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Abstract

All acknowledged proofs of the Four Colour Theorem (4CT) are computer-
dependent. They appeal to the existence, and manual identification, of an ‘un-
avoidable’ set containing a sufficient number of explicitly defined configurations—
each evidenced only by a computer as ‘reducible’—such that at least one of
the configurations must occur in any chromatically distinguished, putatively
minimal, planar map. For instance, Appel and Haken ‘identified’ 1,482 such
configurations in their 1977, computer-dependent, proof of 4CT; whilst Neil
Robertson et al ‘identified’ 633 configurations as sufficient in their 1997, also
computer-dependent, proof of 4CT. However, treating any specific number of
‘reducible’ configurations in an ‘unavoidable’ set as sufficient entails a minimum
number as necessary and sufficient. We now show that the minimum number
of such configurations can only be the one corresponding to the ‘unavoidable’
set of the single, ‘reducible’, 4-sided configuration identified by Alfred Kempe
in his, seemingly fatally flawed, 1879 ‘proof’ of 4CT. We shall further show that
although Kempe fallaciously concluded that a 5-sided configuration was also in
the ‘unavoidable’ set, and appealed to unproven properties of ‘Kempe’ chains
in a graphical representation to then argue for its ‘reducibility’, neither flaw
in his ‘proof’ is fatal when the argument is expressed geometrically ; and that,
essentially, Kempe correctly argued that any planar map which admits a chro-
matic differentiation with a five-sided area C that shares non-zero boundaries
with four, all differently coloured, neighbours can be 4-coloured.

Keywords: computer-assisted proof, four colour theorem, Kempe chains, minimal
planar map, geometrical proof, unavoidable but reducible configurations.
MSC 2010 Classification: 05C15.

1 Introduction

Although the Four Colour Theorem 4CT is considered passé, it would probably be
a fair assessment that the mathematical significance of any new ‘proof’ of the Four

1This is an updated version of the paper [1] presented ([2]) on 16th March 2022 at the Prof. P. C.
Vaidya National Conference on Mathematical Sciences, Sardar Patel University, Vallabh Vidyanagar.
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Colour Theorem 4CT continues to be perceived3 as lying not in any ensuing theoret-
ical or practical utility of the Theorem per se, but in whether the putative proof can
address the lack of mathematical insight4 as to why four colours suffice to chromati-
cally differentiate any set of contiguous, simply connected and bounded, spaces in a
planar map.

Now, all acknowledged proofs of 4CT appeal to the existence, and manual ‘iden-
tification’, of a sufficient number of explicitly defined configurations, each evidenced
only by a computer as ‘reducible’ (see [16], Ch.8); and claimed (see §5) to be an ‘un-
avoidable’ set of configurations, at least one of which must occur in any chromatically
distinguished, minimal, planar map that claims to essentially require five colours.

Thus, Kenneth Appel and Wolfgang Haken claimed to have identified an unavoid-
able set of 1,482 reducible configurations in their 1977, computer-dependent, proof
[3] of 4CT; whilst Neil Robertson et al claimed to have identified an unavoidable set
of 633 reducible configurations as sufficient in their 1997, also computer-dependent,
proof [9] of 4CT.

Since claiming any specific number of ‘reducible’ configurations in an ‘unavoid-
able’ set as sufficient entails a minimum number as necessary and sufficient—which,
moreover, can only be a mathematical constant (such as π or e)—we shall show that:

The minimum number of ‘reducible’ configurations in an ‘unavoidable’
set can only be the mathematical constant 15; and not 2 as fallaciously
claimed by Kempe explicitly in [23] (see §4), and by Appel and Haken
implicitly in [3] (see §5).

Although Kempe fallaciously argued that a 5-sided configuration6—identified by
him as Plate II, Fig.11 and Fig.12 in [23]—was also in the ‘unavoidable’ set, and
appealed to unproven properties of ‘Kempe’ chains, in a graphical representation, to
conclude it was ‘reducible’, we show in §3 that neither flaw is fatal when the argument
is expressed geometrically. In other words, Kempe correctly argued that:

Any planar map which admits a chromatic differentiation with a five-sided
area C that shares non-zero boundaries with four, all differently coloured,
neighbours can be 4-coloured.

3See Appel and Haken: [3]; Appel, Haken and Koch: [4]; Tymoczko: [5]; Swart: [6]; Stewart:
[7], Appendix, pp.503-505 ; Robertson et al: [8], Pre-publication; Robertson, Sanders, Seymour, and
Thomas: [9]; Thomas: [10]; Calude: [11]; Brun: [12], §1. Introduction (Article for undergraduates);
Gonthier: [13]; Zeilberger: [14]; Rogers: [15]; Wilson: [16]; Conradie and Goranko: [17], §7.7.1,
Graph Colourings, p.417 ; Allo: [18], Conclusion, p.562 ; Nanjwenge: [19], Chapter 8, Discussion
(Student Thesis); Najera: [20]; Gardner: [21], §11.1, Colourings of Planar Maps, pp.6-7 (Lecture
notes); D’Alessandro and Lehet: [22], §3.2 The trouble with schemas: objectual understanding is not
explanatory understanding, p.3.

4Particularly in currently accepted, computer-dependent, proofs of the Theorem whose validity—
as we highlight in §5—is not beyond doubt.

5The one corresponding to the ‘reducible’ 4-sided configuration identified by Alfred Kempe as
Plate II, Fig.9 in his, seemingly fatally flawed, 1879 ‘proof’ [23] of 4CT; and to the ‘quadrilateral’
identified by Appel and Haken as P4 in [3].

6The ‘pentagon’ identified by Appel and Haken as P5 in [3]; see also §4.
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Comment: Lemma 3.1 details the geometrical argument Kempe needed for validating
his ‘proof’ of 4CT in [23]. Seemingly, Kempe failed to recognise the significance of the
geometrical argument, since he preferred appeal to considerations of Euler’s formula
V + F = E + 2 in what he mistakenly claimed (see §6) as an ‘equivalent’, graphical,
representation; which may have led him to falsely conclude that any minimal planar
map must contain an ‘unavoidable’ set with two ‘reducible’ configurations (see §4).

The intuitive truth of Lemma 3.1 is evidenced by the fact that it is trivial to paste (or
even merely imagine pasting) a small, grey, piece of paper anywhere on a children’s
4-coloured globe to confirm that:

� there is never a need to re-colour the, inherited, 4-coloured areas of
the globe in order to maintain chromatic differentiation; and,

� if the grey area increases the number of countries by one by partition-
ing an existing country into two, none of the other countries abutting
the grey area after partitioning could have shared the same colour as
the partitioned country before partitioning.

In the geometrical proof of 4CT in §3, Theorem 1 we thus proffer elementary,
computer-independent, arguments which transparently illustrate why four colours
suffice to chromatically differentiate any set of contiguous, simply connected and
bounded, planar spaces; by essentially arguing that:

� If there is a minimal planar map H with (m + n + 1) areas that
contains an area C which necessarily requires a 5th colour, whilst any
planar map with ≤ m+n areas can be 4-coloured (defined as needing
at most four colours);

� Then shrinking C to a point PC yields a sub-minimal map MC that
can always be 4-coloured, such that all the areas meeting at the apex
PC require at most 3 colours.

� Recreating C in MC would now yield a chromatic differentiation of
H that requires at most only a 4th colour for C, contradicting the
putative minimality of H.

2 The Minimal Planar Map H and the Minimality

Hypothesis

Without loss of generality, the surface of the hemisphere in Fig.1 is taken to define a
minimal planar map H where:

1. Am denotes a region of m contiguous, simply connected and bounded, surface
areas am,1, am,2, . . . , am,m (of the hemisphere in Fig.1), none of which share
a non-zero boundary segment with the contiguous, simply connected, surface
area C (as indicated by the red barrier which, however, is not to be treated as
a boundary of the region Am);
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�Only the immediate portion of the area cn,j of Bn abutting C is indicated.cn,j�

CBnAm

Fig.1: Minimal Planar Map H

Only the immediate portion of the area cn,i of Bn abutting C is indicated.cn,i�

2. Bn denotes a region of n contiguous, simply connected and bounded, surface
areas bn,1, bn,2, . . . , bn,n, some of which, say cn,1, cn,2, . . . , cn,r, share at least one
non-zero boundary segment with C; where, for each 1 ≤ i ≤ r, we have that
cn,i = bn,j for some 1 ≤ j ≤ n;

�

�

�

�

� Apex PC

Only the immediate portion of the area c−n,j of B−
n is indicated.c−n,j�

B−
nA−

m

Fig.2: Sub-minimal Planar Map MC defined uniquely by shrinking C to a point PC in H

Only the immediate portion of the area c−n,i of B
−
n is indicated.c−n,i�

3. C is a single contiguous, simply connected and bounded, area (see Fig.1) con-
structed finitarily by sub-dividing and annexing (compare Kempe [23], Plate
II, Fig.14) one or more contiguous, simply connected, portions surrounding a
common apex PC of each area c−n,i (see Fig.2) in the region B−

n of some putative
sub-minimal map MC (see Fig.2), defined uniquely by putatively shrinking C
to a point PC in H.

We define:

Definition 1 (Finitary Constructibility). A single contiguous, simply connected and
bounded, area D of a planar map G is finitarily constructible if, and only if, it can be
constructed in a finite number of steps by annexing non-zero areas of the planar map
MD obtained by shrinking D to a point in G.

Lemma 2.1. Any single contiguous, simply connected and bounded, area D of a
planar map G with n areas is finitarily constructible.

Proof. If D shares m non-zero boundary segments with abutting areas, then:
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- shrinking D to a point (as in Fig.2),

- yields a planar map MD,

- with at most m areas of G,

- that now meet in MD,

- at least once at a common apex PD.

The area D can then be finitarily constructed in m steps by annexing m triangular
areas of those immediate portions of each area of MD that contain PD. The Lemma
follows.

We next consider the:

Hypothesis 1 (Minimality Hypothesis). Since four colours suffice for all, and are
necessary for some, planar maps with fewer than 5 regions, we assume the existence
of some m,n, in a putatively minimal planar map H, which defines a specific config-
uration of the region {Am +Bn + C} where:

(a) any configuration of p contiguous, simply connected and bounded, areas can be
4-coloured if p ≤ m+ n, where p,m, n ∈ N, and m+ n ≥ 5;

(b) any chromatically differentiated colouring of H contains some area C that nec-
essarily requires a 5th colour;

(c) in any such chromatically differentiated colouring, there is a specific configura-
tion of m+n contiguous, simply connected and bounded, areas, say {A−

m+B−
n },

of a putatively unique, sub-minimal, 4-colourable planar map, say MC , where
Am ⊆ A−

m and Bn ⊆ B−
n ;

(d) the area C can be constructed finitarily by sub-dividing and annexing some
portions from each area, say c−n,i, of B

−
n in the specific, sub-minimal, planar

map MC ;

(e) the region {Am +Bn +C} in the planar map H is a specific chromatic differen-
tiation of the m+ n+1 contiguous, simply connected and bounded, areas of H
in which C necessarily requires a 5th colour.

We further define:

Definition 2 (Finitary Definability). A single contiguous, simply connected and
bounded, area D of a planar map G is finitarily definable if, and only if, it can
be shrunk in a finite number of steps to a point in G.

We note that:
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Lemma 2.2. The minimal map H cannot admit two areas, say C and C ′, both of
which necessarily require a 5th colour.

Proof. Shrinking C to a point would reduce H to a 4-colourable map where C ′ does
not require a 5th colour. Restoring C with a 5th colour establishes the Lemma.

Since any area D of H can be shrunk to a point, the argument of Lemma 2.2
immediately entails:

Corollary 1. The minimal map H can always be chromatically distinguished so that
any specified area D of H requires a 5th colour. 2

We note next that:

�

�

�

�

C

C

cn,icn,j cn,j

Au
m Bu

n

Al
m Bl

n

Fig.3: No two, non-adjacent, areas cn,i and cn,j can share a non-zero boundary in H

Lemma 2.3. No two, non-adjacent, areas of Bn, each sharing a non-zero boundary
segment with C in the minimal planar map H in Hypothesis 1, can also share a
non-zero boundary that has no point in common with C.

Proof. Let two, non-adjacent, areas of Bn, say cn,i and cn,j in Fig.1, each of which
shares a non-zero boundary with C, also share a non-zero boundary with each other
that does not intersect C (as shown in green in Fig.3). This would divide {Am+Bn−
cn,i − cn,j} into two non-empty regions Au

m + Bu
n and Al

m + Bl
n, such that no area of

the region Au
m+Bu

n shares a non-zero boundary with any area of the region Al
m+Bl

n.

However, it would entail that the areas cn,k (k ̸= i, j) which abut C in each of the
regions Bu

n and Bl
n would necessarily require 2 additional colours not shared with the

areas C, cn,i and cn,j; since:

(a) if all such cn,k require only 1 additional colour, then H would be 4-colourable;
which would violate the minimality of H;

(b) if all such cn,k in only one of the regions, say Bu
n, require only 1 additional colour,

- then annexing one of the areas of Bl
n, say cn,lower, which has this colour, say x,

into the area C would again reduce the map H to a sub-minimal map, say M′,
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- where any re-colouring of M′ would still require 5 colours, since the merged
area (cn, lower + C) must continue to necessarily abut areas with four colours if
H was a minimal map; thus violating the minimality of H;

Consequently, each of the regions {Bu
n+cn,i+cn,j+C} and {Bl

n+cn,i+cn,j+C}—
when considered as separate planar maps, each with less than m+n+1 areas—would
necessarily require C to have the 5th colour, thus violating Hypothesis 1. The Lemma
follows.

Corollary 2. No area cn,i of Bn in the minimal planar map H can share two, dis-
tinctly separated, non-zero boundary segments with C. 2

Lemma 2.4. Every area D of a minimal planar map H shares non-zero boundaries
with at least four neighbours.

Proof. Shrinking any area D of a minimal map H to a point would yield a 4-
colourable, sub-minimal, map. By Hypothesis 1, restoring D in any 4-colouring of
such a sub-minimal map must require a 5th colour for D. The Lemma follows.

3 A geometrical proof of the 4-Colour Theorem

We now show how the following Lemma improves upon, and bridges the gap, in Alfred
Kempe’s—seemingly fatally failed (see §4)—‘proof’ of the Four Colour Theorem in
[23].

Prima facie, Kempe failed to recognise the significance of the geometrical argu-
ment, since he preferred appeal to considerations of Euler’s formula V +F = E+2 in
what he mistakenly claimed (see §6) as an ‘equivalent’, graphical, representation of the
4-colour problem; which may have led him to fallaciously conclude that any minimal
planar map must contain an ‘unavoidable’ set with two ‘reducible’ configurations (see
§4). Lemma 3.1 now shows why the conclusion was false.

&%
'$

���

HHH
LG
C

-d

Fig.4: C cannot share a non-zero boundary segment with 5 or more areas in H

cn,g cn,b

cn,r cn,y

cn,r′

G B

R Y

R

Lemma 3.1. The area C in H can share a non-zero boundary with only four, differ-
ently coloured, areas cn,i.
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Proof. (i) Without loss of generality, we shall consider only the case where C has five
neighbours. If, now, C (Light Gray) shares a non-zero boundary with identically-
coloured areas cn,r and cn,r′ (see Fig.4)—where r ̸= r′ by Corollary 2—then either
area can be annexed by C without disturbing the chromatic differentiation of H.

&%
'$

�
��

H
HH

LG
C

Fig.5: Annexing cn,r′ into C would then yield a sub-minimal map MC

cn,g cn,b

cn,r cn,y

cn,r′

G B

R Y

LGx-d

(ii) However, if C annexes cn,r′ by erasing the boundary d (see Fig.5), that would then
yield a sub-minimal map MC.

&%
'$

���

HHH
B
C

Fig.6: The sub-minimal map MC would be 4-colourable

cn,g cn,b

cn,r cn,y

cn,r′

G R or Y

R Y or G

Bx-d

(iii) Without loss of generality, we can keep cn,r-Red and cn,g-Green, such that the sub-
minimal map MC is now 4-colourable (requiring at most four colours by definition)
as shown, for instance, in Fig.6 (where Yellow and Blue are inter-changeable) and:

(a) the areas cn,r and cn,r′ are necessarily differently coloured;

(b) neither cn,r nor cn,y share a non-zero boundary with cn,b by the non-sharing
Lemma 2.3.

&%
'$
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HH

LG
C

-d

Fig.7: After restoration cn,r and cn,r′ cannot share identical colours in H as postulated

cn,g cn,b

cn,r cn,y

cn,r′

G R or Y

R Y or G

B

(iv) However, we now have the contradiction that:
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- there is no 4-colouring of the sub-minimal map MC which,

- on restoration of the area C as the necessary 5th coloured area in the putatively
minimal planar map H (see Fig.7)

- would admit the identical colouring for cn,r and cn,r′ in H,

- as postulated in (i) above.

The Lemma follows.

Theorem 1. No chromatically differentiated planar map needs more than four colours.

�����9
Apex PC in MC with colours inherited from H

Fig.8: Areas which meet at the apex PC in MC with colours inherited from H

c−n,g c−n,b

c−n,r c−n,y

G B

R Y

Proof. (1) By Lemma 3.1, only four differently coloured areas meet at the apex PC

(see Fig.8) of the sub-minimal map MC in any colouring which is inherited from the
putatively minimal map H.

Fig.9: Merging areas c−n,r and c−n,b at the apex PC in MC and recolouring M′
C

c−n,g c−n,b

c−n,r c−n,y

G R

R Y or G

(2) Merging c−n,r with c−n,b at PC (see Fig.9) now yields another sub-minimal, hence
4-colourable, map M′

C.

�����9
Apex PC in MC with colours inherited from M′

C

Fig.10: Restoring areas c−n,r and c−n,b at the apex PC in MC with colours inherited from M′
C

c−n,g c−n,b

c−n,r c−n,y

G R

R Y or G

(3) Keeping cn,r-Red and cn,g-Green in M′
C (see Fig.10), and restoring PC , further

yields a fresh 4-colouring of MC in which only 3 colours at most meet at the apex
PC .
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(4) Recreating C in MC now yields a chromatic differentiation of H that requires (see
Fig.11) at most a 4th colour for C; contradicting the putative minimality of H.

&%
'$

B
C

Fig.11: Areas in H with C recreated from MC and colours inherited from M′
C

cn,g cn,b

cn,r cn,y

G R

R Y or G

We conclude that Hypothesis 1 is false. The Theorem follows.

4 The perceived ‘flaw’ in Kempe’s 1879 argument

In their computer-assisted proof of the Four Colour Theorem [3], Appel and Haken
review the ‘flaw’ in Kempe’s 1879 ‘proof’ [23]:

“The first published attempt to prove the Four Color Theorem was made by A. B.
Kempe [19] in 1879. Kempe proved that the problem can be restricted to the con-
sideration of “normal planar maps” in which all faces are simply connected polygons,
precisely three of which meet at each node. For such maps, he derived from Euler’s
formula, the equation

(1.1) 4p2 + 3p3 + 2p4 + p5 =
∑kmax

k=7 (k − 6)pk + 12

where pi is the number of polygons with precisely i neighbors and kmax is the largest
value of i which occurs in the map. This equation immediately implies that every
normal planar map contains polygons with fewer than six neighbors.

In order to prove the Four Color Theorem by induction on the number p of polygons
in the map (p =

∑
pi), Kempe assumed that every normal planar map with p ≤ r

is four colorable and considered a normal planar map Mr+1 with r + 1 polygons. He
distinguished the four cases that Mr+1 contained a polygon P2 with two neighbors, or
a triangle P3, or a quadrilateral P4, or a pentagon P5; at least one of these cases must
apply by (1.1). In each case he produced a map Mr, with r polygons by erasing from
Mr+1 one edge in the boundary of an appropriate Pk. By the induction hypothesis, Mr

admits a four coloring, say cr+1, and Kempe attempted to derive a four coloring cr+1

of Mr+1 from cr. This task was very easy in the cases of P2 and P3. To treat the cases
of P4 and P5, Kempe invented the method of interchanging the colors in a maximal
connected part which was colored by cr with a certain pair of colors (two-colored chains
were later called Kempe chains) to obtain a coloring cr

′ of Mr from which one can then
obtain a four coloring cr+1 of Mr+1.

While Kempe’s argument was correctly applied to the case of P4, it was incorrectly
applied to the case of P5 as was shown by Heawood [18] in 1890.” . . .Appel and Haken: [3],

§1. Introduction, p.429.
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We note, however, that the ‘flaw’ is not fatal if Kempe’s argument is expressed
geometrically.

Reason: The case Appel and Haken refer to as P5 corresponds to §3, Lemma 3.1
where:

� We do not appeal—in a graphical representation of minimal ‘normal planar
maps’—to a ‘method of interchanging the colors’ in ‘Kempe chains’, so as to
identify ‘reducible’ configurations in an ‘unavoidable’ set.

� Instead, we appeal—in a geometrical representation of minimal planar maps—
to the Minimality Hypothesis 1, and argue that:

- in any minimal planar map such as H in Fig.1,

- any area such as P5 which necessarily requires a 5th colour,

- cannot share non-zero boundaries with two, similarly coloured, neighbours.

This then yields P4 as the sole configuration in an ‘unavoidable’ set. Moreover, as
Appel and Haken note, P4 is shown by Kempe to be ‘reducible’ (corresponding to the
proof of the Four Colour Theorem in §3, Theorem 1).

5 Could there be an unperceived, inherited, ‘flaw’

in Appel and Haken’s argument?

Unarguably meriting a philosophical discussion of consequences that lie beyond the
immediate ambit of this investigation, we merely note here that:

If the ‘flaw’ in Kempe’s 1879 ‘proof’ [23] is perceived as falsely claiming to have
proven the argument that:

(α) Any minimal ‘normal planar map’ admits an unavoidable set contain-
ing a ‘pentagon’ that can be shown as reducible; where (cf. [16], Ch.8):

(i) An unavoidable set is a set of configurations such that every map
that satisfies some necessary conditions for being a minimal non-4-
colorable triangulation (such as having minimum degree 5) must have
at least one configuration from this set.

(ii) A reducible configuration is one that cannot occur in a minimal coun-
terexample. If a map contains a reducible configuration, the map can
be reduced to a smaller map. This smaller map has the condition that
if it can be colored with four colors, this also applies to the original
map. This implies that if the original map cannot be colored with
four colors the smaller map cannot either and so the original map is
not minimal.

11



then the following remarks suggest that Appel and Haken’s computer-dependent
‘proof’ in [3] (as also Robertson et al’s proof in [9]), too could be viewed as ‘flawed’
(in the sense of being vacuously true, even if logically valid):

“While Kempe’s argument was correctly applied to the case of P4, it was incorrectly
applied to the case of P5 as was shown by Heawood [18] in 1890. Kempe’s argument
proved, however, that five colors suffice for coloring planar maps and that a minimal
counter-example to the Four Color Conjecture (minimal with respect to the number
p of polygons in the map) could not contain any two-sided polygons, triangles, or
quadrilaterals. This restricts the Four Color Problem to the consideration of normal
planar maps in which each polygon has at least five neighbors. Each such map must
contain at least twelve pentagons since in (1.1) we have p2 = p3 = p4 = 0 and thus

(1.2) p5 =
∑kmax

k=7 (k − 6)pk + 12.

Since 1890 a great many attempts have been made to find a proof of the Four Color
Theorem. We distinguish two types of such attempts: (i) attempts to repair the flaw in
Kempe’s work; and (ii) attempts to find new and different approaches to the problem.
Among attempts of type (i) we distinguish two subtypes: (i)(a) attempts to find an
essentially stronger chain argument for “reducing the pentagon,” i.e., proving that a
minimal counter-example to the Four Color Conjecture cannot contain any pentagon,
and thus does not exist; and (i)(b) attempts to make more extended use of Kempe’s
arguments in different directions and, instead of “reducing” the pentagon directly, to
replace it by configurations of several polygons. Since the method used in this paper is
of type (i)(b) we shall restrict our attention to further developments in this branch.”
. . .Appel and Haken: [3], §1. Introduction, p.430.

Reason: By Lemma 3.1 (essentially Appel/Haken’s ‘type (i)(a)’) no minimal pla-
nar map can admit an ‘unavoidable’ set containing a pentagon.

In other words, both Kempe and Appel/Haken argue that:

(I) 4CT is equivalent to proving that, in any minimal ‘normal planar
map’, there is an ‘unavoidable’ set of two configurations, P4 and P5,
each of which is ‘reducible’;

(II) Kempe [23] has validly shown that the configuration P4 is ‘reducible’.

Moreover, Appel/Haken restricted their argument to ‘type (i)(b)’ to further argue
that:

(a) Kempe did not prove in [23] that the configuration P5 is ‘reducible’.

(b) If each of the 1,482 configurations—‘in which each polygon has at
least five neighbors’, as manually defined in their ‘unavoidable’ set
in [3]—is ‘reducible’, then P5 is ‘reducible’;

(c) A computer-dependent proof validates that each of the 1,482 config-
urations is ‘reducible’;

(d) Hence 4CT is proven.
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However, Lemma 3.1 shows that argument (I) implicitly appeals to an invalid
assumption, since no minimal planar map can contain a configuration such as P5;
whence (d) would hold vacuously as having proven:

(β) If every minimal planar map admits an ‘unavoidable’ set containing
a five-sided figure such as P5, then P5 is ‘reducible’.

and not that:

(γ) No minimal planar map can admit an ‘unavoidable’ set containing a
five-sided figure such as P5.

6 Why the geometrical proof of 4CT may not be

expressible graphically

We note that, since classical graph theory (see, for instance, Brun [12], Conradie/Goranko
[17], Gardner [21]) represents non-empty areas as points (vertices), and a non-zero
boundary between two areas as a line (edge) joining two points (vertices) (see Fig.12),
the theory does not immediately evidence a graphical proof of Theorem 1.
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Fig.12: Graphical representation of H Fig.13: Geometrical representation of H
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In other words, the proof of Theorem 1 appeals critically to re-configuring the
geometrical representation of the, putatively minimal, planar map H in Fig.13 by:
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Fig.14: Graphical representation of MF Fig.15: Geometrical representation of MF
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- first removing (see Fig.15), and then restoring after recolouring (see Fig.17),
the non-zero boundary d in Fig.13,
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- to merge/de-merge the areas F and E (in Fig.13), in a geometrically distin-
guishable way, that, prima facie, cannot be immediately evidenced in the corre-
sponding argument, when represented graphically by Figs.12, 14 and 16.
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Fig.16: Graphical representation of H Fig.17: Geometrical representation of H
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We thus speculate that the barriers to proving 4CT graphically may possibly lie
in Alfred Kempe’s unsupported postulation, that the four-color map problem could
be reformulated equivalently as a problem involving linkages between the ‘lettering’
of colours at unspecified points of a map in a graph:

“If we lay a sheet of tracing paper over a map and mark a point on it over each district
and connect the points corresponding to districts which have a common boundary, we
have on the tracing paper a diagram of a “linkage,” and we have as the exact analogue
of the question we have been considering, that of lettering the points in the linkage
with as few letters as possible, so that no two directly connected points shall be lettered
with the same letter. Following this up, we may ask what are the linkages which can
be similarly lettered with not less than n letters?

The classification of linkages according to the value of n is one of considerable impor-
tance. I shall not, however, enter here upon this question, as it is one which I propose
to consider as part of an investigation upon which I am engaged as to the general
theory of linkages. It is for this reason also that I have preferred to treat the question
discussed in this paper in the manner I have done, instead of dealing with the analogous
linkage.” . . .Kempe: [23], p.200

In other words, it is conceivable—perhaps even likely—that Kempe was misled by
a pseudo-graphical representation of MF (see Fig.18) into believing that a graphical
argument must follow which entails that a five-sided configuration in H (see Fig.12)
must be ‘reducible’.
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Fig.18: Pseudo-graphical representation
of MF

Fig.19: Geometrical representation of MF
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Reason: In a pseudo-graphical representation—as shown in Fig.18 just before their
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merger—countries A and E obviously could not have been identically coloured in
any 4-colouring of MF inherited by, or from, H (as is evident in the geometrical
representation in Fig.19).

Comment: The intuitive truth of Lemma 3.1 is evidenced by the fact that it is trivial
to paste (or even merely imagine pasting) a small, grey, piece of paper anywhere on a
children’s 4-coloured globe to confirm that:

� there is never a need to re-colour the, inherited, 4-coloured areas of
the globe in order to maintain chromatic differentiation; and,

� if the grey area increases the number of countries by one by partition-
ing an existing country into two, none of the other countries abutting
the grey area after partitioning could have shared the same colour as
the partitioned country before partitioning;

� whence we cannot create a minimal map from a sub-minimal map in
which the created area both requires a fifth colour and abuts two areas
which share a common colour.

This could account for Kempe’s intuitively ‘preferred’ alternative in informal ex-
planations vis à vis his explicit assumption that a formal representation by ‘linkages’
may be viewed ‘as the exact analogue’ of the four-color map problem; a preference
reflected in Robin Wilson’s italicised remark in [16], wherein he too, seemingly un-
critically, assumes such an equivalence:

“Any coloring of the countries of the map gives rise to a lettering of the points in the
linkage in which no two directly connected points are lettered the same.

We now refer to such a linkage as a graph . . . and to the preceding process as forming
the graph (or dual graph) of the map. This reformulation of the four-color problem as
a problem involving the lettering of points reappeared briefly in the 1880s (see Chapter
6) and was later reintroduced in the 1930s and used in all subsequent attempts to solve
the problem.

So as not to complicate matters, we shall usually stick to coloring the countries of
maps (rather than switching to lettering the points of a graph) throughout the rest of
this book.” . . .Wilson: [16], p.67.

It is thus also conceivable that subsequent articulations of 4CT failed to recog-
nise the geometrical argument in Lemma 3.1 only because Kempe’s formal appeal to
Euler’s formula V + F = E + 2 ‘seemingly’ simplified the problem substantially by
entailing that every minimal planar map must contain a configuration of fewer than
six sides.

‘Seemingly’, since it is not obvious—unlike the geometrical argument of Lemma
3.1 which is immediately evident in Fig.15—that:

- a graphical argument must follow from Fig.14,

- which admits the possibility that a five-sided figure may not be de-
finable in a minimal planar map7.

7In which case any proof of 4CT that appeals to the argument that every minimal planar map
contains a five-sided figure which is reducible would be vacuous.
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