs to be microscopic 

rather than macroscopic. Mathematically, the primitive variables are defined in three-

dimensional space or four-dimensional space-time. There can be different kinds of 

primitive variables: each given type of three-dimensional object can represent a 

different possible PO for a fundamental physical theory. A point x in ℝ3, for instance, 

represents a possible PO, since it can be taken to be represent point-like material 

particles. This is the case of classical mechanics. Also, a function f(x) defined on ℝ3 can 

also be a primitive variable, since it can be taken to represent a matter density field. 

This, arguably, could be the case of electromagnetic fields in classical electrodynamics, 

as we will see in Section 7. In addition, points in ℝ4, when interpreted as space-time, are 

a possibility, because they can be taken to represent space-time events, or ‘flashes,’ as 

the theories we will see in Section 11 will make clear. But do these features make a 

variable a good PO? 

 Roughly, the three-dimensionality of the primitive variables allows for a direct 

contact between the variables in the theory and the objects in the world we want them 
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to describe3. In fact, a PO represented by an object in a space of dimension d, different 

than 3, would imply that matter - including us - lives in a d-dimensional space. Thus, 

our fundamental physical theory would have to be able to provide an additional 

explanation of why we think we live in three-dimensional world while we actually do 

not. It has been argued that this is, at best, undesirable4, in part for reasons connected to 

another feature that a good PO is supposed to have, namely its fundamentality.  

5. Microscopicality 

From what we have said so far, the only limitation to the primitive variables is that they 

are supposed to be defined in three-dimensional space (or four-dimensional space-

time). In principle, they could be microscopic or macroscopic entities. However, a 

microscopic PO, in which the PO constitutes the building blocks of everything else, is 

able to ground a scheme of explanation that allows determining the properties of 

macroscopic physical objects in terms of the behavior of the PO. In fact, consider 

classical mechanics, a theory that provides an example of a microscopic PO. In this 

theory, arguably5 any physical body (gases, fluids, and solids) is satisfactorily described 

as a collection of (microscopic, three-dimensional) particles. Once the PO and its 

temporal evolution are given, everything else follows: in classical mechanics (as well as 

in classical electrodynamics) we can identify macroscopic properties more or less 

straightforwardly given how the (microscopic) PO combines and interacts to form 

(macroscopic) physical bodies. Thus, one could argue (as we did in [AGTZ 2008]) Bohr’s 

quantum theory can be viewed as a quantum theory in which the PO is given by the 

macroscopic measurement results. However, such a theory would be unsatisfactory: 

being macroscopic, the PO hardly can ground the explanatory scheme of the theory. 

6. Non-Primitive Ontology 

In contrast with the primitive variables, the non-primitive variables have the role of 

implementing the law of motion for the PO. For this reason, such variables are 

sometimes called ‘nomological’ variables. Roughly speaking, the primitive variables tell 

us what there is, and the non-primitive variables tell the primitive variables how to 

‘behave.’ In classical mechanics, as we already noted, the complete description of any 

physical system at a given time is given by the couple given by the position x and 

momentum p of the particles. The position is the primitive variable, while the 

momentum allows the equation for the position to be defined. In fact, the evolution of 

position is given by 
𝑑𝑥

𝑑𝑡
=

𝑝

𝑚
 where m is the mass of the particles. The evolution of 

momentum itself is given by 
𝑑𝑝

𝑑𝑡
= −∇𝑉(𝑥) = 𝐹(𝑥, 𝑝), where V is the potential and F the 

force. These two first-order equations can be written in a second-order equation 

plugging in the second equation into the derivative with respect to time of the first 
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(assuming that the mass remains constant in time). In this way, we get back the usual 

Newton’s equation: 
𝑑2𝑥

𝑑𝑡2
=

𝐹

𝑚
. 

 Thus in this sense the PO is the most fundamental ingredient of the theory. It 

grounds the ‘architecture’ of the theory: first, we describe matter through the primitive 

variables, then we describe its dynamics, implemented by some non-primitive 

variables. Then we are done, all the macroscopic properties are recoverable. This is also 

connected with the ‘primitiveness’ of the PO: even if the primitive variables do not 

exhaust all the variables in the ontology, because they describe matter in the theory, and 

because in principle every macroscopic property can be recovered in terms of them, we 

can directly compare the macroscopic behavior predicted by the theory to the actual 

behavior of matter. Not so for the other non-primitive variables, which can only be 

‘observed’ indirectly in terms of the ways they affect the behavior of the PO.  

7. Local Beables and Primitive Ontology 

The notion of ‘local beable,‘ introduced in [Bell 1987], share some similarities with the 

notion of primitive ontology. As Bell puts it, “the beables of the theory are those entities 

in it which are, at least tentatively, to be taken seriously, as corresponding to something 

real” [Bell 1987, pag. 234] and that correspond to a given portion of space-time (hence 

they are local in this respect). Thus, there is a clear connection with the notion of PO. 

Nonetheless, one can think of fundamental physical theories in which the local beables 

are not necessarily the PO of the theory. Think for instance to classical electrodynamics. 

In this theory, in addition to the positions of particles, there are also electromagnetic 

fields. They are local beables of the theory, since they are mathematically described by 

functions in three-dimensional space, and thus satisfy the first requirement for being a 

suitable PO. In addition, one could think of them as microscopic and fundamental: the 

reality described by classical electrodynamics would then fundamentally be made by 

particles and fields. In this way, the PO of classical electrodynamics would be both of 

particles and fields. In other words, the world would contain two kinds of material 

entities, one mathematically characterized by points, and the other by (suitable) fields. 

Nonetheless, given the role the fields play in the theory, another option seems more 

suitable. In other words, in the architectural sense we have been exploring in this 

approach, the (variable representing the) particles and the (variable representing the) 

fields do not have the same role in the theory: the fields, in fact, implement the 

evolution of the particles, not the other way round. In this way, thus, the fields seem to 

be better interpreted as nomological rather than primitive variables6. To put it in 

another way, the variables representing the ontology, O, thus, can be written in terms of 

the couple (primitive; non-primitive variables). That is, we can use the symbol of the 

semicolon “;” to divide in the ontology the primitive from the non-primitive variables, 
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the primitive ones being on the left of the semicolon7. For example, when we write 

O=(a;b) we mean that matter is represented by a alone. In classical mechanics, we would 

have O=(x;p), where x is the position of particles and p their momentum. Since the PO 

specifies what matter is in a given fundamental physical theory, the specification of the 

PO and its temporal evolution, or its spatiotemporal history, completely determines the 

theory. Thus, we have different theories depending on where we place the semicolon: 

one would have (among other less interesting possibilities8) T_a = (a;b), a theory in 

which matter is represented by a, T_b = (b;a), in which matter is represented by b, and 

T_ab=(a,b;), in which matter is both made of a and b stuff. In the case of classical 

electrodynamics, if x denotes the position of particles, E the electric field and B the 

magnetic field, we can have different theories of classical electrodynamics: 

CED_particles&fields=(x,E,B;), in which matter is composed by both particles and 

electromagnetic fields; CED_partciles=(x;E,B), in which matter is made of particles and 

fields are ‘part of the law of nature.9’ The former theory is what Albert has in mind in 

[Albert 2002], while something close to the second option is what is described in [DGZ 

1992].  

8. Physical Equivalence 

Since the empirical adequacy of a theory is decided by the histories of the PO, there 

could be empirically adequate theories with the same PO but whose evolution is 

generated by different non-primitive variables. This leads to the notion of physical 

equivalence: two different theories that provide the same evolution for the PO, no 

matter how it is mathematically implemented, describe the same physical world. They 

are indistinguishable as far as the empirical appearances are concerned. Therefore, on 

the one hand, if we change the PO and its evolution, we change theory, since we change 

the way the theory describes matter. On the other hand, however, if we keep the same 

histories of the PO while we change the way in which this evolution is obtained then we 

have theory that is physically equivalent to the original theory. For instance if the 

spatiotemporal histories of the PO in T_a, whose ontology is O=(a;b), are the same as the 

spatiotemporal histories of PO in T_a’, whose ontology is O=(a;c), then T_a and T_a’ are 

physically equivalent, even if they have a different non-primitive variables. 

 The notion of physical equivalence between theories was introduced in [AGTZ 

2008] in the framework of quantum mechanics. Nonetheless, it is not necessary to go to 

quantum theories to give an example of physically equivalent theories. Here is a very 

simple example of physical equivalent theories. If a force is conservative, it can be 

defined as the opposite of the gradient of the potential. This particular mathematical 
                                                           
7 This idea is original of Sheldon Goldstein [private communication]. 

8 We could also have (;a,b), corresponding to a theory with no ontology at all, so it can never represent 

physical reality. 

9In principle one could also have CED_fileds=(E,B;x), in which matter is made of fields, even if 

presumably it would be difficult to justify a nomological role for the particles.   
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operation involves derivatives, and because of this, it is always possible to find two 

different potentials that give rise to the same histories of the PO: any two potentials that 

differ by a constant will do the trick. In fact, they both give rise to the same force (and 

therefore the same histories of the PO), given that the derivative of any constant is 

always zero. Hence, two theories with such potentials will be physically equivalent. 

9. Symmetry Properties 

There is an important connection between the PO and the symmetry properties of a 

theory.  Roughly put10, since the histories of the PO provide the metaphysical picture of 

the world, if the theory is invariant under a given symmetry this picture should not 

change under the symmetry transformation connected to the symmetry. Given their 

role, the non-primitive variables will instead transform under the symmetry in such a 

way as to ensure that the histories of the PO will remain invariant. Invariance is 

therefore a property of the dynamics of the PO:  changing the PO of a theory might 

change its symmetry properties. Therefore, before asking whether a given theory has a 

given symmetry, it is necessary to identify its PO and see whether the transformed 

histories of the primitive ontology are still possible histories for the theory. In addition, 

choosing one PO rather than another might make the theory acquire or lose symmetries. 

In this way, if one considers having a given symmetry a desideratum for a theory, 

symmetries could then be used to select, among other super-empirical virtues such as 

simplicity or explanatory power, the most desirable PO (see Section 13).  

10. Quantum Mechanics  

Except that in the case of quantum mechanics11, no one has extensively discussed the 

plethora of theory that one could generate selecting the PO, the non-primitive variables 

and their respective evolutions to obtain an empirically adequate theory. Presumably, 

this is connected to the fact that, unlike the case of electromagnetic fields, it is much 

more difficult to make sense of the wave function as composing matter. In fact 

electromagnetic fields can be taken as a suitable PO for classical electrodynamics, even 

if it can come with some costs, like the loss of symmetry properties. In contrast, the 

wave function is not even a local beable: as we will see in the next section, it is defined 

in a configuration space, a highly abstract space, and it is necessary to close the gap 

between that space and ordinary three-dimensional space in order for the theory to 

account for the empirical predictions.  

Be that as it may, now that we have outlined the main ingredients of the PO 

approach, let us see how we can apply it to the quantum framework. The so-called 

orthodox quantum mechanics that one can find in physics textbooks has not a clear 

ontology at all: is it about the motion of microscopic entities, or is it about the 

measurement results? Luckily, other quantum theories have a clear metaphysical 
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11 With the exception of [Allori forthcoming 1] that discusses the case of classical electrodynamics. 
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commitment, and thus can be used as a guide to metaphysics. They are Bohmian 

mechanics (BM), the GRW theory (GRW), and Everettian mechanics (also known as the 

Many-Worlds theory, MW). Also, in [ATGZ 2008, 2011, 2014], some other possible 

empirically adequate quantum theories are discussed12.   

Particles are the PO of Bohmian mechanics, and they are specified by their 

position x in three-dimensional space. The trajectories of a system of particles are 

determined by Bohm's guidance equation13. This equation involves the wave function . 

Because of its role in generating the histories of the PO of Bohmian mechanics, the wave 

function is a non-primitive variable. The wave function in turn evolves in time 

according to Schrödinger's equation14. Schematically, then, we have O=(x;). 

 The situation in the GRW theory is more complicated. GRW is a theory in which 

the wave function evolves in time according to a stochastically modified version of the 

Schrödinger equation, also called GRW dynamics. Roughly, the wave function evolves 

according to the Schrödinger equation until a random time, randomly distributed with 

rate Nλ (λ= 10-15 s-1 is a new constant of nature). Then the wave function undergoes an 

instantaneous collapse with random center, which is mathematically represented by the 

multiplication of a Gaussian operator (σ =10-7 m, the width of the Gaussian, is also a 

new constant of nature). Historically, GRW has been taken to be a theory in which 

matter is described by the wave function. This is not the case in the PO approach. In 

fact, the wave function is a mathematical object that lives in a very abstract space: the 

space of all the positions of all the particles in the universe, configuration space. If there 

are N ‘particles’ in the universe15, configuration space has dimension M=3N. Thus, by 
                                                           
12 The notation used in these papers is not very illuminating and indeed can be misleading. In fact, it 

focuses on the evolution of the wave function that is not a good candidate to be a PO. Rather, a better 

notation would be one that would focus on the evolution of the PO.  If X denotes a generic PO (x for 

particles, m for matter density fields, and f for flashes), one could then specify in a subscript the type of 

law u for the evolution of the PO (deterministic or random), and with a superscript the law F for the 

evolution of the non-primitive variable (again, deterministic or random). That is:  XuF. In the case of 

classical mechanics, we would then have: 𝑥𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 
𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 . The fundamental object (the PO) in fact is x, the 

particles; the superscript indicates that the particles evolve deterministically (according to 
𝑑𝑥

𝑑𝑡
=

𝑝

𝑚
 ), while 

the subscript indicates that the momentum evolve deterministically as well (according to 
𝑑𝑝

𝑑𝑡
= 𝐹 ).  

Obviously, since there are infinitely different deterministic and indeterministic possible equations, this 

notation is not precise. However, it would be unreasonable to require this from a notation: an effective 

notation should be able to provide at glance the fundamental features of a given theory, rather than the 

precise details, and the new notation certainly does that. In contrast, the old notation, in addition of being 

equally imprecise, was drawing attention to the wrong object, namely the non-primitive variables, rather 

than to the PO, as we will see, and thus was potentially misleading.  
13 See [Bohm 1952], [Bell 1987], [DGZ 1992]. 
14  In the notation proposed in the previous footnote, BM would be denoted 𝑥𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 

𝑆𝑐ℎ𝑟𝑜𝑑𝑖𝑛𝑔𝑒𝑟 . 
15 Strictly speaking, whether there are particles or not (intended as point-like building blocks of every 

material object in the world) depends on the primitive ontology of the theory: in a theory with just the 

wave function there will not be any particles in this sense, hence the scare quotes.   
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definition, the wave function is not a suitable primitive variable. One proposal for a 

reading of GRW as a theory in which the wave function does not represent the PO has 

been put forward in [BGG 1995] and later dubbed GRWm in [AGTZ 2008]. In this 

theory the PO is a three-dimensional matter field m(x,t) defined in terms of the wave 

function, which evolves according to GRW dynamics16. Another proposal along similar 

lines was first suggested in [Bell 1987], then adopted in [Tumulka 2006a,b] and called 

GRWf in [AGTZ 2008]. In this theory, the PO is represented by points in space-time 

(events), the ‘flashes.’ These flashes are randomly distributed in space-time in a way 

determined by the GRW evolving wave function: every flash corresponds to one of the 

spontaneous collapses of the wave function17. Another possibility is a stochastic particle 

theory called GRWp3 in [AGTZ 2014]18. In this theory, the motion of the particles is 

governed by the guiding equation, but here the wave function obeys a GRW-like 

evolution in which the collapses occur exactly as in usual GRW theories except that, 

once the time for the collapse has been chosen, the collapse is centered at the actual 

position of the particle displaced at random.  

 Lastly, in Everettian mechanics the wave function evolves linearly according to 

Schrödinger’s equation. Almost all the proponents of Everettian mechanics agree in 

considering the wave function as the object in the theory that describes physical objects, 

but this is again incompatible with the PO approach19.  There is a theory, originally 

developed in [Bell 1987], in which the wave function evolves according to the 

Schrödinger equation and matter is made of particles, like in Bohmian mechanics, but 

they do not have a continuous trajectory in space-time. Rather, their configuration at 

different times is distributed according to a |𝜓|2 distribution, and there is no temporal 

correlation among them. The theory has later dubbed BMW (Bell Many Worlds) in 

[AGTZ 2008] and later called Sip (S from the Schrödinger evolution of the wave 

                                                           
16 In the new notation proposed in this paper, this theory would be dubbed 𝑚𝑟𝑎𝑛𝑑𝑜𝑚

𝐺𝑅𝑊 . 
17 Thus, using the notation introduced here, we would call this theory 𝑓𝑟𝑎𝑛𝑑𝑜𝑚

𝐺𝑅𝑊 . 
18 Or 𝑥𝑟𝑎𝑛𝑑𝑜𝑚

𝐺𝑅𝑊 . 
19 They believe they can describe the world using a mathematical object not defined in three-dimensional 

space like the wave function. They are presumably driven by the idea that to just have the wave function 

as the ontology of material object would make the theory simpler and more elegant. Indeed, this is one 

motivation that arguably has led them to believe that Everettian mechanics is the best solution to the 

measurement problem: there is no additional variable, and no modification of the Schrödinger dynamics, 

thus no modification of the traditional quantum formalism. This though, comes with the cost of having 

an extravagant metaphysics of many worlds. In addition, the simplicity of the mathematics is 

counterbalanced by the complexity of the explanatory scheme required to derive the world as we 

experience it from the theory: given the wave function lives in configuration space and not three-

dimensional space, they need a set of rules to recover the traditional properties of macroscopic objects, 

like for instance, localization in three-dimensional space. Functional approaches along these lines are 

being developed (see [Wallace 2003]). The primitive ontologist thinks this is unnecessary complicated and 

departs heavily from how a fundamental physical theory should be. For more see [Allori 2013 a]. 
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function, i for independent, p for particle ontology) in [AGTZ 2011]20. This theory has a 

many-worlds character. In fact, because of linearity, in any theory in which we have a 

wave function evolving according to Schrödinger’s equation there are superpositions. 

Thus, the wave function of the universe must presumably be thought of as consisting of 

several packets that are very far apart in configuration space that correspond to 

unrealized states of affairs: in the Schrödinger cat example, if when we open the box the 

cat is alive, the state of affairs corresponding to the dead cat are not realized.  Some of 

the packets will have support in events that did not take place in our time, such as for 

example the dinosaurs have never become extinct. In Bohmian mechanics, this is not a 

problem: since configurations are continuously connected in time, it is not possible for 

the configuration to jump, in an instant, from the support of one wave packet to a 

macroscopically distinct one. However, in Sip there is no connection whatsoever 

between what there is at a given instant of time and what there is at the previous or 

following instant. In this case, thus, the configuration will very probably visit in every 

second those distant regions supporting the other packets: therefore, at time t there can 

be dinosaurs and at time t+dt they have disappeared. Therefore, many worlds exist, not 

at the same time, but one after another. Because of this, the fact that right now there are 

memories and records of the past does not guarantee that they are actually reliable. 

Rather, the records are most likely to be false: at one instant, there is a set of what we 

would call ‘records’ that actually do not reflect in any way truthfully what has 

happened. [AGTZ 2011] also describe another theory with many-worlds character. 

Consider a three-dimensional matter field PO, whose evolution is determined by a 

Schrödinger evolving wave function. This theory has been dubbed Sm (S for the 

Schrödinger equation and m for the matter density function)21. In this theory, the 

superpositions of the wave function are inherited by the matter density field. By the 

linearity of the Schrödinger evolution, there are non-interacting mass densities 

associated with the different terms of the superposition: the live cat and the dead cat do 

not interact with each other, as they correspond to alternative states of the cat. Thus, 

they can indeed be regarded as comprising many worlds, superimposed on a single 

space-time. Since the different worlds do not interact among themselves, they are, so to 

speak, reciprocally transparent. There are also theories with flashes in which the wave 

function never collapses. For instance, Sf as described in [AGTZ 2011] 22 is a theory of 

flashes whose distribution is determined by a Schrödinger evolving wave function. 

Similarly to Sm, different non-interacting families of flashes correspond to different 

terms of the superposition, and hence the many-worlds character of the theory.  

                                                           
20 Here we would call it 𝑥𝑟𝑎𝑛𝑑𝑜𝑚

𝑆𝑐ℎ𝑟𝑜𝑑𝑖𝑛𝑔𝑒𝑟 . 
21 Alternatively,  𝑚𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐

𝑆𝑐ℎ𝑟𝑜𝑑𝑖𝑛𝑔𝑒𝑟 . 
22 Or 𝑓𝑟𝑎𝑛𝑑𝑜𝑚

𝑆𝑐ℎ𝑟𝑜𝑑𝑖𝑛𝑔𝑒𝑟 . 
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 In addition to the theory already described, we can imagine a variety of other 

theories mixing up the various types of PO and the various evolution equations. For 

instance, stochastic mechanics (SM, dubbed Sp’ in [AGTZ 2008]23) is a theory of particles 

that move stochastically, while the evolution of the wave function is deterministic, 

given by the usual Schrödinger equation [Nelson 1985], [Goldstein 1987]. For more of 

these theories, see [AGTZ 2008, 2011, 2014], and [Allori forthcoming 2]. 

To summarize, philosophers of physics and in general scholars interested in the 

foundations of quantum mechanics have always focused on the wave function, but that 

was a mistake: the wave function should not be taken as representing material objects. 

The PO approach says that in quantum theories, just like in any other fundamental 

physical theories, matter is represented by a variable in three-dimensional space (or 

four-dimensional space-time). Thus, it is a mistake to think that the fundamental object 

of quantum mechanics is the wave function. Matter in the quantum world is made of 

particles, or of three-dimensional matter density fields, or flashes, whose law of 

evolution is determined by the wave function.  

11. The Meaning of the Wave Function 

What is the wave function if it does not represent a material object? There are different 

approaches in the literature. First, the wave function has been taken to be a property of 

the particles24. Another proposal is that the wave function is just a useful mathematical 

tool [Monton 2006]. In contrast, the proponents of the PO approach argue that the wave 

function is best seen as a nomological entity. In other words, the wave function is more 

suitable to represent a law of nature to than a physical object [DGZ 1997], [GT 2000], 

[GZ 2013]25. The idea is that the wave function is like the Hamiltonian in classical 

mechanics is the generator of motion.  

 Several objections have been raised against this view26. First, since the PO 

represents what physical objects are made of while the wave function does not, either 

one denies the existence of the wave function or has to admit that something is more 

real than something else is. However, saying that the wave function is real but not 

physical does not imply there are different degrees of reality: in fact, they might be two 

kinds of substances, or entities. After all, the very same objections could be raised (but 

they are not) to a Platonist in the philosophy of mathematics, a dualist in the philosophy 

of mind, and a realist with respect to laws in ethics or in philosophy of science. Other 

objections focus on the disanalogies between the wave function and the general 

conception of laws. For instance, it is argued that the wave function cannot be regarded 

as a law because it interacts with the particles and thus seems to be more alike matter 

                                                           
23 In our notation it would be 𝑥𝑟𝑎𝑛𝑑𝑜𝑚′

𝑆𝑐ℎ𝑟𝑜𝑑𝑖𝑛𝑔𝑒𝑟 . 
24 See e.g. [Monton 2006] for a proposal, [Belot 2012] for a criticism, and [ELHD 2014] for a defense. 
25 [Callender forthcoming] has recently motivated this view in the Humean framework of laws of nature. 
26 See [BW 2005], [Belot 2012]. 
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than laws. One could respond saying that the wave function is similar to the potential in 

classical mechanics in this respect: the potential interacts with the particles but no one 

considers it real. Also, it has been argued that the wave function evolves in time, while 

laws are static. In this case, one could just not be bothered by it [Smolin 2013]. In any 

case, since the idea that laws of nature are static is a classical intuition, one could 

maintain that instead of trying to force our classical intuitions onto quantum mechanics, 

we should realize that quantum mechanics is telling us something new about laws of 

nature [Callender forthcoming]. Be that as it may, one could notice that there is 

evidence suggesting that in a future quantum cosmology the wave function would be 

static [GT 2000], eliminating the problem.  Another objection is that the wave function is 

contingent, in the sense that varies with the subsystem, and in contrast laws are 

universal.  A last complaint could be that the wave function is controllable: we can 

prepare physical systems in the state that we want. If so, it is difficult to regard the 

wave function as a law, since we do not seem to have control over them. These last two 

objections can be taken care of remembering that the wave function we can have control 

and that changes from system to system is the wave function of the system (the 

conditional or effective wave function [GZ 2013]), while the one that should be intended 

as nomological is the wave function of the universe (which is universal and we cannot 

control). 

12. Bell’s Alternatives and The Measurement Problem  

In some of the quantum theories seen earlier, namely the ones with a PO of particles, 

the PO is independent from the wave function. In contrast, in the theories with a matter 

density or PO of flashes, the wave function appears in the definition of the PO. This is 

the reason why, in theories like Bohmian mechanics, the state of the system is given by 

the couple (x,). Instead, in theories like GRW the state seems to be given by the wave 

function alone (even if upon a closer look one would need to specify also a rule to 

define the matter density or the distribution of the flashes). Thus, while we were used to 

distinguish between the different solutions of the measurement problem in terms of 

Bell’s alternatives, namely either the wave function is not complete or it does not evolve 

according to the Schrödinger equation, we now see another possible characterization. 

On the one hand, we have the theories in which the PO is independent on the wave 

function; on the other hand, we have theories in which the PO is defined in terms of it. 

Be that as it may, the PO, namely some microscopic ontology in the three-

dimensional space, is necessary to solve the measurement problem in the sense that if 

one does not do that, an entirely different scheme of explanation is necessary for 

physics to explain the world around us, along the lines of the ones proposed by the 

proponents of MW. The non-primitive variables provide the dynamics for the PO, and 

thus complete the theory: once the dynamics of the PO is provided, a picture of the 

world is given.  
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13. Theory Construction and Theory Selection  

In the process of theory construction, the scientist has a considerable amount of 

freedom. In fact, first she has freedom of choosing the kind of PO (particles, fields, 

flashes,…). Then she is free to choose the PO’s temporal law of evolution, in particular 

whether it is stochastic or deterministic. In addition, she has the freedom of 

implementing such a law with the aid of some non-primitive variables evolving (or not) 

according to their own equation, which can be either stochastic or deterministic. Thus, 

the histories of the PO have to be such that, macroscopically, will recover the empirical 

predictions, but all the other choices will be guided by super-empirical virtues like 

simplicity or explanatory power. For more on PO and theory evaluations, see [Allori 

forthcoming 2].  

In addition, as we have seen, there is an important connection between the PO of 

a theory and its symmetry properties: the symmetry properties of the theory will 

presumably change when changing the PO, thus requiring a theory to have a particular 

symmetry will put constraints on the choice of its PO. For instance, it has been 

(controversially) shown that CED_partciles&fields lacks important symmetry 

properties. If so, it may be a reason to reject that PO for CED in favor of an ontology of 

particles alone in which the symmetries are restored27. In the quantum framework, the 

situation is similar. In fact, it turns out that if one takes the wave function as 

representing the PO of a quantum theory, then the theory loses important symmetry 

properties, like Galilei invariance. In fact, in order for the evolution to be Galilei 

invariant, one would need the wave function to transform in a particular way through 

the multiplication of a suitable exponential. However, if one regards the wave function 

as a primitive variable, it seems natural to consider it as a scalar filed (on configuration 

space). As such, it would transform in a very different way, hence making the theory 

non-Galilei invariant. In contrast, if one assumes that the wave function is not primitive 

variable, then it will be more appropriate to consider the wave function as a ray (or 

direction) in Hilbert space. In this way, the theory will then gain back its symmetries, 

provided that the PO is chosen adequately28. A proponent of the wave function 

ontology could bite the bullet and insist that quantum theory is, contrarily to what is 

commonly believed, not Galilei invariant, but this is implausible since it can be shown it 

will provide some wrong results in the classical limit [Allori 2007].  

 Moreover, it is important to stress that the notion of PO is helpful in building 

new theories. For example, because of the connection between the PO and symmetry 

properties of the theory, choosing one PO instead of another might make it more or less 

difficult to build a relativistic invariant quantum theory. [Tumulka 2006] has shown 

                                                           
27 See [Albert 2002] for the original argument that CED_partciles&fields is not time reversal invariant, and 

[Allori forthcoming 2] for an assessment of the situation. 
28 For more on this, see [Allori ms]. 
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that the GRW theory with a flashes PO can be modified so that it becomes a relativistic 

quantum theory. Similar results have been obtained also by [Dowker and Henson 2002] 

for a relativistic collapse theory on the lattice with a PO of lattice locations (see also 

[Dowker and Herbauts 2004, 2006]). Other proposals for a relativistic quantum theory 

have been put forward. In a relativistic version of Bohmian mechanics [DMGZ 1998], 

there is an additional physical object that is fundamental, that is the foliation. Such a 

foliation divides space-time into space-like hypersurfaces, defines absolute simultaneity 

and temporal ordering of space-like separated points. If we consider this foliation being 

part of the PO of this theory then we are exactly in the same scheme as above and one 

can also analyze the hypothesis of the foliation evolving itself in time.  

14. Summary  

In the PO approach one needs primitive variables, something that in the theory has the 

role of representing matter. This PO is in three-dimensional space (or four-dimensional 

space-time) and it is microscopic. In this way, the PO constitute the building blocks of 

everything else, and grounds the explanatory schema with which the fundamental 

physical theory accounts for the world around us. In addition, there are other 

nomological entities, which in the theory have the role of dynamically implement the 

temporal evolution of the PO. In past fundamental physical theories such as classical 

mechanics and classical electrodynamics, a three-dimensional microscopic PO has been 

implicitly assumed. Using the PO approach in the framework of classical 

electrodynamic has allowed to see how different variables, in this case positions and 

fields, have actually different role in the theory: the former has an ontological role, 

while the latter exhibits a nomological behavior. Nevertheless, in quantum mechanics 

the idea of grounding the ontology of matter into some three-dimensional microscopic 

entity seems to fall apart: the wave function is not in three-dimensional space, it shows 

macroscopic superpositions, and thus it is not obvious at all whether it can represent 

matter. One point of the PO approach is that there is no necessity of abandoning the 

explanatory schema developed in the classical picture when dealing with quantum 

mechanics: this requires postulating a PO, either in addition to the wave function (like 

for instance in the case of Bohmian mechanics, but also as in the case of GRWp3 or Sip), 

or defined in terms of the wave function (like in the case of GRWf, GRWm but also Sf 

and Sm). This provides a complication when compared to the traditional picture in the 

fact that one adds something. Nonetheless, this complication translates into the 

simplification of not having to come up with a completely different understanding of 

what it means for a fundamental physical theory to account for macroscopic 

phenomena. In this way, one can see that the ‘paradigm shift’ that many have 

advertised has happened moving from classical to quantum theories is not as radical as 

one might have thought: arguably, the entities and the explanatory schema has 

remained the same [Allori 2015].     
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