
This is an incomplete version of the thesis dissertation titled:

Experiences In Migrating An Industrial

Application To Aspects
 by

Abdelbaset Almasri & Iyad Albayouk

This version of the dissertation does not include some code examples that were
drawn from a case study as this case study is covered by a non-disclosure

agreement. The full version of this dissertation is available on request.
Please contact Andy Kellens or Kris Gybels at Vrije Universiteit Brussel,

Dienst PROG, Pleinlaan 2, 1050 Elsene, BELGIUM

Vrije Universiteit Brussel
Faculty of Science

Department of Computer Science

Experiences In Migrating An Industrial
Application To Aspects

A Master’s Thesis
by

Abdelbaset Almasri & Iyad Albayouk

Promoter: Prof. Dr. Theo D’Hondt
Advisors: Andy Kellens and Kris Gybels

August 2006

Abstract

Aspect-Oriented Software Development (AOSD) is a paradigm aiming to solve

problems of object-oriented programming (OOP). With normal OOP it’s often

unlikely to accomplish fine system modularity due to crosscutting concerns being

scattered and tangled throughout the system. AOSD resolves this problem by its

capability to crosscut the regular code and as a consequence transfer the crosscutting

concerns to a single model called aspect. This thesis describes an experiment on

industrial application wherein the effectiveness of aspect-oriented techniques is

explained in migration the OOP application into aspects. The experiment goals at

first to identify the crosscutting concerns in source code of the industrial application

and transform these concerns to a functionally equivalent aspect-oriented version. In

addition to presenting experiences gained through the experiment, the thesis aims to

provide practical guidance of aspect solutions in a real application.

 i

Acknowledgements

First of all, we would like to thank Prof. Dr. Theo D’Hondt for promoting this thesis. We

thank our advisors Andy Kellens and Kris Gybels for their supervision to complete this

thesis. They also gave us useful comments helped to improve this thesis and it’s English.

We also would like to thank Thomas Cleenewerck for his valuable comments at starting

our experiment for this thesis. Last but not least, we thank our families and friends for

their support during our studies.

 ii

Contents

1 Introduction ………………………………………………………………………….
 1.1 Organization of this thesis ………………………………………………............

2 Aspect-Oriented Programming …………………………………………………….
 2.1 Crosscutting Concerns …………………………………………..........................
 2.2 AOP languages …………………………………………………………..............
 2.2.1 AspectJ …………………………………………………………………...
 2.2.2 JAsCo …………………………………………………………….............
 2.2.3 CaesarJ …………………………………………………………...............
 2.2.4 CARMA ………………………………………………………………….
 2.2.5 Alpha ……………………………………………………………..............
 2.2.6 HYPER J …………………………………………………………………
 2.2.7 Composition Filters ………………………………………………………
 2.3 Aspect language comparison ……………………………………………………. 20
 2.4 Summary………………………………………………………………………….

3 Preliminaries (Aspect Mining, Refactoring, and Java 2 platform, Enterprise

Edition (J2EE))……………………………………………...………………………
 3.1 Aspect Mining …………………………………………………...........................
 3.1.1 Dedicated browsers ………………………………………………………
 3.1.1.1 The Feature Exploration and Analysis Tool (FEAT)…………...
 3.1.1.2 Aspect Browser …………………………………………………
 3.1.1.3 Aspect Mining Tool ……………...
 3.1.1.4 Prism ……………………………………………………………
 3.1.1.5 JQuery …………………………………………………………..
 3.1.2 Automated aspect mining techniques ……………………………………
 3.1.2.1 Analyzing recurring patterns of execution traces …………..…..
 3.1.2.2 Formal concept analysis ………………………………………...
 3.1.2.2.1 Formal concept analysis of execution traces
 (Dynamic analysis)…………………………………..
 3.1.2.2.2 Formal concept analysis of identifiers (Identifier
 Analysis)……………………………………………..
 3.1.2.3 Natural language processing on source code …………...............
 3.1.2.4 Detecting unique methods ……………………………................
 3.1.2.5 Clustering (Hierarchical clustering of similar method names)….
 3.1.2.6 Fan-In analysis ………………………………………………….
 3.1.2.7 Clone detection …………………………………………………
 3.2 Refactoring...
 3.2.1 Object-Oriented Refactoring …………………………………..................
 3.2.2 Aspect-Oriented Refactoring ………………………………….................
 3.3 Java 2 platform, Enterprise Edition (J2EE) ……………………………………..
 3.3.1 J2EE Patterns - Service Locator …………………………………………

 1
 2

 4
 4
 6
 8
 12
 14
 15
 16
 17
 19

 21

 22
 22
 22
 23
 27
 29
 30
 32
 36
 36
 38

 38

 39
 40
 40
 41
 42
 46
 50
 50
 51
 58

 iii

 3.3.1 Enterprise JavaBeans (EJB) ……………………………………………...
 3.3.2 J2EE Design Patterns …………………………………………………….

4 Aspect Mining in AZ-VUB Case Study ………………………………………….....
 4.1 Case study system: AZ-VUB application ……………………………………….
 4.2 Aspect Mining Approaches ……………………………………………………...
 4.3 Applying Aspects to AZ-VUB application ……………………………………...
 4.3.1 Used Techniques …………………………………………………………
 4.3.2 Applying Bottom-up Approaches ………………………………………..
 4.3.2.1 Applying Fan-In Tool ………………………………………….
 4.3.2.2 Applying Prism Tool …………………………………………..
 4.3.2.3 Discussion ……………………………………………………...

4.3.3 Applying Top-down Approaches ………………………………………..
4.3.3.1 Applying JQuery Tool …………………………………………

 4.3.3.2 Applying Feat Tool …………………………………………….
 4.4 Evaluation ……………………………………………………………………….

5 Introducing Aspects in AZ-VUB Case Study ……………………………………...
 5.1 Applying AOP refactoring to AZ-VUB application ………………….................
 5.2 Extracting the Notifying Listener Concern ……………………………………...
 5.3 Extracting the Transaction Control Concern ……………………………………
 5.4 Extracting the Exception Handling Concern ……………………………………
 5.5 Extracting the Persistence Concern ……………………………………………..
 5.6 Extracting the Precondition Checking Concern …………………………………
 5.7 Extracting the Exception Wrapping Concern …………………………………...
 5.8 Extracting the ServiceLocator Concern …………………………………………
 5.9 Conclusion ………………………………………………………………………

6 Road Map ……………………………………………………………………………
 6.1 What have we learned? ...
 6.2 How to migrate to aspects in general ……………………………………………
 6.3 What are the pitfalls? ……………………………………………………………
 6.4 Conclusion ………………………………………………………………………

7 Conclusion and Future Work ………………………………………………………
 7.1 Conclusion ………………………………………………………………………
 7.2 Future Work ……………………………………………………………………..

Reference ………………………………………………………………………………..

 58
 61

 64
 64
 65
 66
 66
 67
 67
 71
 72
 74
 74
 76
 78

 80
 80
 80
 81
 84
 84
 85
 86
 87
 87

 89
 89
 92
 93
 97

 98
 98
 99

100

 iv

List of Figures

Figure 2.1: Represent Crosscutting Concerns and Aspect Modules..……………………
Figure 2.2: Modularizing Crosscutting Concerns………………………………………..
Figure 3.1: FEAT Perspective…………………………………………………………...
Figure 3.2: Aspect Browser Perspective…………………………………………………
Figure 3.3: Prism Perspective……………………………………………………………
Figure 3.4: JQuery Perspective…………………………………………………………..
Figure 3.5: Logging as a central class providing logging functionality…………………
Figure 3.6: Various (polymorphic) method calls………………………………………...
Figure 3.7: FINT view…………………………………………………………………...
Figure 3.8: Results of FINT……………………………………………………………...
Figure 3.9: Clone detection process……………………………………………………...
Figure 3.10: Visualization of extract method call into advice…………………………...
Figure 3.11: EJB Architecture…………………………………………………………...
Figure 4.1: Distributions of code lines in methods of AZ-VUB application…………….
Figure 4.2: Distribution for fan-in on the methods of AZ-VUB application…………….
Figure 4.3: An early exploration of the AZ-VUB application code…………………………….
Figure 4.4: Exploring the usage of the logging concern………………………………………...

 5
 6
25
28
32
34
41
43
46
46
49
55
59
65
68
75
76

 v

List of Tables

Table 2.1: Basic crosscut predicates in the CARMA crosscut language for expressing

conditions on join points……………………………………………………...
Table 2.2: Filter types and the taken actions when the message is accepted or rejected...
Table 2.3: Aspect language properties…………………………………………………...
Table 3.1: A number of relationships in FEAT………………………………………….
Table 3.2: FEAT Queries (Fan-out)……………………………………………………...
Table 3.3: FEAT Queries (Fan-in)……………………………………………………….
Table 3.4: Some predefined predicates in the query language…………………………..
Table 3.5: Comparison of dedicated browsers…………………………………………...
Table 3.6: Fan-in values for code in figure 3.6…………………………………………..
Table 4.1: Concerns discovered by both techniques (FINT and Prism)…………………

15
19
21
24
26
26
35
35
43
73

 vi

Listings

Listing 2.1: Aspect that implement Observer concern for figure classes………………..
Listing 2.2: Class Point showing duplicated code for precondition concern in setter

methods……………………………………………………………………...
Listing 2.3: Aspect that implements precondition concern for class Point………………
Listing 2.4: Simple tracing aspect implementation in JAsCo……………………………
Listing 2.5: JAsCo Connector …………………………………………………………...
Listing 2.6: Simple tracing aspect implementation in CaesarJ…………………………..
Listing 2.7: Tracing aspect that traces all method execution in the entire Smalltalk image…….
Listing 2.8: Alpha Aspect ………………………………………………………………...
Listing 2.9: Creation of a hyperspace……………………………………………………
Listing 2.10: Concern mappings…………………………………………………………
Listing 2.11: Hypermodule specifications……………………………………………….
Listing 6.1: Example Java code………………………………………………………….
Listing 6.2: Difficulty in using local variable in the Aspect……………………………..

 11

 12
 12
 13
 14
 15
 16
 16
 17
 18
 18
 91
 91

 vii

Chapter 1

Introduction

We know object-oriented programs or legacy code are structured as a community of

interacting objects; therefore most object-oriented programs may have a number of

concerns which cannot be localized using the available modularization mechanisms such

as persistence, synchronization, exception handling, error management and logging. So

these concerns would be scattering and tangling throughout source code yielding what is

called crosscutting concerns which make object-oriented programs have several problems

arising difficulties in understanding, maintaining and evolving the implementation of the

program requirements.

The Aspect-Oriented Software Development (AOSD) is a promising technique that can

be considered as one of the most suitable alternatives to improve the software

development process of currently legacy systems. AOSD provides valuable additional

flexibility in modularization of crosscutting concerns, resulting in considerably better

separation of concerns. AOSD does not replace object-oriented programming, it

complements it. AOSD improves the modularity of software applications, by extracting

the crosscutting concerns in a module called Aspect.

The goal of migration an industrial application from object-oriented to functionally

equivalent aspect-oriented version is improving the comprehensibility of the system, and

thereby improving its maintainability and extensibility. The migration process could be

achieved in two phases: Aspect Mining and Aspect Refactoring.

! Aspect Mining can be defined as [“the activity of discovering those crosscutting

concerns that potentially could be turned into aspects, from the source code and/or

run-time behavior of a software system”] [KM05].

! Aspect Refactoring can be defined as [“the activity of actually transforming the

discovered crosscutting concern into real aspects in the source code”] [KM05].

 1

1.1 Organization of this Thesis

Chapter 2 (Aspect-Oriented Programming): This chapter introduces aspect-

oriented programming and the bad symptoms (tangling, scattering) yielding from

implementing the crosscutting concern by traditional means of OOP approach. In this

chapter we present and explain different AOP languages that provide additional

flexibility in modularization and capturing the location and behavior of crosscutting

concerns.

Chapter 3 Preliminaries (Aspect Mining, Refactoring, and Java 2

Enterprise Edition (J2EE)): In the aspect mining section, we explain the different

aspect mining techniques and discuss how certain of the aspect mining tools can be used.

In the refactoring section, we discuss object–oriented refactoring and aspect-oriented

refactoring. In this chapter, we give a brief overview of Enterprise Java Beans (EJB),

which are used as the underlying technology of the case study we used in our experiment.

We also illustrate some of J2EE design patterns, like Service Locator, Value Object,

Business Delegate and Session Facade.

Chapter 4 (Aspect Mining in AZ-VUB case study): We describe our

experiences applying aspect mining techniques on an industrial legacy application written

in Java. We also discuss the aspect mining tools used in this experiment and the

crosscutting concerns identified in the application. In the end of the chapter we give an

evaluation of the mining activity.

Chapter 5 (Introducing Aspects in AZ-VUB case study): We present in

detail the AOP refactoring process applied on the AZ-VUB application. We also discuss

and present the refactoring for the crosscutting concerns identified in the AZ-VUB

application through the mining process presented in the previous chapter, like: Extracting

the Notifying Listener Concern, the Transaction Control Concern, the Exception

Handling Concern, the Persistence Concern, the Precondition Checking Concern, the

 2

Exception Wrapping concern and the ServiceLocator Concern. In the end of the chapter

we give conclusion of the refactoring process.

Chapter 6 (Road Map): In this chapter, we present the lessons that we have learned

through our experiences in migrating an industrial application to aspects. The first lesson

outlines the steps and what are involved of the developer effort in extracting the

crosscutting concern. The second lesson shows some of the AspectJ limitations. The third

lesson explores the refactoring problem of the heterogeneous crosscutting concerns. We

also surveyed the steps needed to be followed to migrate from legacy application into

aspects. Finally, we explained the pitfalls involved in the migration to aspect.

 3

Chapter 2

Aspect-Oriented Programming
2.1 Crosscutting Concerns

The major ideas in object-oriented programming are build software structure whose

behavior reflecting the real-world situation. The live structure of the software being

modeled is achieved by describing states and operations that may apply to classes of

objects. But many large legacy software systems comprise many concerns that are not

localized to a single class; these concerns can be classified into core concerns and

system-level concerns. For example, the core concern of an online book shop system

would process book orders, while its system-level concerns [java] would handle

logging, authentication, transaction integrity, failure recovery, distribution, and so on.

Many such concerns are known as crosscutting concerns. The code resulting from

implementing these crosscutting concerns will be suffering from a few symptoms.

The symptoms can be classified into two categories: [java].

! Code tangling: the occurrence of multiple concerns mixed together appears in

one module.

! Code scattering: the code elements that belong to one concern spread over

multiple modules implementing other concerns.

These symptoms make object-oriented software have several difficulties such as:

[CCHW04]

1. Difficulty in understanding and reasoning about the implementation of the

concern: we must look at multiple areas by the source code for getting the

complete picture.

2. Difficulty in adding the implementation of the concern into the code base:

Care and attention to detail is required to remind to add logic in each place it

must be. Then, at each of these places, the implementation of the concern

needs to be done correctly.

3. Difficulty in maintaining and removing the implementation from the code

base.

4. Difficulty in reusing the implementation in another system.

 4

Solution

Software developers need an alternative way of thinking about object-oriented

program construction. Aspect-Oriented Software Development (AOSD) or called

Aspect-Oriented Programming (AOP) provides a new way of thinking about object-

oriented program construction and tries to solve problems that confront each

developer. AOP provides valuable additional flexibility in modularization to capture

the location and behavior of crosscutting concerns, resulting in considerably improved

Figure 2.1: Re

separation of concerns.

present Crosscutting Concerns and Aspect Modules

he left side of the figure 2.1 shows the crosscutting concerns leading to tangled code

he AOP Approach

modularizing crosscutting concerns. Much like object-oriented

T

within software code. The code of several modules can be seen in the columns. In

those modules the crosscutting code is highlighted. The right side shows AOP

addressing this problem by modularizing the crosscutting concerns by means of

aspect modules. The software modules are still in place, but the crosscutting code has

been extracted and isolated in a single aspect module.

T

AOP is a new way of

programming (OOP) is a way of modularizing common concerns. AOP has been

proposed as a technique for improving separation of concerns in software. AOP

extends object-oriented programming languages by providing modules called Aspects.

Aspects are for AOP what classes are for OOP. It gathers all the functionality inside

of it. It can extend other aspects or classes in the same way as with classes. We can

modularize the crosscutting concern in an efficient manner by factoring out logic

belonging to the crosscutting concern into an Aspect. The aspects have all the

characteristics of the class and add one more. They have potential to enhance the

 5

behavior of other classes through a mechanism called weaving. The process of

combining the aspects and the classes into an executable system is called aspect

weaving.

Figure 2.2: Modularizing Crosscutting Concerns

 of modularizing crosscutting concerns is to separate the crosscutting concern from

Pointcut language is important element of the AO approach. It specifies how an aspect

2.2 AOP languages

ols (languages) used to apply AOP approach. [BCC05] AOP

 The way

the core concern and localize it in aspect. Aspect waver is a tool used to combine the

crosscutting concern code included in the aspects and the core concern code together yielding

a woven code presented the working system. Figure 2.2 visualizes the crosscutting concern

modularizing.

can identify the program's points (join point) where the crosscutting code (aspect

code) is joined with core concern code. These joint points could be specified

according to behavioral and/or structural properties of the program.

There are several AOP to

languages supply mechanisms that explicitly capture crosscutting structure. These

mechanisms make crosscutting concern easily to program in a modular way, and

thereby achieve the usual advantages of modularity: easier to understand, maintain

and evolve. With aspect modularity, the program has the ability to include / exclude

functionality since aspects are separated from the OOP modules, adding or excluding

them is a lot easier. Well-known examples of such languages are AspectJ, JAsCo,

CARMA, Logic AJ, Alpha, HyperJ, Composition Filters, and CASAR. We will

introduce certain of those languages later.

 6

Language Mechanisms used for Capturing Crosscutting Concerns

 and represent

ed to handle the concerns known as static crosscutting concern.

ffecting Software Behavior Dynamically

ts in working system. These points are

t values and other state before

 can view and alter return values and other state after a join

 point. It can view and modify input

The primary language mechanisms that AOP languages use to capture

crosscutting concerns can be classified as the follows:

Static Introduction

This mechanism is us

We can alter the program structure by introducing a new operations or fields to

existing classes; also we can alter the class hierarchy of the program. Introduction is

based on the notion of open classes, and includes addition of fields and methods and

declaration of super classes and implemented interfaces. Inter-type declarations take

place at compile time. The introduction mechanism is used by certain AOP languages

to handle the many static parts of a crosscutting concern to be expressed in one place,

even when the declarations must apply to a variety of separate and unrelated classes.

A

We can add extra behaviors at certain poin

known as join points. The language’s join point model specifies well-defined place in

the structure or event in the execution flow of a program at which additional behavior

can be added. Join points can be considered as points in a runtime object's life line

including points at which the object is created, points at which the object receives a

method call and points at which a field of the object is accessed or updated. The join

point model may vary considerably between languages. Set of these points can be

described by Pointcuts that is a predicate that matches a set of join points. Join points

invoke special code that can alter execution, this code is known as Advice. Through

the program execution the advice's code can be triggered at each join point in its

pointcut. The implicit advice triggering can be happen:

before the join point: advice can view and modify inpu

the join point is entered.

after a join point: advice

point has finished. There are also special cases of after advice for methods returning

normally or exiting by throwing an exception.

around a join point: advice replaces the join

values, invoke the actual join point using a special keyword, and view and modify its

results. It is the only kind of advice that must declare a return type.

 7

2.2.1 AspectJ

s AOP language extension to java language and it is considered most

ointcut designators

ral pointcuts designators which can be parameterized with

y combining the pointcuts using the

 its

 to method or constructor matching

! or constructor

AspectJ [asp] i

popular AOP language. AspectJ has been developed by team of developers at Xerox’s

PARC (Palo Alto Research Center). To encourage the growth of the AspectJ

technology and community, PARC transferred AspectJ to an openly developed

Eclipse project in December 2002. It is the first attempt at a general AOP language. In

AspectJ the definition of an aspect is very similar to the definition for the class. The

classes contain variables and methods, whereas the aspects contain variables,

methods, pointcuts and advices.

P

AspectJ supports seve

patterns picking out set of methods, constructors, fields and types. The pattern is a

regular expression containing "*" wildcard matching any sequence of characters ,

".." wildcard in an identifier matching a sequence of tokens starting and ending with

"." , and ".." wildcard in parameter list matching any numbers of parameters. For

example: execution(* com..Foo.*(..)) matches joint points for execution of any

method returning any type in a class Foo of package whose name starts with "com".

The method may have any number of arguments.

In AspectJ also we can build compound pointcut b

logical operators and (&&), or (||) , and not (!). For example to capture all calls to

methods defined in the java.sql package, or all calls to methods defined in the package

javax.sql, we can write the pointcut call(* java.sql..*(..)) || call(* javax.sql..*(..)).

The pointcuts designators can be categorized into three categories according to

matching join points; pointcuts designators matching based on join point kind,

pointcuts designators matching based on lexical scope of the join point and pointcuts

designators matching based on join point context. The two basic pointcut designators

from the first category are call and execution.

! call(Method-signature) means a call

Method-signature, for example call(public int sum(int,int)).

execution(Method-signature) means execution of method

matching, for example execution(public HelloWorld.new(..)).

 8

The next category of designators that matching join points in specific scope; some of

these designators like within(type pattern) and withincode(Method-signature) used

to delimit the join points according to lexical scope of certain classes or methods

;there are other pointcut designators like cflow(Method-signature) delimiting join

points to be in the control flow of specific method. The pointcut designator

target(type pattern) is an instance of pointcut designators matching based on join

point context where the target object is an instance of type matching type pattern of

the designator.

 Advice

Advice declarations can include formal parameters, which are passed to pointcuts and

binding values in join points. The body of each advice is executed at every join

point captured by the advice's pointcut. [KHH+01, ajd].

Before():call(int foo(..)){…} executes before calling the method named foo that

returns integer value and takes any number of arguments

before():set(int Foo.x) {…} executes before setting a value to the integer field

named x in class Foo.

after()returning:pointcut{…} executes after a normal returning from a join point

matched by pointcut.

after()returning(int x):pointcut{…} executes after a normal returning integer value

from a join point matched by pointcut. The variable x is bind to the return value that is

accessible to the advice body.

after()throwing:pointcut{…} executes after throwing any exception in a join point

matched by pointcut.

after()throwing(ExampleException e):pointcut{…} executes after throwing

ExampleException in a join point matched by pointcut. The variable e is bind to the

thrown exception that is accessible to the advice body.

After(): pointcut {...} executes after the pointcut, regardless of how it returned

whether by normal return or by exception .

String around():call(String Foo.toString()) {... return proceed();…}:executes

instead of calls to toString method of class Foo. The toString () can be invoked in the

body using proceed(), which has the same signature as the around advice. The

around advice behaves like before and/or after advice, depending on when and if the

original join point is invoked.

 9

void around(int nval):call(void Point.set*(int))&& args(nval){…} executes instead

of calls to all setter methods of class Point that are parameterized with integer value.

The argument value is accessible to advice body.

Reflection at Join points

The AspectJ supports reflective computation on the join point place through a

reflective reference that is accessible to advice bodies. Through the special variable

thisJoinPoint we can access to both the dynamic information at a join point and the

static information about the advice: such as the set of arguments at the join point, join

point kind (method call, variable read, etc.), signature at the join point, source code

location of the join point, object executing the join point, and etc.

Inter-type member declarations

AspectJ support declaration called Inter-type declaration by which we can introduce

new elements to other types for instance fields and methods. These declarations are

like in form to declarations in those types themselves, except that the member’s name

is prefaced by a type pattern. The type pattern specifies into which types the member

will be introduced. Within the body of introduced methods and constructors, this

refers to the enclosing object, not to the aspect where the member is declared. For

example to introduce the method foo to all classes of type X

public void X.foo(){//do stuff}

Using the declare parents construct; aspects can declare a super class and

implemented interfaces on classes. The statement declares parents: B extends A;

declares that the super class of B is A. Interfaces may be introduced using similar

syntax, such as declare parents: C implements I; which declares that class C

implements interfaces I.

AspectJ Aspect examples

We will explain AspectJ aspect's features by presenting an example of implementing

an Observer pattern concern and another example illustrates how implement the

checking concern as aspect.

Observer Aspect example:

Code listing 2.1 shows codes of an observer notification concern. In drawing

application, when figure elements are moved; the drawing canvas must be notified to

 10

repaint for refreshing its displaying elements. This notifying concern crosscuts all

move methods in the figures classes. Every figure class maintains a set of references

for its observers by storing or removing these references through special methods to

do that. There is also method for notifying the observers after the figure is moved, so

we can see the invocation statement of that notify method as last statement in all

move methods in figures classes. We need to extract out the logic of this crosscutting

concern from the core concern of the figure classes and localize it in an aspect. The

aspect in listing 2.1 does exactly this. The aspect introduces the methods manipulating

the observer registration and notifying (addObserver, removeObserver,

notifyObservers) by using inter-type declarations that appear in the lines 6,7,11 and

15. The aspect specifies when the aspect should be applied by defining pointcut that

matches joint points of the move method execution. Also the aspect defines after

advice triggered at the pointcut. The action in the advice is notifying the observers of

the figure object.

Listing 2.1: Aspect that implement Observer concern for figure classes

1 package aspects;
2 import figures.*;
3 import java.util.*;
4 public privileged aspect ObserverProtocolAspect {
5
6 private Set FigureElement.observers = new HashSet();
7 public void FigureElement.addObserver(Observer o){
8 this.observers.add(o);
9

10 }
11 public void FigureElement.removeObserver(Observer o) {
12 this.observers.remove(o);
13 }
14
15 public void FigureElement.notifyObservers(){
16 Iterator it = observers.iterator();
17 while(it.hasNext()) {
18 ((Observer)it.next()).update(this);}
19
20 }
21 pointcut moveFigure():execution(void FigureElement.move(int,int));
22 after ():moveFigure(){
23 ((FigureElement)thisJoinPoint.getTarget()).notifyObservers();
24 }
25 }

Precondition Aspect Example

Precondition checking often requires duplicated code if the conditions are common to

many methods. We observe that class Point in listing 2.2 contains two methods setX

 11

and setY checking the parameter value before setting the coordinates of the point with

a new value that must be positive value. We can refactor such contract checks into a

separate aspect shown in listing 2.3.

1 public class Point{
2
3 private int _x;
4 private int _y;
5 public int getX() { return _x; }
6
7 public int getY() { return _y; }
8
9 public void setX(int x) {

10 if(x<0)
11 _x=0;
12 else _x = x; }
13
14 public void setY(int y) {
15 if(y<0)
16 _y=0;
17 else _y = y; }
18 }

Listing 2.2: Class Point including duplicated code for precondition concern in setter
methods

Listing 2.2 shows the code without using aspects, and listing 2.3 shows an equivalent

program using aspects. By using aspect we can remove this precondition concern

from the base code into aspect code.

1 public aspect PreCondtionAspect {
2
3 void around(int nval):
4 call(void Point.set*(int))&&
5 args(nval){
6 if(nval<0)
7 nval=0;
8 proceed(nval); }
9 }

Listing 2.3: Aspect that implements precondition concern for class Point

2.2.2 JAsCo

JAsCo [jas] is sophisticated aspect-oriented programming language which is designed

especially for component based software development (CBSD) [SVJ03]. JAsCo is

extension for the Java Beans component model which allows describing reusable

aspects, independently from a specific context. The most important features of the

JAsCo language are its highest reusable aspects and its strong aspectual composition

mechanism to manage combinations of aspects. The JAsCo language is aspect-

 12

oriented extension for Java which as closely as possible to the original syntax and the

concepts of Java. JAsCo introduces important additional entities: aspect bean, hook

and connector.

! An aspect bean allows describing crosscutting behavior in an abstract way,

independent of the base application by means of special kind of inner class

named hook.

! A hook is a structure like AspectJ aspect; it defines advice and part of the

pointcut that is independent of the base application.

! A Connector is used to deploy aspect beans onto a concrete context and to

specify explicit combinations among two or more aspect beans.

JAsCo Aspect examples

Code in listing 2.4 shows a simple JAsCo aspect bean containing a hook. The hook

contains around advice that prints a message before and after the execution of the

method. Note here that the method captured by the hook is not concrete for any

context. The hook constructor takes abstract method signatures as parameters passing

them to a pointcut. Code in listing 2.5 explains the hook instantiation using the hook

constructor passed to it concrete method signatures used to initialize the pointcut in

the hook. This utility can be benefited from it in reuse the aspect to be used for other

context. Listing 2.5 shows a connector connecting the tracing hook with all classes of

figures package by instantiation the tracing hook with a method signature pattern.

Listing 2.4: Simple tracing aspect implementation in JAsCo

1 package tracing ;
2
3 class AspectTrace {
4 hook Trace {
5 Trace(method(..args)) { //hook constructor
6 //metod is absract metod parameter
7 execution(method); //absract pointcut }
8 around() { //advice
9 Tracer.traceEntry("entering "+ thisJoinPoint.getName()+" in "+

10 thisJoinPoint.getClassName());
11 Object retval= proceed();
12 Tracer.traceExit("Leaving "+ thisJoinPoint.getName()+" in "+
13 thisJoinPoint.getClassName());
14 return retval;
15 }
16 }
17 }

 13

Listing 2.5: JAsCo Connector

1 static connector AspectTraceConnector //connector
2 {
3 application.AspectTrace.Trace hook0 =
4 new tracing .AspectTrace.Trace(* figuers.Point.*(*)); //hook instantiation
5
6 hook0.around();
7 }

2.2.3 CaesarJ

CaesarJ [BH05] [cae] is a new aspect-oriented programming language based on Java

programming language. CaesarJ language facilitates better modularity and

development of reusable components. It provides powerful features, which can be

used to improve design of existing Java projects as well for new development CaesarJ

has important properties of modularity: abstraction, information hiding and

minimization of dependencies. Aspects in CaesarJ are designed as components, which

have clear abstraction and can be reusable. CaesarJ improves separation of concern in

the same way as AspectJ. AspectJ style pointcuts and advices can be used to intercept

points, where component functionality should be integrated. CaesarJ modularizes

components, which consist of multiple collaborating classes.

CaesarJ uses the AspectJ weaver, which applies byte code manipulations to insert

efficient advice calls. There is no special module construct for aspects in CaesarJ. The

pointcuts and pieces of advice are declared directly in Caesar classes. An aspect in

CaesarJ is a class, which declares or inherits pointcuts and advice. Aspect objects are

instances of such classes. Aspects have all properties of classes: instantiation,

encapsulated state, inheritance and polymorphic usage. The inheritance model of

CaesarJ is mixin-based. A class can inherit from multiple classes so pointcuts and

advices can be inherited from multiple classes.

Listing 2.6 explain an example of an aspect used to trace the execution of all

application's methods. As seen in the listing the aspects constructs are defined in

normal CaesarJ class.

 14

1 public deployed cclass ConsoleTracer {
2 pointcut traceMethods() : (execution(* *.*(..)) ||
3 execution(*.new(..))) && !within(ConsoleTracer+);
4 before() : traceMethods() {
5 System.out.println("Entering [" +
6 thisJoinPointStaticPart.toString() + "]");
7 }
8 after() : traceMethods() {
9 System.out.println("Leaving [" +

10 thisJoinPointStaticPart.toString() + "]");
11 }
12 }

 Listing 2.6: Simple tracing aspect implementation in CaesarJ [BH05]

2.2.4 CARMA

The CARMA [BH05, kgy] aspect language is a logic pointcut language. The essential

language features of CARMA are oriented to the definition of pointcuts. CARMA is

an AOP-extension of an object-oriented language; it has a dynamic join point model,

very much based on AspectJ’s join point model. CARMA's join point model is based

on the key events happening in object-oriented programs: sending and receiving of

messages, and inspecting and changing of state. At every such event join point, an

aspect can intercept and execute advice before or after the actual execution of the join

point. The specification of exactly which join points is written in a pointcut language

based on logic programming as a logic query over the set of all join points occurring

in the object-oriented program. The query can make use of a number of join point

predicates, predicates stating conditions over join points, which form the heart of the

CARMA language. The most basic predicates are shown in the table 2.1.

Type of join
point

Crosscut predicate in old
syntax

Crosscut predicate in new syntax
(In development)

Message
reception

reception(?jp, ?selector,
?arguments)

?jp isReceptionOf: ?selector with:
?arguments

Message
send

send(?jp, ?selector,
?arguments)

?jp isSendOf: ?selector with:
?arguments

Assignment assignment(?jp, ?varName,
?oldValue, ?newValue)

?jp isAssignmentTo: ?varName from:
?oldValue to: ?newValue

Reference reference(?jp, ?varName,
?value)

?jp isReferenceOf: ?varName
havingValue: ?value

Block
execution

blockExecution(?jp,
?arguments)

?jp isExecutionOfBlockWith:
?arguments

Table 2.1: Basic crosscut predicates in the CARMA crosscut language for expressing
conditions on join points [kgy]

 15

The example in listing 2.7 demonstrates the tracing aspect by defining a pointcuts that

capture all reception join points of methods, of all classes in the entire Smalltalk

image. The aspect prints a message after and before the captured join point execution.

1 before
2 ?jp matching reception(?jp,?selector,?args)
3 do
4 Transcript show: 'Entering ',?selector printString
5
6 after
7 ?jp matching reception(?jp,?selector,?args)
8 do
9 Transcript show: 'Leaving ',?selector printString

Listing 2.7: Tracing aspect that traces all method execution in the entire Smalltalk image

2.2.5 Alpha

Alpha [BH05, alp] is an aspect-oriented language with a mostly powerful pointcut

model. Pointcuts in Alpha are queries over databases having both static (abstract

syntax tree, static type system) and dynamic (full execution trace, heap) information

about the program. Alpha supports abstraction mechanisms similar to functional

abstraction. This wealthy join point model and the powerful abstraction mechanisms

of the pointcut language greatly move up the abstraction level and modularity of

pointcuts. Advice is at present as AspectJ (before, after, around). Join point reflection

is not needed because necessary information can be passed by means of logic

variables from the pointcut within the advice. The example, in listing 2.8, shows five

different ways to model a display update pointcut, whereby the lower ones use more

semantic information.

Listing 2.8: Alpha Aspect [BH05]

1 class DisplayUpdate extends Object {
2 Display d;
3 // enum pointcut
4 after set(P, x, _); set(P, y, _); set(P, 'start', _); set(P, 'end', _),
5 instanceof(P, 'FigureElement') { this.d.draw(P); }
6 // set* pointcut
7 after set(P, _, _), instanceof(P, 'FigureElement') { this.d.draw(P); }
8 // pcflow pointcut
9 after now(ID), set(ID, ExpID1, P, F, _), instanceof(P, 'FigureElement'),

10 pcflow(Display, 'drawAll', (_, get((ExpID2, _), F))),
11 hastype(ExpID2, 'FigureElement') { this.d.draw(P); }
12 // cflow pointcut
13 after set(P, F, _), get(T1, _, P, F, _), mostRecent(T2, calls(T2, _, @this.d,'drawAll', _)),
14 cflow(T1, T2), instanceof(P, 'FigureElement') { this.d.draw(P); }
15 // cflowreach pointcut
16 after set(P, F, _), get(T1, _, P, F, _), mostRecent(T2, calls(T2, _, @this.d,'drawAll', _)),
17 cflow(T1, T2), reachable(Q, P), instanceof(Q, 'FigureElement') { this.d.draw(P); }
18 }

 16

2.2.6 HYPER J

Hyper/J [BH05, OT00] is a tool developed at IBM T.J. Watson Research Center. It

supports advanced, "multi-dimensional" separation and integration of concerns in

standard Java software [BCC05]. Hyper/J is an implementation of the Hyperspaces

approach for the Java language. The Hyperspaces approach adapts the principle of

multi-dimensional separation of concerns, which involves:

! Multiple, arbitrary dimensions of concern.

! Simultaneous separation along these dimensions.

! The ability to dynamically handle new concerns and new dimensions of

concern as they arise throughout the software lifestyle.

! Overlapping and interacting concerns (one might think of many concerns as

independent or”orthogonal”, but they rarely are in practice).

HyperJ does not use the terms ‘join point model’ and ‘pointcut language’ because it is

not based on a dominant decomposition approach such as other aspect languages.

Instead of expressing an aspect that crosscuts a base program (in a dominant

decomposition), HyperJ allows to express multiple decompositions of the program as

separate ‘hyperslices’. Each decomposition is called a hyperslice. The intention is that

each hyperslice contains the implementation of a single concern using the standard

programming language constructs (i.e. it is implemented in standard Java). A set of

hyperslices can then be merged into a hypermodule using composition rules. The

resulting hypermodule implements all concerns implemented in each hyperslice in the

composition.

Create hyperspace

As a first step, developers create hyperspaces initially by specifying a set of Java class

files that contains the code units that will populate the hyperspace. One way to do this

is by creating a hyperspace specification:

1 Hyperspace Figures
2 class figurs.*;
3 class Tracer;

 Listing 2.9: Creation of a hyperspace

 17

Hyper/J will automatically create a hyperspace with one dimension – the class file

dimension. A dimension of concern is a set of concerns that are disjoint. The initial

hyperspace will contain all units (interfaces, classes, methods, and member variables) in

the corresponding class files within the specified package.

Create concern mappings:

To create a new dimension (Feature dimension) can specify concern mappings, which

describe how existing units in the hyperspace address concerns in that dimension:

1 package figures: Feature.Kernel
2 class Tracer: Feature.Tracing

 Listing 2.10: Concern mappings

The first line indicates that, by default, all units contained within the figures package

address the Kernel concern of the Feature dimension. The second line specifies

another mapping indicating that class named "Tracer" address the tracing concern.

Create hypermodules:

By means of hypermodule specifications one can define hypermodules, which are

modules based on concerns. A hyperspace can contain several hypermodules realizing

different modularizations of the same units. Systems can be composed in many ways from

these hypermodules. In this hypermodule, the Kernel and tracing concern are related by

a "mergeByName" integration relationship. This means that units in the different

concerns correspond when they have the same names (”ByName”) and that

corresponding units are to be combined; for example, all members in similar classes

are merged into one class.

1 hypermodule Figures_With_tracing
2 hyperslices: Feature.Kernel, Feature.Tracing
3 relationships: mergeByName;
4 merge Feature.Tracing.Tracer with *;
5 bracket * with
6 Feature.Tracing.Tracer.traceEntry(ClassName, MethodName)
7 Feature.Tracing.Tracer.traceExit(ClassName, MethodName)
8 end hypermodule;

 Listing 2.11: Hypermodule specifications

 18

The "merge" relationship expands on the "mergeByName" relationship; it indicates

that the Tracer Class unit in the tracing concern from the Feature dimension is to be

merged with all other class units in the other hyperslices, even though their names

differ. The “bracket” relationship indicates that all methods should be bracketed by

the methods Tracer.traceEntry and Tracer.traceExit. Thus, for example, each move()

method in the composed hyperslice will call Tracer.traceEntry upon entry and

Tracer.traceExit before exit. The parameters passed to these bracketing methods will

be the names of the class and method, to identify the method called. The bracket

relationship is very useful when we need to add behavior to the beginning and/or end

of methods.

2.2.7 Composition Filters

Composition Filters (CF) [com, BA04] is approach developed at the TRESE group, at

the Department of Computer Science of the University of Twente, The Netherlands.

CF approach is an extension of the object-oriented programming. The primary idea

behind CF is that messages that received by OOP object can be intercepted, and

manipulated in various ways, modifying the form in which the object behaves. To do

so, in the CF model, a layer called the interface part is introduced.

Filter type Accept Action Reject action

Dispatch
The message is dispatched to the
specified target of the message

The message continues to the next
filter in the set.

Error
The message continues to the
next filter in the set.

An exception is thrown

Wait The message continues to the next
filter.

The message is queued while the
evaluation of the filter expression
results false

Meta

The reified message is sent as a
parameter of another –meta
message- to a named object. The
object that receives the meta
message can observe and
manipulate the message, then
reactivate its execution.

The message continues to the next
filter in the set

Substitute
certain properties of the message
can be substitute

The message continues to the next
filter.

Table 2.2: Filter types and the taken actions when the message is accepted or rejected

 19

The primary components in the CF model are the input filters and output filters. Each

type of these filters implements a particular manipulation of messages. The filters

together compose the behavior of the object, possibly in terms of other objects. After

the composition of filter modules and filters, received messages must pass through the

input filters, and send messages through the output filters.

All filters have a common structure; a name that specifies the filter, the type of the

filter and a set of expressions that define the way of messages filtering. There is a

behavior attached for each type of filter to identify the actions taken when the filter

accepts or rejects the messages matching the pattern defined in the filter. Some

predefined filter types are show in the table 2.2.

2.3 Aspect language comparison

In this section we present the primary elements of the aspect languages discussed

above. So we discuss the language properties of join point model and pointcut

language. The main element of each aspect language is the join point model that

describes the points where additional behavior is attached. The join point models can

be identified by the following properties:

1. Dynamic (AspectJ-based) join points: The join points are matching points that

can be captured in the execution of the program.

2. Static join points: The join points are static program elements.

The pointcut language is another element of an aspect language. It specifies how an

aspect can identify the join points. The pointcut language can be characterized by the

following properties:

3. Logic query language: The pointcut language is a logic query language.

4. Behavioral properties: The pointcut language allows describing the join points

based on the behavioral (dynamic) properties of the program.

5. Structural properties: The pointcut language allows describing the join points

based on the structural (static) properties of the program.

6. Pattern-based pattern: The pointcut language allows describing the join points

using regular expressions.

7. (AspectJ-based) predicates: The pointcut language includes a set of predicates

that can restrict the join points.

 20

Table 2.3 summarizes the above properties for each aspect language discussed in the

previous section.

Table 2.3: Aspect language properties

Join point model Pointcut language properties

language

P
roperty 1

property 2

property 3

property 4

property 5

property 6

property 7

Alpha x x x x x x

AspectJ x x x x x

CaesarJ x x x x x

CARMA x x x x x

JAscO x x x x x

HyperJ x x

2.4 Summary

This chapter introduced aspect-oriented programming. We identified the bad

symptoms (tangling, scattering) yielding from implementing the crosscutting concern

by traditional means of OOP approach. We have known how AOP approach

mechanisms can clear software code from these symptoms yielding maintainable

software. We have seen different AOP languages that provide additional flexibility in

modularization to capture the location and behavior of crosscutting concerns,

resulting in greatly improved separation of concerns.

 21

Chapter 3

Preliminaries (Aspect Mining, Refactoring, and

Java 2 platform, Enterprise Edition (J2EE))

3.1 Aspect Mining

Software developers try to improve object-oriented programs (legacy system) using

aspects, because the object-oriented programs may have many concerns which cannot be

localized using the available modularization mechanisms. So these concerns would be

scattered and tangled throughout the source code yielding what is called crosscutting

concerns which make object-oriented programs very difficult to understand, maintain,

and reuse. Consequently, software developers need tools and techniques for aiding them

to detect those crosscutting concerns in legacy system. The activity of detecting the

crosscutting concerns in a legacy system is called aspect mining. Nowadays there are

several aspect mining tools and techniques that can be classified into two kinds:

dedicated browsers and automated aspect mining techniques.

In this section we give an overview of the different aspect mining techniques. We also

give discuss how certain of the aspect mining tools can be used.

3.1.1 Dedicated browsers
Dedicated browsers require a starting point (also called seed) of a concern to manually

identify those crosscutting concerns by discovering the legacy system. Dedicated

browsers may have a query language to aid developers for searching for crosscutting

concerns [KM05]. Dedicated browsers have a number of advantages and disadvantages:

the advantage is that the developers can identify exactly the concerns they want, in

exactly as much detail as they need. The disadvantage, of course, is that much of the

cognitive burden is placed on the developer, with the tool acting more as a recorder than

a helper and developers need a seed of a concern to search manually for those

crosscutting concerns in legacy code [HT05]. There are several examples of dedicated

browsers like:

 22

3.1.1.1 The Feature Exploration and Analysis Tool (FEAT):

FEAT is developed as a plugin for the Eclipse Platform [RM02]. FEAT represents

concerns as a tree in Concern Graph. A Concern Graph is for saving a set of concerns

related to a particular task. A concern is for saving program elements (classes, methods,

and fields) of interests and the relations between themselves. FEAT allows developers to

search, browse, understand, and analyze the code implementing a concern in a Java

system. By visually navigating structural program dependencies, developer can determine

the code implementing a concern, and save the result as an abstract representation

consisting of building blocks that are simple to manipulate and query. The representation

of a concern supported by FEAT can be used to explore the relationships between the

captured concern and the base code, and between the different parts of the concern itself.

FEAT has three main views, see figure 3.1:

! The Concern Graph View, displays the hierarchy of concerns for a given Concern

Graph.

! The Participant View, displays all the program elements and their relations which

are concerned in the concern selected in the Concern Graphs View.

! The Projection View, displays query results.

 Developers can find each seed of concerns by using manually searching in Package

Explorer of Eclipse or using automated aspect mining tools, when a concern of interest is

identified, it can be modeled with FEAT. To do so it is necessary to create a Concern

Graph. A Concern Graph can represent several concerns all linked to a task. Once a

Concern Graph is created, it is possible to either add program elements to the current

concern in the Participants View, or to query an element in the Projection View.

Elements can be queried or added to a concern or projection through the context menu

either in the Eclipse Package Explorer or Outline View. Concerns can also be compared.

Model of FEAT

Concern Graph [RoMu02] is a subset of a structural program model built by FEAT. The

program model represents the declaration and uses of different program elements of

class-based object-oriented languages. Formally, a program is expressed as a graph P =

(V, E), where V is the set of vertices, and E is the set of labeled, directed edges.

 23

A vertex in P can be one of three types.

! Class vertex (I) represents a global class or interface, without its members.

! Field vertex (F) represents a field member of a class.

! Method vertex (M) represents a method member of a class.

An edge in P can be one of six types, depending on the type of vertices it connects: (M,

M), (M, F), (M, C), (C, C), (C, M), and (C, F). Edges are labeled with the semantic

relationships they represent. A number of examples of edges that connect vertices of P

are shown in table 3.1.

Name Type Description
(calls, m1, m2) (M, M) The body of method m1 contains a call that can bind

(dynamically or statically) to method m2.
(reads, m, f) (M, F) The body of method m contains an instruction that

reads a value from field f.
(writes, m, f) (M, F) The body of method m contains an instruction that

writes a value from field f.
(checks, m, c) (M, C) The body of method m checks the class of an object,

or casts an object, to c.
(creates, m, c) (M, C) The body of method m creates an object of class c.
(declares, c, {f|m}) (C, F|M) Class c declares method m or declares field f.
(superclass, c1, c2) (C, C) Class c2 is the superclass of c1.

Table 3.1: A number of relationships in FEAT [RoMu02]

For example, if a class called A has a method called m(int, int), there will be an edge

from class A to method m(int, int) called declares.

In FEAT, an aspect is defined as a subset of the graph P documenting the implementation

of a concern in P, and it is stored in a structure called Concern Graph. FEAT gives a set

of queries to allow developers to access vertices of the program model that are associated

to the vertices in the Concern Graph. A developer can navigate the program model in

both the direct and reverse directions of the edges dribbling from the vertices.

There are two groups of queries in FEAT:

! Fan-in: returns all the vertices in the program model that depend on the selected

class, field or method node.

! Fan-out: returns all the outgoings edges for the selected node. Fields don’t have

outgoing edges.

See table 3.2 and table 3.3 for describe the queries we can do in FEAT.

 24

FEAT has a numbers of advantages, like:

! The main advantage of Concern Graphs is to use them to save our information as

we explore different concerns of importance in a program.

! The developer can fast determine and analyze concerns scattered in an existing

code base.

! The key concept of comparing two concerns is observe how they be linked

without having to understand the whole concern.

! Concern Graphs could be extended to extra programming languages, including

procedural languages such as C.

FEAT has a numbers of disadvantages, like:

! The developer implements the relations defined and queries as static by using the

FEAT.

! The developer can’t add new queries to explore new types of feature relations.

! The developer needs to be customary with Eclipse Platform.

! The developer needs starting point of concerns to start analysis the code.

-

Figure 3.1: FEAT Perspective

 25

Query Name
Applicable

to
Returns

declaring Classes All the members of the class
extending Classes The direct superclass
i-extending Interfaces The direct superinterface
implementing Classes The interfaces the class implements
transitively
extending Classes All the direct and indirect superclasses

transitively
implementing Classes All the interfaces implemented by this class, directly

or indirectly
being of type Fields The type of the field, if non-primitive

creating Methods The classes of objects created in the body of the
method

having p-types Methods The non-primitives parameter types of the method

having r-type Methods The return type of the method, if non-primitive or
void

accessing Methods The fields accessed in the body of the method

calling Methods The methods called, including methods potentiall
resulting from dynamic binding

overriding Methods The methods that this method overrides

using Methods The fields used, object created, and methods called in
the body of the method

Table 3.2: FEAT Queries (Fan-out)

Query Name
Applicable

to
Returns

created-by Classes All the methods creating an object of the class
extended-by Classes The direct subclasses
i-extended-by Interfaces The direct subinterfaces
implemented-by Interfaces The classes that directly implement this interface
transitively
extended by Classes All the direct and indirect subclasses

transitively
implemented by Interfaces All the classes implementing by this class, directly or

indirectly
accessed by Fields All the methods accessing the field

called by Methods All the methods calling this method, including
methods which might call it through dynamic binding

Table 3.3: FEAT Queries (Fan-in) (part 1)

 26

Query Name
Applicable

to
Returns

overriden by Methods All the methods that override this method

referenced by All All the classes/methods/fields that relates to the
queried object

Table 3.3: FEAT Queries (Fan-in) (part 2)

3.1.1.2 Aspect Browser

 Aspect browser is developed as a plugin for the Eclipse Platform. Aspect browser for

Eclipse allows developers to visualize programs in a Seesoft-like view by searching for

regular expressions and displaying the results graphically. Additionally, aspect browser

includes features to navigate through search results and manage a potentially large set of

regular expressions [AB].

SeeSoft [ESS92] is mainly employed to visualize the files based by text such as the

source code. It traces each row of text into a line with the color indicating statistics of

interest. The statistics can be any attributes derived for the source, such as the history of

revision or the frequency of execution. The main advantage of SeeSoft is that it can

clearly reduce the size of the representation thus of the interesting visual patterns can be

found and these patterns are often connected to the attributes which are repeated in the

data.

The goal of aspect browser is to aid developers to display, explore, and handle

crosscutting concerns. So all the files in a program are displayed as a row of small

windows in which each line of code in a file corresponds to a row of pixels in a window.

Each occurrence of a crosscut is highlighted in a window with a specific color, like

symbols on a map see figure 3.2.

Aspect browser has two main views [AB]:

! Aspect Tree View: In the Aspect Tree View we can create and edit aspects and

manage them into groups. In addition, we can view computed source information

that performs a lexical analysis of our programs and shows all existing Eclipse

markers.

 27

! Visualization and Navigation View: The Visualization and Navigation View

offers a graphical "map" of your packages and the files in each package. From this

high-level view we can determine how modularized or crosscutting an aspect is.

Figure 3.2: Aspect Browser Perspective

Aspect browser has a numbers of advantages, like:

! Aspect browser is a graphical tool that aids developer to find and manage aspects.

! Aspect browser gives the developer a quick understanding how a crosscut is

dispersed across the files.

! Aspect browser has features which aid a developer to find possible representatives

of crosscutting concerns, such as the identification of redundant lines of code.

Aspect browser has a numbers of disadvantages, like:

! Developer perhaps can’t view too a lot of aspects at a time because of the

overwhelming number of colors. Also, on a larger project, the number of aspects

will increase, and an approach to arrange aspects will be essential.

! Aspect browser only achieves textual-pattern searches; it doesn’t differentiate

between a package name, a type name, a variable name, a method name, or a code

comment.

! The developer needs a lot of time to analyze and to filter the results.

 28

! The developer needs starting point of concerns to start analysis the code.

3.1.1.3 Aspect Mining Tool

The Aspect Mining Tool (AMT), developed by Jan Hannemann, provides an open multi-

modal analysis framework for concern identification and system understanding. AMT

offers two analysis techniques to search for possible Aspects [amt]:

! Lexical (text-based) Analysis: This offers simple pattern matching same as aspect

browser.

! Type-Based Analysis: With type-based analysis, code tangling can be detected and

modularity quality measures as coherence and coupling of the code can be

visualized.

The Aspect Mining Tool consists of two rather independent programs [amt]:

! The analyzer extracts all necessary line-oriented program statistics (currently:

source code and types used) and structural information (currently: package and

class hierarchy information). All extracted information is written to a data file.

! The visualizer uses the data file to display a line-based view of the system (for

example, compilation units as collections of lines of code). Developers can then

query the system database (created by the visualizer from the data file)

interactively.

AMT has a numbers of advantages, like:

! The AMT provides an open multi-modal analysis framework for concern

identification and system understanding.

! The type-based analysis works pretty well with objects and variable.

AMT has a numbers of disadvantages, like:

! The AMT works finest if naming conventions for types, methods, variables and

classes are followed. The code that doesn’t follow such naming conventions is not

detected.

! The type-based analysis doesn’t work with method invocations. The tool doesn’t

discover the signatures of method invocations; they have to be detected with

textual searches.

 29

! The AMT is not possible to build a concern data structure in order to store

different query results.

! The AMT is quite old and the results are not associated to the source code,

making the tool nearly useless.

3.1.1.4 Prism

Prism is developed as a plugin for the Eclipse Platform see figure 3.3, the aspect mining

activities in Prism are centered on three main concepts [ZJ04]:

! Fingerprints: In Prism, a fingerprint is a representation of a certain trait of an

aspect or a particular coding concern. A basic fingerprint provides a direct

description of the coding pattern. A composite fingerprint provides an abstract

pattern definition which is a Boolean combination of any other fingerprints.

Composite fingerprints express more complex traits through the reuse of already

defined fingerprints. The current Prism implementation supports binary AND and

OR expressions through operators && and ||. Currently, Prism supports three

different categories of coding patterns. The simplest patterns are lexical patterns

in the program texts using regular expressions. Prism also supports lexical

patterns on type names and method names as well as patterns of inheritance

relationships. Moreover, Prism supports any valid Java code fragment for

representing call of methods. Each Prism fingerprint is associated with two types

of filters in making search results more specific. Scope filters use either

namespace information, for example, package names in Java systems, or regular

expressions on type names to cover the entire code base or any of its subsets.

Lexical filters can be used to specify the lexical patterns of the actual text of the

code. Lexical filters are used in conjunction with fingerprints specified using type

patterns so that patterns of both type names and their instance names can be

captured. Prism provides GUI based fingerprint builders and facilitates the

lifecycle management of fingerprints.

! Advisors: Prism advisors are tools, each of which autonomously computes an

independent characteristic of the code base in order to assist precise definitions of

fingerprints for aspects. While the most desired feature of an advisor is the

 30

automatic discovery of convoluted concerns, a powerful advisor can make good

suggestions of possible convolutions and their possible locations in the code.

Based on this information, a fingerprint can be defined to accurately capture the

code level representation of these properties. Currently, Prism provides a ranking

advisor which reports most frequently-used types across methods.

! Footprints: Footprints are matches of fingerprints in the code base. They are the

results of the queries represented as Prism fingerprints. The current

implementation of footprints is able to represent matches at the granularity of

lines. Matches of lexical patterns and call patterns are individual lines in the

source code.

Prism has a numbers of advantages, like:

! Provides a large variety of ways for developer to describe an aspect through prism

fingerprint definitions.

! Enables search of calling patterns defined at package level, class level, and

method level. So supports the AspectJ call pattern convention.

! Supports navigation between mining results and source locations.

! Provides automatic discovery of aspects for developer through ranking advisor.

! Supports quantification of kind usage scattering during computing degree of

scattering and scattering ranking.

Prism has a numbers of disadvantages, like:

! Not support Mining of multiple languages.

! Not contain facilities to determine relationship between program elements.

! Prism does not achieve a super-type matching on the method's declaring-type and

on each of its arguments. For example: assume we have the following type

definitions:

interface A{
 public void m();
}

class B implements A{
 public void m() { /* body of method*/ }
}

 31

The expression A.m(. .) is unable to detect the method invocation in:

B b = new B();
b.m();

Figure 3.3: Prism Perspective

3.1.1.5 JQuery

JQuery [EV04] is a flexible, query-based source code browser, developed as an Eclipse

plugin. A JQuery developer can define his or her own top-level browsers on-the-fly by

formulating logic queries and running them against the source code. Alternatively, the

developer can select from a variety of pre-written browsers, and use them as-is or modify

them to suit specific needs. In this manner, JQuery provides the developer with a wide

variety of crosscutting as well as non-crosscutting views within a single tool. Elements in

the tree can then be queried individually in the same manner allowing further exploration

of the complex web of relationships that exist between scattered elements of code,

without the distraction of switching tools or losing the context of the original query. The

JQuery query language is a logic (Prolog-like) query language based on TyRuBa.

TyRuBa is a logic programming language implemented in Java. The JQuery query

language is defined as a set of TyRuBa predicates. Before JQuery can query a code base,

 32

the code must be parsed and put into the TyRuBa database, taking advantage of Eclipse

APIs for parsing the java abstract syntax tree. The database only needs to be created once

per instance of Eclipse because source code change events are sent directly to the

database which updates itself on the fly. The results of a query are displayed in a results

tree, part of an Eclipse view. Any of the results nodes can be built upon by performing a

sub-query, generating a new sub-tree emanating from that node, see figure 3.4 [EV04].

Table 3.4 lists a sample of the predefined predicates in the query language [JV03]. There

are several predicates that exceed the essential elements and relationships that are present

in a Java code. The method(?M, tag, ?Tag, ?Value) predicate recovers the value of

JavaDoc tags attached to method declarations. The predicates of error() give access to

the position and severity of compilation errors.

To determine dependencies at the class level there is the refType(?Ref, ?Caller, ?Callee)

predicate that determines references to every fields and methods contained in a particular

type. The predicates in the query language follow the convention that the names of the

predicate correspond to the type of an object and the parameters correspond to,

respectively, an object reference, an attribute name or relationship name, and a value. For

example, class(?C, name, X) is a query that discovers all classes ?C who’s name property

is X.

Note that TyRuBa has non-standard lexical conventions for the denotation of variables

and constants. In TyRuBa, symbols starting with a “?” are variables. This is convenient

because Java identifiers indicating class, field and method names can be used as

constants.

JQuery has a numbers of advantages, like:

! Merge the feature of query based tools and hierarchical browser tools.

! The result of the query is used to define a first browser view that serves as a

starting point for a discovery process.

! The developer can navigate the tree and extend it at will by requesting extra

queries to be added as sub trees of particular nodes of interest.

 33

! Decrease require to exchange between different views. This avoids the confusion

caused by exchanging views and keeps an unbroken representation of the whole

search path.

JQuery has a numbers of disadvantages, like:

! When the tree is expanded several levels deep, it tends to become too wide and

too cluttered to fit in the JQuery pane. To obtain an overview it is needed to scroll

the view horizontally and vertically. This is awkward and makes it harder to

understand the relation between elements separated by several levels in the tree.

! The developer needs to be customary with Eclipse Platform.

! The logic query language is very difficult to use for complex queries.

Figure 3.4: JQuery Perspective

 34

Predicate Description
package(?P) True if ?P is a package.
package(?P, name, ?N) True if package ?P has name ?N.
package(?P, type, ?T) True if package ?P contains type ?T.
type(?T) True if ?T is a type.
type(?T, name, ?N) True if type ?T has name ?N.
type(?T, field, ?F) True if type ?T contains field ?F.
type(?T, method, ?M) True if type ?T contains method ?M.
type(?T1, type, ?T2) True if type ?T1 contains inner type ?T2.

type(?T, modifiers, ?M) True if type ?T has modifiers ?M, where ?M is a
list.

type(?T1, super, ?T2) True if type ?T1 has super type ?T2.

type(?T, tag, ?Tag, ?Val) True if type ?T has a JavaDoc tag ?Tag with value
?Val

class(?C1, extends, ?C2) True if ?C1 extends class ?C2.
class(?C, implements, ?I) True if class ?C implements interface ?I.

class(?C, creator, ?M) True if an instance of class ?C is created in method
?M.

method(?M, returnType, ?RT) True if method ?M has return type ?RT.
method(?M, paramType, ?PT) True if method ?M has a parameter of type ?PT.

method(?M, exception, ?ET) True if method ?M throws an exception of type
?ET.

method(?M, tag, ?Tag, ?Val) True if method ?M has a JavaDoc tag ?Tag with
value ?Val

refMethod(?R, ?Cler, ?Clee) True if ?R is a reference from method ?Cler to
method ?Clee.

error(?E, message, ?M) True if error ?E is described by message ?M.
error(?E, severity, ?S) True if error ?E has severity ?S.

Table 3.4: Some predefined predicates in the query language [JV03]

Comparison of the dedicated browsers

Table 3.5 shows certain of search capabilities for the dedicated browsers discussed above.

Search Abilities

Text-based Analysis Type-Based Analysis Method
call

used
wildcards

FEAT n/a n/a n/a n/a
Aspect Browser ! × × “*”

AMT ! ! × nothing
Prism × × ! “*”, “..”

JQuery n/a n/a n/a n/a
Table 3.5: Comparison of dedicated browsers (part 1)

 35

 Browsing
Abilities

Valid
characterization

constructs
Additional analysis achieved

FEAT
-Java constructs
-Relationships

-Java constructs
-Relationships

Compare between two
concerns

Aspect Browser n/a Text-based Analysis
-Match count
-Redundant
lines of code

AMT n/a -Text-based Analysis
- Type-Based Analysis ×

Prism n/a Method calls Ranking advisor

JQuery
-Java constructs
-Relationships

Logic source-based
queries ×

Table 3.5: Comparison of dedicated browsers (part 2)

! n/a: not allowed.

! Java constructs type, method and field.

! Relationships: declare, declared by, calls, called by, etc.

3.1.2 Automated aspect mining techniques:

We can use automated aspect mining techniques to aid developers for automate

determine starting points or seeds to mine candidate aspects. We know that dedicated

browsers need seeds of a concern to search manually by browser for those candidate

aspects in legacy code [KM05]. Consequently, we can use automated aspect mining

techniques to aid developers to determine seeds in order to mine candidate aspects. In this

kind of approach there are advantages and disadvantages: the advantage is that no input

or query is required from the developer in order to identify concerns. However, the

disadvantage is that only very common concerns are likely to be found, and code which

implements a given concern, but even slightly deviates from the pattern encoded in the

tool, is likely to be missed [HT05]. There are several examples of automated aspect

mining techniques and tools like:

3.1.2.1 Analyzing recurring patterns of execution traces.

Technique

Breu and Krinke offer a technique based on program traces. A program trace is a series of

method calls and exits. In these traces they identify recurring execution patterns which

 36

describe certain behavioral aspects of the software system. They assume that recurring

execution patterns are potential crosscutting concerns which describe recurring

functionality in the program and thus are possible aspects. In order to search these

recurring patterns in the program traces, a classification of possible pattern forms is

required. Consequently, we present the idea of execution relations between method calls

[Bre04]. Consider the following example of an event trace, where the capitals represent

method names [KM05]:

B() {

 C() {

 G() { }

 H() { }

 }

 }

A() { }

Breu and Krinke distinguish between four different execution relations: outside-before

(for example, B is called before A), outside-after (for example, A is called after B),

inside-first (for example, G is the first call in C) and inside-last (for example, H is the last

call in C) [KM05]. By using these execution relations, their mining algorithm searches

aspect candidates based on recurring patterns of method calls. If an execution relation

occurs more than once, and recurs uniformly (for instance, every call of method B is

followed by a call of method A), it is considered to be an aspect candidate. Of course, to

make sure that the aspect candidates are suitably crosscutting, there is an additional

requirement that the recurring relations should show in different ‘calling contexts’

[KM05].

Tool support (DynAMiT)

DynAMiT (Dynamic Aspect Mining Tool) is considered to be the first aspect mining

tool that is able to identify automatically both seeded and existing crosscutting concerns

in legacy systems based on dynamic analysis [Bre04].

 37

3.1.2.2 Formal concept analysis

The technique of formal concept analysis (FCA) is rather simple. Starting from a

(potentially large) set of objects and attributes of those objects, FCA determines maximal

groups of objects and attributes. These maximal groups are called concepts. Each such

concept consists of set objects that have one or more attributes in common and such that

no other objects have those attributes nor are there any other declared attributes they have

in common [TM04].

3.1.2.2.1 Formal concept analysis of execution traces (Dynamic analysis)

Technique [CMM+05]

Dynamic analysis is the observation of the runtime behavior of a software system. The

runtime behavior is analyzed by using execution traces. These are obtained by running an

instrumented version of the program under analysis, for a set of scenarios (use-cases).The

execution traces linked with the use-cases are the objects of the concept analysis context,

whereas the executed methods are the attributes. In the resulting concept lattice (with

‘sparse labeling’), the use-case specific concepts are those labeled by at least one trace

for a certain use-case (for example, the concept contains at least one specific attribute)

while the concepts with zero or more attributes as labels are regarded as generic concepts.

Thus, use-case specific concepts are a subset of the generic ones. Both use-case specific

concepts and generic concepts take information potentially useful for aspect mining,

since they group specific methods which are always executed under the same scenarios.

When the methods that label one such concept (using the ‘sparse labeling’) crosscut the

principal decomposition, a candidate aspect is determined.

Tool support (Dynamo)

Dynamo is a tool for the identification of aspects in the existing Java code. Traces of

Execution are produced for the use cases which exercise the principle functionalities of a

given application. The relationship between the traces of execution and executed

computational units is subjected to concept analysis. In the resulting lattice, potential

aspects are detected by determining the use-case specific concepts and examining their

 38

specific computational units. When these come from multiple classes, which in turn

contribute to multiple use-cases, a candidate aspect is recognized [dyn].

3.1.2.2.2 Formal concept analysis of identifiers (Identifier Analysis)

Technique [KM05]

Tourwé and Mens offer an alternative aspect mining technique which is based on formal

concept analysis. Their technique performs an identifier analysis by using the FCA

algorithm. The assumption behind this technique is that interesting concerns in the source

code are reflected by the use of naming conventions in the classes and methods of the

system. Like input to the FCA algorithm, the classes and methods in the system are

employed as objects. As attributes, the FCA algorithm employs substrings produced from

the classes and methods’ names. For instance, a class called QuotedCodeConstant is split

in the strings ‘Quoted’, ‘Code’ and ‘Constant’. Substrings with little meaning, like ‘a’,

‘with’, . . . are discarded from the results. The resulting concepts consist out of maximal

groups of classes and methods which share a maximal number of substrings. After having

filtered out many unimportant concepts automatically, a significant number of concepts

remain which need to be inspected manually. Apart from being able to detect a number of

programming idioms, design patterns and certain refactoring opportunities, the same

technique can be used for aspect mining purposes by restricting the concepts to those that

are crosscutting (for example, the involved methods and classes belong to at least two

different class hierarchies).

Tool support (DelfSTof)

DelfSTof developed by Tourwé and Mens’s. It presents the discovered concepts in a way

that is easy to use and manipulate. It consists of an efficient FCA algorithm, a set of

filters, and a set of ‘analyzers’ that are in charge of the classification, combination and

annotation of concepts. They capitalize the letters “ST” because the tool is implemented

completely in Smalltalk and originally only analyzed Smalltalk source code [MT05].

 39

3.1.2.3 Natural language processing on source code

Technique

Developers often use Natural Language Processing (NLP) clues to aid understand

software; because NLP aids them identify concepts that are semantically related.

Shepherd, Tourwé, and Pollock use a NLP technique called lexical chaining to identify

groups of semantically related source code entities, and they evaluate whether those

groups represent crosscutting concerns. To find crosscutting concerns we look for chains

that have members with a high amount of scattering. They think that these chains will

often correspond to high level concerns that are scattered throughout code [STP05].

A chainer takes as input a text and groups every word in that text in a chain with closely

related words also appearing in the text. It outputs a list of chains that each contains

closely related words. In order to compute lexical chains, we need to be able to calculate

the semantic distance, or the strength of relationship, between two given words.

Researchers have shown that it is easy for humans to determine semantic distances

between two, closely related words, and that they do so with reasonable consistency.

However, semantic distance is more difficult to determine computationally. In order to

compute the distance automatically, a database of known relationships between words,

such as WordNet, is often used. The semantic distance between two words is then

approximated by using the lengths of the relationships path between the two words in

WordNet [STP05]. In order to mine for crosscutting concerns, Shepherd, Tourwé, and

Pollock apply the chaining algorithm to the comments, method names, field names and

class names of the system they are analyzing. A developer of their approach needs to

manually inspect the resulting chains in order to select likely aspect candidates [KM05].

3.1.2.4 Detecting unique methods

Technique [KM05]

Gybels and Kellens offer the use of heuristics to mine for crosscutting concerns. They

observe that, in pre-AOP days, crosscutting concerns were often implemented in an

idiomatic way. Certain of these idioms can be considered as “symptoms” of aspect

candidates. An example of such an idiom is the implementation of a crosscutting concern

by means of a single entity in the system which is called from many places in the code

 40

(for instance, a ‘logging’ entity which is called from throughout the code) see figure 3.5.

To detect instances of this pattern, Gybels and Kellens offer the “Unique Methods”

heuristic which is defined like: “a method without a return value which implements a

message implemented by no other method”.

Tool support (unique method)

Gybels and Kellens applied the unique method technique on an entire Smalltalk image

[GK05]. After selecting all the Unique Methods in legacy system, sorting them according

to the number of times a method is called, and filtering out irrelevant methods (like for

instance accessor and mutator methods), the developer has to manually inspect the

resulting methods in order to find suitable aspect candidates [KM05].

Figure 3.5: Logging as a central class providing logging functionality [GK05]

3.1.2.5 Clustering (Hierarchical clustering of similar method names)

Technique

Shepherd and Pollock perform agglomerative hierarchical clustering (ALC) in order to

group methods. ALC first places every object (in this case, every method in a program)

that it will cluster in its own group. Then, it repeats the following steps [SP05]:

Step 1. Compare all pairs of groups using a distance function; mark the pair that is the

smallest distance apart.

 41

Step 2. If the marked pair’s distance is smaller than a threshold value, merge the two

groups. Otherwise, stop the algorithm.

Consequently, ALC first places every method in its own group. It then repeats steps 1 and

2 until there are no groups that are closer together than the threshold value. It returns all

of the groups whose membership is larger than 1.

Tool support (AMAV)

Shepherd and Pollock [KM05] used the above technique as part of an aspect-oriented

IDE named AMAV (Aspect Miner and Viewer), which allows for easy adaptation of the

distance measure used by the algorithm. For a first experiment they used a simple

distance measure opposite proportional to the common substring length of the names of

the methods. This mining algorithm is used in combination with the viewing tool of the

IDE which not only displays all the clusters which were found, but also consists out of

the crosscutting pane and the editor pane. The crosscutting pane displays all methods

which are related to a cluster’s implementations. This pane, although lacking the context

of each method (for example, its class), allows the developer to check the consistency of

the concern. The editor pane displays the class context (Java file) for a particular method.

It allows the developer to edit a method’s implementation with the crosscutting and class

context available [SP05].

3.1.2.6 Fan-In analysis

Technique

The fan-in analysis technique is an approach based upon the observation that code

implementing a crosscutting concern is often called from different places throughout the

software system at hand, thus revealing there is a scattered similar functionality, which is

at the same time tangled with the main concerns of the system. This method calling

situation is known as fan-in metric, and is defined by Marin et. al as: the number of

distinct method bodies that can call a method m. An important consideration with the

preceding definition is that because of polymorphism, one method call can affect the fan-

in of several other methods. A call to method m contributes to the fan-in of all methods

refined by m as well as to all methods that are refining m. We use the code of figure 3.6

 42

as an example to illustrate this situation. Three different calls to polymorphic method m

are contained in class D. The resulting sets of callers and corresponding fan-in values are

shown in table 3.6. Observe that the call in f2 to B’s m contributes to the fan-in of m in

B’s supertypes (A) as well as its subclasses (C1 and C2) [MDM04].

Marin et. al state that high fan-in values indicate the presence of crosscutting concerns in

the following situations [MDM04]:

! The high fan-in method is a key element of the aspect implementation, such as the

output method for logging, tracing or debugging functionalities.

! The crosscutting implementation is scattered over the system and relies on

common functionality and the high fan-in method is part of this functionality.

! Some design patterns with a crosscutting structure can lead to high fan-in values

when they are given a central role in the project design.

interface A {
public void m();
}
class B implements A {
public void m() {};
}
class C1 extends B {
public void m() {};
}
class C2 extends B {
public void m() { super.m();};}
class D {
void f1(A a) { a.m(); }
void f2(B b) { b.m(); }
void f3(C1 c){ c.m(); }}

Figure 3.6: Various (polymorphic) method calls [MDM04]

Method Caller set Fan-In value

A.m {D.f1, D.f2, D.f3 } 3

B.m {D.f1, D.f2, D.f3, C2.m} 4

C1.m {D.f1, D.f2, D.f3} 3

C2.m {D.f1, D.f2} 2

Table 3.6: Fan-in values for code in figure 3.6 [MDM04]

 43

Fan-in analysis generates candidates based on the fan-in metric of a method: if a method

is called from many, scattered places, the method is considered a potential seed.

Consequently fan-in is essentially a metric for the scattering symptom of the crosscutting

concerns [Mar].

Marin et al. describe a number of properties which must be considered for analyzing the

callers of a candidate. These properties show possible relations between the callers of a

method with a high fan-in, and aimed at reducing the percentage of unimportant caller for

reasoning. The list of proposed properties comprises [Mar]:

! Structural relations between the callers. These relations include:

- Same hierarchy: The methods (callers) are defined by the same interface

(super class). As a particular case, the callers could be implementations of the

same method.

- Common roles: A method is associated with all the roles applied by its class, so

that the methods can share common roles. A role is typically defined by an

interface. The methods which belong to the same hierarchy will also share the

role which defines the hierarchy.

- The same class: The callers belong to the same class, as for the case of a class

level contract.

! Consistent call position: The position of the call, relative with the body of the

caller, is consistent for the callers of the method reported to a high value of fan-in.

! Naming-based relations: The callers have similar names. The naming-based and

the structural relations can be expressed by an AspectJ-like the definition of

pointcut, whereas the position of call could be an indication of the advice type

(before/after).

! Relations based on the structure of the call: similar call-sites. An example is the

exception wrapping concern that consists of catching a specific type of exception

and re-throwing an exception of a different type.

! Intentional relations between callers, such as modifiers of Subject objects in the

context of the Observer model. The relations between the callers are due to their

participation in the model implementation.

 44

Tool support (FINT):

Marin et al. developed a tool called FINT (see figure 3.7). It is available as an Eclipse

plugin. It automatically calculates the fan-in metrics and reports the list of the callers for

all the methods in the selected source code project, package, class, etc. The output allows

visualization of the callers and statistical reports see figure 3.8 [MDM04].

FINT view has three panes: “Calee Filters Setup”, “Caller’s Filters Setup”, and “Save

Results To”. In the both panes “Calee Filters Setup” and “Callers Filters Setup”, we can

mark particular packages or classes to be skipped elements in the fan-in analysis. In

“Save Result To” pane, we can specify the file location where the result of fan-in is

saved. In the right side of FINT view there are two items: The first one is check box,

labeled with “Accessors”, that is used to filter getters and setters methods from fan-in

analysis. The second item is an input field used to specify a value as threshold to display

all methods that have a fan-in greater than or equal this threshold.

The fan-in identification process. Fan-in analysis performs its mining process in the following

steps [MDM04]:

Step 1. Automatic computation of the fan-in metric for all the methods in the targeted

source code. The result is stored as a set of “method-callers” structures that can be sorted

by fan-in value. This structure can be used to inspect the call sites and calling contexts of

selected high fan-in methods.

Step 2. Filtering of the results of the first step:

! Restrict the set of methods to those having a fan-in greater than or equal a certain

threshold.

! Filter getters and setters from this restricted set, based on the method’s signature,

in a first iteration, and its implementation, in a second iteration.

! Filter utility methods, like toString(), collections manipulation methods, etc., from

the remaining set.

Step 3. (Largely manual) Analysis of the remaining set of methods. The elements

considered at this step are the callers and the call sites, the method’s name and

implementation, and the comments in the source code.

 45

Figure 3.7: FINT view

Figure 3.8: Results of FINT

3.1.2.7 Clone detection

Technique:

Clone detection is an active branch in software (re)engineering research that deals with

finding parts of duplicated code in systems. A code clone is a code portion in source files

that is identical or similar to another. Clones are introduced because of different reasons

 46

such as reusing code by ‘copy-and-paste’, etc. Clones make the source files very hard to

modify consistently. For example, let’s assume that a software system has several clone

subsystems created by duplication with slight modification. When a fault is found in one

subsystem, the developer has to carefully modify all other subsystems. For a large and

complex system, there are many developers who take care of each subsystem and then

modification becomes very difficult [KKI02]. Clone detection can be used as a technique

for aspect mining, since (portions of) cloned code can be considered as seeds or starting

points to mine candidate aspects. A seed in the context of aspect mining consists then of

“The identification of a method, interface or group of statements that are part of the

concern’s implementation” [MDM04].

There are several clone detection techniques such as [BDET04]:

! Text-based techniques perform little or no transformation to the ‘raw’ source code

before attempting to detect identical or similar (sequences of) lines of code.

Typically, white space and comments are ignored.

! Token-based techniques apply a lexical analysis (tokenization) to the source code,

and subsequently use the tokens as a basis for clone detection.

! AST-based techniques use parsers to first obtain a syntactical representation of the

source code, typically an abstract syntax tree (AST). The clone detection

algorithms then search for similar sub trees in this AST.

! PDG-based techniques go one step further in obtaining a source code

representation of high abstraction. Program dependence graphs (PDGs) contain

information of semantically nature, such as control and data flow of the program.

! Metrics-based techniques are related to hashing algorithms. For each fragment of

a program the values of a number of metrics is calculated, which are subsequently

used to find similar fragments.

Tool support

There are several clone detection tools such as: Duploc[BB02], JPlag[BB02],

Moss[BB02], CloneDrm[BB02], and CCFinder[BB02] tools, we will only explain

CCFinder, because it able to handle software projects regardless their size, and it detects

clones in the language subject of our research, namely Java.

 47

CCFinder [KKI02]:

We start by explaining a number of important concepts used in CCFinder’s:

! Clone relation. A clone relation is defined as an equivalence relation (for

example, reflexive, transitive, and symmetric relation) on code portions. A clone

relation holds between two code portions if (and only if) they are the same

sequences.

! Clone pair. For a given clone relation, a pair of code portions is called clone pair

if the clone relation holds between the portions.

! Clone class. A clone class is a maximal set of code portions in which a clone

relation holds between any pair of code portions. For example, suppose a file has

the following 12 tokens: X A B C Y A B C Z A B K: We get the following three

clone classes:

Class1: X A B C Y A B C Z A B K

Class2: X A B C Y A B C Z A B K

Class3: X A B C Y A B C Z A B K

Clone detection process see figure 3.9. The entire process of CCFinder’s clone detecting

technique consists of four steps:

! Lexical analysis: Each line of the source files is divided into tokens corresponding

to the lexical rules of the programming language and white spaces are removed.

This results in a token sequence containing the concatenation of all tokens.

! Transformation: The tokens are transformed by transformation rules. These rules

are language specific, for example, in Java “name1.name2.name3” will result in

“name3”, and thus the package is ignored. Then, each identifier related to types,

variables and constants is replaced with a special token. As a result code portions

with different variables can be recognized as clone pairs.

! Match detection: From all the substrings on the transformed token sequence,

equivalent pairs are detected as clone pairs.

! Formatting: Each location of a clone pair is converted into the line numbers on

the original source file.

 48

Output results: The output of CCFinder is a text file with the following sections:

! Option section: Including the version number of CCFinder, the language

specification, etc.

! Input files section: Including the paths of the input source files.

! Errors section: Including locations at which the lexical analyzer reports some

errors.

! Clones section: Including the maximal clone pairs.

Source files

Figure 3.9: Clone detection process [KKI02]

CCFinder results can be visualized through a graphical interface called Gemini. Next

those clones have to be analyzed manually to find possible aspects.

Lexical Analysis

Token Sequence

Transformation

Transformed Token Sequence

Clone Detection

Mapping from
Transformed Sequence

Match Formatting
Clones on

Into Original

Transformed Sequence

Clone-pairs/
Clone classes

 49

3.2 Refactoring

3.2.1 Object –Oriented Refactoring

Definition

In order to maintain software its structure often needs to be improved. To automate this,

Fowler defines the refactoring process as ["Refactoring is the process of changing a

software system in such a way that it does not alter the external behavior of the code

yet improves its internal structure."[Fow00]]. Typical examples are operations such as

replacing direct uses of public fields with accessors and modifiers, or creating an abstract

super class to encapsulate common behavior in similar classes.

The refactoring is an incremental process achieved by performing a series of small steps,

each doing a single transformation of the system.

Why to Refactor

Most of the software systems spend long time in a maintenance phase to fix the bugs

introduced through out the software system's life time, or to add new features for meeting

changing requirements. All of these activities mean modifying or extending existing

code. So the readability and maintainability of the code base should be the primary

features of any developed system.

Where to Refactor

Refactoring is a process that will help achieve that. Fowler introduces the concept of bad

smells describing areas, in the code that suffer from bad design where the refactoring

process could be taken. Examples of such bad smells are duplicated code, long method,

large class, long parameter list, and etc.

Refactoring Techniques

We will explain same of the OOP refactoring techniques that are presented by Fowler.

! Extract Method: Probably the most used technique when refactoring a method

which suffers has the “method too long” smell. So we create a new method, and

extract a portion of code out the long method, and put it to the new method.

Extracting the relevant code out into its own method allows it to be called

 50

somewhere else, and makes the original method easier to read. There is a problem

in front of the extracted method in dealing with the local variables of the original

method that became out of the scope of extracted method. The solution of that

problem is applying other refactorings for instance Split Temporary Variable and

Replace Temp With Query.

! Extract class: This refactoring is used when a class is violating the principle of

separation of concerns. That is, the class is implementing multiple concerns that

should be divided into two or more classes.

! Inline Class: This is the opposite of Extract Class, and should be applied when a

class is doing too little, so this refactoring is used to move all features of the class

(fields and methods) into another class and delete the in-lined class.

These refactorings can be automated so there are existing refactoring tools that now offer

a variety of such automated refactorings. Such of these tools exist in the Java IDE of

Eclipse (JDT).

Pre/Post-condition
To ensure that the refactoring is not applicable and doing something that leads to

inconsistent behaviors, the refactoring must specify and implement a set of pre/post-

conditions. These pre/post-conditions ensure that the program's behavior will be correct

at the end and the complexity of pre-conditions varies a lot depending on the refactoring.

For instance, for renaming a class, refactoring needs to check the precondition that the

new name will not clash with an existing class. Also, as a post-condition, any existing

reference to the old name should be redirected to the new name.

3.2.2 Aspect-Oriented Refactoring

Aspect-oriented refactoring helps in reorganizing code of crosscutting concerns to

improve modularization and get the source-code clear of code-tangling and code-

scattering. There are three kinds: Aspect-aware Refactorings, Refactoring to aspects (OO

! AO), and AO ! AO Refactorings.

 51

Aspect-aware Refactorings

When applying an OOP refactoring to a system with aspects, it might the necessary to

adapt the pointcut / advice. To achieve this automatically, the refactoring process must

take in account the aspect presence in order to preserve the aspect's behavior. For

example when a “Rename method” transformation changes a name of a particular method

that is captured by a specific pointcut the pointcut may in this case lose the offered

information, resulting that the aspect will behave incorrectly. Hanenberg [HOU03]

proposes solutions for such problems by suggesting conditions that must be taken into

account to ensure the preservation of aspect's behavior when applying refactorings in

aspect-oriented system.

! The number of those join points which are addressed by a particular pointcut is

not changed after refactoring.

! Those join points which are captured by a particular pointcut have an equal

position within the program control flow in contrast to the state before

refactoring.

! The join point information offered by each pointcut does not decrease.

Hanenberg [HOU03] introduces aspect-aware versions of OOP refactorings taken from

Fowler such as rename method [Fow00], extract method [Fow00] and move method. The

key idea behind these Aspect-aware refactorings is extending traditional refactorings with

proper steps to correctly update references in AOP constructs.

Refactoring to aspects (OO ! AO)

In addition to the aspect-aware refactorings which make it possible to apply OOP

refactorings to preserve the behavior of the system in the presence of the aspect

constructs, there are different refactoring approaches are proposed by researchers such as

Monterio, Ladded, Hannemann and Hanenberg, to improve the OOP code using AOP

constructs. Feature extraction approaches focus on extracting the code elements that are

participants of the crosscutting concerns into aspects.

Monterio in his approach introduces a catalog of refactorings for Feature Extraction using

the AspectJ language, Monterio talks about new AOP Specific Smells concepts

 52

equivalent to the bad OOP smells proposed by Fowler [Fow00] to spot problems in

existing code that could be removed by refactorings.

The Double personality smell describes classes that play multiple roles in the

implementation. A class is a double personality if it contains code that implements a

second concern not related to the primary concern of the class. Secondary if this role is

crosscutting then it can be extracted into an aspect using feature extraction refactorings.

 The Abstract Classes smell describes the classes that have abstract interface

implemented by other subclasses inheriting the abstract classes. The suggested

refactorings for that abstract class is to remove the smell by moving implementation code

to an aspect and turning abstract classes into interfaces. The benefit behind this

refactorings is that it enables separation of implementation code from declarations in

abstract classes and the subclasses become free to inherit from some other class and

interfaces.

 We will show in the next section some of the refactorings approaches proposed in certain

of current AOP research. Monterio [MF05] introduced a Catalog of Aspect-Oriented

Refactorings included around eleven AOP refactoring mechanisms focusing on

transformations from Java implementations to their AOP equivalents in AspectJ. A

couple of examples of such mechanisms are:

! Extract Feature into Aspect [MF05]

This refactoring extracts the feature related to crosscutting concerns that is

scattered across several methods and classes or tangled with unrelated code. The

main purpose of the refactoring is to transfer all members contributing to that

feature to an aspect. This is a composite refactoring that uses other refactorings

such as Move Field From Class to Inter-Type Declaration, Move Method From

Class To Inter-type Declaration and extract advice [MF05].

! Move Method From Class To Inter-type Declaration[MF05]

Move a method addressing the secondary concern in a class to an aspect by using

an inter-type declaration, such that the method can be integrated back with owner

class.

 53

! Extract Advice [HOU, MF, Mon04]

This refactoring extracts fragments of code related to a secondary role found in

methods of one or more classes. The fragments could be duplicated in a set of

methods such as condition statements that appears at the beginning of methods to

check the validity of input parameter values. These fragments can be extracted

into advice triggered at appropriate join points matching the original locations

from which the fragments are extracted.

! Change Abstract Class to Interface [MF, Mon04]

Remove the abstract class by moving implementation code to an aspect and

turning the abstract class into an interface. The idea behind this refactoring is that,

by separating implementation and declarations in abstract classes, the subclasses

become free to inherit from some other class and interfaces.

Ladded [Lad03] in his series of tutorials related to AOP refactoring proposes several AO

refactoring techniques such of these refactorings are listed below:

! Extract method calls [Lad03]

It is considered a core refactorings used to extract scattered calls of a particular

method into advice. For example, calls to a log method for the logging concern

can be scattered over the whole working system to log the actions running in the

system. These calls to the log method can be extracted into advice. Figure 3.10

shows how we can extract method call from base code into advice. As seen in the

figure, the method calls are scattered thought the source code, by extract method

calls refactoring, these calls can be picked out and added in one location (advice

body)

! Extract exception handling [Lad03]

This refactoring is applied to extract exception handling code into a separate

aspect.

! Extract concurrency control [Lad03]

Implementing concurrency control requires code to be scattered over many

methods. AOP offers reusable implementations for organizing ‘acquire’ and

‘release’ implementations of locks: read lock and write lock.

 54

! Extract contract enforcement [Lad03]

Extract tangled code checking pre- or post- conditions for values of the input

parameters or return values into a separate aspect.

Figure 3.10: Visualization of extract method call into advice [Lad03]

Binkley et al. [BCH+05] have developed a partially implemented, human-guided (semi-

automated) approach to support OO-to-AO refactorings. Their approach focuses on code

bases in which OOP code-blocks related to the implementation of crosscutting concern

are identified (marked). Binkley’s refactoring is restricted to the replacement of the

marked OOP code fragments with one of the following AOP refactorings including

pointcut and advice pairs; a refactoring can be useful when the following applicability

conditions coupled with the marked fragment of code be appropriate.

! Extract Beginning and Extract End [BCH+05]

 If the marked fragment is at the beginning or end of the body of the enclosing

method.

! Extract Before Call and Extract After Call [BCH+05]

 The fragment of code is always before or after another call.

! Extract Conditional [BCH+05]

 A conditional statement controls the execution of the fragment of code.

! Pre Return [BCH+05]

 The fragment of code is just before the return statement.

 55

! ExtractWrapper [BCH+05]

The fragment of code is part of a wrapper pattern, in which the wrapper code is

extracted to aspect.

! Role-Based Refactoring [Han06,Han05]

Hannemann introduced a technique named “Role-Based Refactorings” for

extracting the crosscutting concerns based on an abstract model describing

crosscutting concern elements called role elements and their relationships. The

role elements can be classes, methods, or fields that are sets of program elements

building the concern. The key idea of Hannemann's refactorings is describing the

concern structure by using the abstract model of role elements included in the

concern, and mapping a particular role element for each concrete program

elements. Hannemann applies the refactorings in terms of those role elements, in

other words the refactoring instructions are defined on each role. An example is

given by Hannemann explaining how “Role-Based refactorings” were applied to

the logging concern in a banking system. An a first step the concern is described

abstractly as consisting of two role methods (for example, getLock(..),

releaseLock(..)) and their enclosing type CurrencyControl as a role type .

The next of step which specifying the concrete program elements that play these roles

and providing refactoring instructions defined on each role to the concrete element. For

example the concrete method acquireLock(Account) plays the role of the role method

getLock(..), the refactoring instructions defined on getLock(..) can be applied to

acquireLock(Account).

Hannemann uses this refactoring approach for replacing crosscutting OO design pattern

implementations with their equivalent AOP implementations.

AO ! AO Refactorings

A third kind of AOP refactoring research focuses on refactorings related to aspect

themselves in order to improve the structure of the aspects. In this section we explain

certain of these refactorings found in the research [HOU, Mon04, Han06]. Monterio

proposes in his refactoring catalog five new AOP refactorings focusing on AOP

 56

constructs to improve the internal structure of the aspect by removing bad smells such as

duplication in the code yielding from extracting the feature to aspect. He also introduces

a new smell term called Aspect Laziness smell describing the aspects that do not hold the

full burden of their tasks and instead pass the load to classes, in the form of inter-type

declarations adding state or behavior to target classes. Monterio describes the situations

in which the Aspect Laziness smell is detected by the following conditions

! The additional state and/or behavior are needed by only a subset of the instances

of the target classes.

! The additional state and/or behavior are needed only during certain specific

phases in the execution of the program.

! Instances of the target classes (may) require multiple instances of that state and

behavior simultaneously.

The main reason of this problem is the static nature of the inter-type declaration and its

disability in coping with the dynamic requirement of the target classes. Monterio

proposes new AOP refactorings such as “Replace Inter-type Field with Aspect Map”

[Mon04] and “Replace Inter-type Method with Aspect Method” [Mon04] as a solution

for replacing the existing design with a "mapping logic"[Mon04] that supports the same

functionality more flexible and dynamic.

Hanenberg et al. [HOU03] propose one AO!AO refactoring named “separate pointcut”

that is useful in a situation where parts of a pointcut definition are shared in a set of

pointcuts. In this situation we can extract the common part from the pointcuts and put the

extracted part in a new pointcut, then reuse this pointcut by combining it back to other

pointcuts using the logical operators ||, &&, and ! .

 57

3.3 Java 2 platform, Enterprise Edition (J2EE)

In this section, we give a brief overview of Enterprise Java Beans (EJB), which are used

as the underlying technology of the case study we used in our experiment. We also

illustrate some of J2EE design patterns, like Service Locator, Value Object, Business

Delegate and Session Facade.

 3.3.1 Enterprise Java Beans (EJB)

Definition

The Enterprise Java Beans is a Java 2 platform, Enterprise Edition (J2EE) technology.

EJB is a server-side component technology, which enable the easy development and

deployment of component-based business applications. Applications written using the

EJB architecture are scalable, transactional, multi-tier, distributed, portable, secure, and

reliable. So the main benefit of EJB is the separation of business logic from system code

[RP06].

A typical EJB Architecture is shown in figure 3.11 consists of [Raj]:

! EJB Servers.

! EJB Containers.

! The Home Interface and Home Object.

! The Remote Interface and EJBObject.

! EJBs (Session Beans and Entity Beans).

! EJB clients.

! Auxiliary systems like: the Java Naming and Directory Interface (JNDI) and the

Java Transaction Service (JTS).

! EJB Servers: These provide services such as raw execution environment,

multiprocessing, load-balancing, access of device, provides naming and

transaction services and makes containers visible.

! EJB Containers: These act as the interface between an Enterprise JavaBeans and

the external world. An EJB client never accesses a bean directly. Any bean access

is made by container-generated methods which in turn call the methods of bean.

 58

The two types of containers are session containers which can contain transient,

non-persistent EJBs whose state is not saved at all and entity containers that

contain persistent EJBs whose state is saved between calls.

Figure 3.11: EJB Architecture [Raj]

 Auxiliary systems

JNDI JTS

! The Home Interface and Home Object: Factory methods to locate, create, and

remove instances of EJB classes which are defined in the home interface. The

home object is the implementation of the home interface. The EJB developer first

has to define the home interface for his bean. The EJB container vendor provides

tools that automatically produce the implementation code for the home interface

defined by the EJB developer.

! The Remote Interface and EJBObject: The remote interface lists the business

methods available for the enterprise bean. The EJBObject is the client’s view of

the enterprise bean and implements the remote interface. While the enterprise

 59

bean developer defines the remote interface, the container vendor provides the

tools necessary to produce the implementation code for the matching EJBObject.

Note, however, the EJB container is still responsible for managing the EJBObject.

Each time the client calls the EJBObject’s methods, the EJB container first

handles the demand before delegating it to the Enterprise Bean.

! EJB Clients: These make use of the EJB Beans for their operations. They find the

EJB container which contains the bean by the Java Naming and Directory (JNDI)

interface. They then make use of the EJB Container to call EJB Bean methods.

There are two types of EJBs:

- Session Beans: Each Session Bean is usually associated with one EJB Client.

Each Session Bean is created and destroyed by the particular EJB Client which it

is associated with. A Session Bean can either have states or they can be stateless.

- Entity Beans: Entity Beans always have states. Each Entity Bean can however be

shared by multiple EJB Clients. Their states can be persisted and stored through

multiple calls.

EJB servers have a right to control their working set. Passivation is the process by

which the state of a Bean is saved to persistent storage and then is permuted

outside. Activation is the process by which the state of a Bean is restored by

permuted it in from persistent storage. Passivation and Activation apply to both

Session and Entity Beans.

There are two types of Session Beans:

- Stateless Session Beans: These types of EJBs do not have any internal state. Since

they do not have any states, they do not need to be passivated. Because of the fact

that they are stateless, they can be shared in to service multiple clients.

- Stateful Session Beans: These types of EJBs possess internal states. Consequently

they must handle Activation and Passivation. However, there can be only one

Stateful Session Bean per EJB Client. Since they can be persisted, they are also

called Persistent Session Beans. These types of EJBs can be saved and restored

 60

through client sessions. To save, a call to the bean's getHandle() method returns

an object of handle. To restore, call the handle object's getEJBObject() method.

Persistence in Entity Beans is of two types:

- Container-managed persistence: Here, the EJB container is responsible to save

the Bean's state. Since it is container-controlled, the implementation is

independent of the data source. The container-controlled fields must be indicated

in the Deployment Descriptor and the persistence is automatically handled by the

container.

Note: Deployment Descriptors are instances arranged in series of a class. They

are employed to pass information about an EJBs preferences and deployment

needs to its container. The EJB developer is responsible to create a deployment

descriptor along with his/her bean.

- Bean-managed persistence: Here, the Entity Bean is directly responsible to save

its own state. The container does not need to produce any database calls.

Consequently the implementation is less adaptable than the preceding one as the

persistence needs to be hard-coded into the bean.

! Other Auxiliary systems like:

- The Java Naming and Directory Interface (JNDI) which makes it possible to

Clients of EJB to find beans of EJB.

- The Java Transaction Service (JTS) that provides the support of transaction in an

environment of EJB.

3.3.2 J2EE Design Patterns

In this section, we also give a brief overview for some of J2EE design patterns [pat],

which are used in the case study we used in our experiment.

Service Locator

Problem

Enterprise applications need an approach to look up the service objects that give access to

distributed components. J2EE applications use Java Naming and Directory Interface

 61

(JNDI) to look up enterprise bean home interfaces, Java Message Service (JMS)

components, data sources, connections, and connection factories. Iterant lookup for code

makes code hard to read and maintain. Moreover, needless JNDI initial context creation

and service object lookups can reason performance problems.

Solution

The Service Locator pattern centralizes distributed service object lookups, provides a

single point of control for service access, and may act as a cache that removes redundant

lookups. It also encapsulates complexity of lookup and creation process.

Value Object

Problem

Application clients need to exchange data with EJBs. Using several calls to obtain

methods that return single attribute values is inefficient and sucks up network bandwidth.

Solution

Create a Value Object (a serializable class with public attributes) that can be used to

house all the attribute values of an EJB. The client makes a single remote method

invocation. The EJB initializes an instance of the Value Object and passes it by value to

the client so this mechanism facilitates data exchange between tiers.

Business Delegate

Problem

Presentation tier components interact directly with business services through RMI. This

produces undue coupling, client complexity (networking issues), and poor performance

(too many remote calls). The client is tightly coupled to the EJB layer, creating

dependencies between client and server that affect both development, run-time and

project management concerns.

 62

Solution

Create a Business Delegate to hide underlying implementation details (such as lookup

and access of EJBs). The Business Delegate is a client-side abstraction for the server-side

services. It hides all distribution details, intercepts remote exceptions, performs any retry

or recovery operations, throws application level exceptions as needed, and may cache

results locally.

Session Facade

Problem

Clients are coupled directly to session and entity EJBs. Tight coupling leads to decrease

in flexibility and software design clarity. Fine-grained method invocations overflow the

network.

Solution

Create a session bean as a facade to encapsulate the complexity of interactions amongst

the server-side business objects participating in a workflow. The Session Facade pattern

defines a higher-level business component that contains and centralizes complex

interactions between lower-level business components The Session Facade: provides a

simpler interface, creates a higher level "business service" abstraction, eliminates the

lower level "chattiness" between the client and the server, and clearly centralizes security,

transaction control, and relationship management.

 63

Chapter 4

Aspect Mining in AZ-VUB Case Study
This chapter describes our experiences applying aspect mining techniques on an

industrial legacy application written in Java. We also discuss the aspect mining tools

used in this experiment and the crosscutting concerns identified in the application. At

the end of the chapter we give an evaluation of the mining activity.

4.1 Case study system: AZ-VUB application

AZ-VUB is the academic hospital of the Vrije Universiteit Brussel and one of the

larger hospitals in Belgium. Like all medical organizations, AZ-VUB is using a

computerized system managing the services it provides. The system supports the

storage and evaluation of medical data, and helps to support patient care, and resource

scheduling supporting the hospital’s management activities including appointments

scheduling, drug consumption, bed availability and human resources.

 In this section we give a brief description of the AZ-VUB application. The AZ-VUB

application is written in Java using the J2EE platform [jav]. It is a web-based system.

The user-interface parts are constructed using Java Server Pages (JSP) providing the

users with an interface through a web browser. One of the main functions of the

system is managing the prescription of medicines which need to be provided to

patients who are staying at the hospital. The application allows a physician to select

from a catalog of medicines which are needed to be prescribed so different JSP pages

are accessed depending on which medicine is selected. The business logic of these

activities is implemented through the EJBs containers.

We get a part of AZ-VUB application as case study. This part of the application

comprises 37 packages including 408 types. These types contain around 4535

methods. The total number of lines of code in these methods is approximately 7622

LOCm. Figure 4.1 shows distributions of lines of code in methods. We observe that

there are a lot of methods containing a large number of lines yielding more

complexity for the application.

The packages can be sorted by architecture: there are packages containing types

defining the structure of J2EE components such as the value objects, session beans

 64

and entity beans. Other packages include types working as utility classes providing

several services needed by the application components. There are also packages of

types containing the actions triggering the appropriate EJB functionality.

Figure 4.1: Distributions of code lines in methods of the AZ-VUB application

In the next sections we discuss the aspect mining techniques we applied to the case

study and discuss the crosscutting concerns we discovered.

4.2 Aspect Mining Approaches

Aspect mining is the discovery of aspects in existing code bases using various set of

tools that are discussed in detail in chapter 3(section 3.1). There are two kind

approaches of those used tools, approaches called Bottom-up approaches discover the

concerns automatically and give results advising the developer about the spots of

aspect candidates (seeds).

The other kind of approaches is called explorative or query-based (Top-down),

approaches which allow the developer to explore the code or make query on the code

bases. In these approaches the developer uses previously identified seeds, or well-

known concerns to build a complete outlining the elements and their relationships that

are pertinent to the crosscutting concerns.

 65

4.3 Applying Aspects to AZ-VUB application

 The idea of applying aspects to AZ-VUB application appears clearly when we

consider software evolution. Using AOSD techniques we can adapt the software

structure for coping with new variable requirements arising through its lifecycle. We

need to modify the software parts that are affected by the changes, modularizing the

code related to the same concern and making it more readable and easy to maintain.

Therefore, our goals are in the first place, identify which crosscutting concerns can be

extracted from AZ-VUB application, then extract these concerns code and apply AOP

refactorings to the identified crosscutting concerns, using AspectJ [aspe]. It is

important that extracting the aspects does not affect the functionality.

Transforming from OO to AO can be divided into two phases. The first phase is

called aspect mining. In this chapter we explain broadly the aspect mining phase

illustrating the achieved mining steps and what are used of the mining tools. We

analyze the results yielding from applying the tools on the code of the AZ-VUB case.

4.3.1 Used Techniques

In our experiment we used the both kinds of mining approaches: automated tools such

as Fan-In tool (FINT) and Prism tool; also we used exploring tools such as FEAT and

JQuery. The way that followed by us in the aspect mining of this experiment is using

the automated tools at first because these tools takes little input and don’t need to be

having much knowledge about the application domain or target source code. This way

allows us to examine the hot spots that might indicate aspect candidates. At the next

step we used the explorative tools to indicate certain elements and their relations of

aspect candidate that maybe identified in the first step.

Therefore using automated mining tool would support us with staring points at which

we will start our aspect mining and using the explorative tools would allow us to build

complete model for the identified concerns illustrating concern relations with other

elements. Such as of these relations are same class hierarchies of the method-caller

locations (i.e. the methods (callers) are defined by the same interface or super class)

for the discovered methods whose high scattering degree in order to help us in

extracting these methods. So we discuss in the following sections the applied process

of using aspect mining approaches.

 66

All of the used tools integrate tightly into IDE which we use, namely Eclipse. Eclipse

[ecl] is an integrated Java development environment. Besides being a good platform

for all these other tools, Eclipse is a good development framework in its own right.

4.3.2 Applying Bottom-up Approaches

In this section we present and discuss the mining process using two automated tools

on the AZ-VUB case study.

4.3.2.1 Applying Fan-In Tool

We started our mining activity by applying FINT on the case. FINT analyzes the code

identifying each method and its number of distinct calls also called fan-in value.

Applying FINT on the target case involved the following two steps: [MDM04]

! The first step: we specify the callee sites (packages and classes) in which the

called methods that we need to compute the fan-in number; we also specify the

caller site in which the methods that call the others in the callee site.

! The second step: we specify a threshold used to filter the results according to

fan-in value by showing only the called methods whose high fan-in value

above the threshold. Also we can restrict the results by specifying an option

for excluding the getter and setter methods.

FINT yields results arranged as a tree structure containing each called method with its

fan-in, and it’s calling method. The results of FINT needs some effort to manually

analyze for examining often called methods (i.e. having high fan-in), which are

possible seeds of crosscutting concerns.

Fan-In Analysis

When we applied FINT on the AZ-VUB case, we chose to select methods which have

fan-in value above threshold equaling 4. We get 255 methods having fan-in value

arranged between 4 and 167. The getter and setter methods are automatically excluded

from the results. Figure 4.2 shows a chart illustrating the distribution of these methods

(accessor methods are not included) and their fan-in. Form the chart we observe that

there are around 138 methods having high fan-in value(>=7) and representing

approximately 3% of the total methods. Table 4.1 shows a part of the FINT results,

and their fan-in.

 67

72

33

23
28 30

6 4 3 4 5 3
7 7

4
1 1 1

16

2 1 1 1 1 1
4 5 6 7 8 9 10 11 12 13 14

20 21 22 23

33

40

48 49
53

59

103

143

167

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of methods

Fan-in

Figure 4.2: Distribution for fan-in on the methods of AZ-VUB application

In our analysis we restricted ourselves to methods returning nothing (void type)

because some of these methods are holding actions that are not part of the base code

functionality. For methods with no return value it easy to extract them into aspect

using a method-to-advice refactoring [GK05].

We also focus on the methods having high fan-in (>= 7). So in our analysis, we

examine each called method and it's calling sites to explain if its concern crosscuts the

core concern of its calling sites. We observe number of issues through our searching

for the references of these methods in the case implementation:

- Because of the polymorphism mechanism, there are some methods could be reported

as having high fan-in for other methods, so more carefully analysis are needed to fix

this issue.

- There are methods crosscut others but these methods could not be extracted because

the difficulties in capturing the necessary context to make robust pointcuts or

difficulties in using local variables of the crosscut methods. The local variables are

used as variables storing the return values of the crosscutting methods, or as

arguments passed to them (the crosscutting methods).

This issue could cause a problem for extracting the crosscutting concern into an

advice within aspect, since AspectJ’s join point model does not support the

referencing for the local variables.

 68

-By examining the call sites of the methods with high fan-in that are implementing

checking behavior, we observed that there are some of these methods used in

uncommon complex conditions. So this issue raises difficulties in extracting these

methods by aspect means.

Next we present some explanation of the identified candidate aspects in order to

discuss the effects of the refactoring on the maintainability and evolvability of the

application.

Service Locater Pattern

We observe that the methods that implement a J2EE design pattern named Service

Locater have high fan-in value. The Service Locater pattern is implemented as a

utility singleton class used to manage the session facades for the different components

of the AZ-VUB application for caching the resources so as to gain performance. For

example the getInstance method in ServiceLocater class has a high fan-in around 184.

Exception Wrapping Pattern

Exception wrapping is a crosscutting concern that affects a number of classes in the

system. These classes for instance catch Exception as general exception type thrown

by the basic implementation of their methods and then re-throw J2EEArchException

as an application specific exception presenting meaningful error messages to users.

This type of the exception manipulating requires a try/catch block in each method

through which the wrapping process is established. This is a typical instance of the

Business Delegate J2EE pattern [blu] therefore we observe that the constructors of

J2EEArchException have high fan-in value.

Notifying Listener Concern

The notifying concern is identified in one class namely CarePlanTableModel.

CarePlanTableModel contains methods manipulating the structure of a care plan table

storing data shown in Icu care plan frame panes. When the structure of the table

changes, a method named fireTableStructureChanged must be invoked to notify

table's listener that the data in the table is updated. This method crosscuts eleven

methods of the CarePlanTableModel class in different places, for instance after

inserting a new row, delete a row, or change the visibility of the table's rows.

 69

Persistence Concern

Class ResultSetWrapper is a wrapper class for java.sql.ResultSet. The class

ResultSetWrapper defines getter methods to get result data from ResultSet object that

provides access to a table of data generated by executing a query statement. The table

rows are retrieved in sequence. Within a row its column values can be accessed in any

order. The getter methods retrieve column values for the current row either using the

index of the column, or by using the name of the column. In these getter methods we

observe that after the column value returned, it is stored in a hash map using either

column name or column index as key. These stored values are used to optimize

HTML table creation associated with a query's result set.

Other instance of persistence concern is detected in the CarePlaneTableModel class.

The CarePlaneTableModel class uses an instance of the

"be.azvub.j2ee.orderentry.icu.- IcuRowPropertyProvider" class to load and save

properties for a patient. Each patient has a properties file for each Care Unit where he

was cared. The IcuRowPropertyProvider.save() method has high fan-in value of 13

and all its calling sits are in the CarePlaneTableModel class. This method uses the

care table model to create new properties and then writes them to disk. This method is

intended to be called in the table model each time something with the table rows has

changed (added, deleted, moved, order changed, visibility changed, etc..).

Consistent behavior concern

There are a number of methods implementing consistent behavior in the execution of

other methods. For example, in the CarePlanTableModel class, the

recalculateCounts() method with a fan-in value of 8 is called to recalculate both the

column count and the row counts of the care plane table each time the status of rows

of the table has changed. By examining the call sites, we observed that 4 of them

occur at the last of the methods changing the visibility for rows of the table model so

it can be easily factored out as an aspect by means of "after" advice.

Contract enforcement

Contract enforcement is crosscutting concern can be observed in several methods in

the case study. So there are a lot of methods implementing checking behavior to

enforce controlled steps in the executions of others methods for fixing any unexpected

results. For example, in the isEmptyString() method with a fan-in value of 9 is used in

 70

the getter methods of the DynaBeanPropertyParser class to check out the null values

to prevent unexpected exceptions. By examining the call sites, we observed that all of

the method calling occur before calling of the ValueOf(String) method of the

wrapping classes of the primitive types (Boolean, Double, Integer, Long, Short,

Float). Since the checking condition is similar, it can be easily factored out as an

aspect by means of "around" advice for a pointcut capturing the calls of the

valueOf(String) methods.

4.3.2.2 Applying Prism Tool

Aspect mining using Prism tool is centered on three concepts: Prism fingerprint,

Prism footprint, and Prism advisor. The Prism fingerprint is defined as a regular

expression describing abstractly certain elements of a crosscutting concern in the base

code. Through the Prism fingerprint, we make queries over the base code searching

for crosscutting concern. The result yielding from applying the fingerprint are

concrete locations representing either a specific line or a region in the target’s source

code. We also can use Prism advisors that represent important insights of the structure

of the system and, therefore, are supportive in boosting mining procedures and

improving the exactness of fingerprint definitions.

We applied Prism tool on AZ-VUB application getting an advisor containing around

210 methods with their total occurrences in the source code. Prism advisors help us by

showing a large list of the application elements (types or methods) ranked according

to their scattering degree and explain their total of occurrences and where appear in

the application code. The total occurrences of the methods look like as the fan-in

value yielded by FINT.

We have discovered several crosscutting concerns having elements related to Java-

predefined types that did not discovered by FINT tool.

We use the ranking capability of Prism advisor to make prudent guesses. Prism is able

to rank the scattering of all class types and their methods used in the system. Types

that are used relatively spread throughout the code provide good hints of potential

aspects.

Next we will present some explanation for some the candidate aspects identified using

the Prism tool.

 71

Transaction Control Concern

We observe that setRollbackOnly() method has high scattering degree and most of its

calling sites in OrderEntrySystemBean class. OrderEntrySystemBean class is

representing the main facade session for the order entry operations in AZ-VUB

application.

The most of the session's methods are tangled with transaction control concern. When

the methods performing a transactional process fail through its execution, the rollback

action must be taken to undo the uncommitted transaction. We observe that

"setRollbackOnly" is invoked on EJB Container object in two catch block trapping

the exception thrown. The setRollbackOnly action enforces the EJB Container to

rollback the transaction when the failed method exits.

Exception Handling Concern

Exception handling is a crosscutting concern that affects a number of methods in AZ-

VUB application. "ActionMapping.findForward(String)" method has total

occurrences of 21 and appears in 11 methods. By examining these occurrences sits,

we observed that all of them are in "execute" methods of Action classes (11 classes)

and used as part of exception handling code.

Also we observed that the operations taken when catching the exception are the same

in all the execute methods in the classes implementing the Action interface.

Every execute method in these classes catches the exceptions thrown by the

underlying implementation. The problem is that the developer has to write this chunk

of code into every execute method. This is not very elegant, and can be easily handled

with AOP.

4.3.2.3 Discussion

Table 4.1 summarizes part of the discovered concerns by the both tool FINT and

Prism. The first column display names of the concerns. The other columns show by

what tools the concern was discovered: if a tool discovered the concern, we put a +

sign in the corresponding column, otherwise a - sign is in the table.

We will try to interpret some concerns of what are shown in the table to noticeably

identify the strengths and weaknesses of each individual tool.

 72

Concern FINT Prism

Logging + +

Contract enforcement + +

Consistent behavior + +

Notifying listener + -

Exception wrapping pattern + -

Persistence + -

Transaction control - +

Exception handling - +

Service Locater + +

Table 4.1: Concerns discovered by both techniques (FINT and Prism)

Logging concern is one instance of the concerns discovered by the both tools. The

logging concern comprises methods used to log the occurred events in the system.

These methods have high scattering degree so the both tools were able to discover the

concern.

Persistence concern comprises two methods (storeField(..)) which are used to store

values resulting from querying the database. These methods are tangling the getter

methods for only one class (ResultSetWrapper) yielding low scattering degree for the

concern, so that concern is discovered only by FINT and not appeared in Prism's

result.

Notifying Listener concern is discovered by FINT because the concern method

(fireTableStructureChanged) is tangling methods of one class (CarePlanTableModel)

so it is not detected by Prism.

Exception Handling concern is discovered in "execute" methods of 11 action classes.

These methods use similar way to handle the errors using methods of pre-defined

types that were not identified by FINT. Such of these types is "org.apache.struts-

.action.ActionErrors" that belongs to struts framework.

 73

Transaction Control is concern discovered by Prism since the concern crosscuts the

several transactional methods by invoking the method "setRollbackOnly" on the EJB

Container object.

Form the above interpretation for the discovered concern we observe that FINT tool

(version 0.3) can only compute fan-in metric for the methods belonging to the

selected types in source code of the targeted project. So the source code of the used

pre-defined type must be available to be detected by FINT. The aspect seeds of the

concerns that encapsulate functionality of the pre-defined types (their source code is

not available) are shown by Prism advisor and not appeared in FINT result.

Other observation is that Prism advisor only shows the crosscutting methods that are

scattered in multiple classes (at least two classes) so Prism misses some aspect

candidates with low scattering degree, such as the notifying concern that crosscuts 12

methods of the "CarePlanTableModel" class. Prism also misses the aspect candidates

related to the object creation (class constructors), for example the creation of the

"J2EEArchException" exception that is used as part of the exception wrapping

concern.

4.3.3 Applying Top-down Approaches

In this section we present and discuss the mining process using two top-down

approaches.

4.3.3.1 Applying JQuery Tool

We used JQuery that combines logic programming and Eclipse to produce a way to

build interesting views of our source code. For example, we can build queries that

view only those classes that implement interface IFoo, etc. Using JQuery we can

make dynamic browsers showing the software structure according to particular top-

level query. For example we can make the browser present all the methods defined in

the system.

Next we give present some concrete examples that illustrate how we used JQuery to

explore the case source code.

Example 1:

The example shown in figure 4.3 is one of our searches that query the code structure

to find out how Value Object types are constructed. Figure 4.3 is an example of using

 74

a directed query to find a specific opening point in the code from which to explore. So

the typed query describes all subtypes of the type named "ValueObject".

Figure 4.3: An early exploration of the AZ-VUB application code

Example 2:

In this example, we want to focus more specifically on the code to be extracted. We

had already identified the "be.azvub.j2ee.arch.util.logging" package as containing

most of the functionality of the logging concern we were interested in. We needed to

find out how to concretely use of this concern. Figure 4.4 shows how we discovered

the caller method for all methods (returning void) of all classes of the logging

package.

The query typed in the example is a set of sub-queries combined together

incrementally to give the concrete output. In this query we uses the filter capability of

JQuery by using rename condition to filter the result to display the classes of

"logging" package and the methods returning void.

This tool helps us at the starting of mining phase in viewing and understanding the

structure of our case study and also helps us in querying about the seeds discovered by

automated tools or about well-known crosscutting concern. Therefore using JQuery

could be complement for using other tools.

 75

Figure 4.4: Exploring the usage of the logging concern

4.3.3.2 Applying FEAT Tool

FEAT is a tool by which we can build up concern graphs in an easy-to manage way

through the Eclipse IDE. Concern graphs are collections of program elements of

interest, such as classes, methods, and fields. FEAT also allows us to include some

relationships of interest for each element in the concern graph, while excluding others.

FEAT tool helps us in identifying and collecting the elements and relationships for

identified concerns whose seeds discovered by the automated tools.

Using FEAT, we build concern graphs for the identified aspect candidate. The graph

is a set of vertices and edges among the vertices. The vertex is presenting one of the

program elements which can be class, method or field. The edges among vertices are

presenting the relationship between the program elements constructed by using

querying capability of FEAT tool. In FEAT we can query the source code using two

categories of queries: fan-in and fan-out.

We will give an example explaining how FEAT tool aiding us to spotlight on the

logging concern usage in AZ-VUB application. We start our exploration from

ServerLogger class as starting point. ServerLogger is the major class in the server

logging facility. ServerLogger provides file logger to the server environment. The

ServerLogger instance can be retrieved by using getLogger("aModule").

 76

To find out where the program locations use the ServerLogger, we make fan-in query

to get all incoming call for the getLogger method. The query output is shown as tree

containing all classes where the methods calling getLogger in order to log the

message and the exceptions upon the ServerLogger object by using info(), warning(),

error() or alarm() methods.

We also found FEAT very helpful simply for keeping track of the work done, and the

concerns that we were looking at.

The ability of FEAT to save a concern and restore it later is very useful as a refresher

to remind ourselves where we were in the process of refactoring.

With FEAT concern graphs, we can understand the code structure in abstractly way

excluding the large details of the implementation. This abstraction captures the core of

the relationships between different code elements, making it easier for us to focus on

the concern. When required, elements can be mapped to source code to access the

details.

Next we will present some explanation for certain of candidate aspects identified

through exploring for the base code of the AZ-VUB application. .

Precondition Checking Concern

Another type of concern we discovered while exploring the code manually was

precondition checking. The precondition checking often requires duplicated code if

the conditions are common to many methods. In our case study many classes

implementing javax.servlet.Filter have a doFilter method which expects a request as

input parameter. We observed that there are frame filters classes which test the

request parameter that should be have attribute for frame filter type. The parameter

checks occur at the beginning of the method .

Another instance of the concern that we also discovered while exploring the code

were null checks and verifying checks testing. We found four methods in a utility

class named "ContextParams" in the package “medication”. These methods use a

precondition statement at their beginning. The methods are used in generating URL

fragment containing one or more parameters for adding it to an HTTP request. The

founded precondition statement is used to exclude particular parameters to be not used

in forming the request. Therefore there is a set named “exclude” containing these

parameters that should be excluded.

 77

4.4 Evaluation

In this section we give an evaluation view for the tools used in the mining

experiments and for the results of mining process.

We will try at first to highlight some observations related to technical issues of the

used tools. We do our mining experiments by computer with Intel Pentium processor

1.86 GHz and 512 MB of RAM. When we applied those tools on the AZ-VUB

application, we observed that FINT (version 0.3) required long time around 15

minutes to parse the application and compute fan-in values, while Prism required 2

minutes to show the advisor. We also observe that JQuery creates a large number of

small files on a hard disk, using them as a sort of database called fact-base.

Additionally JQuery keeps a subset of the fact-base in memory at all times. If you

have a large code base JQuery requires more memory to keep that subset. This all

leads to huge amounts of memory usage, which can end up with

Java”OutOfMemoryError” error and is rather an unproductive resemblance of a

database.

We observe that FINT tool (version 0.3) has potential to analyze the user-defined

types yielding the fan-in value for each defined method that is called within many

places. We also observe that FINT can't deal with the methods of pre-defined types

used in the application, if their source code is not available in the application. The

limitation of FINT in analyzing the entities of these pre-defined types used in the

application could make the FINT to be not able to find out all the methods scattered

throughout the system.

Prism has the capability to analyze the both types, user-defined types, and predefined

types yielding advisors showing views of the methods or the types ranked according

to its scattering degree. Therefore several aspect are discovered whose elements

related to pre-defined types by Prism. Prism also allows us to make queries over the

base code of the system. Prism misses the code elements whose low scattering degree.

We observe that both FINT and Prism are efficient tools in discovering the dynamic

crosscutting concern related to the method calls scattered throughout the system. The

large results of the both tools need effort from us to analyze and indicate which the

entities of the results could be good aspect candidates.

 78

The FEAT tool and the JQuery tool are fine tools in discovering and collecting the

entities of the concern whose well-known seeds. Therefore to make the mining

process to be effective, using those tools require starting points to begin the mining

activity. These tools are helpful in discovering the static crosscutting concerns related

to the class hierarchy of the system. Those tools also help us in finding more complete

concerns based on initial seeds identified because the concern identified by FINT and

Prism tools is larger than just the methods calls, relating to setting up appropriate

objects and checking relevant conditions.

Our aspect analysis results indicate that modularity of AZ-VUB application design is

greatly limited by the wide existence of tangled logic. The most of the crosscutting

concerns discovered in our mining activity can be sorted into one category namely

consistent behavior. The category includes concerns related to transaction control

mechanism, notifying listeners, exception handling, precondition checking, exception

wrapping, clock setting, and events logging.

We will go further steps in refactoring some of these concerns by extracting them into

aspect using AOP constructs, so the next chapter presents these steps in details.

 79

Chapter 5

Introducing Aspects in AZ-VUB Case

Study

We will go one step further; we will factor out a number of the crosscutting concerns

identified in the mining process discussed in the previous chapter and re-implement

them as aspects. Therefore, this chapter presents in detail the AOP refactoring process

applied on the AZ-VUB application. We could not test the refactored code since it is

incomplete.

5.1 Applying AOP refactoring to AZ-VUB application

The idea of refactoring to aspects is to modularize concerns that are candidate aspects,

identified in the aspect mining phase. For modularizing field and method declarations

that are originally scattered, inter-type declarations are used. They effectively take out

the declarations from the classes and add them in a modularized aspect. For other

kinds of refactorings, we use advice with pointcuts which select identified execution

points to move scattered code into an aspect. We utilized these techniques in the

refactorings described in the next sections. So the next sections discuss and present

the refactoring of some of the crosscutting concerns identified in the AZ-VUB

application through the mining process presented in the previous chapter.

5.2 Extracting the Notifying Listener Concern

In the aspect mining process, we detected the notification concern in the

CarePlanTableModel class. Most of the methods of that class are tangled with a call

to the method named "fireTableStructureChanged", which notifies the listener of the

care plan table when the state of the table is changed. The notifying listener concern is

comprised of 3 types of code sections: one field representing the listener reference,

methods implementing the logic of the concern and code fragments which are calls of

the notifying concern's methods. We dealt manually with each of these in turn, as

described in Extract Feature Into Aspect [MF04]. Moving fields and methods was

 80

straightforward and done according to Move Field From Class To Inter-type

Declaration and Move Method From Class To Inter-type Declaration [MF04].

Extracting the calls of the fireTableStructureChanged method into an aspect was done

by isolating these calls from the source code of the core concern. Therefore we

defined pointcuts capturing join points at which the state of the table is changed and

the notifying action is triggered in turn. We defined "after advice" for those pointcuts

to trigger a notify method after the execution of the methods changing the care table

state.

 The implemented aspect in which we put the elements related to the notifying

concern moving it from the CarePlanTableModel class into the aspect and shows the

after advice encapsulating the calls of fireTableStructure- Changed method.

Two methods named "makeAndInserCarePlanEntry" are a special case, in which the

triggering of the notify method is conditional with incrementing the column count of

the care table after updating the table; therefore to refactor that case, we defined

"around advice". The advice checks the input parameter of type BasicActivityVO that

should be not null, and stores the value of the column count before proceeding the

method to be checked later in order to trigger the notifying action.

The aspect implementation uses pointcut in enumerative style to express guaranteed

join points at which the aspect crosscut the base code. The main problem associated

with this style of the pointcut is high coupling between the aspect and the base

program so naive modifications to the program could make the pointcut to loss the

information of its intended join points. Another style of pointcut definition is a

pattern-based pointcut that could be used instead of enumeration pointcut to reduce

the coupling. The definition of based-pattern pointcut relies on the naming convention

to arrange the code in name patterns so expressing pattern-based pointcut in this case

would be hard and matched methods accidentally complying with this name patterns.

With this refactroing for the notifying concern, we could improve the readability and

the reusability of the CarePlanTableModel class. By using the aspects, it is possible to

plug or unplug functionality of the notifying action.

5.3 Extracting the Transaction Control Concern

The Container of EJB objects manages transactions performed through the execution

of business methods. The Container management is based on transactional properties

 81

for the business methods declared in a separate file: the XML deployment descriptor.

The deployment descriptor declares the transaction requirements for each business

method. For example, setting the "Required" property for a method means that the

method must be executed within the scope of a transaction, and if needed, a new

transaction will start, while specifying "Mandatory" means that the method invocation

will fail if not executed within a transaction scope [Fab04].

If a transaction is created upon execution of a method, the Container will commit or

rollback this transaction when the method ends. The decision to rollback the

transaction is primarily based on the type of the exceptions thrown.

If the method throws a system exception, such as EJBException and this exception is

not caught within the method, then the method will terminate and the container will

begin a rollback. The application-defined exception will not bring about the same

effect. In this case, calling setRollbackOnly() method on the Container is needed

before throwing the exception. At any point the method can call setRollbackOnly(),

which will indicate that a rollback is to be performed when the method exits.

Therefore the "setRollbackOnly" method call is scattering throughout the business

methods of the EJB objects performing a secondary concern crosscutting the core

concern of these methods. This concern was detected by the mining activity; for

example we found 40 methods performing transactional actions in the

OrderEntrySystemBean class, crosscut by that concern controlling the transaction

execution.

We refactored this concern for the OrderEntrySystemBean class in an aspect handling

the calls to the "setRollbackOnly" operation. We started with identifying all

transactional methods needing rollback actions to be taken when an exception is

thrown through its execution.

We specify these methods first in order to make appropriate join points capturing the

execution of these methods. We used a pattern-based pointcuts getting 11 pointcuts for

those methods. We defined "around advice" in the aspect to be triggered at these

pointcuts. Inside the advice we used try-catch blocks to trap the exception thrown

when the method proceeds. Inside the catch block, the "setRollbackOnly" method is

invoked on the Container object, after that the exception is re-thrown. Due to the

AspectJ lack of a pointcut designator triggering before the exception throwing, we

preferred to use "around advice" instead of using "after throwing" advice in this case

 82

because the "setRollbackOnly" action should be taken before the exception throwing

to save the behavior of the original code before the refactoring process.

The pointcut definitions seem not meaningful and understandable. Due to the large

number of the pointcuts matching signature of the methods, the aspect appears more

complex and not easy to understand and reuse. To overcome this problem and make

the aspect more legible, we propose to define an abstract aspect named

AbstractTransactionControlAspect.

The abstract aspect performs the transaction control logic necessary for executing the

transactional methods. This logic is expressed in the around():transactionActivities()

advice. The aspect presents two abstract constructs that must be overridden when we

implement a concrete transaction control aspect

! public abstract pointcut transactionActivities();expresses the pointcut where

the advice must be applied. The pointcut must be a method call.

! public abstract SessionContext getSessionContext (Object o);must return an

instance of a SessionContext presenting the Container component of the

facade session class.

The benefit of the abstract aspect that it can be reused for any session faced class

performing transactional methods.

To apply this abstract aspect on the OrderEntrySystemBean class we define an

interface named TransactionalMethodsInterface containing the signatures of all

transactional methods of the OrderEntrySystemBean class.

We then reuse the abstract aspect by implementing a concrete aspect extending the

abstract aspect. In the concrete aspect shown the declare parents static crosscutting

construct was used to make the facade class, which contains all transactional methods

of the order entry system, implement the Transactional- MethodsInterface interface.

Then, we defined a concrete transactionActivities pointcut to identify the transactional

methods of the order entry system. The pointcut matches the execution of all methods

defined by the TransactionalMethodsInterface interface.

Finally, we define the concrete getSessionContext method to return the container

instance for the target object of the transactional methods. So casting process was

proceeded for inside the method to convert the type of the argument which presents

the target object of the captured method (join point).

 83

With this approach, we can improve the readability and the reusability of the aspect;

also we guarantee preservation of original behavior for the refactored code by

defining one pointcut capturing the transactional methods and replacing the large

number pattern-based pointcuts that could be matched methods accidentally or lost

required methods. If we need to plug or unplug functionality of the transaction control

for particular methods, we just update the interface by either adding a new signature

or remove the existing signature. In this version of the aspect does not suffer from the

same problems as those with the original version.

Also With this approach, the aspect is not directly dependent on the transactional

methods signatures, but the auxiliary TransactionalMethodsInterface interface is

totally dependent on them so any changes to these methods require update to their

corresponding in the interface.

5.4 Extracting the Exception Handling Concern

Another concern we discovered by mining the system was exception handling. There

are eleven classes in AZ-VUB application, implementing the Action interface by

encapsulating the EJB functionality actions. So each of these classes is implementing

an execute method triggering the appropriate EJB functionality whenever an HTTP

request invokes the corresponding URL. We observed that each execute method is

crosscut by a concern handling the thrown exceptions. All execute methods have one

way to handle the exceptions encountered during execution of their core logic so the

exception handling code is duplicated in all the execute methods.

To isolate the exception handling concern from the core concern of these methods, we

implemented an aspect, in which we defined a pointcut capturing the executions of the

execute methods for the classes sub-typing from the Action type, and also we defined

"around advice" for that pointcut. In the advice, proceeding for the captured executed

method is done in try-catch block trapping the thrown exception.

The execute methods after the isolating the exception handling concern that

implemented in the aspect. The benefits realized from this refactoring are localizing

exception handling code in one place, and reducing the duplicated code.

5.5 Extracting the Persistence Concern

ResultSetWrapper class warps the java.sql.ResultSet object used as a delegate object

to get data which is acquired by executing a statement querying the database. All the

 84

getter methods, in the ResultSetWrapper class, are crosscut by a call to the storeField

method that stores the resulting data in a hash table. The hash table is considered as a

temporary store to be used later in optimizing the creating of HTML table displaying

these data.

To refactor this crosscutting concern, we implement an aspect in which the pointcuts

capture the execution of the getter methods. We define "after-returning" advice for

that pointcut in which we can access the returned value and store this value using the

storeField method.

There are two versions of the storeField method, one for storing the value in the hash

table using column name as a key, and the other for storing the value using column

the index as a key. So the aspect handles the two cases by defining two pointcuts for

the getter methods one for getter methods that accepts an integer argument used as the

column index and the other pointcut for the getter method that accepts argument used

as the column name. There two advices for each pointcut. Each advice invokes the

appropriate storeField method with two arguments. The first argument is used as a

key in the hash table and the second is the value that would be stored in the table.

5.6 Extracting the Precondition Checking Concern

Another type of concern we discovered while exploring the code manually was

precondition checking. The precondition checking concern often requires duplicated

code if the conditions are common to many methods. In the AZ-VUB application

many frame filter classes implementing javax.servlet.Filter interface have a doFilter

method which examines the input parameter named "request" that should have

attribute of the frame filter type. The parameter check occurs at the beginning of the

method.

With aspect-oriented techniques, we can extract such contract checks into a separate

aspect. In the aspect, we define one pointcut as "executions of the doFilter methods of

filter classes whose name is ending with "Frame" " and we use an "around advice" to

check the precondition before proceeding the method.

Another precondition concern is detected in "ContextParams" class where there are

four methods that enforce preconditions at the beginning of each method. The

condition testing the method parameters is duplicated in all of these methods. We

refactored this concern by implementing an aspect using a pointcut capturing the

executions of these method whose name starts with "add" and ends with "Parm".

 85

An around advice was used to defer the method execution in order to check its

arguments before proceeding the method. The captured methods signatures have two

forms.

The arguments needed in the test are "paramName" and "exclude" that are always at

the second and the last position respectively. So to handle this situation, we use the

reflective method getArgs() allowing us to access these arguments of the captured

method. After getting the argument values, the advice checks these values in a

condition then the captured method is proceeded, if the condition is true.

5.7 Extracting the Exception Wrapping Concern

Exception wrapping is a crosscutting concern detected through the mining process.

We observe that most of the business methods in the case study catch exceptions

thrown by the underlying implementation and re-throws application-specific

exceptions (J2EEArchException).

Applying this type of exception handling mechanism requires one or more try/catch

block in each method. In each of the catch blocks, a new application-specific

exception wrapping the caught exception is created and re-thrown. We observe that

one method of the SessionBean class uses multiple try/catch blocks to check the

exception thrown, and then wraps the exception in a new application-specific

exception. These try/catch blocks increase the code size and makes it more complex.

With AOP, we refactored this concern by implementing an aspect, in which the

checked exceptions are declared soft [Lad03]. Each declare soft statement causes any

exception of the specified types (ClassNotFoundException,

NoSuchMethodException, RemoveException, EJBException, IllegalAccess-

Exception, InvocationTargetException) thrown from the executions of the methods

captured by the specified pointcut to be treated as a runtime exception. This way the

exceptions will be wrapped in an unchecked exception (org.aspectj.SoftException)

when thrown. An after-throwing advice is then used to catch any SoftException

thrown.

We observe the developer uses static strings in wrapping the thrown exceptions to

provide proper error information for the actual exception. These static strings make it

more difficult to create an AOP implementation; therefore there is a specific

limitation in figuring out the static strings to give the actual trace of the exception.

However, the tracing information acquired in the AOP system is limited to the

 86

information provided by the joinpoint (name of the method, arguments, class name,

and so on). To output the same information as the OOP implementation, we require

building several quite complex pointcuts to define what we want to display. We

therefore partly lost the benefits of using AOP.

But after extracting exception wrapping concern, refactoring the exception wrapping

concern cleans up business logic that is not tangled with wrapping anymore. This not

only leads to a reduction in code size in the refactored classes, it also improves

readability and evolvability of the business logic.

5.8 Extracting the ServiceLocator Concern

The ServiceLocator is implemented by the GoF Singleton pattern and has a private

constructor and a factory method (getInstance) whose high fan-in was detected in the

mining activity. Hanneman et al. [HK02] presented in their research how a plain old

java object (POJO) can be turned into a Singleton by using AOP mechanisms. The

Service Locator can be instantiated like a POJO using the new constructor instead of

using a factory method like getInstance. We can refactor the singleton class by an

aspect. The pointcut of the aspect intercepts all calls of the class constructor and

provides around advice. The advice creates an instance of the class (if it is not created

before) and returns the instance. Other refactorings can be applied to the

ServiceLocator class before applying the aspect: convert the accessor modifier of the

constructor from private to public and remove getInstance method. These refactorings

will allow other classes to create an instance of the singleton using the singleton

constructor instead of using the factory method getInstance.

However, hiding the singleton nature of ServiceLocator can lead to some confutation

among J2EE developers as is mentioned in [MPY04]. A factory method makes it clear

that the Service Locator is a singleton but the new constructor does not.

5.9 Conclusion

In this chapter, we show aspects for some crosscutting concerns that were detected by

mining the AZ-VUB application. We also discussed the implementation of these

aspects that achieve number of improvements over the existing code. The benefits

gained through the refactoring process are getting cleaner modularizations by

 87

encapsulating the crosscutting concern within separate modules, giving cleaner code

that are often easier to read and maintain. There are some disadvantages causing

challenges in applying AOP. Some of these challenges are not always easy to write

cleaner aspect and not easy to create robust pattern-based pointcut. If the aspect is not

clear and less readable, the aspect needs to refactor its code.

 88

Chapter 6
Road Map

In this chapter we outline our experiences gained from using AOP technology in

migration an industrial application into aspects. Therefore we explain the lessons we

learned from migrating an application to aspects. Also we illustrate the pitfalls that come

with the migration process. We think that these practices can help others in similar

situations to improve the effectiveness of software maintenance.

6.1 What have we learned?

In the previous two chapters, we discussed two phases of using AOP in migration an

enterprise Java application into an application with aspects. Through the first phase, some

of crosscutting concerns are detected by mining the system. These crosscutting concerns

are refactored to aspects in the second phase. In this section, we try to show a general

view, summarizing the learned lessons and the pitfalls during the migration process.

The First Lesson Learned: Extracting the crosscutting concern from an existing

application requires from the aspect developer some effort.

Extracting the crosscutting concerns from an existing application requires from the aspect

developer some effort in:

! Understanding the application target code.

! Choosing the proper aspect mining tools that are used in detecting the crosscutting

concern automatically and learning how applying these tools on the target source

code.

! Analyzing the results yielded from these tools to select aspect candidates.

! Extracting the aspect candidates into aspect using one of AOP approaches.

All of the above situations could face any developer wanting to transfer an already

completed application into application using AOP technology. These activities are time-

consuming activities. Although tool support exists, we still need to invest a lot of time.

 89

There are assumed advantages gained form using the new AOP technology that

outweighs the difficulties and the required lead-time in learning the AOP technology.

With aspects, application code is reduced; the code is more easily re-used and evolved;

the code is easier to understand; etc. However, AOP can be difficult to apply to an

already completed project so lot of effort needed to understand the target source code and

to manipulate with it. If AOP is to be used, this should be known at the design phase and

applied by the core developer. Initially, we tried to illustrate the use of aspects by

modifying the original AZ-VUB Java source code. However, we soon found out that this

is not the best practice. It is very difficult to extract all the code that belongs to a

particular aspect into a single place, because one has to be very familiar with and go

through all the code of the application.

For example in the notification concern in the CarePlanTableModel class, we found our

self restricted to extract some elements of the concern, because we have not more

knowledge about the appropriate events at which calls to concern's methods should be

taken. One of these methods is a "refreshCurrent" method that is called to make the

model's listener to refresh its current-displayed part. There are situations of the calls to

the "refreshCurrent" method after the calls to the notifying method "

fireTableStructureChanged" directly, but there are others situation the calls are different.

The Second Lesson Learned: The joint point model of AspectJ is too restricted for

the purpose of the refactorings we did.

When we implement aspects using AspectJ, we learned that some limitations of AspectJ

(Version 1.2.1) made it difficult to handle certain kinds of problems. For example

AspectJ does not provide support to access local variables in the join point. AspectJ

allows advice to reference variables related to a joinpoint. Such variables are:

! The object making the call (this).

! The object receiving the call (target).

! The values of the method's parameters.

! The returning value of the method.

The advice in the aspects does not have access to local variables around a join point,

except for the above mentioned variables.

 90

 For example, if we have code as shown in listing 6.1 and we want to extract the call of

the method m1 (see listing 6.1,line 7 and 8) from the method m2 into aspect by making

advice triggered after the execution of m2. The advice calls the method m1 (see listing

6.2).

1 Class x {
2 void m1(){
3 …}
4 void m2(){
5 int var =4 ;
6 var = var + doSomeThing();
7 if(var ==someThing)
8 m1();
9 }

10 }
Listing 6.1: Example Java code

1 Aspect AspectX {
2 after(X x): execution (void X.m2())&&target(x){
3 //the condtion (if(var ==someThing))must be implemented here
4 x.m1()
5 }
6 }

Listing 6.2: Difficulty in using local variable in the Aspect

As seen in method m2, the call of m1 is called at the end of method m2, so it is possible

to extract this call by using after-advice but there is a difficulty that the call of m1 is

conditional with the test respected to local variable of m2. This difficulty will limit such a

refactoring of extracting the method call. The solution in this case is that the local

variable of the method could be converted into a field of class to be accessible to advice.

The Third Lesson Learned: there is difficulty in extraction heterogeneous

crosscutting concerns:

We found crosscutting concerns implemented in a heterogeneous manner. The

crosscutting concern is scattered through different places and applied in varying ways.

For instance exception wrapping is a crosscutting concern scattered throughout the AZ-

VUB application. The intent of that concern is wrapping the different exceptions thrown

in the system to provide extra information to the user by adding new clear messages.

The heterogeneousity comes from using different constructors to create the wrapper

exception and also comes from using the static strings (messages) passed to the

 91

constructors to present the information that used by the user to trace the exception. This

heterogeneous code brings difficulties if we need to refractor this concern.

In spite of existence of these difficulties, we were able to understand much better how the

legacy application can be migrated into aspects maintaining its structure.

To solve this problem, multiple pointcuts and advices should be defined to handle the

different situation of the concern and provide the AOP implementation similar to OOP.

These pointcuts and advices will be more complex causing aspect to be illegible. Our

solution uses one constructor for creating the wrapper exception and use the information

provided by the join point and the thrown exception to be passed to the constructor.

Therefore our implemented aspect does not provide static strings similar to OOP

implementation.

Finally, we were able to build up an understanding of the aspect code, and how it applies

to the various points in the existing code base. We were able to consistently improve the

quality of the pointcuts and aspects that we wrote, both in terms of the places where they

apply, and the conciseness of the aspect. Building an aspect containing abstract pointcut

can make it to be reused in different concrete situations. Also choosing the proper events

(join points) will increase the quality of the aspect in providing consistent behaviors and

reducing some side effects rose when incorrect pointcuts are selected.

6.2 How to migrate to aspects in general

Migrating an existing system into an equivalent aspect-oriented version is a process

performed in several steps. The steps are divided in two phases:

The first phase is the aspect mining phase including activities aiming to detect the

inelegant-designed sections (bad code smells) of the application that can be handled by

AOP approaches. These application parts are elements implementing secondary roles

crosscutting the core concerns of the system. The aspect mining process is used to

discover these crosscutting concerns that reflect maintenance and evolution problems.

There are several aspect mining tools that can be used in detecting the crosscutting

concerns. In chapter 3(section 3.1), we discussed in detail these tools, such as tools are

Fan-in tool, Prism, FEAT, JQuery, etc.

 92

The results gained after applying the aspect mining tools are application sections that

might be seeds of the crosscutting concerns. Therefore these results require more analysis

to spotlight the real and whole structure of the crosscutting concerns. This is not an easy

task to distinct between the positive seeds and the negative seeds so several challenges

come with this task. An important problem is that the crosscutting concerns are difficult

to understand, because their implementation can be scattered over many different

software components. The automated mining tools provide an overview of the source-

code elements that play a role in a particular crosscutting concern so some effort needed

to improve the understandability of the concern in particular and of the software in

general.

The second phase after aspect mining is aspect refactoring. The aspect refactorings are

transformations of the internal structure of the application extracting the identified

crosscutting concerns into aspects. There are several AOP languages that can be used in

this phase. In chapter 2 we discussed in detail these languages, such of theses languages

AsepctJ, JAsCo, HyperJ, etc.

To refactor the crosscutting concern using aspects, there are AOP refactoring

mechanisms that can be applied to the application code to extract these concerns. In

chapter 3 (section 3.2) we explained certain of these mechanisms.

After extracting the crosscutting concerns into aspects, the behavior of the refactored

application must be maintained. Therefore testing and evaluation the behavior of the

application should be achieved to ensure that the refactoring process did not introduce

bugs.

6.3 What are the pitfalls?

Based on our experiences, we put found some pitfalls of applying aspects to an already

existing application. We also explain some of the difficulties that others may face when

using aspect technology in similar situation.

At first we explain in particular the pitfalls in the AZ-VUB case study. The AZ-VUB

case is J2EE platform-based application that comprises 37 packages including 408 types.

These types contain around 4535 methods including approximately 7622 LOCm. The

large code size brings difficulties in understanding the system and making a detailed look

 93

at the case architecture. In addition there are also difficulties in applying the mining tools

and analyzing the results yielded form applying these tools. The lack of information

about the system and enough documentation make us weary of changing any thing.

The application is based on EJB and utilizes layered architecture using established EJB

design patterns including data value objects, session facade, service locator, and business

delegates. Although J2EE has advantages, it adds a layer of complexity to the application

especially session beans that bring more complexity to the code and require more work to

maintain and evolve. Our case study is part of the AZ-VUB working system so we have

not complete source code of the system. Also we can not run the code so there are more

difficulties we faced.

Pitfalls involved in identifying crosscutting concerns:

An application migration into aspects needs developers to pay careful attention on extra

considerations, such as being able to identify and understand the crosscutting concerns

correctly. Extracting the crosscutting concerns correctly depends on the identification

process for those concerns therefore the developer at this phase must be provided with the

needed information about the target system.

This information could be classified into two types: static information and dynamic

information. Looking to the source code and what is included in the comments is a way

to get the static information describing the software structure; the dynamic information

can be obtained by running the software to get more information about the behavior of

the software. This information helps the aspect developer to identify aspectual

requirements and their relationships with other requirements.

One of the main problems we faced at the start of our experiment was understanding the

target source code because there is not enough documentation for the target system, so

we are limited to studying the source code and comments because we could not run the

code. This issue can be time consuming and unrealistic for complex application. The

problem of mis-understanding and analyzing the entire information and requirements of

the application's concerns maybe create certain side effects on identification of the whole

and the correct structure of the crosscutting concerns and refactoring these concerns; for

example extracting incorrect entities related to a particular concern will introduce

 94

difficulties in the refactoring process (where and when the refactorings for these entities

are applied).

While exploring the concerns, we definitely came to understand the code much better

than at the start. As we were building up some of the concerns and performing the

refactorings, we discovered more about the purpose of the classes and methods that we

were looking at.

There is another important issue in choosing and using the proper tools used in mining of

the crosscutting concern. There exist different mining tools; each one has advantages and

drawbacks. In our experiment we used four tools, 2 automated tool (FINT and Prism) and

2 explorative tools (FEAT and JQuery). FEAT is very effective mining tool. FEAT

allows us to figure out code locations referencing some method or field. These references

could be replaced with an aspect to perform the aspect-oriented refactoring. The

automated tools analyze the application's entities yielding large list of results. So to

handle all these results by analyzing all of them carefully, you need more time and

attention to choose the proper aspect candidate (crosscutting concern) and identify the

code elements related to that concern.

Most of mining tools used in our experiment are focusing on the crosscutting concern

resulting from scattered method calls, so through our manual exploration for the code

base, we observe that there are a lot of duplicated code sections. These duplicated

sections might be forming crosscutting concerns that can be handled by AOP technology.

Therefore analysis the code using tools discovering these duplicated sections will be

worthwhile means to identify these crosscutting concerns and give the aspect developer

more insight into crosscutting concerns that might not be visible by just exploring the

code manually. We think that augmenting the mining process with clone detection tools

might be a productive approach for aspect mining. For example, the exception handling

concern often requires similar pieces of code to handle the similar errors which could be

refactored into an aspect. So using the clone detection tools for detecting duplicated code

may be beneficial for aspect identification.

 95

Pitfalls involved in refactoring crosscutting concerns:

There are also pitfalls arising in refactoring the crosscutting concerns. After identifying

the crosscutting concern and finding all the elements related to it, you must correctly

select the proper AOP constructs to manipulate that concern so this is one of the critical

issues that the aspect developer must pay care to. For example, making a mistake in

defining pointcuts to capture joinpoints for scattered calls for a particulate method by

losing or adding joinpoints maybe introduces incorrect behavior in the application. So

you must be careful in defining a correct pointcut.

Choosing an appropriate manner for extracting the crosscutting concern is surrounded by

a number of pitfalls. For example, choosing incorrect joinpoint at which the advice's code

is triggered. This situation faced us in choosing proper event for triggering advice's code

to enforce EJB container to do the rollback action before exception throwing through the

transactional methods. We seen to use around advice instated of using after-throwing

advice because of restriction of the AspectJ language to trigger before throwing

exception. In the around advice the transactional method is proceeded in try-catch blocks

to trap the thrown exception and enforce the rollback action in the catch block then re-

throw the trapped exception. This alternative solution is made to avoid any bugs that

maybe introduced from using after-throwing advice.

The validation process must be executed after any refactoring process to ensure if the

performed refactorings introduce bugs or not.

In certain situations, AOP implementations have shortcomings or limitations in giving

implementation for a specific problem similar to its OOP implementation. For example,

in chapter 5 (section 5.7), we demonstrate how we can refactor the exception wrapping

concern. We observe that in the OOP implementation, the developer uses static strings in

wrapping the thrown exceptions to provide proper error information needed for tracing

the actual exceptions. In our AOP implementation for that concern, we found our self

restricted for providing this static information similar to OOP implementation therefore

there is shortcoming in AOP implementation in giving the static strings tracing the

thrown exceptions. However, the tracing information acquired in the AOP

implementation is limited to the information provided by the joinpoint (name of the

method, arguments, class name, and so on).

 96

6.4 Conclusion

Using AOP technology allows the duplicated code to be identified and handled. AOP

makes the target application better understanding and improves its evolvability.

In using AOP, a lot of effort and knowledge are needed form the developer for extracting

the crosscutting concern. There are also a number of difficulties in using AOP for the

refactoring process. One of these difficulties is involved in creating a robust pointcut and

advice. The mismatched of AspectJ join point model brings some of these difficulties in

refactoring the crosscutting concerns.

 97

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis we have experiment on an industrial application. The main goal of our

experiment is transforming industrial application from OO to AO application. We applied

these transforming in two phases: Aspect Mining and Aspect Refactoring. In aspect

mining phase there are several tools used to detect crosscutting concerns in the code. In

our experiment we used Fan-In, Prism, FEAT, and JQuery tools to detect crosscutting

concerns in the code. We noted each tools have a numbers of advantages and

disadvantages. So, we conclude there is not to date a single tool can detect each

crosscutting concerns in the code. Therefore, we need using several tools and detect

manually sometime in order to try detecting most crosscutting concerns in the code. In

aspect refactoring step there are several aspect-oriented languages we used to actually

extracting the discovered crosscutting concern into real aspects in the code. We have

known how aspect-oriented languages can clear software code from these crosscutting

concerns yielding fine software modularity. We have seen different aspect-oriented

mechanisms that provide additional flexibility in modularization to capture the location

and behavior of crosscutting concerns, resulting in to the highest degree evolved

separation of concerns. In our experiment we used AspectJ to refactor our case study. We

have achieved a number of evolvements over the existing code, like: easier to understand,

maintain, and reuse. And also reduce the code duplication. Finally, in our experiment we

noted some pitfalls we faced:

! Pitfalls involved in identifying crosscutting concerns.

! Pitfalls involved in refactoring crosscutting concerns.

 98

7.2 Future Work

We would like to use another aspect mining tools and aspect-oriented languages in our

experiment and in other applications. Therefore, for trying detect a numbers of extra

advantages and disadvantages of the mining tools and aspect-oriented languages. We

noted in our experiment there is not to date a single tool can detecting each crosscutting

concerns in the code. Therefore, we will try to develop mining tool which can solve

problems which found in previous tools. Finally, in our experiment we noted some

aspects are depending on the type of application. Therefore, we would like to implement

more generic aspects that can be reused in several applications.

 99

Reference:

[AB] AspectBrowser for Eclipse,

http://www.cs.ucsd.edu/users/wgg/Software/AB/.

[ajd] AspectJ Team, The AspectJTM 5 Development Kit Developers’s Notebook,
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/aspectj-
home/doc/ajdk15notebook/.

[alp] Alpha project, http://www.st.informatik.tu-
darmstadt.de/static/pages/projects/alpha/.

[amt] TheAspect Mining Tool, http://www.cs.ubc.ca/labs/spl/projects/amt.html.

[asp] AspectJ language, http://www.eclipse.org/aspectj.

[aspe] Xerox PARC, USA, AspectJ Home Page, http://aspectj.org/.

[BA04] L. Bergmans and M. Aksit. Principles and Design Rationale of Composition
Filters. Aspect-Oriented Software Development, 2004.

[BB02] E. Burd, and J. Bailey. Evaluating Clone Detection Tools for Use during
Preventative Maintenance. SCAM 2002.

[BCC05] K. Berg, J. Conejero, and R.Chitchyan. AOSD Ontology 1.0 -Public
Ontology of Aspect-Orientation 27 May 2005.

[BCH+05] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P.Tonella. Automated
refactoring of object-oriented code into aspects, 2005.

[BDET04] M. Bruntink, A. Deursen, R. Engelen, and T. Tourwé. An Evaluation of
Clone Detection Techniques for Identifying Crosscutting Concerns. In
Proceedings of the International Conference on Software Maintenance
(ICSM). IEEE Computer Society, 2004.
http://citeseer.ist.psu.edu/article/bruntink04evaluation.html.

[BH05] J. Brichau and M. H. (editors). Survey of aspect-oriented languages and
execution models. Tech. Rep. AOSD-Europe-VUB-01, AOSD-Europe, May
2005.

[blu] Find Sun Microsystems' J2EE BluePrints design patterns,
http://java.sun.com/blueprints/.

[Bre04] S. Breu. Towards hybrid aspect mining: Static extensions to dynamic aspect
mining. In 1st Workshop on Aspect Reverse Engineering, 2004.

 100

[cae] CaesarJ, Retrieved on 04/04/2006, http://caesarj.org/.

[CCHW04] A. Colyer, A. Clement, G. Harley, and M. Webster. Aspect-Oriented
Programming with AspectJ and the Eclipse AspectJ Development Tools.
December 2004.

[CMM+05] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwé. A
Qualitative Comparison of Three Aspect Mining Techniques. Program
Comprehension, 2005. IWPC 2005. Proceedings. 13th International
Workshop on.

[com] Composition Filters, http://trese.cs.utwente.nl/oldhtml/composition_filters/.

[dyn] Dynamo - Dynamic Aspect Mining Tool, http://star.itc.it/dynamo/.

[ecl] Eclipse Project, http://www.eclipse.org/.

[ESS92]

S. Eick, J. Steffen, and E. Summer. 1992, Seesoft - A Tool For Visualizing
Line Oriented Software Statistics, IEEE TSE, vol. 18, no. 11, pp. 957-968,
November 1992.

[EV04] A. Eisenberg, and K. Volder. JQuery: finding your way through tangled
code. 2004.

[Fab04] J. Fabry. Transaction management in EJBs: Better separation of concerns
with AOP. In Y. Coady and D. Lorenz, editors, Proc. of the 3rd AOSD
Workshop on Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS), Victoria, Canada, 2004. University of Victoria.

[Fow00] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 2000.

[GK05] K. Gybels, and A. Kellens. Experiences with Identifying Aspects in
Smalltalk Using ’Unique Methods’. January 10, 2005.

[Han05] J. Hannemann. Role-based refactoring of crosscutting concerns. PhD thesis,
University of British Columbia, BC, Canada, 2005.
http://www.cs.ubc.ca/~jan/.

[Han06] J. Hannemann.Aspect-Oriented Refactoring: Classification and
Challenges.2006.

[HK02] J. Hannemann and G. Kiczales. Design pattern implementation in Java and
AspectJ. In Proceedings of the 17th Annual ACM conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 161–173, Boston, MA, 2002.

 101

[HOU03] S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring of aspect-
oriented software. In 4th Annual International Conference on Object-
Oriented and Internet-based Technologies,Concepts, and Applications for a
Networked World (Net.ObjectDays), pages 19--35, Erfurt, Germany, Sept.
2003.

[HT05] T. Hon, and M. Tkatchenko. Refactoring JQuery with AspectJ: an
experience report. CPSC 511 Project Report. April 29, 2005.

[jas] Jasco language, http://ssel.vub.ac.be/jasco.

[jav] Java Technology. Java Platform, Enterprise Edition (Java EE).
http://java.sun.com/javaee/.

[java] Separate software concerns with aspect-oriented programming,
http://www.javaworld.com/.

[JV03] D. Janzen and K. Volder. Navigating and Querying Code Without Getting
Lost. 2003.

[kgy] Research: Aspect-Oriented Programming and CARMA. Retrieved on
04/04/2006. http://prog.vub.ac.be/~kgybels/.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. Griswold.
An Overview of AspectJ. 2001.

[KKI02] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic token-
based code clone detection system for large scale source code. IEEE
Transactions on Software Engineering, 28(7):645–670, July 2002.

[KM05] A. Kellens, K. Mens. A Survey of Aspect Mining Tools and Techniques.
June 30, 2005.

[Lad03] R. Laddad. Aspect-oriented refactoring. www.theserverside.com,
December2003.

[Mar] M. Marin. Reasoning about assessing and improving the seed quality of a
generative aspect mining technique. Software Evolution Research Lab Delft
University of Technology.

[MDM04] M. Marin, A. Deursen, and L. Moonen. Identifying aspects using fan-in
analysis. In Proc. of the 11th IEEEWorking Conference on Reverse
Engineering (WCRE 2004), Delft, The Netherlands, November 2004. IEEE
Computer Society.

[MF04] M. Monteiro, J. Fernandes.Object-to-Aspect Refactorings for Feature
Extraction, 2004.

 102

[MF05] M. Monteiro , J. Fernandes. Towards a Catalog of Aspect-Oriented
Refactorings. 2005.

[Mon04] M. Monteiro. Catalogue of Refactorings for AspectJ, Technical Report UM-
DI-GECSD-200402, Universidade do Minho, December 2004. Available at
www.di.uminho.pt/~jmf/ PUBLI/papers/2004-TR-02.pdf.

[MPY04] T. Murali, R. Pawlak, and H. Younessi. Applying aspect orientation to J2EE
business tier patterns. In Y. Coady and D. Lorenz, editors, Proc. of the 3rd
AOSD Workshop on Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS), Victoria, Canada, 2004. University of Victoria.

[MT05] K. Mens and T. Tourwé. Delving source-code with formal concept analysis.
Elsevier Journal on Computer Languages, Systems & Structures, 2005.

[OT00] H. Ossher and P. Tarr. "Multi-Dimensional Separation of Concerns and The
Hyperspace Approach. Proc. Symposium on Software Architectures and
Component Technology: The State of the Art in Software Development.
Kluwer, 2000. http://citeseer.ist.psu.edu/ossher00multidimensional.html.

[pat] Core J2EE Patterns , http://java.sun.com/blueprints/patterns/.

[Raj] G. Raj. Enterprise JavaBeans. http://members.tripod.com/gsraj/ejb/chapter/.

[RM02] M. Robillard, and G. Murphy. Capturing Concern Descriptions During
Program Navigation. A position paper for the OOPSLA 2002 Workshop on
Tool Support for Aspect Oriented Software Development.

[RoMu02] M. Robillard and G. Murphy. Concern Graphs: Finding and Describing
Concerns Using Structural Program Dependencies. In Proceedings of the
24th international conference on Software engineering (ICSE), pages 406-
416. ACM Press, 2002.

[RP06] V. Ranganathan and A. Pareek. An Introduction to the Enterprise JavaBeans
3.0 Specification. http://dev2dev.bea.com/pub/a/2006/01/ejb-
3.html.29/03/2006.

[SP05] D. Shepherd and L. Pollock, "Aspects, Views, and Interfaces" Workshop on
Linking Aspect Technology and Evolution at the International Conference
on Aspect Oriented Software Development 2005.

[STP05] D. Shepherd, T. Tourwé, and L. Pollock. Using Language Clues to Discover
Crosscutting Concerns. 2005.

[SVJ03] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: an Aspect-Oriented
approach tailored for CBSD. In Proceedings of the second AOSD
International Conference. Boston, USA, March 2003.

 103

[TM04] T. Tourwé and K. Mens. Mining aspectual views using formal concept
analysis. In Proc. of the Fourth IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM 2004). IEEE Computer Society,
September 2004.

[ZJ04] C. Zhang and H. Jacobsen. PRISM is Research In aSpect Mining. D.2.2
[Software Engineering]: Design Tools and Techniques Modules and
interfaces. October 2004.

 104

