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Abstract. Conventional wisdom dictates that proofs of mathematical propositions should be treated as necessary and sufficient for

entailing significant mathematical truths only if the proofs are expressed in a—minimally, deemed consistent—formal mathematical
theory in terms of: • Axioms/Axiom schemas • Rules of Deduction • Definitions • Lemmas • Theorems • Corollaries. Whilst

Andrew Wiles’ proof of FLT, which appeals essentially to geometrical properties of real and complex numbers, can be treated as

meeting this criteria, it nevertheless leaves two questions unanswered: (i) Why is xn + yn = zn solvable only for n < 3? (ii) What
technique might Fermat have used that led him to, even if only briefly, believe he had ‘a truly marvellous demonstration’ of FLT?

Prevailing post-Wiles wisdom—leaving (i) essentially unaddressed—dismisses Fermat’s claim as a conjecture without a plausible

proof of FLT. However, we posit that providing evidence-based answers to both queries is necessary not only for treating FLT as
significant, but also for understanding why FLT can be treated as a true arithmetical proposition. We thus argue that proving a

theorem formally from explicit, and implicit, premises/axioms using currently accepted rules of deduction is a meaningless game,
of little scientific value, in the absence of evidence that has already established—unambiguously—why the premises/axioms and

rules of deduction can be treated, and categorically communicated, as pre-formal truths in Marcus Pantsar’s sense. Consequently,

only evidence-based, pre-formal, truth can entail formal provability; and the formal proof of any significant mathematical theorem
cannot entail its pre-formal truth as evidence-based. It can only identify the explicit/implicit premises that have been used

to evidence the, already established, pre-formal truth of a mathematical proposition. Hence visualising and understanding the

evidence-based, pre-formal, truth of a mathematical proposition is the only raison d’être for subsequently seeking a formal proof of
the proposition within a formal mathematical language (whether first-order or second order set theory, arithmetic, geometry, etc.)

By this yardstick Andrew Wiles’ proof of FLT fails to meet the required, evidence-based, criteria for entailing a true arithmetical

proposition. By appealing, however, to a plausible resolution of some philosophical ambiguities concerning the relation between
evidence-based, pre-formal, truth and formal provability, we offer two scenarios as to why/how Fermat could have laconically

concluded in his recorded noting that FLT is a true arithmetical proposition.

Keywords. symmetrically centered configuration, evidence-based reasoning, Fermat’s Last Theorem, hypercube, pre-formal
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1. Prologue: A ‘Disembodied’ Proof of FLT (A fictional narrative)

1.A. When is x2 + y2 = z2 solvable for x, y, z ∈ N?
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1. Sometime prior to 1637, Pierre de Fermat received for endorsement a jigsaw puzzle J2 (illustrated by
Fig.a), ostensibly consisting of one square tile of side y plus:
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(a) 4 rectangular tiles with dimensions y × (k + a
22 ); and

(b) 4 square tiles of side (k + a
22 ),

where (a) plus (b) had been certified by the Manufacturer as having been cut and re-assembled from a
square tile of side x, such that x2 + y2 = z2 and z = y + 2(k + a

22 ), with x, y, z, k, a ∈ N.

2. However, Fermat found that the 4 square tiles of side (k + a
22 ) were missing, and requested from the

Manufacturer a matching set of square tiles as per the packing list.

3. Customer Service checked with Stores, and confirmed they had a matching square tile R2 of side 2(k+ a
22 )

and area 4(k + a
22 )2, which they would happily have cut into a matching set of square tiles that would

complete the puzzle J2 to Fermat’s satisfaction.

4. Customer Service then directed Stores to issue the square tile R2 to the Factory, with instructions to cut
R2 into ‘smaller’ square tiles.

5. The Factory cut R2 as instructed, and despatched a set S2 of ‘smaller’ square tiles to Fermat.

6. A bemused Fermat observed, however, that the Factory had, either carelessly or in ignorance, cut the
square tile R2 of side 2(k + a

22 ) and volume 4(k + a
22 )2 into a set of ‘smaller’ square tiles that did not

match the set of 4 square tiles of side (k + a
22 ) as specified in the packing list!

7. Beyond bemusement, Fermat also realised that the challenge in endorsing the Manufac-
turer’s claim lay in formally defining what it would mean for the set of rectangular tiles
(a) and (b) to have been cut and re-assembled from a square tile of side x.

8. After considerable consideration, Fermat decided any such definition1 should entail that: Every config-
uration of rectangular tiles resulting from cutting the set of tiles (a) and (b) into smaller rectangular
tiles which, after a re-configuration, claims to well-define a square tile of side x must, when combined
suitably with the square tile of side y, also well-define the square tile of side z.

9. Following a thorough investigation at the Factory, Fermat concluded he could confirm, and endorse2,
that if x, y, z were stipulated as a Pythagorean triple3, then any such configuration (as in §1.A.(8)) of
the 2-D tiles (a) plus (b) supplied by the Manufacturer would indeed, in the above sense, well-define a
square tile of side x such that x2 + y2 = z2, as certified.

1.B. Why x3 + y3 = z3 is not solvable for x, y, z ∈ N
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1Expressed formally in §2.A. as Definitions 1, 2, and 3. It is not obvious whether Andrew Wiles’ (essentially set-
theoretic) 1995 proof of FLT, as outlined by Michael Harris in [18] (see also §6.), implicitly admits—or needs to explicitly
admit—corresponding definitions.

2Without, as was not unusual with Fermat (see [28], p.42), bothering to provide a ‘proof’; but see §3.A.(a).
3Such as (3, 4, 5), (5, 12, 13), (161, 240, 289), etc.; of which there are an infinity of essentially different sets.
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1. Shortly thereafter, Fermat received a further request for endorsement, this time for a LEGO blocks puzzle
J3 (illustrated by Fig.b), ostensibly consisting of one cube of side y plus:

(a) 6 parallelepiped blocks with base y2 and height (k + a
33 ),

(b) 12 parallelepiped blocks with base (k + a
33 )2 and height y, and

(c) 8 cube blocks of side (k + a
33 ),

where (a) plus (b) plus (c) had been certified by the Manufacturer as having been cut and re-assembled
from a LEGO cube block of side x, such that x3 + y3 = z3 and z = y + 2(k + a

33 ), with x, y, z, k, a ∈ N.

2. To his exasperation, Fermat again found the 8 cube blocks of side (k + a
33 ) inexplicably missing, and

irritably requested from the Manufacturer a matching set of cube blocks as per the packing list.

3. An embarrassed Customer Service checked with Stores, and confirmed they did have a matching cube
block R3 of side 2(k + a

33 ) and volume 8(k + a
33 )3, which they were only too willing to have cut into a

matching set of cube blocks that would complete the puzzle J3 to Fermat’s satisfaction.

4. Customer Service then directed Stores to issue the cube block R3 to the Factory, with instructions to
cut R3 into ‘smaller’ cubes.

5. The Factory cut R3 as instructed, and despatched a set S3 of ‘smaller’ cubes to Fermat.

6. However Fermat observed, now more intrigued than irritated, that the Factory had, either carelessly or
in ignorance, cut the cube block R3 of side 2(k + a

33 ) and volume 8(k + a
33 )3 into 9 cube blocks of side

( 2
3 )(k + a

33 ), instead of 8 cube blocks of side (k + a
33 ) as specified in the packing list.

7. Since the set S3 could not complete the puzzle J3, Fermat could not endorse that: Every configuration
of 3-D LEGO blocks resulting from cutting the set of 3-D LEGO blocks (a) plus (b) plus (c) into smaller
3-D LEGO blocks which, after a re-configuration, claims to well-define a LEGO cube block of side x
(as certified4 by the Manufacturer), when combined suitably with the 3-D LEGO cube block y3, also
well-defines a 3-D LEGO cube block of side z.

8. Fermat concluded, moreover, that the above reasoning—which he treated as entailing that x3 + y3 = z3

is not solvable for x, y, z ∈ N—ought to hold by symmetry in the general case; and laconically laid claim
in the margin of his copy of Diophantus’ Arithmetica to ‘a truly marvellous demonstration’ that there
were no integer solutions to xn + yn = zn for n > 2.

1.C. Why xp + yp = zp is not solvable for x, y, z ∈ N and any prime p > 2

1. Almost 400 years later, disembodied and drifting desultorily in a n-dimensional universe beyond human
conception, the shades of Fermat welcomed receipt, for endorsement, of a p-dimensional LEGO puzzle
Jp (with prime p > 3, n ≥ p ∈ N) from a n-D Manufacturer, ostensibly consisting of one p-D hypercube
of side yp, denoted by yp in a p-D Euclidean space Hp, plus:

(a) 2.pC1 p-D hyper-objects, each denoted by (k + a
pp )×Hp

y(p−1) with hyper-dimensions:

(k + a
pp )×Hp

y ×Hp
y ×Hp

. . .×Hp
y︸ ︷︷ ︸

(p−1)

;

(b) 22.pC2 p-D hyper-objects, each denoted by (k + a
pp )2 ×Hp

y(p−2) with hyper-dimensions:

(k + a
pp )×Hp

(k + a
pp )×Hp

y ×Hp
y ×Hp

. . .×Hp
y︸ ︷︷ ︸

(p−2)

;

. . .

(c) 2p p-D hypercubes, each denoted by (k + a
pp )p with sides (k + a

pp );

where (a) plus (b) plus . . . plus (c) had been certified by the n-D Manufacturer as having been cut and
re-assembled from a p-D hypercube of side x, such that xp + yp = zp and z = y + 2(k + a

pp ), with
x, y, z, k, a ∈ N.

4And, as the jurist (see [28], p.37) in Fermat had begun to suspect, misleadingly.



4 2. Introduction4 2. Introduction

2. The, by now fascinated, disembodied Fermat again found, as almost anticipated, that the 2p p-D hyper-
cubes of side (k + a

pp ) were inexplicably missing, and patiently requested from the n-D Manufacturer a
matching set of p-D hypercubes as per the packing list.

3. The n-D Customer Service checked with their n-D Stores, and confirmed they did have a matching p-D
hypercube Rp of side 2(k+ a

pp ) and hyper-volume 2p.(k+ a
pp )p, which they would happily have cut into a

matching set of p-D hypercubes that would complete the puzzle Jp, and satisfy the disembodied Fermat.

4. The n-D Customer Service then directed their n-D Stores to issue the p-D hypercube Rp to their n-D
Factory, with instructions to cut Rp into ‘smaller’ p-D hypercubes.

5. The n-D Factory cut Rp as instructed, and despatched a set Sp of ‘smaller’ p-D hypercubes to the
disembodied Fermat.

6. The disembodied Fermat now observed that the n-D Factory too had, not entirely unexpectedly but yet
inexplicably, cut the p-D hypercube Rp, of side 2(k + a

pp ) and hyper-volume 2p.(k + a
pp )p, into pp p-D

hypercubes of side ( 2
p )(k+ a

pp ), instead of the 2p p-D hypercubes of side (k+ a
pp ) specified in the packing

list.

7. Since 2p 6 | pp, the set Sp could not complete the puzzle Jp; whence the disembodied Fermat could not
endorse that: Every configuration of p-D hyper-objects resulting from ‘cutting’ the set of p-D hyper-
objects (a) plus (b) plus . . . plus (c) into ‘smaller’ p-D hyper-objects which, after a re-configuration,
claims to well-define a p-D hypercube of side x, when ‘combined’ suitably with the p-D hypercube yp,
also well-defines a p-D hypercube of side z (as certified by the n-D Manufacturer).

8. Relieved after centuries of uncertainty, a disembodied Fermat concluded contentedly that, since the p-D
hypercube xp of side x could not be well-defined by the p-D hyper-objects (a) plus (b) plus . . . plus (c),
there were no integer solutions to xp + yp = zp for p > 3; thus justifying the erstwhile mortal Fermat’s
claim (FLT), which entailed that xp + yp = zp was unsolvable for p > 2.

9. Moreover, since the mortal Fermat had shown that x4 + y4 = z4 is unsolvable for x, y, z ∈ N (see [28],
p.98), the preceding now entailed (see [28], p.99) that xn + yn = zn is unsolvable for x, y, z ∈ N if n > 2!

2. Introduction

Fermat’s Last Theorem FLT states that no three positive integers x, y, z satisfy the equation xn + yn = zn

for any integer value of n greater than 2. FLT has been made famous, literally and literarily (see [28], p.73)
beyond it’s innate challenge for mathematicians, by Pierre de Fermat’s posthumously revealed remarks, written
around 1637 in the margin of his copy of Diophantus’ Arithmetica:

“It is impossible for a cube to be written as a sum of two cubes or a fourth power to be written as the
sum of two fourth powers or, in general, for any number which is a power greater than the second to be
written as a sum of two like powers. . . . I have a truly marvellous demonstration of this proposition which
this margin is too narrow to contain”.
. . . Singh: [28], p.66, An English translation of Fermat’s marginal noting in Latin.

For 358 years, FLT remained unproven; until the 108-page proof [31]—appealing inexplicably to geometrical
properties of real and complex numbers in order to prove an essentially arithmetical problem over the natural
numbers—was published in 1995 by Andrew Wiles in the Annals of Mathematics. It proved an equivalence
between geometric properties of elliptic curves and, seemingly disparate, modular forms that could cogently be
argued5 as entailing FLT from their explicit (and implicitly set-theoretical) premises.

What yet remains unanswered, though, is whether, and if so what, Fermat might have ‘realised’ he had
‘briefly deluded himself’ as having solved ‘with an irretrievable idea’ (see also [28], p.128):

5Detailed consideration of Wiles’ proof (see [31], [11]) lies beyond the scope, and competence, of this pre-formal (see
§5.; also [2], §1.D) perspective; which only seeks an ‘elementary’ understanding of why xn + yn = zn is solvable only
for n < 3 if x, y, z, n ∈ N. However we address, in §6., Michael Harris’ outline (see [18], Other publications, #21) of the
logical steps in Wiles’ ‘analytic’ proof, in order to highlight how these ‘mirror’ the logical steps in the ‘elementary’ proof
(in §3.) of this reconstruction of the putative reasoning behind Fermat’s laconic marginal noting.
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“It is not known whether Fermat had actually found a valid proof for all exponents n, but it appears
unlikely. Only one related proof by him has survived, namely for the case n = 4, as described in the
section Proofs for specific exponents. While Fermat posed the cases of n = 4 and of n = 3 as challenges
to his mathematical correspondents, such as Marin Mersenne, Blaise Pascal, and John Wallis, he never
posed the general case. Moreover, in the last thirty years of his life, Fermat never again wrote of his “truly
marvelous proof” of the general case, and never published it. Van der Poorten suggests that while the
absence of a proof is insignificant, the lack of challenges means Fermat realised he did not have a proof;
he quotes Weil as saying Fermat must have briefly deluded himself with an irretrievable idea.

The techniques Fermat might have used in such a “marvelous proof” are unknown.
. . .Wikipedia: https://en.wikipedia.org/wiki/Fermat%27s Last Theorem, accessed 10th October 2020.

Wiles’ proof thus leaves two questions unaddressed, which we shall seek to illuminate by a reconstruction—
from an inter-disciplinary, pre-formal6 (see §5.), perspective—of:

(i) What argument or technique might Fermat have used that led him to, even if only briefly, believe he had
‘a truly marvellous demonstration’ of FLT?

“Wiles’s proof of Fermat’s Last Theorem relies on verifying a certain conjecture born in the 1950s.
The argument exploits a series of mathematical techniques developed in the last decade, some of
which were invented by Wiles himself. The proof is a masterpiece of modern mathematics, which
leads to the inevitable conclusion that Wiles’s proof of the Last Theorem is not the same as Fermat’s.
Fermat wrote that his proof would not fit into the margin of his copy of Diaphantus’s Arithmetica, and
Wiles’s 100 pages of dense mathematics certainly fulfills this criterion, but surely the Frenchman did
not invent modular forms, the Taniyama-Shimura conjecture, Galois groups, and the Kolyvagin-Flach
method centuries before anyone else.

If Fermat did not have Wiles’s proof, then what did he have?”
. . . Singh: [28], p.307.

(ii) Why is xn + yn = zn solvable only for n = 2?7

A curious feature of recorded, post-Fermat, attempts to prove FLT has been the, seemingly universal8,
focus on seeking a formal proof, and understanding, of only (as claimed by Fermat) why xn + yn = zn

is unsolvable for both specific, and general, values of n > 2 when x, y, z, n ∈ N.

Comment: ‘Curious’ since, for instance, if FLT9 is not provable in PA, it would follow by [1],
Theorem 7.1 (p.41)10, that no deterministic algorithm TM could, for any specified n > 2, evidence
that xn + yn = zn is unsolvable11. In which case, even if FLT can be evidenced as numeral-wise
true12 under a well-defined interpretation of PA over N13, seeking to understand why xn + yn = zn

is unsolvable for all n > 2 may be futile. Instead, one could reasonably expect a better insight (see
§3.A.) by seeking why xn + yn = zn is solvable for n = 2 (and trivially for n = 1), but not for n = 3.

Moreover, Michael Harris’ recent claim14 that ‘Wiles’ proof, complicated as it is, has a simple underlying
structure that is easy to convey to a lay audience’, implicitly admits that such an understanding yet
remains as elusive as was reflected in Keith Devlin’s 1994 observation:

6The need for distinguishing between belief-based ‘informal’, and evidence-based ‘pre-formal’, reasoning is addressed
by Markus Pantsar in [26]; see also §5..

7The Diophantine equation is, of course, trivially solvable for n = 1; and solvable for n = 2 by Pythagoras’ Theorem.
8See [10], Chapter XXVI, pp.731-776; [5], pp.303-304; [28], pp.115-117, 126-127, & 251-252; [21], p.657, §3.1 Ger-

main’s plan for proving Fermat’s Last Theorem; [8], Abstract.
9Strictly speaking the PA-formula, say [FLT], expressing FLT in PA.

10A PA formula [F (x)] is PA-provable if, and only if, [F (x)] is algorithmically computable as always true in N.
11Since FLT is not then algorithmically computable as an always true arithmetical proposition by [1], Definition 2,

p.37: A number theoretical relation F (x) is algorithmically computable if, and only if, there is an algorithm ALF that can
provide objective evidence for deciding the truth/falsity of each proposition in the denumerable sequence F (1), F (2), . . ..

12In the sense of being algorithmically verifiable as a true arithmetical proposition for any specified instantiation by
[1], Definition 1, p.37: A number-theoretical relation F (x) is algorithmically verifiable if, and only if, for any given
natural number n, there is an algorithm ALF,n which can provide objective evidence for deciding the truth/falsity of each
proposition in the finite sequence {F (1), F (2), . . . , F (n)}.

13In other words, for any specified n > 2, there would be some deterministic algorithm TMn which could evidence
xn + yn = zn as unsolvable for only that specified value of n; or, equivalently, for all values ≤ n.

14In [18], Other publications, #21; see also §6..

https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem
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“Wiles made his claim at the end of a series of three lectures he gave at a small meeting of number-
theorists at the Isaac Newton Institute at Cambridge, England. The powerful new techniques he
outlined in his proof, together with his own track record as a research mathematician, were enough
to convince the audience that the new proof was probably correct. And, since that audience included
many of the world’s most highly qualified experts in the area, that was good enough for everyone
else. Such was the complexity of Wiles’ argument that, even with a copy of his 200-page proof, most
of us would in any case have to rely on the judgement of these experts.”
. . .Devlin: [12].

A contributory factor obscuring such understanding could be that even definitive expositions of Wiles’
reasoning—such as, for instance, [18]—may not (as, we argue in §6., they should) view the ‘proof’ as
needing, or even being capable of, ‘enhancement’ by seeking to formally justify the necessity of appeal
to arcane geometrical properties, of real and complex numbers15, for concluding the logical truth of
putative Diophantine solutions of, essentially, arithmetical propositions when such putative solutions are
expressed arithmetically as elliptic curves, but interpreted geometrically.

2.A. Could this have been Fermat’s ‘truly marvellous demonstration ’?

Some insight into why xn +yn = zn can be treated pre-formally as true only for n < 3 follows if we note that16:

If xn + yn = zn for x, y, z, n ∈ N, and z = y + 2(k + a
nn ) (see Figs.1-3), then:

(i) xn = 2.nC1(k + a
nn )yn−1 + 22.nC2(k + a

nn )2yn−2 + . . . + 2n(k + a
nn )n

FLT is then equivalent to proving that the necessary and sufficient conditions which, for any specified
n ≥ 1 ∈ N, admit some y, z ≥ 1 ∈ N that yield a representation of xn as in §2.A.(i), hold only for n < 3.

However, it is not obvious how, or even whether, such conditions are formally definable within PA (see
§3.A.(b)). It is not unreasonable to assume, therefore, that Fermat could have intuited some such perspective
pre-formally and, sensing that there may be a need to appeal beyond the ambit of arithmetical truth and proof,
instead visualised geometrically that, for any pair of natural numbers z > y:

(1) We can take a string (see Fig.1), say z, of length z units, cut off a central section y of length y units, and
we will always (courtesy human self-evidence) have a symmetrically centered configuration, denoted
by CSym(z −H1

y), of a 1-dimensional object, denoted by z −H1
y, consisting of two separated pieces of

length k + a units, which can be defined as uniquely isomorphic under change of scale (see Definition 2):

z

y

x

k + a k + a
@I

@I

@I

XX
XXy

@I��
��:
x

y

z

k + az −H1
y

Fig.1

Not to scale

� by cutting into smaller units a string x of length x units, where x is also a natural number,

� and re-assembling the smaller lengths to form the symmetrically centered configuration:

CSym(z −H1
y) =H1

2k + a,

� such that any two such re-assemblies are isomorphic upto uniqueness (by Definition 2);

15A justification the pre-formal proof of FLT in §3. seeks to achieve more transparently by identifying, and generalising,
the necessary and sufficient geometrical properties which entail the specific case of FLT for n = 3, in the pre-formal
argument in §3.A.(b), without appeal to properties of real and complex numbers.

16Compare with the outline of Wiles’ proof in Harris’ lay exposition [18] (see §6., eqns. (A)-(E)), which views any
putative integral solution a, b, c ∈ N of the, essentially arithmetical, equation ap+bp = cp (p an odd prime) geometrically
as defining the elliptic curve y2 = x(x − ap)(x + bp), and identifies the latter’s Galois representation with a unique
modular form that entails a contradiction; whence ap + bp 6= cp.
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(2) We can take a square tile (see Fig.2), say z2, of side z and area z2, cut off a central square tile y2 of side y
and area y2, and we will sometimes (courtesy Pythagoras’ Theorem) have a configuration, denoted by

CSym(z2 −H2
y2), of a 2-dimensional object, say z2 −H2

y2 (shaded area in Fig.2), which can be defined
as uniquely isomorphic under change of scale (see Definition 2):

z y x
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a
22

k + a
22
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Fig.2

Not to scale

� by cutting into smaller square tiles a square tile x2 of side x and area x2, where x is also a natural
number,

� and re-assembling the smaller square tiles to form the symmetrically centered configuration of

z2 −H2
y2:

CSym(z2 −H2
y2) =H2

4(k + a
22 )×H2

y +H2
4(k + a

22 )2,

� such that any two such re-assemblies are isomorphic upto uniqueness (by Definition 2);

Comment: In other words, by Pythagoras’ Theorem we can (see §3.A.(a)) design a jigsaw puzzle
for some y, z ∈ N such that the square tile y2, along with any configuration which is isomorphic to

CSym(z2 −H2
y2) =H2

4(k + a
22 )×H2

y +H2
4(k + a

22 )2, could be assembled as the square tile z2.

(3) We can take a cube (see Fig.3), say z3, of side z and volume z3, cut off a central cube y3 of side y
and volume y3, but we will never (courtesy Fermat’s insight; see §1.B.(7)-(8)) have a configuration,

denoted by CSym(z3 −H3
y3), of a 3-dimensional object, say z3 −H3

y3, which can be defined as uniquely
isomorphic under change of scale (see Definition 2):
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Not to scale

� by cutting into smaller cubes a cube x3 of side x and volume x3, where x is also a natural number,
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� and re-assembling the smaller cubes to form the symmetrically centered configuration of z3 −H3
y3:

CSym(z3 −H3
y3) =H3

6(k + a
33 )×H3

y2 +H3
12(k + a

33 )2 ×H3
y +H3

8(k + a
33 )3,

� such that any two such re-assemblies are isomorphic upto uniqueness (by Definition 2);

Comment: In other words, Fermat’s insight entails that we cannot (see §3.A.(b)) design a LEGO
blocks puzzle for any y, z ∈ N such that the LEGO cube y3, along with any configuration of LEGO

blocks which is isomorphic to CSym(z3 −H3
y3) =H3

6(k + a
33 )×H3

y2 +H3
12(k + a

33 )2 ×H3
y +H3

8(k + a
33 )3, could be assembled into the LEGO cube z3.

We note that all three are particular instances of a n-dimensional mathematical object, say zn −Hn
yn,

which is well-defined (see Definition 3) by the following, symmetrically centered, configuration CSym(zn −Hn
yn)

of zn −Hn
yn if, and only if, zn − yn = xn for some particular set of natural numbers z, y, x, where:

CSym(zn −Hn
yn) =Hn

2.nC1(k + a
nn )×Hn

y(n−1) +Hn
22.nC2(k + a

nn )2 ×Hn
y(n−2) +Hn

. . .+Hn
2n(k + a

nn )n.

Definition 1. (Isomorphic configuration) Any two configurations of a n-D hyper-object xn ∈ Hn, denoted
by (

∑
Hn

)ji=1ai((
∏

Hn
)nk=1uik) and (

∑
Hn

)ji=1bi((
∏

Hn
)nk=1vik), where ((

∏
Hn

)nk=1uik), ((
∏

Hn
)nk=1vik) ∈ Hn, and

ai, bi, uik, vik ∈ N, are defined as isomorphic if, and only if, for any 1 ≤ i ≤ j ∈ N, bi = rnai and (
∏n

k=1 uik) =
rn(

∏n
k=1 vik) for some rational r > 0 ∈ Q17.

Definition 2. (Unique isomorphism) A configuration (
∑

Hn
)ji=1ai(

∏n
k=1 uik) of a n-D hyper-object xn ∈

Hn is defined as uniquely isomorphic if, and only if, for all 1 ≤ i ≤ j ∈ N, either ai|bi or bi|ai in any two

configurations (
∑

Hn
)ji=1ai(

∏n
k=1 uik) and (

∑
Hn

)ji=1bi(
∏n

k=1 vik) of xn that are isomorphic.

Definition 3. (Well-defined object) A n-D hyper-object xn is well-defined by the configuration C(xn) if,
and only if, C(xn) is uniquely isomorphic.

For xn to, then, admit a configuration CSym(zn −Hn
yn) that well-defines zn −Hn

yn, each term in the

configuration CSym(zn −Hn
yn) must be uniquely isomorphic under any change of scale by Definition 2.

However, we argue pre-formally in §3. that, for any natural numbers x, y, z which claim to yield a solution
of zn − yn = xn, such unique isomorphism is only possible for n < 3.

3. Could this be viewed as a pre-formal proof of FLT?

Proposition 3.1. If xp + yp = zp, where 1 < x < y < z ∈ N, and p ∈ N is a prime, then p = 2.

Proof. 1. Consider the three, symmetrically centered, squares (2-D hypercubes) with sides x, y, z in Fig.4
for any specified natural numbers 1 < x < y < z which are co-prime.

z y x

k

a
22

k + a
22

@@I

@I @I @I

@
@@I

x2 y2 z2

z2 −H2
y2

�� ��

�
�

�� ��

�� ��

�� ��

�� ���� ���� ��

�� �� ��

Fig.4

Not to scale

17Q is the structure of the rational numbers.
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Then Fig.4 is a pictorial proof (compare [28], p.29, Fig. 4) that x2 + y2 = z2 if, and only if, we can
physically construct (assemble uniquely) a 2-D LEGO blocks (tiles) puzzle for k > 0 and a ∈ {0, 1, 2, 3},
where k + a

22 > 0, such that:

(a) one square block (tile) of side y,

(b) plus 4 rectangular blocks (tiles) with dimensions y × (k + a
22 ),

(c) and 4 square blocks (tiles) of side (k + a
22 ),

must combine to well-define a square block (tile) denoted by, say, z2, of side z, where the 2-D ‘hyper-

object’ denoted by, say (shaded area), z2 −H2
y2, is well-defined by the symmetrically centered ‘config-

uration’ of 2-D LEGO blocks (tiles):

(i) CSym(z2 −H2
y2) =H2

4(k + a
22 )×H2

y +H2
4(k + a

22 )2.

2. Similarly, Fig.5 is a pictorial proof18 that x3 + y3 = z3 if, and only if, we can physically construct
(assemble uniquely) a 3-D LEGO blocks puzzle for k > 0 and a ∈ {0, 1, 2, . . . , 26}, where k + a

33 > 0,
such that:

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
��

�
�
�
�

�
�
�
�
�

�
�
�
�
�

z y x

k

a
33

k + a
33

@@I

@I @I
x3 z3

Fig.5

Not to scale

(a) one cube block of side y,

(b) plus 6 parallelepiped blocks with base y2 and height (k + a
33 ),

(c) plus 12 parallelepiped blocks with base (k + a
33 )2 and height y,

(d) plus 8 cube blocks of side (k + a
33 ),

must combine to well-define a cube block denoted by z3, of side z, where the 3-D ‘hyper-object’ denoted

by z3 −H3
y3 is well-defined by the symmetrically centered ‘configuration’ of 3-D LEGO blocks:

(i) CSym(z3 −H3
y3) =H3

6(k + a
33 )×H3

y2 +H3
12(k + a

33 )2 ×H3
y +H3

8(k + a
33 )3.

3. In the general case, if xp + yp = zp for p ≥ 2, and z = y + 2(k + a
pp ), a not unreasonable appeal to a

principle of symmetry such as Curie’s (see [4], §2.2, Curie’s principle) suggests that the p-D hyper-object

denoted by zp −Hp
yp must then be well-defined by the symmetrically centered ‘configuration’ of p-D

hyper-objects denoted by:

(i) CSym(zp −Hp
yp) =Hp

2.pC1(k + a
pp )×Hp

y(p−1) +Hp
22.pC2(k + a

pp )2 ×Hp
y(p−2) +Hp

. . .+Hp
2p(k + a

pp )p.

18Compare the visual ‘challenge’ suggested in [28], p.31, Fig.5. Also Gerd Falting’s insightful (albeit analytic) visual-
isation ([28], p.255, Fig.23) of xn + yn = 1 for x, y ∈ C, n ∈ N, when extended to zn − yn = 1 for z, y ∈ C, n ∈ N.
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4. If we, therefore, represent:

— the concept ‘physically construct ’ mathematically by the concept ‘well-define’ (in the usual sense of
deterministically assigning an unambiguous ‘configuration’, which need not, however, be unique);
and

— the concept ‘pictorial ’ by ‘formal ’;

we can uniquely correspond:

— the relation zp − yp = xp in a formal Peano Arithmetic (such as PA); and

— the relation, CSym(zp −Hp
yp) =Hp

CSym(xp)—in any putative, formal, geometry THp
(of the

structure Hp of p-D hyper-objects in a p-dimensional Euclidean space which includes the cases

where p = 2, 3)—between the p-D hyper-objects denoted by zp −Hp
yp and xp, that is well-defined

as uniquely isomorphic (see Definition 2) by the symmetrically centered ‘configuration’ of p-D
hyper-objects:

(i) CSym(zp −Hp
yp) =Hp

2.pC1(k + a
pp )×Hp

y(p−1) +Hp
22.pC2(k + a

pp )2 ×Hp
y(p−2) +Hp

. . . +Hp

2p(k + a
pp )p.

Of course we assume here as intuitively plausible that we could formally define ‘configuration C(xp) of
a p-D hyper-object xp’, ‘symmetrically centered configurations of a p-D hyper-object xp’, ‘isomorphic
configurations of a p-D hyper-object xp’, ‘hyper-volume V(xp) of a p-D hyper-object xp’, ‘−Hp

’, ‘=Hp
’,

‘+Hp
’, ‘×Hp

’, ‘(
∑

Hn
)’, ‘(

∏
Hn

)’, and ‘≡Hp
’ in THp

so as to admit the pictorial interpretations §3.1 and §3.2

when p = 2, 3 respectively, such that §3.4(i) interprets as:

(ii) zp −Hp
yp denotes a p-D hyper-object that is well-defined (see Definition 3) in Hp by the symmet-

rically centered ‘configuration’ of:

(a) the 2.pC1 p-D hyper-objects, each denoted by (k + a
pp )×Hp

y(p−1) with hyper-dimensions:

(k + a
pp )×Hp

y ×Hp
y ×Hp

. . .×Hp
y︸ ︷︷ ︸

(p−1)

;

(b) the 22.pC2 p-D hyper-objects, each denoted by (k + a
pp )2 ×Hp

y(p−2) with hyper-dimensions:

(k + a
pp )×Hp

(k + a
pp )×Hp

y ×Hp
y ×Hp

. . .×Hp
y︸ ︷︷ ︸

(p−2)

;

. . .

(c) the 2p p-D hypercubes, each denoted by (k + a
pp )p with sides (k + a

pp );

and where, in the usual arithmetic of the natural numbers:

(iii) xp = 2.pC1(k + a
pp )y(p−1) + 22.pC2(k + a

pp )2y(p−2) + . . . + 2p(k + a
pp )p.

5. Since z− y = 2(k + a
pp ) ∈ N, each term of §3.4(iii) admits only those values of a ∈ N that yield a natural

number. We thus have that if §3.4(iii) well-defines a p-D hypercube denoted by xp in the theory THp
of p-D hyper-objects, then this would correspond to the symmetrically centered ‘configuration’ of p-D
hyper-objects defined only upto isomorphism (see Definition 1) by:

(i) CSym(xp) =Hp
2.pC1(k + a

pp )y(p−1)(u)p +Hp
22.pC2(k + a

pp )2y(p−2)(u)p +Hp
. . . +Hp

2p(k + a
pp )p(u)p

where (u)p denotes the p-D unit hypercube.

6. However, for 1 ≤ r ≤ p, the p-D hyper-objects defined in §3.4(ii)(a)-§3.4(ii)(c) must further be well-
defined, at any rational scale 0 < s ≤ 1 of scaled down p-D hyper-objects, by the substitution:

(i) 2r.pCr(k + a
pp )r ×Hp

y(p−r) =Hp
1
sp .2

r.pCr((k + a
pp )s)r ×Hp

(ys)(p−r).
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7. In particular, since z − y = 2(k + a
pp ) ∈ N, the p-D hyper-object well-defined by the symmetrically

centered ‘configuration’ of p-D hyper-objects denoted by:

(i) the 2p p-D hypercubes (k + a
pp )p with hyper-dimensions denoted by (k + a

pp )p, and cumulative p-D

hyper-volume 2p(k + a
pp )p, in a p-dimensional Euclidean space;

must be capable of also being well-defined by the symmetrically centered ‘configuration’ of p-D hyper-
objects denoted by:

(ii) the pp scaled down p-D hypercubes ((k + a
pp ) 2

p )p with hyper-dimensions denoted by ((k + a
pp )×Hp

( 2
p ))p, and cumulative p-D hyper-volume pp((k + a

pp )( 2
p ))p = 2p(k + a

pp )p.

since both well-define the p-D hypercube:

(iv) CSym(2p(k + a
pp )p) =Hp

2p(k + a
pp )p =Hp

pp((k + a
pp )( 2

p ))p

8. Moreover, since THp
must admit the pictorial interpretations §3.1 and §3.2 when p = 2, 3 respectively—as

detailed in §3.A.(a) and §3.A.(b)—then the p-D hyper-object denoted by zp −Hp
yp is well-defined under

interpretation in Hp by the symmetrically centered ‘configuration’ of p-D hyper-objects §3.4(i) if, and
only if, each term in §3.4(i) is uniquely isomorphic under any change of scale.

9. Consequently, if zp −Hp
yp denotes a p-D hyper-object that is well-defined under interpretation in Hp by

the symmetrically centered ‘configuration’ of p-D hyper-objects §3.4(i), by Definition 2 we cannot have
that both:

(i) CSym(zp −Hp
yp) =Hp

2.pC1(k + a
pp )×Hp

y(p−1) +Hp
22.pC2(k + a

pp )2 ×Hp
y(p−2) +Hp

. . .+Hp
2p(k + a

pp )p;

and:

(ii) CSym(zp −Hp
yp) =Hp

2.pC1(k + a
pp )×Hp

y(p−1) +Hp
22.pC2(k + a

pp )2 ×Hp
y(p−2) +Hp

. . .+Hp
pp((k + a

pp ) 2
p )p;

satisfy CSym(zp −Hp
yp) =Hp

CSym(xp), and thereby entail zp − yp = xp, if 2p 6 | pp.

10. Hence, if the p-D hyper-object denoted by zp −Hp
yp is well-defined under interpretation in Hp by the

symmetrically centered ‘configuration’ of p-D hyper-objects §3.4(i), then pp = 2p, and p = 2.

11. We thus have the contradiction that, for prime p > 2, if zp − yp = xp:

(i) then zp − yp = 2.pC1(k + a
pp )yp−1 + 22.pC2(k + a

pp )2yp−2 + . . . + 2p(k + a
pp )p

(ii) but19 zp − yp 6= 2.pC1(k + a
pp )yp−1 + 22.pC2(k + a

pp )2yp−2 + . . . + pp((k + a
pp ) 2

p )p

12. However (see §3.A.(a) below), since 22 = 2.2C1 = 22.2C2, the p-D hyper-object sought to be well-defined
in §3.(4(i)) by the symmetrically centered ‘configuration’ of p-D hyper-objects:

(i) C(zp −Hp
yp) =Hp

2.pC1(k + a
pp )×Hp

y(p−1) +Hp
22.pC2(k + a

pp )2 ×Hp
y(p−2) +Hp

. . .+Hp
2p(k + a

pp )p,

where y, z ∈ N, does uniquely well-define a p-D hypercube denoted by xp under change of scale, where
x ∈ N, for p = 2.

The proposition follows. �

Corollary 3.2. If xn + yn = zn, where 1 < x < y < z ∈ N, and 1 < n ∈ N, then n = 2.

19Reason: Even if the hyper-volume VSym(zn −Hn y
n), sought to be well-defined in the particular configuration

§3.(4(i)) by the n-D hyper-object denoted by zn −Hn y
n, could be platonically assumed as being capable of being ‘filled’

with unit n-D hypercubes of total hyper-volume VSym(xn), it could not even platonically be assumed as capable of
being ‘filled’ with n-D hypercubes of side 2

n
, of total hyper-volume VSym(xn), if n is a prime greater than 2; see §8..
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Corollary 3.2 follows since, as noted by Simon Singh in [28] (p.98), by showing that x4+y4 = z4 is unsolvable
for x, y, z ∈ N, Fermat had ‘given mathematicians a head start’ in proving FLT since, additionally:

“To prove Fermat’s Last Theorem for all values of n, one merely has to prove it for the prime values of n.
All other cases are merely multiples of the prime cases and would be proved implicitly.”
. . . Singh: [28], p.99.

The significance of showing we cannot well-define the n-D hyper-object denoted by zn, such that CSym(xn)

= HnCSym(zn −Hn
yn) entails xn = zn − yn, is that it circumvents any implicit appeal (see [28], p.126) to

unique factorisation ‘in number systems that extend beyond the ordinary integers’:

“In the 1840’s, several mathematicians worked on a general proof which, like Miyaoka’s, foundered on an
unwarranted assumption: they had assumed that the unique factorization of integers into primes (such as
60 = 2× 2× 3× 5) would hold for number systems that extend beyond the ordinary integers. In actuality,
unique factorization is rather rare. For instance, 2×3 and 1+

√
−5 and 1−

√
−5 are distinct factorizations

of 6 in a number system that treats
√
− 5 as an integer.”

. . .Cipra: [9].

3.A. Why is xn + yn = zn solvable for n = 2, but not for n = 3

We consider the cases n = 2 and n = 3 to illustrate why xn + yn = zn can be argued pre-formally as solvable
for n = 2, but unsolvable for n > 2; where we note that for any specified natural numbers x, y, z, k, a ∈ N as
defined in §3., Proposition 3.1:

(a) If x2 + y2 = z2 and z − y = 2(k + a
22 ) then, for instance:

(i) the 2.2C1 2-D hyper-objects denoted by (k + a
22 )×H2

y, with hyper-dimensions (k + a
22 )×H2

y, and

cumulative 2-D hyper-volume 2.2C1.(k + a
22 )y,

defined in §3.4(i) are well-defined by (assembled uniquely from):

(ii) the 24 scaled down 2-D hyper-objects denoted by (k + a
22 ) 1

2 ×H2
y( 1

2 ), with hyper-dimensions (k +
a
22 ) 1

2 ×H2
y( 1

2 ), and cumulative 2-D hyper-volume 24.(k + a
22 ) 1

2y( 1
2 ) = 2.2C1.(k + a

22 )y;

whilst:

(iii) the 22.2C2 2-D hypercubes denoted by (k + a
22 )2, with hyper-dimensions (k + a

22 )×H2
(k + a

22 ), and

cumulative 2-D hyper-volume 22.2C2.(k + a
22 )2,

are also well-defined by (assembled uniquely from):

(iv) the 24 scaled down 2-D hypercubes denoted by ((k + a
22 )×H2

( 1
2 ))2 with hyper-dimensions ((k +

a
22 )( 1

2 ))×H2
((k + a

22 )( 1
2 )), and cumulative 2-D hyper-volume 24.((k + a

22 )( 1
2 ))2 = 22.2C2.(k + a

22 )2.

(b) However, if x3 + y3 = z3 and z − y = 2(k + a
33 ), then:

(i) the 23 3-D hypercubes denoted by (k + a
33 )3, with hyper-dimensions (k+ a

33 )×H3
(k+ a

33 )×H3
(k+ a

33 ),

and cumulative 3-D hyper-volume 23.(k + a
33 )3,

are not capable of being well-defined by (assembled uniquely from):

(ii) the 33 scaled down 3-D hypercubes denoted by ((k + a
33 )×H3

( 2
3 ))3, with hyper-dimensions ((k +

a
33 )( 2

3 ))×H3
((k + a

33 )( 2
3 ))×H3

((k + a
33 )( 2

3 )) and cumulative 3-D hyper-volume 33.((k + a
33 )( 2

3 ))3 =

23.(k + a
33 )3;

in a 3-D LEGO blocks puzzle which evidences CSym(z3 −H3
y3) =H3

CSym(x3) as well-defined only upto
isomorphism (see Definition 1) in §3.4(i), since (see §1.B.(7)) we cannot assemble the 3-D hypercube
denoted by z3 in the puzzle by replacing 23 identical 3-D hypercubes (as defined in (i)), with 33 scaled
down, identical, 3-D hypercubes (as defined in (ii)).
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Comment: In other words, we can never design a LEGO blocks puzzle for any y, z ∈ N such that the
LEGO cube y3, along with any configuration of LEGO blocks which is isomorphic (see Definition 1)

to CSym(z3 −H3
y3) =H3

6(k + a
33 )×H3

y2 +H3
12(k + a

33 )2 ×H3
y +H3

8(k + a
33 )3, could be assembled

into the LEGO cube z3.

Reason: If, in the above LEGO blocks puzzle, (
∑

Hn
)ji=1ai((

∏
Hn

)nk=1uik) and (
∑

Hn
)ji=1bi((

∏
Hn

)nk=1vik)

are any two well-defined configurations that are uniquely isomorphic (see Definition 2) of the hyper-
cube xn, each of which, along with the n-D hypercube yn, claim to well-define a hypercube zn, then
it is:

� necessary, but not sufficient, that: (
∑

Hn
)ji=1ai((

∏
Hn

)nk=1uik) and (
∑

Hn
)ji=1bi((

∏
Hn

)nk=1vik)

are isomorphic (by Definition 1);

� necessary and sufficient that: (
∑

Hn
)ji=1ai((

∏
Hn

)nk=1uik) and (
∑

Hn
)ji=1bi((

∏
Hn

)nk=1vik) are iso-

morphic (by Definition 1); and, for all 1 ≤ i ≤ j, either ai|bi or bi|ai (by Definition 2).

We note that, prima facie, it is not obvious whether Andrew Wiles’ 1995 proof of FLT, as outlined
by Michael Harris in [18] (see §6.), implicitly admits—or needs to explicitly admit—corresponding
definitions.

4. Summary of the pre-formal proof of FLT

We have argued above that some insight, into why Fermat might have concluded that xn + yn = zn can be
treated pre-formally as true only for n < 3, follows by reasoning that:

If xn + yn = zn for x, y, z, n ∈ N, and z = y + 2(k + a
nn ) (see Figs.1-3), then:

(1) xn = 2.nC1(k + a
nn )yn−1 + 22.nC2(k + a

nn )2yn−2 + . . . + 2n(k + a
nn )n.

FLT is then equivalent to proving that the necessary and sufficient conditions which, for any specified
n ≥ 1 ∈ N, admit some y, z ≥ 1 ∈ N that yield a representation of xn as in §4.(1), hold only for n < 3.

Since it is not obvious how, or even whether, such conditions are formally definable within the first-
order Peano Arithmetic PA, §3. and §3.A. argue the pre-formal perspective that FLT is a true arithmetical
proposition which appeals necessarily to the essentially geometrical property of unique isomorphism (by §2.A.,
Definitions 1 and 2) of the centrally symmetrical configurations of n-dimensional hyper-cubes xn, yn, zn, in the
structure Hn of n-D hyper-objects in a n-dimensional Euclidean space, such that:

(a) Fermat’s Last Theorem can be interpreted as an assertion concerning the geometrical properties of the
hyper-geometric objects sought to be well-defined (by §2.A., Definition 3) in §3.4(ii); where

(b) If x, y, z, n,∈ N, and zn = xn+yn, then the n-D hyper-object denoted by zn −Hn
yn, with symmetrically

centered configuration CSym(zn −Hn
yn), is well-defined only if n ≤ 2 (see §3.10); and

(c) Since it would then follow that CSym(zn −Hn
yn) and CSym(xn) well-define the same n-D hyper-object,

the n-D hypercube denoted by xn is also well-defined only if n ≤ 2 (see §3.10).

(d) This entails the contradiction that, for prime p > 2, if zp − yp = xp:

(i) then zp − yp = 2.pC1(k + a
pp )yp−1 + 22.pC2(k + a

pp )2yp−2 + . . . + 2p(k + a
pp )p;

(ii) but zp − yp 6= 2.pC1(k + a
pp )yp−1 + 22.pC2(k + a

pp )2yp−2 + . . . + pp((k + a
pp ) 2

p )p.

(e) In other words, for any specified y, z,∈ N, xn cannot be well-defined in N by 2.nC1(k + a
nn )y(n−1) +

22.nC2(k+ a
nn )2y(n−2)+ . . .+2n(k+ a

nn )n such that there is a deterministic algorithm which will evidence
xn + yn = zn for any specified n > 2.

Comment: The reason it is not pre-formally evident that the geometrical property of unique iso-
morphism of the centrally symmetrical configurations of a n-dimensional hyper-cube xn in Hn, where
x, n ∈ N, can be corresponded to any arithmetical property of the integer xn, is that:

If xn = zn − yn, and z = y+ 2(k+ a
nn

) (see Figs.1-3), then xn is well-defined uniquely in N by both:

(i) xn = 2.nC1(k + a
nn

)y(n−1) + 22.nC2(k + a
nn

)2y(n−2) + . . .+ 2n(k + a
nn

)n, and
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(ii) xn = 2.nC1(k + a
nn

)y(n−1) + 22.nC2(k + a
nn

)2y(n−2) + . . .+ pn((k + a
nn

) 2
p
)n,

for all primes p, and not only for p = 2 as in the case of the n-D hyper-object in Hn denoted by xn,
whose centrally symmetrical configurations are sought to be well-defined as uniquely isomorphic in
§3.10 such that xn =Hn (zn −Hn y

n).

It is conceivable that such a pre-formal insight could have been intuited by Fermat, and viewed initially
as a ‘truly marvellous demonstration’; but perhaps20 one whose ‘truth’ in the general case he was unable to
evidence independently of the above pre-formal argument just enough (lacking a seemingly common argument
for sufficient special cases) to let his initial claim lie obscured, but not disowned; thus bequeathing posterity
the question:

“If Fermat did not have Wiles’s proof, then what did he have?”

Mathematicians are divided into two camps. The hardheaded skeptics believe that Fermat’s Last Theorem
was the result of a rare moment of weakness by the seventeenth century genius. They claim that, although
Fermat wrote ‘I have discovered a truly marvellous proof,’ he had in fact found only a flawed proof. The
exact nature of this flawed proof is open to debate, but it is quite possible that it may have been along
the same lines as the work of Cauchy or Lamé.

Other mathematicians, the romantic optimists, believe that Fermat may have had a genuine proof. What-
ever this proof might have been, it would have been based on seventeenth-century techniques, . . . ”
. . . Singh: [28], pp.307-308.

5. Distinguishing between ‘informal’, belief-based, reasoning and
‘pre-formal’, evidence-based, reasoning

We note that what we have argued above in this reconstruction of Fermat’s possible, ‘truly marvellous demon-
stration’ of FLT is that any proof of FLT necessarily appeals to conceptualising (as in §2.A.) Fermat’s Last
Theorem as a formal proposition concerning the geometrical property of unique isomorphism (as defined by
§2.A., Definitions 1 and 2) over the structure, say Hn, of n-D hyper-objects in a n-dimensional Euclidean space.

This, we argue, yields a pre-formal proof of FLT by evidencing, without appeal to properties of real and
complex numbers, that if, for some natural numbers x, y, z, n, we can well-define n-D hyper-cubes xn, yn, zn ∈
Hn (by §2.A., Definition 3) which entail xn + yn = zn, then n = 2.

The need for distinguishing between:

� belief-based ‘informal’ reasoning in the inherited, classical, sense of Plato’s knowledge as justified true
belief (see [27]; also [2], §5.A) which, we argue, is how prevailing wisdom views Fermat’s claim; and

� evidence-based ‘pre-formal’, reasoning in the sense of Gualtiero Piccinini’s knowledge as factually grounded
belief (see [27]; also [2], §5.A), which is how we view Fermat’s claim in §3.;

is addressed by Markus Pantsar in his introduction to ‘Truth, Proof and Gödelian Arguments: A Defence of
Tarskian Truth in Mathematics’:

“In this work I will argue that without any outer reference, mathematics as we know it could simply not
be possible: it could not have developed, and it could not be learnt or practised. Sophisticated formal
theories are the pinnacle of mathematics but, philosophically, they cannot be studied separately from all
the non-formal background behind them.

This way, what might seem like a completely formalist theory of mathematics turns out to be nothing
of the sort. It could not have existed without a wide pre-formal background, which we will see when we
examine mathematical practice in general.3 Formal systems are not of the self-standing type that extreme
formalism seems to claim. My purpose in this work is to show that the formalist program uses the actual
practice of mathematics as a ladder that they later discard. This by itself is of course perfectly acceptable,

20In the absence of an evidence-based distinction between the weaker requirements for evidencing the logical truth
of algorithmically verifiable arithmetical propositions (see [1], Definition 1; also [2], §7.C, Definition 18), vis à vis the
stronger requirements for evidencing the logical truth of algorithmically computable arithmetical propositions (see [1],
Definition 2; also [2], §7.C, Definition 20).
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and it mirrors the way we strive for formal axiomatic systems in mathematics. What is not acceptable is
how they refuse [to acknowledge] using the ladder.

When it comes to the question of truth and proof, this could not be any more relevant. The deflationist
truth of extreme formalism equates mathematical truth with formal proof. However, as we will see, that
strategy requires that we take mathematics to concern only formal systems. Once we look at the wider
picture, we see that outer criteria are needed to avoid arbitrariness. Theory choice must be explained, and
this requires reference outside formal systems of mathematics. Philosophers have tried to explain this by
a wide array of concepts—usefulness, assertability, consistency and conservativeness, to name a few—but
ultimately none of them have been satisfactory. The only plausible way to answer the problem of theory
choice, I will argue, is by appealing to truth.

[3] What I refer to as pre-formal mathematics in this work is more often discussed as informal mathematics in literature. The choice of

terminology here is based on two reasons. First, I want to stress the order in which our mathematical thinking develops. We initially

grasp mathematics through informal concepts and only later acquire the corresponding formal tools. Second, the term “informal

mathematics” seems to have an emerging non-philosophical meaning of mathematics in everyday life, as opposed to an academic

pursuit—which is not at all the distinction that I am after here.”
. . . Pantsar: [26], §1.1 General background.

“(Extreme) Formalism: to say that a mathematical sentence is true involves no reference to any entity outside formal
systems. Hence, a mathematical sentence is true in a formal system S if and only if it is provable in S, and mathematical
truth cannot be discussed in any other context.”
. . . Pantsar: [26], §2.4 Formalism/nominalism.

We interpret Pantsar’s ‘pre-formal mathematics’ here21 as evidencing the philosophy that an evidence-
based22 definition of mathematical truth is a, necessarily transparent, prerequisite for determining, in a formal
proof theory, which axiomatic assumptions of a formal theory underlie the truth of pre-formal, evidence-based,
reasoning.

Comment: By evidence-based we mean the paradigm introduced in [1]; a paradigm whose philosophical
significance is that it pro-actively addresses the challenge23 which arises when an intelligence:

— whether human or mechanistic,

— accepts arithmetical propositions as true under an interpretation,

— either axiomatically or on the basis of subjective self-evidence,

— without any specified methodology for objectively evidencing such acceptance,

— in the sense of, for instance, Chetan Murthy and Martin Löb:

“It is by now folklore . . . that one can view the values of a simple functional language as
specifying evidence for propositions in a constructive logic . . . ”
. . .Murthy: [23], §1 Introduction.

“Intuitively we require that for each event-describing sentence, φoιnι say (i.e. the concrete
object denoted by nι exhibits the property expressed by φoι), there shall be an algorithm
(depending on I, i.e. M∗) to decide the truth or falsity of that sentence.”
. . . Löb: [22], p.165.

The foundational significance of the evidence-based definitions of arithmetical truth, introduced in [1],
lies in the fact that the first-order Peano Arithmetic PA—which, by [1], Theorem 6.7 (p.41), is finitar-
ily consistent—forms the bedrock on which all formal mathematical languages that admit rational and
real numbers are founded (see, for instance, Edmund Landau’s classically concise exposition [19] on the
foundations of analysis).

Such a perspective is also implicit in a recent paper [24] on Proof vs Truth in Mathematics, where Roman
Murawski (as does Harris in [18]; see §6.) emphasises the critical role that “informal proofs” (which we view as
corresponding to Pantsar’s pre-formal proofs) variously play in ‘mathematical research practice’ for not only
the understanding, but also the subsequent verification and justification, of formal proofs:

21See also Anand [2], §1.A, Pre-formal mathematics.
22‘Evidence-based’ as defined implicitly in Anand [1], and explicitly in Anand [2], §1.D.
23For a brief review of such challenges, see Feferman [13] and [14]; also Freire [15].
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“Mathematics was and still is developed in an informal way using intuition and heuristic reasonings—
it is still developed in fact in the spirit of Euclid (or sometimes of Archimedes) in a quasi-axiomatic
way. Moreover, informal reasonings appear not only in the context of discovery but also in the context of
justification. Any correct methods are allowed to justify statements. Which methods are correct is decided
in practice by the community of mathematicians. The ultimate aim of mathematics is “to provide correct
proofs of true theorems” [2, p. 105]. In their research practice mathematicians usually do not distinguish
concepts “true” and “provable” and often replace them by each other. Mathematicians used to say that
a given theorem holds or that it is true and not that it is provable in such and such theory. It should be
added that axioms of theories being developed are not always precisely formulated and admissible methods
are not precisely described.2

Informal proofs used in mathematical research practice play various roles. One can distinguish among
others the following roles (cf. [4], [7]):

(1) verification,

(2) explanation,

(3) systematization,

(4) discovery,

(5) intellectual challenge,

(6) communication,

(7) justification of definitions.

The most important and familiar to mathematicians is the first role. In fact only verified statements can be
accepted. On the other hand a proof should not only provide a verification of a theorem but it should also
explain why does it hold. Therefore mathematicians are often not satisfied by a given proof but are looking
for new proofs which would have more explanatory power. Note that a proof that verifies a theorem does
not have to explain why it holds. It is also worth distinguishing between proofs that convince and proofs
that explain. The former should show that a statement holds or is true and can be accepted, the latter—
why it is so. Of course there are proofs that both convince and explain. The explanatory proof should
give an insight in the matter whereas the convincing one should be concise or general. Another distinction
that can be made is the distinction between explanation and understanding. In the research practice of
mathematicians simplicity is often treated as a characteristic feature of understanding. Therefore, as G.-C.
Rota writes: “[i]t is an article of faith among mathematicians that after a new theorem is discovered, other,
simpler proof of it will be given until a definitive proof is found” [23, p. 192].

It is also worth quoting in this context Aschbacher who wrote:

The first proof of a theorem is usually relatively complicated and unpleasant. But if the
result is sufficiently important, new approaches replace and refine the original proof, usually
by embedding it in a more sophisticated conceptual context, until the theorem eventually
comes to be viewed as an obvious corollary of a larger theoretical construct. Thus proofs are a
means for establishing what is real and what is not, but also a vehicle for arriving at a deeper
understanding of mathematical reality [1, p. 2403].

As indicated above a concept of a “normal” proof used by mathematicians in their research practice (we
called it “informal” proofs) is in fact vague and not precise.
. . .Murawski: [24], §2. Proof in Mathematics: Formal vs Informal, pp.11-12.

Thus the evidence-based perspective underlying this hypothetical reconstruction, of the possible reason-
ing that had motivated Fermat to record his marginal noting postulating FLT laconically, is that pre-formal,
evidence-based, mathematical truth is stronger than mathematical proof since, contrary to the inherited rela-
tionship between mathematical truth and mathematical proof in current mathematical paradigms:

1. The proof of a mathematical proposition in a first-order mathematical language does not entail its truth
in any first-order mathematical language if the proposition has no evidence-based interpretation;

2. The truth of a mathematical proposition that has a pre-formal, evidence-based, interpretation entails its
proof in some, suitably defined, first-order mathematical language.
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6. Should Wiles’ pre-formal proof of FLT be treated putatively as
sufficiently formal?

The significance of, and need for, explicitly explicating further Pantsar’s distinction between formal and pre-
formal proofs, of mathematical propositions, is highlighted by Michael Harris’ recent questioning of the necessity
for a foundational perspective that would justify why Wiles’ proof of FLT may be treated putatively as a logically
true arithmetical proposition:

“After Wiles’ breakthrough, it became common to hear talk of a new “golden age” of mathematics,
especially in number theory, the field in which the Fermat problem belongs. The methods introduced by
Wiles and Taylor are now part of the toolkit of number theorists, who consider the FLT story closed. But
number theorists were not the only ones electrified by this story.

I was reminded of this unexpectedly in 2017 when, in the space of a few days, two logicians, speaking on
two continents, alluded to ways of enhancing the proof of FLT—and reported how surprised some of their
colleagues were that number theorists showed no interest in their ideas.

The logicians spoke the languages of their respective specialties—set theory and theoretical computer
science—in expressing these ideas. The suggestions they made were intrinsically valid and may someday
give rise to new questions no less interesting than Fermat’s. Yet it was immediately clear to me that these
questions are largely irrelevant to number theorists, and any suggestion that it might be otherwise reflects
a deep misunderstanding of the nature of Wiles’ proof and of the goals of number theory as a whole.

The roots of this misunderstanding can be found in the simplicity of FLT’s statement, which is responsible
for much of its appeal: If n is any positive integer greater than 2, then it is impossible to find three positive
numbers a, b and c such that

an + bn = cn

This sharply contrasts with what happens when n equals 2: Everyone who has studied Euclidean geometry
will remember that 32 + 42 = 52, that 52 + 122 = 132, and so on (the list is infinite). Over the last few
centuries, mathematicians repeatedly tried to explain this contrast, failing each time but leaving entire
branches of mathematics in their wake. These branches include large areas of the modern number theory
that Wiles drew on for his successful solution, as well as many of the fundamental ideas in every part of
science touched by mathematics. Yet no one before Wiles could substantiate Fermat’s original claim.”
. . .Harris: [18], Other publications, #21.

Prima facie, Harris seems to hold that ‘the simplicity of FLT’s statement’ and, presumably, the seeming
straightforwardness of his following outline of the argument underlying Wiles’ proof—covering ‘large areas of
the modern number theory that Wiles drew on for his successful solution, as well as many of the fundamental
ideas in every part of science touched by mathematics’—should suffice for establishing FLT informally (also pre-
formally in Pantsar’s sense) as a logically true arithmetical proposition which substantiates Fermat’s original
claim:

“. . . Wiles’ proof, complicated as it is, has a simple underlying structure that is easy to convey to a lay
audience. Suppose that, contrary to Fermat’s claim, there is a triple of positive integers a, b, c such that

(A) ap + bp = cp

for some odd prime number p (it’s enough to consider prime exponents). In 1985, Gerhard Frey pointed
out that a, b and c could be rearranged into

(B) a new equation, called an elliptic curve,

with properties that were universally expected to be impossible. More precisely, it had long been known
how to leverage such an elliptic curve into

(C) a Galois representation,

which is an infinite collection of equations that are related to the elliptic curve, and to each other, by
precise rules.

The links between these three steps were all well-understood in 1985. By that year, most number theorists
were convinced—though proof would have to wait—that every Galois representation could be assigned,
again by a precise rule,
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(D) a modular form,

which is a kind of two-dimensional generalization of the familiar sine and cosine functions from trigonom-
etry.

The final link was provided when Ken Ribet confirmed a suggestion by Jean-Pierre Serre that the properties
of the modular form entailed by the form of Frey’s elliptic curve implied the existence of

(E) another modular form, this one of weight 2 and level 2.

But there are no such forms. Therefore there is no modular form (D), no Galois representation (C), no
equation (B), and no solution (A).

The only thing left to do was to establish the missing link between (C) and (D), which mathematicians
call the modularity conjecture.

This missing link was the object of Wiles’ seven-year quest. It’s hard from our present vantage point to
appreciate the audacity of his venture. Twenty years after Yutaka Taniyama and Goro Shimura, in the
1950s, first intimated the link between (B) and (D), via (C), mathematicians had grown convinced that
this must be right. This was the hope expressed in a widely read paper by André Weil, which fit perfectly
within the wildly influential Langlands program, named after the Canadian mathematician Robert P.
Langlands. The connection was simply too good not to be true. But the modularity conjecture itself
looked completely out of reach. Objects of type (C) and (D) were just too different.”
. . .Harris: [18], Other publications, #21.

Comment: We note that in the reconstruction of Fermat’s unrecorded, putative ‘proof’ of
FLT in §3., instead of Harris’ (B) above, we consider the arithmetical expression detailed in
§2.A.:

(i) xn = 2.nC1(k + a
nn

)yn−1 + 22.nC2(k + a
nn

)2yn−2 + . . .+ 2n(k + a
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)n

and, instead of Harris’ (C) above, we consider the corresponding geometrical configuration of
n-dimensional mathematical objects as defined and detailed in §2.A.:

(ii) CSym(zn −Hn y
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By extrapolating the pictorial argument for n = 1, 2, 3 in §2.A., and considering what is
entailed by Definitions 1, 2, and 3 in the general case, we then argue pre-formally in §3.A.
that (i) defines (ii) as uniquely isomorphic if, and only if, n < 3. We conclude that this entails
FLT.

We further note that:

� whilst Wiles’ analytic proof appeals to properties of real and complex numbers24 for
establishing that: ‘the missing link between (C) and (D)’ entails that ‘there is no modular
form (D), no Galois representation (C), no equation (B), and no solution (A)’ for some
odd prime p;

� the pre-formal proof in §3.A. is elementary, since it does not appeal to properties of real
and complex numbers25 for establishing that: for n > 2, (i) above does not define (ii) as
uniquely isomorphic by Definition 2, thereby entailing that there is no solution (A) for
some odd prime p.

Moreover, prima facie, it is not obvious whether Andrew Wiles’ 1995 proof of FLT, as out-
lined above by Michael Harris, implicitly admits—or needs to explicitly admit—definitions
corresponding to Definitions 1, 2, and 3.

In other words, it is not obvious whether, for prime p > 3, a modular form of ‘weight 2’ and
‘level 2’ exists if, and only if, the p-D object 2p(k + a

pp
)p is well-defined (by §2.A., Definition

3).

Harris acknowledges that establishing FLT as a theorem within a formal system such as the first-order
Zermelo-Fraenkel set theory ZFC, or a first-order Peano Arithmetic such as PA, may be desirable in principle;
since both can lay claim to admitting automated theorem proving that would, then, establish FLT addition-
ally as an algorithmically computable (logical) truth under any well-defined (i.e., evidence-based26) Tarskian

24As do the 1896 proofs of the Prime Number Theorem by Jacques Hadamard and Charles Jean de la Vallée Poussin
(see [30], Theorem 3.7, p.44).

25As is the case with the 1948 proofs of the Prime Number Theorem by Atle Selberg and Paul Erdős (see [16], Theorem
6, p.9).

26As detailed in [1], §3 (see also [2], §2.A) in the case of PA.
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interpretation of the concerned formal theory:

“Mathematical logic was developed with the hope of placing mathematics on firm foundations—as an
axiomatic system, free of contradiction, that could keep reasoning from slipping into incoherence.”
. . .Harris: [18], Other publications, #21.

However he questions both the practical utility and theoretical necessity of such rigour in the absence of a
consensus on what constitutes a mathematical language of categorical communication:

“Although Kurt Gödel’s work revealed this hope to be chimerical, many philosophers of mathematics, as
well as some logicians (a small but vocal minority, according to the set theorist), still regard ZFC and the
requirements listed above as a kind of constitution for mathematics.

Mathematicians never write proofs this way, however. A logical analysis of Wiles’ proof points to many
steps that appear to disregard ZFC, and this is potentially scandalous: When mathematicians make up
rules without checking their constitutionality, how can they know that everyone means the same thing?”
. . .Harris: [18], Other publications, #21.

Instead, he justifies his perspective of the validity of Wiles’ proof of FLT by commenting, from a professional
mathematician’s perspective, that:

“More recently, in the fall of 2016, for example, 10 mathematicians gathered at the Institute for Advanced
Study in Princeton, New Jersey, in a successful effort to prove a connection between elliptic curves and
modular forms in a new setting. They had all followed different routes to understanding the structure of
Wiles’ proof, which appeared when some of them were still small children. If asked to reproduce the proof
as a sequence of logical deductions, they would undoubtedly have come up with 10 different versions. Each
one would resemble the (A) to (E) outline above, but would be much more finely grained.

Nevertheless—and this is what is missing from the standard philosophical account of proof—each of the
10 would readily refer to their own proof as Wiles’ proof. They would refer in a similar way to the proofs
they studied in the expository articles or in the graduate courses they taught or attended. And though
each of the 10 would have left out some details, they would all be right.

What kind of thing is Wiles’ proof, if it comes in so many different flavors? In philosophy of mathematics
it’s customary to treat a published proof as an approximation of an ideal formalized proof, capable in
principle of being verified by a computer applying the rules of the formal system. Nothing outside the formal
system is allowed to contaminate the ideal proof—as if every law had to carry a watermark confirming its
constitutional justification.

But this attitude runs deeply counter to what mathematicians themselves say about their proofs. Mathe-
matics imposes no ideological or philosophical litmus test, but I’m convinced that most of my colleagues
agree with the late Sir Michael Atiyah, who claimed that a proof is “an ultimate check—but it isn’t the
primary thing at all.” Certainly the published proof isn’t the primary thing.

Wiles and the number theorists who refined and extended his ideas . . . were certainly aware that a proof
like the one Wiles published is not meant to be treated as a self-contained artifact. On the contrary, Wiles’
proof is the point of departure for an open-ended dialogue that is too elusive and alive to be limited by
foundational constraints that are alien to the subject matter.”
. . .Harris: [18], Other publications, #21.

From the evidence-based perspective of this pre-formal reconstruction of what Fermat might have intuited
when making his marginal notation on FLT, Harris could be viewed as drawing upon his earlier perceptions of
mathematical ‘truth’, mathematical ‘knowledge’, and mathematical ‘intuition’ for his defense that Wiles’ proof
can be viewed putatively as logically true:

“It will therefore come as a surprise . . . to many philosophers, that truth is also a secondary issue in
mathematics. Of course we want to prove true theorems, but this is hardly an adequate or even useful
description of our objective. Mathematicians, and scientists for that matter, judge our peers not by the
truth of their work but by how interesting it is52. . . .

This point is hardly novel; Lévy-Leblond says something similar in IS (p. 39), and Dieudonné distinguishes
further between “mathématiques vides” and “mathématiques significatives.”54 But it is surprising to see
just how little we seem to be concerned with “truth” these days. Mathematicians rarely discuss founda-
tional issues any more55, so it was significant that an article by Arthur Jaffe and Frank Quinn, reaffirming
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the importance of rigorous proof in the current context of strong interaction between physics and mathe-
matics, provoked no fewer than 16 responses by eminent mathematicians, physicists, and historians. No
two of the positions expressed were identical, which already should suggest caution in laying down the law
on rationality, as Sokal and Bricmont (and Lévy-Leblond, see note *) seem inclined to do. But for our
purposes here, what is remarkable is that almost none of the responses had much to say about “truth.”56

“Truth” was central, predictably, only to the responses of Chaitin and Glimm. Chaitin’s branch of mathe-
matics treats “truth” as a technical term, without metaphysical connotations, and Chaitin’s claim to have
“found mathematical truths that are true for no reason at all” suggests that it may be harder than Fredkin
suspects to know just when to award his prize. Glimm’s brand of truth is quite the opposite: it “lies not
in the eye of the beholder, but in objective reality . . . It is thus reproducible across barriers of distance,
political boundaries and time.”57 Turning to the introduction to the book Quantum Physics, by Glimm
and Jaffe, one finds the unusual assertion that “mathematical analysis must be included in the list of
appropriate methods in the search for truth in theoretical physics.” Generally speaking, the mathematics
department may be the only spot on campus where belief in the reality of the external world is not only
optional but frequently an annoying distraction. But this patently does not apply to mathematical physi-
cists, and I can’t help thinking it’s not a coincidence that both Bricmont and Sokal are amply represented
in the Glimm-Jaffe bibliography.

Philosophers and philosophically-minded sociologists concerned with mathematics seem to think their job
is to explain mathematical truth. Edinburgh sociologist David Bloor and philosopher Philip Kitcher, cast
for science wars purposes as an irresponsible relativist and a moderate realist, respectively,58 have both
attempted to develop empiricist accounts of mathematical knowledge59. (Knowledge and truth are not
synonyms but they are on the same wavelength.60) They have their own (very different) reasons, but in
so doing I’m convinced they have missed the point of mathematics. As is typical in such discussions,
their examples are drawn either from mathematical logic or from mathematics no more recent than the
19th century. If the sociologist, at least, had done some field work, he couldn’t have helped observing
that what mathematicians seem to value most are “ideas” (not necessarily of the Platonic variety); the
most respected mathematicians are those with strong “intuition.” Now intuition, the philosopher assures
us, is philosophically indefensible; Sokal and Bricmont add that “intuition cannot play an explicit role in
the reasoning leading to the verification (or falsification) of these theories, since this process must remain
independent of the subjectivity of individual scientists.”61 Fredkin’s theorem-proving machine may see
things that way, but what are we [t]o make of Thurston’s emphasis on the “continuing desire for human
understanding of a proof, in addition to knowledge that the theorem is true”?62 We know what he means,
as we know what Robert Coleman means, when, having discovered a gap in Manin’s proof of Mordell’s
conjecture over function fields, he nevertheless writes “I believe that all this is testimony to the power and
depth of Manin’s intuition.”63 Is Coleman trying to slip a counterfeit coin between the context of discovery
and the context of justification? Do these offhand comments touch on something genuine and profound
about mathematics? Or is it just my indoctrination that makes me think so?”
. . .Harris: [17], Other publications, #2.

6.A. Resolving the persisting ambiguity in current paradigms on the nature of,
and relation between, mathematical truth and mathematical proof

If so, although Harris’ perspective faithfully reflects current paradigms on the nature of, and relation be-
tween, mathematical truth and mathematical proof, it also thereby admits a persisting ambiguity27 in inherited
paradigms that appears unsympathetic to his argumentation. Harris’ reasoning may, thus, also need to accom-
modate a putative resolution of such ambiguity as articulated by the Complementarity Thesis:

“Thesis 1. (Complementarity Thesis) Mathematical ‘provability’ and mathematical ‘truth’ need to be
interdependent and complementary, ‘evidence-based’, assignments-by-convention towards achieving :

(1) The goal of proof theory, post Peano, Dedekind and Hilbert, which is:

— to uniquely characterise each informally defined mathematical structure S (e.g., the Peano Pos-
tulates and their associated, classical, predicate logic),

– by a corresponding, formal, first-order language L, and a set P of finitary axioms/axiom
schemas and rules of inference (e.g., the first-order Peano Arithmetic PA and its associated
first-order logic FOL),

- which assign unique provability values (provable/unprovable) to each well-formed proposition of
the language L without contradiction;

27See [2], §5.B, A removable ambiguity in Brouwer-Heyting-Kolmogorov realizability.
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(2) The goal of constructive mathematics, post Brouwer and Tarski, which must be:

— to assign unique, evidence-based, truth values (true/false) to each well-formed proposition of the
language L,

– under an, unarguably constructive, well-defined interpretation I over the domain D of the struc-
ture S,

- such that the provable formulas of L are true under the interpretation.”
. . .Anand: [2], §1.

The Complementarity Thesis, thus, seeks to restrict appeal in formal assignments of mathematical truth and
mathematical proof to only evidence-based ‘pre-formal’, reasoning28, rather than admit belief-based ‘informal’
reasoning as in current paradigms29.

Consequently:

� Whilst the focus of a formal theory may be viewed as seeking to ensure that any mathematical language
intended to represent our conceptual metaphors and their inter-relatedness is unambiguous, and free
from contradiction;

� The focus of pre-formal mathematics must be viewed as seeking to ensure that any such representation
does, indeed, uniquely identify and adequately represent such metaphors and their inter-relatedness.

Further, the epistemological perspective of the Complementarity Thesis is that logic, too, can be viewed
as merely a methodological tool that seeks to formalise an intuitive human ability that pertains not to the
language which seeks to express it formally, but to the cognitive sciences in which its study is rooted:

“Definition 1 (Well-defined logic) A finite set λ of rules is a well-defined logic of a formal mathematical
language L if, and only if, λ assigns unique, evidence-based, values:

(a) Of provability/unprovability to the well-formed formulas of L; and

(b) Of truth/falsity to the sentences of the Theory T (U) which is defined semantically by the λ-interpretation
of L over a given mathematical structure U that may, or may not, be well-defined; such that

(c) The provable formulas interpret as true in T (U).

Comment: We note that although the question of whether or not λ categorically defines a unique Theory
T (U) is mathematical, the question of whether, and to what extent, any Theory T (U) succeeds (in the
sense of Carnap’s explicatum and explicandum in [7]) in faithfully representing the structure U—which,
from the evidence-based perspective of this investigation, can be viewed as corresponding to Pantsar’s
pre-formal mathematics in [26] (§4. Formal and pre-formal mathematics)—is a philosophical question for
the cognitive sciences (cf. [20]; see also [2], §25), where:

“By the procedure of explication we mean the transformation of an inexact, prescientific con-
cept, the explicandum, into a new exact concept, the explicatum. Although the explicandum
cannot be given in exact terms, it should be made as clear as possible by informal explanations
and examples. . . . A concept must fulfill the following requirements in order to be an adequate
explicatum for a given explicandum: (1) similarity to the explicandum, (2) exactness, (3)
fruitfulness, (4) simplicity.” . . .Carnap: [7], p.3 & p.5.”
. . .Anand: [2], §1.B.

Thus, from the evidence-based perspective of [1] and [2], both pre-formal mathematics, and formal math-
ematics, ought to be viewed more appropriately as (see [2], §1.A):

— a necessary set of complementary, symbolic, languages (see [2], §13),

— intended to serve Philosophy and the Natural Sciences (see [2], §13.C),

— by seeking to provide the necessary tools for adequately expressing our sensory observations—and their
associated perceptions (and abstractions)—of a ‘common’ external world;

— corresponding to what some cognitive scientists, such as Lakoff and Núñez in [20] (see also [2], §25), term
as primary and secondary ‘conceptual metaphors’,

28In the sense of Gualtiero Piccinini’s knowledge as factually grounded belief (see [27]; also [2], §5.A).
29In the inherited, classical, sense of Plato’s knowledge as justified true belief (see [27]; also [2], §5.A).
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— in a symbolic language of unambiguous expression and, ideally, categorical communication.

Moreover, we may need to recognise explicitly that evidence-based reasoning (see [2], §13.E):

(a) restricts the ability of highly expressive mathematical languages, such as the first-order Zermelo-Fraenkel
Set Theory ZF, to categorically communicate abstract concepts corresponding to Lakoff and Núñez’s
secondary conceptual metaphors in [20] (such as those involving Cantor’s first limit ordinal ω30);

and:

(b) restricts the ability of effectively communicating mathematical languages, such as the first-order Peano
Arithmetic PA, to well-define infinite concepts (such as ω).

6.B. The significance of evidence-based reasoning for Wiles’ proof

Consequently, from the perspective of any discipline which claims (whether explicitly or implicitly) to appeal
only to evidence-based reasoning, any claim that Wiles’ proof can be treated as a categorically communicable
logical truth may necessarily require its validation as a finite sequence of formal propositions, each of which
is necessarily algorithmically verifiable (in the sense of [1], Definition 1), for any specified instantiation, as a
logically true proposition under a well-defined Tarskian interpretation of some recursively well-defined set of
axioms/axiom schemata and rules of deduction.

Such validation would also validate the status of Wiles’ proof as pre-formally justified, evidence-based,
reasoning that is a legitimate contender, even if not a claimant, to being treated as a logically true, rather than
a questionably true, arithmetical proposition:

“. . . How do we know Wiles’ proof of Fermat’s Last Theorem, completed by Taylor and Wiles, is correct?
Although this particular theorem, better publicized than any in history, has been treated with unusual
care by the mathematical community, whose “verdict” is developed at length in a graduate textbook of
exceptionally high quality, I’d guess that no more than 5% of mathematicians have made a real effort
to work through the proof64. Some scientists (and some mathematicians as well) apparently view Wiles
and his proof as an “anachronism.”65 The general public is not entirely convinced. Why are we? Can
a sociologist study this question without knowing the proof? Can mathematicians pose the question in
terms sociologists would find meaningful? Knowing the truth of the matter is obviously of no help, and
relativism is not the issue: it’s not clear what kind of “reality” would be relevant to settling the question,
but the fact that no one has found a counterexample is certainly not a good candidate. . . .

Few of us would choose to treat our belief that Wiles proved Fermat’s last theorem as “a mythical and
false ideology,” but is it possible that our attempts to justify this belief always involve an element of self-
delusion? And how are we to convince a skeptical outsider that this is not the case? The only reasonable
answers that come to mind are empirical in nature, and specifically historical and sociological, rather than
philosophical.111 We would have to pay attention to the question of how knowledge is transmitted among
mathematicians. Fermat’s last theorem provides a particularly good test case. Wiles’ proof generated an
unprecedented112 number of reports, survey articles, colloquium talks, working seminars, graduate courses,
and mini-conferences, as well as books, newspaper and magazine articles, television reports, and other
forms of communication with non-mathematicians. Not to mention the spate of announcements, designed
to impress public policy-makers and the public at large, citing Wiles’ work as proof that mathematics
“has never been healthier.**” Has anyone been keeping track of all these incitements to belief formation,
checking them for contamination by myth and false ideology?

Studying questions like these provides a second answer to the thought experiment proposed above, com-
plementary to the answer we would naturally provide based on our experience as mathematicians, and
potentially just as interesting. Leaving aside romantic rhetoric, these two answers are not in competition,
much less on opposite sides of a battlefield. Arriving at the second answer would be the work of sociolo-
gists. For this, full cooperation with mathematicians would be necessary. The examples just cited provide
hope that such cooperation may be possible.”
. . .Harris: [17], Other publications, #2.

Moreover, the need for such rigour—in any proof of number-theoretic propositions that, explicitly or im-
plicitly, appeals essentially to set-theoretical reasoning—is that (see [2], §1.A) it would also address an earlier
issue raised by Harris in [17], concerning the epistomological status of set-theoretically defined real numbers:

30See [20], Preface, p.xii-xiii : “How can human beings understand the idea of actual infinity?”
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“More interestingly, one can ask what kind of object π was before the formal definition of real numbers. To
assume the real numbers were there all along, waiting to be defined, is to adhere to a form of Platonism.34

Dedekind wouldn’t have agreed.35 In a debate marked by the accusation that postmodern writers deny
the reality of the external world, it is a peculiar move, to say the least, to make mathematical Platonism a
litmus test for rationality.36 Not that it makes any more sense simply to declare Platonism out of bounds,
like Lévy-Leblond, who calls Stephen Weinberg’s gloss on Sokal’s comment “une absurdité, tant il est
clair que la signification d’un concept quelconque est évidemment affectée par sa mise en œuvre dans un
contexte nouveau!”37 Now I find it hard to defend Platonism with a straight face, and I prefer to regard
formula π2 = 6ζ(2) as a creation rather than a discovery. But Platonism does correspond to the familiar
experience that there is something about mathematics, and not just about other mathematicians, that
precisely doesn’t let us get away with saying “évidemment”!38 This experience is clearly captured by Alain
Connes, a selfavowed Platonist, in his dialogue with neurobiologist J.-P. Changeux, who (to oversimplify)
expects to find mathematical structures in the brain.39 I don’t think Connes (or Roger Penrose, another
prominent Platonist) is confused about reality, and I have a hard time imagining a neuronal representation
that does justice to the concept of π. But the ontological issues are far from settled, and while there is no
reason to assume they will ever be settled, the important point is that this situation is not an obstacle to
mathematics, much less to rationality.40 The real absurdity is to claim otherwise.”
. . .Harris: [17], Other publications, #2.

Thus, from an evidence-based perspective, set-theoretically defined real numbers exist merely as axiomati-
cally postulated mathematical objects31 only within32 any first-order set theory such as ZF; whilst only those of
such numbers that can further be defined arithmetically exist as axiomatically postulated mathematical objects
(symbols) also within any first-order arithmetic such as PA.

Moreover, only the latter have the evidence-based properties that can be communicated under a finitary
interpretation of PA (as detailed in [1], §6, p.40), as algorithmically verifiable (i.e., logical) truths which can,
then, be treated as factually grounded knowledge (in the sense of [2], §5.A) when describing properties of the
actual universe we inhabit.

In other words:

— although ZF admits unique, set-theoretical, definitions of—and allows us to unambiguously talk about the
putative existence of—‘ideal ’ real numbers as the putative limits of Cauchy sequences of rational numbers
in a mathematically well-defined, albeit Platonically conceived, putative set-theoretical universe, ZF has
no well-defined Tarskian interpretation that would necessarily evidence a ZF theorem over the finite
ordinals as an algorithmically computable truth over the natural numbers in the interpretation33;

31More specifically, as symbols corresponding to what George Lakoff and Rafael Núñez describe as secondary con-
ceptual metaphors in [20] (see also [2], §13.F, Three categories of information, and [2], §25.F, The Veridicality of
Mathematical Propositions).

32As stressed by Thoralf Skolem in [29] (see also [2], §7.K., Skolem’s paradox: intended and unintended interpretations
of PA), where he draws attention to a:

Skolem’s (apparent) paradox: “. . . peculiar and apparently paradoxical state of affairs. By virtue of
the axioms we can prove the existence of higher cardinalities, of higher number classes, and so forth.
How can it be, then, that the entire domain B can already be enumerated by means of the finite positive
integers? The explanation is not difficult to find. In the axiomatization, “set” does not mean an arbitrarily
defined collection; the sets are nothing but objects that are connected with one another through certain
relations expressed by the axioms. Hence there is no contradiction at all if a set M of the domain B is
non-denumerable in the sense of the axiomatization; for this means merely that within B there occurs no
one-to-one mapping Φ of M onto Zo (Zermelo’s number sequence). Nevertheless there exists the possibility
of numbering all objects in B, and therefore also the elements of M , by means of the positive integers; of
course such an enumeration too is a collection of certain pairs, but this collection is not a “set” (that is,
it does not occur in the domain B).”
. . . Skolem: [29], p.295.

33A striking example is that of Goodstein’s Theorem, where it can be argued that, although the finite ordinals can
be meta-mathematically put into a 1-1 correspondence with the natural numbers:

“Goodstein’s sequence Go(mo) over the finite ordinals in any putative model M of ACA0 terminates with
respect to the ordinal inequality ‘>o’ even if Goodstein’s sequence G(m) over the natural numbers does not
terminate with respect to the natural number inequality ‘>’ in M.”
. . .Anand: [2], §18, Theorem 18.1.
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— only PA, by virtue of the Provability Theorem for PA (see [1], Theorem 7.1, p.41), admits unique,
algorithmically verifiable, number-theoretic definitions of—and allows us to unambiguously talk about
the categorical existence of (see [2], §7.1)—specifiable real numbers (see [2], Theorem 7.5), and their
properties which, under a finitary interpretation of PA (as detailed in [1], §6, p.40), can be communicated
as algorithmically verifiable (i.e., logical) truths which can be treated as factually grounded knowledge
(in the sense of [2], §5.A) when describing properties of the actual universe we inhabit.

The fragility of uncritically accepting ‘sociological validation of proofs’—particularly those that appeal nec-
essarily to an, essentially unverifiable, set-theoretical axiom of infinity—in lieu of logical, evidence-based, validity
is highlighted by Henk Barendregt and Freek Wiedijk in [6] ‘The Challenge of Computer Mathematics’34:

“During the course of history of mathematics proofs increased in complexity. In particular in the 19-th
century some proofs could no longer be followed easily by just any other capable mathematician: one had
to be a specialist. This started what has been called the sociological validation of proofs. In disciplines
other than mathematics the notion of peer review is quite common. Mathematics for the Greeks had
the ‘democratic virtue’ that anyone (even a slave) could follow a proof. This somewhat changed after
the complex proofs appeared in the 19-th century that could only be checked by specialists. Nevertheless
mathematics kept developing and having enough stamina one could decide to become a specialist in
some area. Moreover, one did believe in the review by peers, although occasionally a mistake remained
undiscovered for many years. This was the case with the erroneous proof of the Four Colour Conjecture
by Kempe [1879].

In the 20-th century this development went to an extreme. There is the complex proof of Fermat’s Last
Theorem by Wiles. At first the proof contained an error, discovered by Wiles himself, and later his new
proof was checked by a team of twelve specialist referees†. Most mathematicians have not followed in
detail the proof of Wiles, but feel confident because of the sociological verification.”
. . .Barendregt and Wiedijk: [6], 1. The Nature of Mathematical Proof.

Such ‘fragility’ highlights the significance of seeking an evidence-based, pre-formal, basis for not only a
deeper understanding of formal reasoning as in Wiles’ proof of FLT, but also for identifying as mathematically
significant only those formal proofs that admit conceptualisation as pre-formal proofs.

Thus, in his recent ‘Varieties of Mathematical Understanding’, Jeremy Avigad acknowledges that if ‘the goal
of mathematics is to obtain a conceptual understanding of mathematical phenomena, and a deep understanding
at that’, then—particularly with the attraction and ‘use of computational proof assistants to develop libraries
of formally checked mathematics’—Wiles’ proof of FLT is evidence that a ‘really deep proof often requires more
background knowledge than any one person can master’ and, ipso facto, visualise and/or understand :

“It is common to say that the goal of mathematics is to obtain a conceptual understanding of mathematical
phenomena, and a deep understanding at that. The Laglands program, which seeks to develop far-reaching
connections between number theory and geometry, is often held as a paradigm of conceptual depth. What
makes it so? To develop some intuitions, I will draw on informal writings by Kevin Buzzard, a number
theorist at Imperial College in London. In 2017, Buzzzard launched his Xena blog,1 in part to document
his newfound interest in the use of computational proof assistants to develop libraries of formally checked
mathematics.

. . .

One observation is that deep mathematics is usually pretty complicated. Generally speaking, the deeper
the result, the harder it is for the general public or even mathematicians not directly involved with the
research to appreciate it.

So what are the mathematicians I know interested in? Well, let’s take the research staff in
my department at Imperial College. They are working on results about objects which in some
cases take hundreds of axioms to define, or are even more complicated: sometimes even the
definitions of the objects we study can only be formalised once one has proved hard theorems.
For example the definition of a Shimura variety over a number field can only be made once one
has proved most of the theorems in Deligne’s paper on canonical models, which in turn rely
on the theory of CM abelian varieties, which in turn rely on the theorems of global class field
theory. That’s the kind of definitions which mathematicians in my department get excited
about [. . . ]. I once went to an entire 24 lecture course by John Coates which assumed local

34As also by Melvyn B. Nathanson in [25], ‘Desperately Seeking Mathematical Truth’.
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class field theory and deduced the theorems of global class field theory. I have read enough of
the book by Shimura and Taniyama on CM abelian varieties to know what’s going on there. I
have been to study group on Deligne’s paper on canonical models. So after perhaps 100 hours
study absorbing the prerequisites, I was ready for the definition of a Shimura variety over a
number field. And then there is still the small matter of the definition of étale cohomology.
(Xena, July 6, 2018)

Perhaps more important than the complexity of statements and definitions is the complexity of the proofs.
A really deep proof often requires more background knowledge than any one person can master.

To completely understand a proof of FLT (let’s say, for now, the proof explained in the 1995
Darmon-Diamond-Taylor paper) you will need to be a master of the techniques used by Lang-
lands in his proof of cyclic base change (and I know people who are), and a master of Mazur’s
work on the Eisenstein ideal (and I know people who are). But what about the far less sexy
technical stuff? To move from the complex analytic theory of modular forms to the algebraic
theory of moduli spaces of elliptic curves (and I know people who know this—but I went
through some of this stuff once and it’s far more delicate than I had imagined, and there
are parts of it where the only useful reference seems to be Brian Conrad’s brain). This last
example is perhaps a good example of a tedious technical issue which it’s very easy to forget
about, because the results are intuitive and the proofs can be technical. There are many other
subtleties which one would have to fully understand because they’re on the syllabus. Is there
really one human being who would feel confident answering questions on all of this material?
I am really not sure at all. (Xena, September 27, 2019)

It would be a mistake, however, to equate depth with complexity, and other postings on Xena make it
clear that complexity is only a means to an end. Complex definitions and proofs are worth the effort when
they provide answers to questions that are judged by the community to be interesting and important.”
. . .Avigad: [3], §3, Conceptual Understanding and Depth.

Moreover, whilst acknowledging that the current emphasis on trying to grasp the totality of formal
reasoning—such as all the ‘subtleties’ involved in Wiles’ proof of FLT—could tend to ‘equate depth with
complexity’, Avigad makes ‘it clear that complexity is only a means to an end’: a conceptual understanding of
what is termed as ‘deep’ mathematics.

Thus, from the evidence-based perspective of this investigation, the ‘deeper’ significance of §3., Proposition
3.1, for the Complementarity Thesis ([2], §1, Thesis 1), is that it illustrates the symbiotic inter-dependence of
formal provability and evidence-based, pre-formal, truth, since it is the lack of well-definedness of the evidence-
based, arithmetical property §3.(4(i)), in the hyper-geometric representation §3.(4), of the formal arithmetical
relation xn + yn = zn, which yields the pre-formal, transparent, proof of Fermat’s Last Theorem in §3..

In other words, one could conjecture that the challenges in, and illusory barriers to, formulating a formal
proof of Fermat’s Last Theorem, and in reconstructing Fermat’s putative ‘Lost Proof’, has been rooted in a
philosophy that views interpreted mathematical truth as an adjunct entailment of mathematical provability,
rather than as a necessarily transparent, and equal, evidence-based prerequisite for determining in a formal
proof theory which axiomatic assumptions underlie the truth of pre-formal, evidence-based, reasoning.

7. Conclusions

In this investigation, we have argued for the perspective that:

1. Conventional wisdom dictates that proofs of mathematical propositions should be treated as neces-
sary and sufficient for entailing significant mathematical truths only if the proofs are expressed in
a—minimally, deemed consistent—formal mathematical theory in terms of:

� Axioms/Axiom schemas

� Rules of Deduction

� Definitions

� Lemmas

� Theorems
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� Corollaries

2. Whilst Andrew Wiles’ proof of FLT, which appeals essentially to geometrical properties of real and
complex numbers, can be treated as meeting this criteria, it nevertheless leaves two questions unanswered:

(i) Why is xn + yn = zn solvable only for n < 3?

(ii) What technique might Fermat have used that led him to, even if only briefly, believe he had ‘a
truly marvellous demonstration’ of FLT?

3. Prevailing post-Wiles wisdom—leaving (i) essentially unaddressed—dismisses Fermat’s claim as a con-
jecture without a plausible proof of FLT.

4. However, we posit that providing evidence-based answers to both queries is necessary not only for treating
FLT as significant, but also for understanding why FLT can be treated as a true arithmetical proposition.

5. We thus argue that:

- proving a theorem formally from explicit, and implicit, premises/axioms using currently accepted
rules of deduction is a meaningless game;

- of little scientific value in the absence of evidence that has already established—unambiguously—
why the premises/axioms and rules of deduction can be treated, and categorically communicated,
as pre-formal truths in Marcus Pantsar’s sense in [26];

- which is not the case with either the first-order set Theory ZF, or the second-order Peano Arithmetic
ACA0, both of which admit real and complex analysis but, like all formal theories that admit
infinite objects such as Cantor’s transfinite ordinal ω, are only deemed consistent since neither has
any evidence-based interpretation.

6. Consequently, whilst evidence-based, pre-formal, truth (such as, for instance, formally defined in [1], §3,
and [2], §2.A, in the case of the first-order Peano Arithmetic PA) can entail formal provability, the formal
proof of a mathematical theorem cannot be assumed to always entail its pre-formal truth as a significant,
evidence-based, truth.

7. In other words, a proof sequence within a formal mathematical language:

- can only identify the explicit/implicit premises that have been used to evidence the, already es-
tablished, pre-formal truth of the mathematical proposition sought to be unambiguously expressed,
proven and categorically communicated by means of the language;

- provided the language has an evidence-based interpretation;

- such as, for instance, the finitary, algorithmically computable, interpretation IPA(N,SC) of PA de-
tailed in [1], §6, Theorem 6.8 (PA is consistent).

8. Hence visualising and understanding the evidence-based, pre-formal, truth of a mathematical proposition
is the only raison d’être for subsequently seeking a formal proof of the proposition within a formal
mathematical language (whether first-order or second order set theory, arithmetic, geometry, etc.).

9. By this yardstick Andrew Wiles’ proof of FLT fails to meet the required, evidence-based, criteria for
entailing a true arithmetical proposition.

Accordingly, we have offered two scenarios as to why/how Fermat could have laconically concluded—in the
recorded marginal noting in his copy of Diophantus’ Arithmetica—that FLT is a true arithmetical proposition;
even though, prima facie, he either did not (or could not to his own satisfaction) succeed in cogently evidencing,
and recording, why FLT can be treated as an evidence-based, pre-formal, arithmetical truth (presumably without
appeal to properties of real and complex numbers).

It is primarily such a putative, unrecorded, evidence-based reasoning underlying Fermat’s laconic assertion
which this investigation has sought to reconstruct (in §1. to §4.); and to justify (in §5. to §6.B.) by appeal to
the resolution of some outstanding philosophical ambiguities concerning the relation between evidence-based,
pre-formal, truth and formal provability, offered by the Complementarity Thesis (see [2], §1, Thesis 1).
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8. Epilogue

We briefly remark, finally, that the pre-formal argument for FLT in §3. raises some additional philosophical
issues—suggesting need for a, possibly unsuspected, distinction between properties of continuous measures (only
definable in a first-order set theory such as ZF) and discrete measures (definable in a first-order arithmetic
such as PA)—that could conceivably have significance for the physical sciences:

(i) In any physical interpretation of FLT, say as a water tank of volume z3L (in litres), with mutually
independent hollow compartments in lieu of the 3-D LEGO blocks defined in §3., Fig.5, FLT entails that
we cannot fill the volume z3L completely—and without overspill—with water volumes x3L and y3L, if
x, y, z ∈ N.

(ii) Moreover, we can also consider such an interpretation theoretically for any platonic model for n > 3.

(iii) Now, even if the hyper-volume VSym(zn −Hn
yn), sought to be well-defined in the particular configuration

§3.(4(i)) by the n-D hyper-object denoted by zn −Hn
yn, could be platonically assumed as being capable

of being ‘filled’ with unit n-D hypercubes of total hyper-volume VSym(xn), it could not even platonically
be assumed as capable of being ‘filled’ with n-D hypercubes of side 2

n , of total hyper-volume VSym(xn),
if n is a prime greater than 2 (an eventuality that would not arise with a continuous measure).

Comment (see also §3.(11)): FLT follows since xp + yp = zp does not entail ( p
2
)p( 2x

p
)p + yp = zp for

prime p > 2!

(iv) Moreover, even if the putative hyper-volume VSym(zn −Hn
yn) ‘between’ the n-D hypercubes denoted

by yn and zn in such a platonic configuration could always be assumed as capable of being platonically
‘filled’ with a continuous measure (such as that of, say, flowing water) so as to satisfy xn + yn = zn,
even platonically this cannot always be done with discrete measures (say water frozen as blocks of ice)
if n > 2.

(v) Any proof of FLT within a putative, formal, theory such as THp could, then, be interpreted as a formal
expression of this, pre-formal, distinction between properties of continuous and discrete measures that
must be reflected in the theory.

Comment: A distinction that could conceivably have significance for the physical sciences, which
appeal to interpretations of well-defined, formal, mathematical systems (such as string theories in
particle physics) that admit n-dimensional objects in quantized mathematical structures.

(vi) In the absence of such an informal interpretation, it is not obvious why, and in what sense, Andrew
Wiles proof of FLT can be treated as entailing a true arithmetical proposition under a well-defined
interpretation of the first-order Peano Arithmetic PA.

(vii) Reason: As argued in [2], §19.C. (§19.C.a., Case 1, to 19.D.c., Case 5) any well-defined, set-theoretical,
interpretation of a formal number-theoretic argument—such as, for instance, that of Wiles which must,
presumably, implicitly appeal to the limits of Cauchy sequences as well-defined, set-theoretical, real
numbers—need not be true pre-formally in the arithmetic of the natural numbers (as highlighted in
the—albeit distinctly different—case of Goodstein’s Theorem in [2], §18., Theorem 18.1).
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