
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=rjec20

Journal of Economic Methodology

ISSN: 1350-178X (Print) 1469-9427 (Online) Journal homepage: https://www.tandfonline.com/loi/rjec20

The long-term viability of team reasoning

S.M. Amadae & Daniel Lempert

To cite this article: S.M. Amadae & Daniel Lempert (2015) The long-term viability
of team reasoning, Journal of Economic Methodology, 22:4, 462-478, DOI:
10.1080/1350178X.2015.1024880

To link to this article:  https://doi.org/10.1080/1350178X.2015.1024880

Published online: 11 May 2015.

Submit your article to this journal 

Article views: 496

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=rjec20
https://www.tandfonline.com/loi/rjec20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/1350178X.2015.1024880
https://doi.org/10.1080/1350178X.2015.1024880
https://www.tandfonline.com/action/authorSubmission?journalCode=rjec20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=rjec20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/1350178X.2015.1024880
https://www.tandfonline.com/doi/mlt/10.1080/1350178X.2015.1024880
http://crossmark.crossref.org/dialog/?doi=10.1080/1350178X.2015.1024880&domain=pdf&date_stamp=2015-05-11
http://crossmark.crossref.org/dialog/?doi=10.1080/1350178X.2015.1024880&domain=pdf&date_stamp=2015-05-11
https://www.tandfonline.com/doi/citedby/10.1080/1350178X.2015.1024880#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/1350178X.2015.1024880#tabModule


The long-term viability of team reasoning
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Team reasoning gives a simple, coherent, and rational explanation for human
cooperative behavior (Bacharach 1999; Sugden 1993). This paper investigates the
robustness of team reasoning as an explanation for cooperative behavior, by assessing
its long-run viability. We consider an evolutionary game theoretic model in which the
population consists of team reasoners and ‘conventional’ individual reasoners. We find
that changes in the ludic environment can affect evolutionary outcomes, and that in
many circumstances, team reasoning may thrive, even under conditions that, at first
glance, may seem unfavorable. We also pursue several extensions that augment the
basic account, and conclude that team reasoning is an evolutionarily viable mechanism
with the potential to explain behavior in a range of human interactions.

Keywords: team reasoning; rational choice; replicator dynamic; individual
maximization; evolutionary viability; rationality; ludic ecology; Prisoner’s dilemma

1. Introduction

When a player team reasons, she plans to act so as to maximize a team payoff function – for

example, the sum of all team members’ individual payoffs (below, we refer to a team

reasoner with the feminine pronoun and the individual reasoner with the masculine

pronoun). In contrast, the individual reasoner, the conventional rational actor, acts to

maximize only his own individual payoffs. This paper investigates the plausibility of team

reasoning as an explanation for cooperative behavior, by analyzing an evolutionary game

theoretic model in which the population consists of team reasoners and individual reasoners.

We find that the degree of ludic diversity – in particular, changes in the mix of games played

– can affect evolutionary outcomes; team reasoning and thus cooperation may thrive, even

under circumstances that, at first glance, may seem unfavorable to each. Our results add to

existing theoretical and empirical work that suggests that team reasoning is a plausible and

coherent mechanism for explaining human decision-making.

2. Team reasoning

There are two simple games that seem to present a puzzle for individual reasoning-based

‘orthodox’ decision theory (e.g., Bacharach, 2006, pp. 35–68; Gold & Sugden, 2007,

pp. 281–285). First, consider the Hi Lo (see Table 1). The intuitively compelling choice is

Hi, and (Hi,Hi) is the Pareto-optimal equilibrium. But individual reasoning does not

require this choice. A rational player, (one who acts to maximize his expected individual
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payoffs) playing another rational player, under the assumption that the players’ rationality

is common knowledge, is only entitled to conclude that I should choose Hi if my opponent

selects Hi, and Lo if he chooses Lo (Gold & Sugden, 2007). Second, consider the

Prisoner’s dilemma (PD) (see Table 2). It is well known that individual reasoning

(individual payoff maximization) mandates the choice of D; yet, many people have the

intuition that C is the correct choice. Team reasoning justifies these intuitions.

Bacharach (1999, 2006) and Sugden (1993, 2000) propose team reasoning as an

alternative account of how people make decisions when interacting with others. (There is

also a related, though not overlapping, literature in philosophy, including (Gilbert, 1989;

Hollis, 1998;Hurley, 1989; Regan, 1980.)When a player team reasons, instead of asking (as

in the standard account), ‘what should I (as an individual) do?’ she asks, ‘what shouldwe (as

a team) do?’ (see, e.g., Gold&Sugden, 2007) She answers the latter question by ‘work[ing]

out the best feasible combination of actions for all members of her team’ (Bacharach, 2006).

It is convenient (though not strictly required by the theory) to make the simplifying

assumption that the ‘best feasible combination of actions’ is that which leads to the outcome

maximizing the sum of teammembers’ individual payoffs. Finally, she takes the action that

the ‘best feasible combination of actions’ requires of her; in other words, she chooses the

strategy prescribed for her in the team utility-maximizing strategy profile.

Team reasoning unambiguously leads to the choice of Hi in the Hi Lo, and the choice of

Cooperate (C) in the PD, since the combination of actions that maximizes combined

individual payoffs is (Hi,Hi) inHiLo, and (C,C) in thePD.Thus, team reasoning solves, in the

Hi Lo, an equilibrium selection problem that is theoretically problematic for individual

reasoning; in the PD, it leads to an outcome that is Pareto-preferable to the (D,D) equilibrium

outcome that results when individual reasoners play. In addition to its theoretical appeal, team

reasoning is also consistent with much of the observed cooperative behavior in the laboratory

(e.g., Camerer, Loewenstein,&Rabin, 2003; Colman, Pulford, &Rose, 2008) and in the field

(e.g., Heinrich et al., 2005). And evidence from social psychology (see e.g., Kramer &

Brewer, 1984) shows that when players’ shared social identity is primed, cooperative

behavior in social dilemmas increases; this is of particular interest since Bacharach (1999)

argues that social identification with a co-player will cause one to engage in team reasoning.

Despite its theoretical soundness and supporting evidence, there are still grounds for

some skepticism about team reasoning. One ground is that it seems to require behavior

that is potentially self-sacrificial. Is the behavior implied by team reasoning viable in the

long run? Scholars across disciplines have relied on evolutionary theory and models to

contest the notion that behavior consistent with team reasoning is truly viable, or, at the

Table 1. An example of a Hi Lo.

Hi Lo

Hi 3; 3 1; 1
Lo 1; 1 2; 2

Note: Payoffs are listed as (row player; column player).

Table 2. An example of a PD.

Cooperate Defect

Cooperate 3; 3 1; 4
Defect 4; 1 2; 2

Note: Payoffs are listed as (row player; column player).

2 463Journal of Economic Methodology



least, they have used these tools to cast doubt on team reasoning as a mechanism for

bringing about such behavior.2 In response, we analyze an evolutionary game theoretic

model that tests (and ultimately shows) the viability of team reasoning as a ‘strategy.’

First, we explain our modeling decisions.

3. Reasoning, evolutionary models, and the ludic ecology

In our baseline model, we will consider two types of reasoners: the individual reasoner and

the team reasoner. Does it make sense to consider ‘types of reasoners’ in an evolutionary

game-theoretic context? We suggest, relying on arguments made and reviewed by

Bacharach (2006), that it does. Bacharach points out that, in addition to specifying which

traits will be evolutionarily selected, an evolutionary model should also speak to the

mechanism that will be favored. A mechanism explains a ‘repertoire of dispositions,’ that is,

a set of traits – one for each decision-making context. This leads to a second notable feature

of our model. Our players navigate a ‘ludic ecology’ (Bacharach, 2006) that consists of both

a common-interest game (Hi Lo) and a social dilemma (the PD). As Bacharach (2006) notes,

this is in contrast to the ‘standard models in bio-evolutionary game theory,’ which consider

one game at a time, and thus have minimal ludic diversity [though, of course, we still will

not capture the full range of social interactions that humans engage in, the Hi Lo and the PD

are representative of many important decision-making contexts (see e.g., Bacharach,

2006)3]. Team reasoning and individual reasoning can serve as mechanisms for choice in

both of these contexts; and importantly, they are both simplemechanisms. Bacharach (2006)

notes that, in general, parsimonious (‘low-cost’) mechanisms will be favored over those that

are more complex. Thus, in our baseline model, we will take our competing mechanisms to

be team reasoning and individual reasoning.4 (In an extension, we will explicitly assess the

viability of a more complex, and costly, mechanism.)

Before formalizing the model, we emphasize one more feature of our analysis.

We will consider a population where interactions are one-shot, and random. Given this

absence of assortative pairing, group selection cannot operate (e.g., Sober & Wilson,

1998). This is interesting because Bacharach (2006) hypothesizes that group selection is

the means by which team reasoning may thrive (see also closely related discussion in

Caporael, 2007). By avoiding the contested concept of group selection, we will be able

to place team reasoning on firmer (or at least alternative) footing.5 We turn now to the

model, for which Table 3 summarizes notation.

Table 3. Definition of symbols used in baseline model.

Symbol Definition

h Proportion of time individual reasoners play Hi in Hi Lo
p Proportion of individual reasoners in population
p* Equilibrium proportion of individual reasoners, where WðIÞ ¼ WðTÞ
Dp Change in proportion of individual reasoners between time periods
VðijjÞ Average payoff to generic type i interacting with type j
WðIÞ Average payoff to individual reasoner
WðTÞ Average payoff to team reasoner
w0 Baseline payoff shared by each type

X Proportion of games that are Hi Lo
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4. Team reasoning and individual reasoning: an evolutionary analysis

Consider a population that consists of two types of players: team reasoners and individual

reasoners. We refer to these below simply as ‘types.’ Suppose that members of the

population are randomly paired to play one-shot variants of two games: Hi Lo, a pure

coordination game with payoffs as given in Table 4, is played x proportion of the time,

while the (additive) PD, as in Table 5, is played 1 2 x proportion of the time. Recall that

because the team reasoner asks ‘what should we do given our standard of success?’ she

plays Cooperate in the PD and Hi in the Hi Lo. The individual reasoner (who asks, ‘what

should I do given my standard of success?’) always defects in the PD. However, since (Lo,

Lo) and (Hi, Hi) are equally valid equilibria for the individual reasoner in Hi Lo, and thus

neither Hi nor Lo are mandated as strategies, suppose that the individual reasoner plays Hi

with probability h. Table 6 then gives the expected payoffs, VðijjÞ, for each pairwise

interaction (for example, VðIjTÞ is the expected payoff to an individual reasoner

interacting with a team reasoner).

To assess how changes in the set of games played by the population impacts

evolutionary outcomes, we follow standard practice in evolutionary game theory, and use

the replicator dynamic (or proportional fitness rule; see e.g., Boyd & McElreath, 2007).

This formula describes how the proportion of two competing strategies in the population

changes from one time period to the next, as a function of their respective payoffs and

initial proportions in the population.6 In general, for types A and B, where p is the

proportion of A types in the population at time t andWðiÞ is the average payoff to type i, the

Table 4. Hi Lo: played x proportion of the time.

Hi Lo

Hi b;b 2g;2g
Lo 2g;2g 0; 0

Note: b . 0; g . 0. Payoffs are listed as (row player; column player).

Table 5. PD: played 1 2 x proportion of the time.

Cooperate Defect

Cooperate b2 c; b2 c 2c; b
Defect b;2c 0; 0

Note: b . c . 0. Payoffs are listed as (row player; column player).

Table 6. Expected payoffs for four types of interactions.

Pairing VðijjÞ : expected payoff

ðTjIÞ 2cð12 xÞ þ xðbh2 ð12 hÞgÞ
ðTjTÞ ðb2 cÞð12 xÞ þ bx
ðIjTÞ bð12 xÞ þ xðbh2 ð12 hÞðgÞÞ
ðIjIÞ xðbh 2 2 2ghð12 hÞÞ:
Note: The table gives payoff to i for interaction ijj. For example, the first row gives the expected payoff for a team
reasoner interacting with an individual reasoner.
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change in the proportion of A types between t and t þ 1, Dp, is given by the difference

equation:

Dp ¼ pð12 pÞ WðAÞ2WðBÞ
pWðAÞ þ ð12 pÞWðBÞ : ð1Þ

The average payoffs to our types, WðIÞ and WðTÞ, are as follows. Let p stand for the

proportion of individual reasoners in the population. Then, since interactions are random,

p is the probability of interacting with an individual reasoner and 12 p is the probability

of interacting with a team reasoner. Therefore, the average payoff for each type is the sum

of its two pairwise payoffs, weighted by the probability that each type of interaction

occurs, plus a common baseline fitness ðw0Þ: WðIÞ ¼ pðVðIjIÞ þ ð12 pÞVðIjTÞ þ w0 and

WðTÞ ¼ pVðTjIÞ þ ð12 pÞVðTjTÞ þ w0.

Equilibria exist where Dp ¼ 0 – where the proportion of each type is constant from

one period to the next. Clearly, Dp ¼ 0 when p ¼ 0 or p ¼ 1 – i.e., when the population

consists of only team reasoners or only individual reasoners. The interesting question is

how the variation in the set of games played impacts the stability of these equilibria.

An equilibrium is called stable if, when the equilibrium mix of types is disturbed slightly,

it returns to the equilibrium value. For example, to assess whether (and when) the all-team

reasoner equilibrium ðp ¼ 0Þ is stable, we need to analyze what happens when a rare

individual reasoner enters the population of team reasoners. Substantively, the key is to

notice that whether an ‘invasion’ of individual reasoners is successful depends only on the

two types’ relative success against team reasoners. Thus, the all-team reasoner equilibrium

is stable where VðTjTÞ . VðIjTÞ. Solving
ðb2 cÞð12 xÞ þ bx . bð12 xÞ þ xðbh2 ð12 hÞðgÞÞ

for x, the proportion of games that are Hi Lo, we find that the inequality holds where

x .
c

ðbþ gÞð12 hÞ þ c
:

For relatively high values of x, then, the all-team reasoning equilibrium is stable, and

individual reasoners cannot invade.

We analyze the stability of the all-individual reasoner equilibrium similarly, by

assessing the two types’ relative performance against individual reasoners. Where

VðIjIÞ . VðTjIÞ, the all-individual reasoner equilibrium ðp ¼ 1Þ is stable. The inequality
holds where

x , c
bð12hÞhþgð12hÞð2h21Þþc

if h $ g
bþ2g

; x if h , g
bþ2g

8<
:

Thus, for relatively low x values – where the PD is played relatively frequently – a

population of individual reasoners can resist invasion by team reasoners. Also, note that

for very low values of h – where individual reasoners play Lo frequently – there is no

value of x for which team reasoners can invade. Intuitively, this is because when the

population is coordinating (mostly) on a low-payoff equilibrium, a team reasoner cannot

gain advantage in the Hi Lo by playing her role in a higher payoff equilibrium. We can see

another reason, then, that the choice of strategy in Hi Lo is nontrivial for individual

reasoners: choosing Lo often can actually be advantageous in some evolutionary contexts,

as it forestalls the possibility of invasion by team reasoners for all values of x.
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The third case in which Dp ¼ 0 is where the numerator in the difference equation,

WðIÞ2WðTÞ, equals zero. In this case, since the average fitness of each type is the same,

the proportion of each type does not change. Such an equilibrium, where a mix of both

types exists, is called an internal (or polymorphic) equilibrium. Solving the equation

WðIÞ ¼ WðTÞ for p – the proportion of individual reasoners in the population – yields a

unique solution:

p* ¼ ð12 hÞðbþ gÞ þ c2 ðc=xÞ
ð12 hÞ2ðbþ 2gÞ :

Since p* is a proportion, it must be between zero and one. (Whenever p* is � ð0; 1Þ,
there is no meaningful equilibrium whereWðIÞ ¼ WðTÞ:) For what values is this the case?
First, note that because the denominator is always positive for h , 1 and b; g . 0, p* is

greater than or equal to zero when the numerator is non-negative. This holds if

ð12 hÞðbþ gÞ þ c $ c=x, or solving for x, where x $ c=½ð12 hÞðbþ gÞ þ c�: The

second requirement is that p* # 1. Solving for x, we find the inequality holds where

x #
c

bð12 hÞhþ gð12 hÞð2h2 1Þ þ c
:

Note that these constraints are the same as those that determined the stability of the

equilibria at p ¼ 0 and p ¼ 1. Precisely, there exists an internal equilibrium (i.e., where

WðIÞ ¼ WðTÞ and p* [ ð0; 1Þ) if and only if both the all-individual reasoner and the all-

team reasoner equilibria are stable: when

c

ð12 hÞðbþ gÞ þ c
, x ,

c

bð12 hÞhþ gð12 hÞð2h2 1Þ þ c
:

An internal equilibrium thus exists for relatively moderate values of x. The three cases

described are graphed in Figure 1.

In all cases the internal equilibrium is unstable. To see this, note that an internal

equilibrium only exists if the equilibria at p ¼ 0 and p ¼ 1 are stable (and so Dp is

decreasing around p ¼ 0, where it takes on the value of 0, and Dp is increasing around

p ¼ 1, where it takes on the value of 0). Because Dp is continuous in p, the intermediate

value theorem implies that Dp is negative for p [ ð0; p*Þ, and positive for p [ ðp*; 1Þ.
This means that the internal equilibrium is unstable: intuitively, if a few ‘extra’ individual

reasoners beyond the equilibrium value enter the population ðp . p*Þ, then this leads to

further increases in the proportion of individual reasoners ðDp . 0Þ; similarly, if a few

‘extra’ team reasoners enter the population, the proportion of team reasoners increases

further. An unstable equilibrium is of interest because it defines the basins of attraction of

two stable equilibria – here, the stable equilibria at p ¼ 0 and p ¼ 1. For initial p values

greater than p*, the population tends toward the p ¼ 1 (all-individual reasoner)

equilibrium; for values of p less than p*, the population tends toward the equilibrium at

p ¼ 0. Below, we discuss the interpretation of this baseline model, and consider a few

extensions.

5. Discussion and extensions

In our baseline model, our central result is that whether team reasoning can emerge over

the long run depends on the relative frequency of the PD and Hi Lo in the following way.

There are three intervals of interest in the frequency that the PD is played. In the first
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interval, in which the PD is played ‘frequently,’ individual reasoners will, in the long run,

become the sole type in the population, regardless of their initial proportion in the

population. In the second interval, in which the PD is played ‘somewhat frequently,’

whether individual reasoners emerge as the sole dominant type depends on whether they

exceed an initial threshold proportion. If the initial proportion of individual reasoners

exceeds the threshold proportion, they will emerge as the sole dominant type. If the initial

proportion of individual reasoners is below the threshold proportion, then team reasoners

will emerge in the long run as the sole type. Finally, in the third interval, where the PD is

played infrequently, team reasoners will emerge as the sole type regardless of initial mix

of strategies, with the following caveat. If individual reasoners who coordinate frequently

on playing Lo in Hi Lo make up a very large percentage of the initial population, then

individual reasoners will emerge as the sole dominant type in the long run.

Thus, holding all else constant, the more frequent are Hi Lo games compared to PD

interactions, the better team reasoners do. In an environment where coordination is more

important than competition, team reasoning is particularly advantaged. The caveat we note

above does qualify this conclusion a bit. For any mix of games, if a very large percentage

of the population coordinates on Lo, team reasoners will not be successful, and will be

driven out of the population in the long run. Thus, an evolutionary argument suggests the

nontriviality of the individual reasoner’s choice in Hi Lo: only coordination on Lo by

individual reasoners guarantees that team reasoners will not be able to establish a foothold

in a population initially dominated by individual reasoners. We now consider how this

basic account may be modified by re-interpretation and extensions of our model.

A note on the assumption that x is fixed. In our baseline analysis, we have treated x, the

proportion of games that are Hi Lo, as fixed, and found no stable internal equilibrium. But

Figure 1. Variation in the set of games played can impact the stability of equilibria. The graph
shows Dp as a function of p, for three values x: (1) where only the all-team reasoner equilibrium
ðp ¼ 0Þ is stable, (2) where only the all-individual reasoner equilibrium is stable ðp ¼ 1Þ, and (3)
where both the all-team reasoner ðp ¼ 0Þ and the all-individual reasoner ðp ¼ 1Þ equilibria are stable.
The specific values used to generate the graphs are w0 ¼ 2; b ¼ 2 c ¼ 1; b ¼ 1; g ¼ 1; h ¼ :5 and
x ¼ :4 (only p ¼ 1 stable), x ¼ :6 (p ¼ 0 and p ¼ 1 stable), x ¼ :8.
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it is worth noting that xmay change between time periods. As the baseline analysis shows,

the value of x impacts the location of the basins of attraction of the equilibria at p ¼ 0 and

p ¼ 1. It is straightforward to see that, in a system that is not at equilibrium, changing the

value of x may change the sign of Dp: a system in which Dp is negative at t may have Dp
positive at t þ 1, if x decreases between t and t þ 1. That is, (depending on changes in x) it

is possible that, even in the absence of a stable internal equilibrium, p reaches neither 0

nor 1.

The h parameter as an error rate. Our baseline model does not consider the possibility

that players make errors. Though in the abstract, the Hi Lo and the PD are simple games,

we are interested in the games as models of real-life interactions. The structure of such

interactions will sometimes be less transparent than our theoretical model suggests.

However, we can incorporate one specific type of player error without complicating the

analysis, simply by reinterpreting the h parameter in the model.

In particular, consider the possibility that, in a given interaction, players may be

uncertain about payoffs. Table 7 models such a situation – the players (correctly) perceive

that a is greater than 0, but the values of y and z are unclear. Note that if y and z are both

less than 0, the game is a Hi Lo, but if y is greater than a and z is less than 0, the game is a

PD. We suggest that the choice for the team reasoner is clearer than it is for the individual

reasoner: as long as she perceives that 2a . yþ z, she will choose A. But this information

is not enough for the individual reasoner, who – in addition – needs to accurately assess

whether y . a and z , 0 (in which case the game is a PD and he plays B), whether y , 0

and z . a or 0 , y; z , a (in which cases he plays A), or whether y , 0 and z , 0 (in

which case the game is a Hi Lo).

For a concrete example, suppose Player 1and Player 2 can each choose to (A) go out

and hunt for a resource, splitting the proceeds evenly or (B) sit at home and wait to steal

anything the other player brings back. As long as the effort put into hunting is outweighed

by benefit accorded by securing the prey, it is clear that the strategy profile (A,A) Pareto-

dominates (B,B). But Player 1 is an individual reasoner, so he calculates that he will be

better off if he stays at home (expending no effort in hunting), and then steals any prey

Player 2 returns with (thereby gaining the resource regardless). Upon her return from the

successful hunt, however, Player 2 takes offense at Player 1’s attempted theft, and, in the

ensuing tussle, both players are grievously injured. Player 1 has just mistaken a Hi Lo for a

PD. Note also that a team reasoning Player 2 chooses A (to hunt), even if she makes the

same mistake in perception as Player 1.

Such mistakes can be incorporated into our baseline model simply by reinterpreting

the h parameter. Even supposing that individual reasoners always intend to play Hi in Hi

Lo, 12 h can be interpreted as the proportion of time individual reasoners mis-perceive

the Hi Lo as a PD.7 Therefore, the existence of such errors implies that there is always

some value of x for which team reasoners can invade a population of individual reasoners.

Cognitive load. Here, we substitute for the individual reasoner a type – which we call

the flexible reasoner – who team reasons in a Hi Lo (always playing Hi), and reasons

Table 7. A game with ambiguous payoffs, a . 0.

A B

A a; a z; y
B y; z 0; 0

Note: Payoffs are listed as (row player; column player).
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individually in a PD (always defecting). Absent more, it is clear that such a player will do

better than the team reasoner (except when all games are Hi Lo). However, the flexible

reasoner’s strategy, which involves switching back and forth between modes of reasoning,

is more complex than that of the team reasoner, and thus places a greater cognitive load on

the flexible reasoner.8

We incorporate the cost that this increased cognitive load takes by subtracting a cost

parameter k . 0, weighted by xð12 xÞ, from the payoffs of the flexible reasoner. (For

example, VðFjTÞ is bð12 xÞ þ xb2 kxð12 xÞ.) The logic is that the more even is the mix

of games, the more frequent is the need to switch modes of reasoning, and therefore, the

greater the cognitive load for the flexible reasoner.

This set-up gives a very simple solution. Regardless of the proportion of the types in

the population, WðFÞ . WðTÞ if x , c=k, WðFÞ ¼ WðTÞ if x ¼ c=k, andWðFÞ , WðTÞ if
x . c=k. Thus, for any initial p, the population tends toward the all-team reasoner

equilibrium if x . c=k, and toward the all-flexible reasoner equilibrium if x , c=k. So, as
before, the higher the proportion of games that are Hi Lo, the more advantaged are team

reasoners. Here, the critical value of x is determined solely by the relative magnitudes of

the c and k parameters.

When individual reasoners’ play varies based on the proportion of types in the

population. A relatively minor modification of our baseline model results in the possibility

of multiple internal equilibria. In particular, suppose that individual reasoners become

more likely to play Hi as the proportion of team reasoners (who always play Hi) in the

population increases. For example, suppose h ¼ 12 p. Then, the numerator of the

difference equation is a fifth degree polynomial in p, and thus the function can take on a

value of 0 for up to three values of p [ ð0; 1Þ, multiple internal equilibria may exist, at

least one of which may be stable. A concrete example is shown in Figure 2. In this

Figure 2. Multiple internal equilibria can exist when h is a function of p. The graph shows
an example with both stable and unstable internal equilibria. Here, w0 ¼ 2; b ¼ 2;
c ¼ 1; b ¼ 1; g ¼ 1; h ¼ 12 p, and x ¼ :7.
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particular case, there are two internal equilibria, and a stable equilibrium with p < :2
exists.

Circumspect team reasoning. We now consider team reasoners who are

circumspect (Bacharach, 1999, 2006). In our baseline model, team reasoners choose

to play their role in the strategy profile that is best for the team, under the assumption

that their co-player is also a team reasoner. A team reasoner who is circumspect,

however, considers the possibility that a co-player may ‘fail’(for any reason) to play

his role in the strategy profile that is best for the team, and instead performs some

‘default’ action. The circumspect team reasoner thus calculates, in light of probability

that a team member fails, the strategy profile that is best for the team (including the

potentially failing team member), and executes the move that corresponds to her

choice in that profile. Below, we sketch a version of the baseline model in which all

team reasoners are circumspect. Our results indicate that key features of our baseline

model carry over: most importantly, team reasoners perform relatively better when Hi

Lo is played relatively often. At the same time, circumspect team reasoners perform

(weakly) better than ‘un-circumspect’ team reasoners against individual reasoners – in

fact, for a certain class of PDs, circumspect team reasoners can always invade a

population of individual reasoners; we also find that the population can remain

polymorphic indefinitely, even when there is not, technically, a stable internal

equilibrium.

We take the probability that a team member fails to be p, the proportion of individual

reasoners in the population; following Bacharach (1999), we assume that a circumspect

team reasoner accurately assesses this probability. The default actions of a failing team

member are that of the individual reasoner. In this extension we generalize the PD in our

baseline model, making the payoffs from mutual cooperation ða; aÞ, with a . 0; 2a .
b2 c instead of ðb2 c; b2 cÞ (see Table 8).9

The circumspect team reasoner determines the strategy profile that maximizes the sum

of the individual payoffs, given the failure probability p, and chooses the strategy it

prescribes for her. If the failure probability is 0, utility-maximizing strategy profile – from

the perspective of the team reasoner – is (C,C), as in our baseline model (since, by

definition, in the PD 2a . b2 c; 0). Now, suppose first that b2 c . 0. Then, the team

reasoner ranks the profiles (C,C) . (C,D) ¼ (D,C) . (D,D). This implies that for any

failure probability, the team reasoner cooperates, in an attempt to implement (C,C); even

in the event of certain failure on the part of the co-player, the team is better off if the team

reasoner cooperates. Thus, if b2 c . 0, the team reasoner’s behavior in the PD is no

different than in our baseline model. But suppose that b2 c , 0. Then, the team reasoner

ranks the profiles (C,C) . (D,D) . (C,D) ¼ (D,C). The circumspect team reasoner

calculates the value of p at which implementing (C,C) yields greater utility for the team

than implementing (D,D), i.e., where 2pð12 pÞðb2 cÞ þ ð12 pÞ2 2a . 0. Solving for p,

Table 8. A generalized PD.

Cooperate Defect

Cooperate a; a 2c; b
Defect b;2c 0; 0

Note: a; b; c . 0; 2a . b2 c, payoffs are listed as (row player; column player).
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the circumspect team reasoner cooperates iff

p ,
a

a2 ðb2 cÞ ; ppd:

The circumspect team reasoner proceeds similarly for Hi Lo, calculating the value of p

at which implementing (H,H) yields greater utility than implementing (L,L), and thus

plays Hi for all p, for h . :5, and for h , :5, iff

p ,
b

ðbþ 2gÞð12 2hÞ ; phl:

To facilitate exposition of the evolutionary model, define f ðpÞ ; WðIÞ2WðTÞ, the
numerator on the right side of the difference Equation (1); note that f ðpÞ determines the

sign of the right-hand side of (1) for p [ ð0; 1Þ (which, in turn, determines the stability of

equilibria). The formulas for f ðpÞ differ based on the play of the team reasoner, and are as

follows. When the team reasoner plays Cooperate and Hi,

f ðpÞ ¼ p½cð12 xÞ2 xð12 hÞðbhþ 2gh2gÞ�þ ð12 pÞ½ðb2 aÞð12 xÞ2 xð12 hÞðbþgÞ�:
ð2Þ

When the team reasoner plays Defect and Hi,

f ðpÞ ¼ pxð12 hÞðg2 2gh2 bhÞ2 ð12 pÞxð12 hÞðbþ gÞ: ð3Þ
When the team reasoner plays Cooperate and Lo,

f ðpÞ ¼ p½cð12 xÞ þ xhðbhþ 2gh2 gÞ� þ ð12 pÞ½ðb2 aÞð12 xÞ2 xhg�: ð4Þ
When the team reasoner plays Defect and Lo,

f ðpÞ ¼ xh½pðbhþ 2gh2 gÞÞ2 ð12 pÞðgÞ�: ð5Þ
Case 1: ppd [ ð0; 1Þ, but phl � ð0; 1Þ (implying that h . :5 and c . b).

On ½0; ppd�, f ðpÞ is given by (2). Let x* be the value of x for which f ð0Þ ¼ 0.10 Because

f ðpÞ is increasing in p, f x * ðp0Þ . 0 for any p0 [ ð0; ppdÞ. Set x ¼ x* þ 1 (while holding

other parameters constant). Since f ðpÞ is decreasing in x, f x *þ1ð0Þ , 0; because f ðpÞ is
continuous in x, f x *þ1ðp0Þ . 0, for sufficiently small 1. Thus, there exists a set of parameter

values for which a stable equilibrium at p ¼ 0, and an unstable internal equilibrium at

p* , ppd exist. Similarly, setting x ¼ x * 2 1 gives a set of parameter values for which an

unstable equilibrium at p ¼ 0 exists, and no internal equilibrium[ ð0; ppdÞ exists. Finally,
observe that f ð1Þ , 0; x . c=½cþ ð12 hÞðbhþ 2gh2 g)], so (since certainly ppd , 1),

there exists a set of parameter values for which a stable equilibrium at p ¼ 0 exists, and no

internal equilibrium [ ð0; ppdÞ exists.
On ðppd; 1Þ, f ðpÞ is given by (3). This is always negative, so the equilibrium at p ¼ 1 is

unstable.

Thus, for Case 1, there are the following possibilities. If the all-team reasoner

equilibrium is unstable, then p will ‘oscillate’ around ppd, increasing until it exceeds ppd,

and then decreasing until it becomes smaller than ppd; thus, the outcome is, in practice,

similar to an internal equilibrium at ppd (see Figure 3.) If the all-team reasoner equilibrium

is stable, but there is an unstable equilibrium at p* [ ð0; ppdÞ, then for any initial p , p*,

the equilibrium outcome is p ¼ 0, and for any initial p . p*, p will ultimately oscillate
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around ppd. Finally, if the all-team reasoner equilibrium is stable and there is no internal

equilibrium [ ð0; ppdÞ, then the equilibrium outcome is p ¼ 0, for any initial p.

Case 2: 0 , phl , ppd , 1 (implying h , :5 and c . b).

On ð0; phlÞ, f ðpÞ is given by (2). Here too, f ðpÞ is increasing in p. An analysis parallel to
that of Case 1 shows that sets of parameter values exist such that (1) there is a stable

equilibrium at p ¼ 0, and an unstable equilibrium [ ð0; phlÞ; (2) there is an unstable

equilibrium at p ¼ 0 and no internal equilibrium[ ð0; phlÞ. Finally, solving f ðphlÞ , 0 for

x gives

x .
bcþ 2ðbhþ 2gh2 gÞða2 bÞ

bcþ 2ðbhþ 2gh2 gÞða2 bÞ2 ðbhþ 2gh2 gÞð12 hÞðbþ 2gÞ :

Thus, for such x, there is a stable equilibrium at p ¼ 0, and no internal equilibrium

[ ð0; phlÞ.11
On f ðphl; ppdÞ, f ðpÞ is given by (4). This is again increasing in p. An analysis parallel to

that of Case 1 shows that sets of parameter values exist such that (1) f ðphlÞ , 0 but there is

an unstable internal equilibrium [ ðphl; ppdÞ; (2) f ðpÞ . 0 ;p [ ðphl; ppdÞ.12 And since

f ðppdÞ , 0, for x . bðc2 bþ aÞ=½bðc2 bþ aÞ þ h½gðc2 bÞ2 aðbh2 gþ 2ghÞ��, there
exist a set of parameter values for which f ðpÞ , 0; ; p [ ðphl; ppdÞ.

On f ðppd; 1Þ, f ðpÞ is given by (5). Whenever phl [ ð0; 1Þ, this is certainly negative, so

the equilibrium at p ¼ 1 is unstable.

Lastly, observe that f ðpÞ is increasing in p on ½0; ppd�. (To see this, note that the right

side of (5) is greater than the right side of (2), for p ¼ phl, iff bh , g2 2gh, which always
holds for phl [ ð0; 1Þ.)

Therefore, the substantive interpretation of the model is the same as for Case 1: if the

all-team reasoner equilibrium is unstable, then p will oscillate around ppd; if the all-team

Figure 3. When team reasoners are circumspect, both the p ¼ 0 and p ¼ 1 equilibria may be
unstable, and p may oscillate around ppd . Here, w0 ¼ 5, a ¼ 1, b ¼ 2; c ¼ 3, b ¼ 2, g ¼ 2, h ¼ :8,
and x ¼ :5. See Case 1 in text for details.
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reasoner equilibrium is stable, but there is an unstable equilibrium p* [ ð0; ppdÞ, then for

any initial p , p*, the equilibrium outcome is p ¼ 0, and for any initial p . p*, p will

ultimately oscillate around ppd (see Figure 4); finally, if the all-team reasoner equilibrium

is stable and there is no internal equilibrium [ ð0; ppdÞ, then the equilibrium outcome is

p ¼ 0.

Case 3: 0 , ppd , phl , 1 (again implying h , :5 and c . b).

On ½0; ppd�, f ðpÞ is given by (2). Here too, f ðpÞ is increasing in p. An analysis parallel to
that of Case 1 shows that sets of parameter values exist such that (1) there is a stable

equilibrium at p ¼ 0, and an unstable equilibrium [ ð0; ppdÞ; (2) there is an unstable

equilibrium at p ¼ 0 and no internal equilibrium[ ð0; ppdÞ. Finally, the analysis of Case 2
on ð0; phlÞ shows that there is a set of parameter values for which f ðppdÞ , 0, since ppd
must be less than phl.

On ðppd; phlÞ, f ðpÞ is given by (3), and, again, increasing in p. To see that f ðphlÞ , 0

(and thus f ðpÞ , 0; ; p [ ðppd; phlÞ), write f ðpÞ as xð12 hÞ=½ðbþ 2gÞð12 2hÞ�
ðgð12 2hÞ2 bhÞðb2 2ðbþ gÞÞ; observe that gð12 2hÞ2 bh is positive whenever

phl [ ð0; 1Þ, so f ðphlÞ , 0.

On ðphl; 1Þ, f ðpÞ is given by (5), and so whenever phl [ ð0; 1Þ, f ðpÞ , 0;
;p [ ðphl; 1Þ.

To summarize Case 3, the all-individual reasoner equilibrium is never stable. If the all-

team reasoner equilibrium is unstable, then p will oscillate around ppd; thus, the outcome

is, again, in practice, similar to an internal equilibrium at ppd. If the all-team reasoner

equilibrium is stable, but there is an unstable equilibrium at p* [ ð0; ppdÞ, then for any

initial p , p
*
, the equilibrium outcome is p ¼ 0, and for any initial p . p*, p will

ultimately oscillate around ppd. Finally, if the all-team reasoner equilibrium is stable and

there is no internal equilibrium [ ð0; ppdÞ, then the equilibrium outcome is p ¼ 0, for any

initial p.

Figure 4. Another possibility when team reasoners are circumspect. Here, the equilibrium at p ¼ 0
is stable, the equilibrium at p ¼ 1 is unstable, there is an unstable internal equilibrium, and
oscillation around ppd . Here, w0 ¼ 5, a ¼ 1:5, b ¼ 2; c ¼ 2:5, b ¼ 2, g ¼ 4, h ¼ :3, and x ¼ :4. See
Case 2 in text for details.
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Case 4: phl [ ð0; 1Þ, but ppd � ð0; 1Þ (implying c , b and h , :5). On ð0; phlÞ, f ðpÞ is
given by (2). Although f ðpÞ is decreasing in p for b . aþ cþ ½xð12 hÞ2ðbþ 2gÞ�=
ð12 x), f(1) (and so certainly for such b, f ðphlÞÞ is never less than 0 – thus, there can be no

stable internal equilibrium [ ð0; phlÞ. (In other words, no internal equilibrium exists for b

such that f( p) is decreasing.13) If b is such that f( p) is increasing in p, then, an analysis

parallel to that of Case 2 on ð0; phlÞ shows that sets of parameter values exist such that (1)

there is a stable equilibrium at p ¼ 0, and an unstable equilibrium[ ð0; phlÞ; (2) there is an
unstable equilibrium at p ¼ 0 and no internal equilibrium [ ð0; phlÞ; (3) there is a stable

equilibrium at p ¼ 0, and no internal equilibrium [ ð0; phlÞ.
On ðphl; 1Þ, f( p) is given by (4). Note that, on ðphl; 1Þ, f( p) is continuous and decreasing

in x; also, it is decreasing in p iff b . aþ cþ ½xh 2ðbþ 2gÞ�=ð12 xÞ. Let

ð0 ,Þb* , aþ cþ ½xh2ðbþ 2gÞ�=ð12 xÞ , b*ð, 2aþ cÞ, and let c=½c2 hðbhþ
2gh2 gÞ� ; x* be the value of x for which f ð1Þ ¼ 0. Clearly, for any p0 [ ðphl; 1Þ,
f b *;x * ðp0Þ . 0 and f b*;x * ðp0Þ , 0. Now, set x ¼ x* þ 1 (holding a,b*, b*, b,c, g, h, p

0 fixed).
Because f b;xðpÞ is continuous in x, f b *;x *þ1ðp0Þ . 0 and f b*;x *þ1ðp0Þ , 0 for sufficiently

small 1. At the same time, since f b;xðpÞ is decreasing in x, f b *;x *þ1ð1Þ , 0 and

f b*;x *þ1ð1Þ , 0.

Thus, there exists a set of parameter values for which there is an unstable equilibrium

at p ¼ 1 and a stable internal equilibrium at p* . phl, and a set of values such that there is

an unstable equilibrium at p ¼ 1 and no internal equilibrium [ ðphl; 1Þ. The parallel

analysis for x* 2 1 establishes that there is a set of parameter values for which there is a

stable equilibrium at p ¼ 1 and an unstable internal equilibrium at p* . phl, and a set of

values such that there is a stable equilibrium at p ¼ 1 and no internal equilibrium

[ ðphl; 1Þ. Lastly – since, for every set parameter values (given that phl [ ð0; 1Þ),
f ðphl þ 1Þ . f ðphl 2 1Þ – there will be no oscillation around phl.

To summarize Case 4, the all-team reasoner equilibrium can be stable or unstable; an

internal equilibrium p* , phl, if it exists, will be unstable. The all-individual reasoner

equilibrium can also be stable or unstable, and an internal equilibrium p* . phl, if it

exists, can be either stable or unstable. So, if the all-team reasoner equilibrium is

unstable, then for any initial p, the population will end up at the stable internal

equilibrium p* . phl, if it exists, and at the (stable) all-individual reasoner equilibrium,

if it does not. If the all-team reasoner equilibrium is stable, and the all-individual

reasoner equilibrium is unstable, then – if no stable internal equilibrium exists – the

system ends up at the all-team reasoner equilibrium for any initial p; but – if a stable

equilibrium does exist – then the endpoint of the all-team reasoner equilibrium’s basin

of attraction will be at the unstable equilibrium p* , phl, if such p* exists, and at phl, if it

does not. If both the all-team reasoner and the all-individual reasoner equilibria are

stable, their basins of attraction are defined by the unstable internal equilibrium

p* , phl, if it exists, and by phl otherwise.

6. Conclusion

We have shown that team reasoners, and thus cooperative behavior, can thrive even in an

environment that appears hostile to such behavior; even in one-shot interactions with

random pairings of players, cooperation can be sustained. The key is variation in the ludic

ecology. True, the mechanism of individual reasoning is successful relative to team

reasoning in social dilemmas like the PD. However, it is relatively unsuccessful in the Hi

Lo (and we have suggested that this is particularly likely to be true outside the laboratory.)

We have shown that these facts can be important for understanding evolutionary

14 475Journal of Economic Methodology



outcomes. In an environment where common interest games are prevalent, team reasoning

is the only evolutionarily stable strategy; at the same time, if the ludic ecology consists

mainly of social dilemmas, individual reasoning is favored.

We have also pursued several extensions that augment this basic account. We have

noted that over-time changes in the proportion of games that are Hi Lo may allow both

types of reasoners to persist in the system longer than would otherwise be expected.

Second, we have argued that individual reasoners may be more susceptible to certain

errors of perception; this may be a further evolutionary advantage for team reasoners.

Third, we have discussed how a more complex, and thus costly, mechanism fares against

team reasoners. Fourth, we have noted that a stable internal equilibrium, with both team

and individual reasoners, may exist, when individual reasoners’ play in the Hi Lo responds

to the proportion of team reasoners in the population. Last, in considering team reasoners

who are circumspect, we have shown that there are scenarios in which individual reasoners

and circumspect team reasoners coexist indefinitely, and that – whenever the parameters

of the PD are such that circumspection potentially affects behavior – circumspect team

reasoners can always invade a population of individual reasoners.

Though we have shown that team reasoning is a evolutionarily viable strategy against

individual reasoning, we do not argue that other explanations of cooperative behavior

should be discounted. Cooperation, in many contexts, is compatible with individual

reasoning. However – as we have discussed – team reasoning explains cooperative

behavior in many (seemingly) simple interactions, and it does so in a coherent and

parsimonious fashion. And it can explain cooperation even in the absence of reciprocity

(conditional cooperation) or assortative interaction (nonrandom pairing). Surely, further

empirical investigation regarding the prevalence of, and mechanisms underlying, team

reasoning is warranted; in particular, scholars will have to design and implement critical

tests in which the behavioral implications of team reasoning differ from those of

competitor theories (Faillo, Smerilli, & Sugden, 2013). But, until such evidence

accumulates, we argue that team reasoning should not be dismissed as implausible on

evolutionary-theoretic grounds; it is a viable approach to basic human interactions.
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Notes

1. Email: lemperds@potsdam.edu.
2. We point out a few representative examples, without implying that these views are

unanimously held in any discipline or subfield. In biology, see (Hamilton, 1964), (Trivers,
1971), and (Wilson, 1975); in economics, see (Binmore, 2004; Gintis, Bowles, Boyd, & Fehr,
2003); in political science, see (Axelrod, 1984; Bendor & Swistak, 1997); in philosophy, see
(Pettit, 2000; Skyrms, 2003); in psychology, see the discussion in (Caporael, Dawes, Orbell,
Van de kragt, & van de Kragt, 1989) and the responses therein, especially by Houston and
Hamilton, Krebs, Liebrand, Rachlin, Tooby and Cosmides, and Vine.

3. Substituting the Stag Hunt for the Hi Lo does not qualitatively change the results we present in
our baseline model.
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4. We note that we slightly diverge from Bacharac (2006) here; he calls the mechanism leading to
the choice of Hi in Hi Lo and Cooperate in PD ‘group identification.’ Group identification is
said to activate team reasoning, which, in turn, leads a player to exhibit the traits Hi and
Cooperate. Other theorists are more agnostic about the role of group identification in bringing
about team reasoning (Gold & Sugden, 2007). In any case, our model is not affected if we
replace ‘team reasoning’ with ‘identifying with one’s co-player as a group member’ and
‘individual reasoning’ with ‘not identifying with one’s co-player as a group member.’

5. We do not mean to imply that we are ourselves skeptical of group or multilevel selection; we
simply note the concept is contested (on this point, see Wilson & Sober, 1994).

6. See (Bendor & Swistak, 1997, pp. 295–296) for a behavioral interpretation of the replicator
dynamic.

7. The model could be complicated by considering other kinds of errors, but we do not pursue that
extension here.

8. Bacharach (2006, p. 108) discusses closely related considerations.
9. As we show below, circumspect team reasoning is interesting in the PD only if b2 c , 0.
10. x * ¼ b2 a=½ð12 hÞðgþ bÞ þ b2 a�.
11. Note this x [ ð0; 1Þ, since phl [ ð0; 1Þ implies bhþ 2gh2 a , 0.
12. Here, f ðphl; x *Þ ¼ 0 for x * ¼ ½bcþ ðbhþ 2gh2 gÞða2 bÞ�=½bcþ ðbhþ 2gh2 gÞ ða2 bÞ2

ðbh2 gþ 2ghÞðbhþ ghÞ�; note that this x * [ ð0; 1Þ.
13. It is worth observing that this is conditional on phl [ ð0; 1Þ. Otherwise, a stable internal

equilibrium can exist for such b. The reason that this is not a possibility in our baseline model is
because in the additive PD, a ¼ b2 c, meaning f ðpÞ is increasing in p. Thus, the possibility of a
stable internal equilibrium is not tied to team reasoners being circumspect; however, it is
conditional on the parameters of the PD being such that circumspect team reasoners’ behavior
is not always the same as that of noncircumspect team reasoners.
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