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Abstract. All accepted proofs of the Four Colour Theorem (4CT) are computer-dependent ; and appeal to the existence, and
manual identification, of an ‘unavoidable’ set containing a sufficient number of explicitly defined configurations—each evidenced
only by a computer as ‘reducible’—such that at least one of the configurations must occur in any chromatically distinguished,
minimal, planar map. For instance, Appel and Haken ‘identified’ 1,482 such configurations in their 1977, computer-dependent,
proof of 4CT; whilst Neil Robertson et al ‘identified’ 633 configurations as sufficient in their 1997, also computer-dependent, proof
of 4CT. However, treating any specific number of ‘reducible’ configurations in an ‘unavoidable’ set as sufficient entails a mini-
mum number as necessary and sufficient. We now show that the minimum number of such configurations can only be the one
corresponding to the ‘unavoidable’ set of a ‘reducible’, 4-sided configuration identified by Alfred Kempe in his, seemingly fatally
flawed, 1879 ‘proof’ of 4CT. Although Kempe appealed to putative properties of ‘Kempe’ chains in a graphical representation to
fallaciously argue that a 5-sided configuration was also in the ‘unavoidable’ set, and ‘reducible’, we shall show why the flaw in his
‘proof’ is not fatal when the argument is expressed geometrically; and that, essentially, Kempe correctly argued that any planar
map which admits a chromatic differentiation with a five-sided area C that shares non-zero boundaries with four, all differently
coloured, neighbours can be 4-coloured.

Keywords. computer-assisted proof, four colour theorem, Kempe chains, minimal planar map, geometrical proof, unavoidable
but reducible configurations.

2010 Mathematics Subject Classification. 05C15, 03B10

DECLARATIONS • Funding: Not applicable • Conflicts of interest/Competing interests: Not applicable • Availability of data and
material: Not applicable • Code availability: Not applicable • Authors’ contributions: Not applicable

1. Introduction

Although the Four Colour Theorem 4CT is considered passé, it would probably be a fair assessment
that the mathematical significance of any new proof of the Four Colour Theorem 4CT continues to
be perceived1 as lying not in any ensuing theoretical or practical utility of the Theorem per se, but
in whether the proof can address the lack of mathematical insight—in currently accepted, computer-
dependent, proofs of the Theorem—as to why four colours suffice to chromatically differentiate any
set of contiguous, simply connected and bounded, spaces in a planar map.

All accepted proofs of 4CT appeal to the existence, and manual ‘identification’, of a sufficient
number of explicitly defined configurations, each evidenced only by a computer as ‘reducible’ (see
[14], Ch.8); and claimed (see §3., Appendix A) to be an ‘unavoidable’ set of configurations, at least
one of which must occur in any chromatically distinguished planar map which claims to essentially
require five colours.

Thus, Kenneth Appel and Wolfgang Haken claimed to have identified an unavoidable set of 1,482
reducible configurations in their 1977, computer-dependent, proof [1] of 4CT; whilst Neil Robertson
et al claimed to have identified an unavoidable set of 633 reducible configurations as sufficient in their
1997, also computer-dependent, proof [7] of 4CT.
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Since claiming any specific number of ‘reducible’ configurations in an ‘unavoidable’ set as sufficient
entails a minimum number as necessary and sufficient, we shall show that:

The minimum number of ‘reducible’ configurations in an ‘unavoidable’ set can only be
the one corresponding to the ‘reducible’ 4-sided configuration (the ‘quadrilateral’ P4 in
[1]; see §3., Appendix A), identified by Alfred Kempe as Plate II, Fig.9 in his, seemingly
fatally flawed, 1879 ‘proof’ [20] of 4CT.

Although Kempe appealed to putative properties of ‘Kempe’ chains, in a graphical representa-
tion, to fallaciously argue that a 5-sided configuration (the ‘pentagon’ P5 in [1]; see §3., Appendix
A), identified by him as Plate II, Fig.11 and Fig.12 in [20], was also in the ‘unavoidable’ set, and
‘reducible’, we shall show the flaw is not fatal when the argument is expressed geometrically ; and that,
essentially, Kempe correctly concluded that any planar map which admits a chromatic differentiation
with a five-sided area C that shares non-zero boundaries with four, all differently coloured, neighbours
can be 4-coloured.

Comment: Lemma 2.7 details the geometrical argument Kempe needed for validating his ‘proof’ of 4CT
in [20]. Seemingly, Kempe failed to recognise the geometrical argument since he preferred appeal to Euler’s
formula V +F = E+2, in what he claimed as an ‘equivalent’, graphical, representation (see §5., Appendix
C), to falsely conclude that any minimal planar map must contain an ‘unavoidable’ set with two ‘reducible’
configurations (see §3., Appendix A).

In the geometrical proof of 4CT in Theorem 2.82 we thus seek a computer-independent argument
which transparently illustrates why four colours suffice to chromatically differentiate any set of con-
tiguous, simply connected and bounded, planar spaces by arguing that (compare with Alfred Kempe’s
summary of his argument in §4., Appendix B):

� If there is a minimal planar map H with (m + n + 1) areas that contains an area C which
necessarily requires a 5th colour, whilst any planar map with ≤ m+ n areas can be 4-coloured;

� Then shrinking C to a point PC yields a sub-minimal map MC that can always be 4-coloured,
such that all the areas meeting at the apex PC require only 3 colours.

� Recreating C in MC would now yield a chromatic differentiation of H that requires only a 4th

colour for C, contradicting the putative minimality of H.

2. A geometrical ‘proof’ of the 4-Colour Theorem

�

�

�

�Only the immediate portion of each area cn,1, cn,2, . . . , cn,r of Bn abutting C is indicated.cn,j
�

CBnAm

Fig.1: Minimal Planar Map H

Only the immediate portion of each area cn,1, cn,2, . . . , cn,r of Bn abutting C is indicated.cn,i
�

Without loss of generality, the hemisphere in Fig.1 is taken to define a minimal planar map H where:

2Essentially a formalisation of the pre-formal proof of 4CT in [21]. See also [22], §1.G: Evidence-based (pictorial),
pre-formal, proofs of the Four Colour Theorem. The need for distinguishing between belief-based ‘informal’, and evidence-
based ‘pre-formal’, reasoning is addressed by philosopher Markus Pantsar in [23].
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1. Am denotes a region of m contiguous, simply connected and bounded, surface areas am,1, am,2,
. . . , am,m (of the hemisphere in Fig.1), none of which share a non-zero boundary segment with
the contiguous, simply connected, surface area C (as indicated by the red barrier which, however,
is not to be treated as a boundary of the region Am);

2. Bn denotes a region of n contiguous, simply connected and bounded, surface areas bn,1, bn,2,
. . . , bn,n, some of which, say cn,1, cn,2, . . . , cn,r, share at least one non-zero boundary segment of
cn,i with C; where, for each 1 ≤ i ≤ r, we have that cn,i = bn,j for some 1 ≤ j ≤ n;

�

�

�

�

� Apex PC

Only the immediate portion of each area c−n,1, c
−
n,2, . . . , c

−
n,r of B−

n is indicated.c−n,j
�

B−
nA−

m

Fig.2: Sub-minimal Planar Map MC defined uniquely by shrinking C to a point PC in H

Only the immediate portion of each area c−n,1, c
−
n,2, . . . , c

−
n,r of B−

n is indicated.c−n,i
�

3. C is a single contiguous, simply connected and bounded, area (see Fig.1) constructed finitarily
by sub-dividing and annexing (compare Kempe [20], Plate II, Fig.14) one or more contiguous,
simply connected, portions surrounding a common apex PC of each area c−n,i (see Fig.2) in the

region B−
n of some putative sub-minimal map MC (see Fig.2), defined uniquely by shrinking C

to a point PC in H.

We define:

Definition 1. (Finitary Constructibility) A single contiguous, simply connected and bounded,
area D of a planar map G is finitarily constructible if, and only if, it can be constructed in a finite
number of steps by annexing non-zero areas of the planar map MD obtained by shrinking D to a point
in G.

Lemma 2.1. Any single contiguous, simply connected and bounded, area D of a planar map G with
n areas is finitarily constructible.

Proof. If D shares m non-zero boundary segments with abutting areas, then shrinking D to a point
(as in Fig.2) yields a planar map MD with at most m areas of G that now meet in MD at least
once at a common apex PD. The area D can then be finitarily constructed in m steps by annexing
m triangular areas of those immediate portions of each area of MD that contain PD. The Lemma
follows. □

We next consider the:

Hypothesis 1. (Minimality Hypothesis) Since four colours suffice for all, and are necessary for
some, planar maps with fewer than 5 regions, we assume the existence of some m,n, in a putatively
minimal planar map H, which defines a specific configuration of the region {Am +Bn + C} where:

(a) any configuration of p contiguous, simply connected and bounded, areas can be 4-coloured if
p ≤ m+ n, where p,m, n ∈ N, and m+ n ≥ 5;

(b) any chromatically differentiated colouring of H contains some area C that necessarily requires
a 5th colour;
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(c) in any such chromatically differentiated colouring, there is a specific configuration of m + n
contiguous, simply connected and bounded, areas, say {A−

m + B−
n }, of a putatively unique, sub-

minimal, 4-colourable planar map, say MC , where Am ⊆ A−
m and Bn ⊆ B−

n ;

(d) the area C can be constructed finitarily by sub-dividing and annexing some portions from each

area, say c−n,i, of B
−
n in the specific, sub-minimal, planar map MC ;

(e) the region {Am + Bn + C} in the planar map H is a specific chromatic differentiation of the
m+n+1 contiguous, simply connected and bounded, areas of H in which C necessarily requires
a 5th colour.

where we define:

Definition 2. (Finitary Definability) A single contiguous, simply connected and bounded, area D
of a planar map G is finitarily definable if, and only if, it can be shrunk in a finite number of steps to
a point in G.

We note that:

Lemma 2.2. The minimal map H cannot admit two areas, say C and C ′, both of which necessarily
require a 5th colour.

Proof. Shrinking C to a point would reduce H to a 4-colourable map where C ′ does not require a 5th

colour. Restoring C with a 5th colour establishes the Lemma. □

Since any area D of H can be shrunk to a point, the argument of Lemma 2.2 immediately entails:

Corollary 2.3. The minimal map H can always be chromatically distinguished so that any specified
area D of H requires a 5th colour. □

We note next that:

�

�

�

�

C

C

cn,icn,j cn,j

Au
m Bu

n

Al
m Bl

n

Fig.3: No two, non-adjacent, areas cn,i and cn,j can share a non-zero boundary in H

Lemma 2.4. No two, non-adjacent, areas of Bn, each sharing a non-zero boundary segment with C
in the minimal planar map H in Hypothesis 1, can also share a non-zero boundary that has no point
in common with C.

Proof. Let two, non-adjacent, areas of Bn, say cn,i and cn,j in Fig.1, each of which shares a non-zero
boundary with C, also share a non-zero boundary with each other that does not intersect C (as shown
in green in Fig.3). This would divide {Am + Bn − cn,i − cn,j} into two non-empty regions Au

m + Bu
n

and Al
m +Bl

n, such that no area of the region Au
m +Bu

n shares a non-zero boundary with any area of
the region Al

m +Bl
n.

However, it would entail that the areas cn,k (k ̸= i, j) which abut C in each of the regions Bu
n and

Bl
n would necessarily require 2 additional colours not shared with the areas C, cn,i and cn,j ; since:
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— if all such cn,k require only 1 additional colour, H would be 4-colourable, and violate minimality ;

— if all such cn,k in only one of the regions, say Bu
n, require only 1 additional colour,

- then annexing one of the areas of Bl
n, say cn,lower, which has this colour, say x, into the area C

would again reduce the map H to a sub-minimal map, say C′,

- where C′ still requires 5 colours, since the merged area (cn, lower + C) would now abut areas
with all the four colours of the map C′, thus violating the minimality of H;

Consequently, each of the regions {Bu
n+cn,i+cn,j+C} and {Bl

n+cn,i+cn,j+C}—when considered
as separate planar maps, each with less than m + n + 1 areas—would necessarily then require C to
have the 5th colour, thus violating Hypothesis 1. The Lemma follows. □

Corollary 2.5. No area cn,i of Bn in the minimal planar map H can share two, distinctly separated,
non-zero boundary segments with C. □

We now show how Lemma 2.7 improves upon, and bridges the gap, in Alfred Kempe’s—seemingly
fatally failed (see §3.)—‘proof’ of the Four Colour Theorem in [20].

Lemma 2.6. Every area D of a minimal planar map H shares non-zero boundaries with at least four
neighbours.

Proof. Shrinking any area D of a minimal map H to a point would yield a 4-colourable, sub-minimal,
map. By Hypothesis 1, restoring D in any 4-colouring of such a sub-minimal map must require a 5th

colour for D. The Lemma follows. □

Lemma 2.7. The area C in H can share a non-zero boundary with only four, differently coloured,
areas cn,i.

&%
'$

���

HHH
C -d

Fig.4: C cannot share a non-zero boundary segment with 5 areas in the minimal planar map H

cn,g cn,b

cn,r cn,y

cn,r′

G B

R Y

R

Proof. (i) If C shares a non-zero boundary with identically-coloured areas cn,r and cn,r′ (see Fig.4)—
where r ̸= r′ by Corollary 2.5—then either area can be annexed by C without disturbing the chromatic
differentiation of H.

&%
'$

���

HHH
C

Fig.5: Annexing cn,r′ into C would then yield a sub-minimal map MC

cn,g cn,b

cn,r cn,y

cn,r′

G B

R Y

LGx-d

(ii) However, if C annexes cn,r′ by erasing the boundary d (see Fig.5), that would then yield a
sub-minimal map MC .
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&%
'$

���

HHH
C

Fig.6: The sub-minimal map MC would be 4-colourable

cn,g cn,b

cn,r cn,y

cn,r′

G R orY

R Y

Bx-d

(iii) By definition, the sub-minimal map MC is now 4-colourable as shown in Fig.6, where:

- the areas cn,r and cn,r′ are necessarily differently coloured; and

- neither cn,r nor cn,y share a non-zero boundary with cn,b by the non-sharing Lemma 2.4.

&%
'$

���

H
HH

C -d

Fig.7: After restoration cn,r and cn,r′ cannot share identical colours in H as postulated

cn,g cn,b

cn,r cn,y

cn,r′

G R orY

R Y

B

(iv) However, we now have the contradiction that there is no 4-colouring of the sub-minimal map
MC which—on restoration of the area C as the necessary 5th coloured area in the putatively minimal
planar map H (see Fig.7)—would admit the identical colouring for cn,r and cn,r′ in H, as postulated
in (i) above. The Lemma follows. □

Theorem 2.8. No chromatically differentiated planar map needs more than four colours.

�����9
Apex PC in MC with colours inherited from H

Fig.8: Areas which meet at the apex PC in the sub-minimal planar map MC with colours inherited from H

c−n,g c−n,b

c−n,r c−n,y

G B

R Y

Proof. (1) By Lemma 2.7, only four differently coloured areas meet at the apex PC (see Fig.8) of the
sub-minimal map MC in any colouring which is inherited from the putatively minimal map H.

(2) By Lemma 2.4, no two areas cn,i, cn,j of Bn in the minimal planar map H in Fig.3 can share a
non-zero boundary segment that has no point in common with C.

(3) Merging any c−n,i with a differently coloured c−n,j at PC (see Fig.9), where both c−n,i and c−n,j do
not share a non-zero boundary, and are abutted by areas that do not share an inherited colour with
either of them, thus yields another sub-minimal, hence 4-colourable, map M′

C .

Fig.9: Merging areas c−n,r and c−n,b at the apex PC in MC and recolouring the sub-minimal planar map M′
C

c−n,g c−n,b

c−n,r c−n,y

G R

R Y
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(4) Restoring PC now yields a fresh 4-colouring of MC in which only 3 colours at most (see Fig.10)
meet at the apex PC .

�����9
Apex PC in MC with colours inherited from M′

C

Fig.10: Restoring areas c−n,r and c−n,b at the apex PC in MC with colours inherited from M′
C

c−n,g c−n,b

c−n,r c−n,y

G R

R Y

(5) By Lemma 2.1, recreating C in MC would now yield a chromatic differentiation of H that requires
(see Fig.11) only a 4th colour for C, thus contradicting the putative minimality of H.

&%
'$

C

Fig.11: Areas in the minimal planar map H with C recreated from MC and colours inherited from M′
C

cn,g cn,b

cn,r cn,y

G R

R Y

We conclude that Hypothesis 1 is false. The Theorem follows. □

3. Appendix A: The perceived ‘flaw’ in Kempe’s 1879 argument

In their computer-assisted proof of the Four Colour Theorem [1], Appel and Haken review the ‘flaw’
in Kempe’s 1879 ‘proof’ [20]:

“The first published attempt to prove the Four Color Theorem was made by A. B. Kempe [19] in 1879.
Kempe proved that the problem can be restricted to the consideration of “normal planar maps” in which
all faces are simply connected polygons, precisely three of which meet at each node. For such maps, he
derived from Euler’s formula, the equation

(1.1) 4p2 + 3p3 + 2p4 + p5 =
∑kmax

k=7 (k − 6)pk + 12

where pi is the number of polygons with precisely i neighbors and kmax is the largest value of i which
occurs in the map. This equation immediately implies that every normal planar map contains polygons
with fewer than six neighbors.

In order to prove the Four Color Theorem by induction on the number p of polygons in the map (p =
∑

pi),
Kempe assumed that every normal planar map with p ≤ r is four colorable and considered a normal planar
map Mr+1 with r + 1 polygons. He distinguished the four cases that Mr+1 contained a polygon P2 with
two neighbors, or a triangle P3, or a quadrilateral P4, or a pentagon P5; at least one of these cases must
apply by (1.1). In each case he produced a map Mr, with r polygons by erasing from Mr+1 one edge in
the boundary of an appropriate Pk. By the induction hypothesis, Mr admits a four coloring, say cr+1, and
Kempe attempted to derive a four coloring cr+1 of Mr+1 from cr. This task was very easy in the cases of
P2 and P3. To treat the cases of P4 and P5, Kempe invented the method of interchanging the colors in
a maximal connected part which was colored by cr with a certain pair of colors (two-colored chains were
later called Kempe chains) to obtain a coloring cr

′ of Mr from which one can then obtain a four coloring
cr+1 of Mr+1.

While Kempe’s argument was correctly applied to the case of P4, it was incorrectly applied to the case of
P5 as was shown by Heawood [18] in 1890.”
Appel and Haken: [1], §1. Introduction, p.429.
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We note, however, that the ‘flaw’ is not fatal if Kempe’s argument is expressed geometrically.

Reason: The case Appel and Haken refer to as P5 corresponds to §2., Lemma 2.7 where:

� We do not appeal—in a graphical representation ofminimal ‘normal planar maps’—to a ‘method
of interchanging the colors’ in ‘Kempe chains’, so as to identify ‘reducible’ configurations in an
‘unavoidable’ set.

� Instead, we appeal—in a geometrical representation of minimal planar maps—to the Minimality
Hypothesis 1, and argue that:

- in any minimal planar map such as H in Fig.1,

- any area such as P5 which necessarily requires a 5th colour,

- cannot share non-zero boundaries with two, similarly coloured, neighbours.

This then yields P4 as the sole configuration in an ‘unavoidable’ set. Moreover, as Appel and
Haken note, P4 is shown by Kempe to be ‘reducible’ (corresponding to the proof of the Four Colour
Theorem in §2., Theorem 2.8).

3.A. Could there be an unperceived, inherited, ‘flaw’ in Appel and Haken’s ar-
gument?

Unarguably meriting a philosophical discussion of consequences that lie beyond the immediate ambit
of this investigation, we merely note here that if the ‘flaw’ in Kempe’s 1879 ‘proof’ [20] is perceived
as falsely claiming to have proven the argument that:

Any minimal ‘normal planar map’ admits an unavoidable set containing a ‘pentagon’ that
can be shown as reducible;

where (cf. [14], Ch.8):

(i) An unavoidable set is a set of configurations such that every map that satisfies some necessary
conditions for being a minimal non-4-colorable triangulation (such as having minimum degree
5) must have at least one configuration from this set.

(ii) A reducible configuration is one that cannot occur in a minimal counterexample. If a map
contains a reducible configuration, the map can be reduced to a smaller map. This smaller map
has the condition that if it can be colored with four colors, this also applies to the original map.
This implies that if the original map cannot be colored with four colors the smaller map cannot
either and so the original map is not minimal.

then the following remarks suggest that Appel and Haken’s computer-dependent ‘proof’ [1] (as also
Robertson et al’s [7]), too could be viewed as ‘flawed’ (in the sense of being vacuously true, even if
logically valid):

“While Kempe’s argument was correctly applied to the case of P4, it was incorrectly applied to the case
of P5 as was shown by Heawood [18] in 1890. Kempe’s argument proved, however, that five colors suffice
for coloring planar maps and that a minimal counter-example to the Four Color Conjecture (minimal with
respect to the number p of polygons in the map) could not contain any two-sided polygons, triangles, or
quadrilaterals. This restricts the Four Color Problem to the consideration of normal planar maps in which
each polygon has at least five neighbors. Each such map must contain at least twelve pentagons since in
(1.1) we have p2 = p3 = p4 = 0 and thus

(1.2) p5 =
∑kmax

k=7 (k − 6)pk + 12.
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Since 1890 a great many attempts have been made to find a proof of the Four Color Theorem. We
distinguish two types of such attempts: (i) attempts to repair the flaw in Kempe’s work; and (ii) attempts
to find new and different approaches to the problem. Among attempts of type (i) we distinguish two
subtypes: (i)(a) attempts to find an essentially stronger chain argument for “reducing the pentagon,” i.e.,
proving that a minimal counter-example to the Four Color Conjecture cannot contain any pentagon, and
thus does not exist; and (i)(b) attempts to make more extended use of Kempe’s arguments in different
directions and, instead of “reducing” the pentagon directly, to replace it by configurations of several
polygons. Since the method used in this paper is of type (i)(b) we shall restrict our attention to further
developments in this branch.”
. . .Appel and Haken: [1], §1. Introduction, p.430.

Reason: By Lemma 2.7 (essentially type (1)(a)) no minimal planar map can admit an ‘unavoid-
able’ set containing a pentagon.

In other words, both Kempe and Appel/Haken argue that:

(I) 4CT is equivalent to proving that, in any minimal ‘normal planar map’, there is an ‘unavoidable’
set of two configurations, P4 and P5, each of which is ‘reducible’;

(II) Kempe [20] has validly shown that the configuration P4 is ‘reducible’.

Seemingly, Appel/Haken further argue that:

(a) Kempe did not prove in [20] that the configuration P5 is ‘reducible’.

(b) If each of the 1,482 configurations, as manually defined in their ‘unavoidable’ set in [1], is
‘reducible’, then P5 is ‘reducible’;

(c) A computer-dependent proof validates that each of the 1,482 configurations is ‘reducible’;

(d) Hence 4CT is proven.

However, Lemma 2.7 shows that (I) admits an invalid implicit assumption, since no minimal
planar map can contain a configuration such as P5; whence (d) would hold vacuously as having
proven:

If every minimal planar map admits an ‘unavoidable’ set containing a five-sided figure
such as P5, then P5 is ‘reducible’.

and not that:

No minimal planar map can admit an ‘unavoidable’ set containing a five-sided figure such
as P5.

4. Appendix B: Kempe’s concluding argument in his 1879 ‘proof’

Notwithstanding the critical difference, as highlighted in §3., between:

� Kempe’s ‘flawed’ appeal in [20] to ‘the method of interchanging the colors’ in ‘Kempe chains’;
and

� The pictorially transparent appeal to the Minimality Hypothesis 1 in the proof of Theorem 2.8,

the two arguments can be seen to share a similar structure.

For instance, Kempe’s concluding argument in his 1879 ‘proof’ of 4CT by finite induction:
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“Returning to the question of colour, if the map at any stage of its development, can be coloured with
four colours, we can arrange the colours so that, at the point of concourse on the patch next to be taken
off, where less than six boundaries meet, only three colours shall appear, and, therefore, when the patch is
stripped off, only three colours surround the disclosed district, which can. therefore, be coloured with the
fourth colour, i. e. the map can be coloured at the next stage. But, at the first stage, one colour suffices,
therefore, four suffice at all stages, and therefore, at the last. This proves the theorem and shows how the
map may be coloured.”
. . .Kempe: [20], p.199.

can be viewed as faithfully mirrored in the language of Definition 1, and the intent of Theorem 2.8,
as follows:

Returning to the question of colour, if the map at any stage of its [finitary creation by annexation], can
be coloured with four colours, we can arrange the colours so that, at [an apex where the next area is
to be created by annexation], where less than six boundaries meet, only three colours shall appear, and,
therefore, when the [new area is created therein by annexation], only three colours surround the [newly
created area], which can. therefore, be coloured with the fourth colour, i. e. the map can be coloured at
the next stage. But, at the first stage, one colour suffices, therefore, four suffice at all stages, and therefore,
at the last. This proves the theorem and shows how the map may be coloured.

if we correspond [finitary creation by annexation at an apex] to Kempe’s ‘disclosed district’ at the
‘point of concourse on the patch next to be taken off’ (as illustrated by Kempe’s Fig.14 in [20], Plate
II).

5. Appendix C: Why the geometrical proof of 4CT may not be
expressible graphically
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Fig.12: Graphical representation of H Fig.13: Geometrical representation of H
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We note that, since classical graph theory (see, for instance, Brun [10], Conradie/Goranko [15],
Gardner [19]) represents non-empty areas as points (vertices), and a non-zero boundary between
two areas as a line (edge) joining two points (vertices), the theory does not immediately evidence a
graphical proof of Theorem 2.8.
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Fig.14: Graphical representation of MF Fig.15: Geometrical representation of MF
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In other words, the proof of Theorem 2.8 appeals critically to re-configuring the geometrical
representation of the, putatively minimal, planar map H in Fig.13; by first removing (see Fig.15),
and then restoring after recolouring (see Fig.17), the non-zero boundary d in Fig.13 to merge/de-merge
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the areas F and E in a geometrically distinguishable way that, prima facie, cannot be immediately
evidenced in the corresponding argument when represented graphically by Figs.12, 14 and 16.
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Fig.16: Graphical representation of H Fig.17: Geometrical representation of H
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We thus speculate that the barriers to proving 4CT graphically may possibly lie in Alfred Kempe’s
unsupported postulation, that the four-color map problem could be reformulated equivalently as a
problem involving linkages between the ‘lettering’ of colours at unspecified points of a map in a
graph:

“If we lay a sheet of tracing paper over a map and mark a point on it over each district and connect the
points corresponding to districts which have a common boundary, we have on the tracing paper a diagram
of a “linkage,” and we have as the exact analogue of the question we have been considering, that of lettering
the points in the linkage with as few letters as possible, so that no two directly connected points shall be
lettered with the same letter. Following this up, we may ask what are the linkages which can be similarly
lettered with not less than n letters?

The classification of linkages according to the value of n is one of considerable importance. I shall not,
however, enter here upon this question, as it is one which I propose to consider as part of an investigation
upon which I am engaged as to the general theory of linkages. It is for this reason also that I have
preferred to treat the question discussed in this paper in the manner I have done, instead of dealing with
the analogous linkage.”
. . .Kempe: [20], p.200
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Fig.18: Pseudo-graphical representation of MF Fig.19: Geometrical representation of MF
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In other words, it is conceivable—perhaps even likely—that Kempe was misled by a pseudo-
graphical representation of MF (see Fig.18) into believing that a graphical argument must follow
which entails that a five-sided configuration in H (see Fig.12) must be ‘reducible’.

Reason: In the above pseudo-graphical representation—as shown in Fig.18 just before their
merger—countries A and E obviously could not have been identically coloured in H.

This could account for Kempe’s intuitively ‘preferred’ alternative in informal explanations vis à
vis his explicit assumption that a formal representation by ‘linkages’ may be viewed ‘as the exact
analogue’ of the four-color map problem; a preference reflected in Robin Wilson’s italicised remark
in [14], wherein he too, seemingly uncritically, assumes such an equivalence:

“Any coloring of the countries of the map gives rise to a lettering of the points in the linkage in which no
two directly connected points are lettered the same.

We now refer to such a linkage as a graph . . . and to the preceding process as forming the graph (or dual
graph) of the map. This reformulation of the four-color problem as a problem involving the lettering of
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points reappeared briefly in the 1880s (see Chapter 6) and was later reintroduced in the 1930s and used
in all subsequent attempts to solve the problem.

So as not to complicate matters, we shall usually stick to coloring the countries of maps (rather than
switching to lettering the points of a graph) throughout the rest of this book.”
. . .Wilson: [14], p.67.

It is thus also conceivable that subsequent articulations of 4CT failed to recognise the geometrical
argument in Lemma 2.7 only because Kempe’s formal appeal to Euler’s formula V + F = E + 2
‘seemingly’ simplified the problem substantially by entailing that every minimal planar map must
contain a configuration of fewer than six sides.

‘Seemingly’, since it is not obvious whether—unlike the geometrical argument of Lemma 2.7 which
is immediately evident in Fig.15—a graphical argument must follow, from Fig.14, which admits the
possibility that a five-sided figure may not be definable in a minimal planar map3.
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