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Abstract

Some experimental theories of quantum gravity, such as loop quan-
tum gravity, propose a discrete or �quantized� structure for space-time
at very small scales. These theories hypothesize that space-time is
fundamentally made up of discrete units or �atoms� of space, in a
similar way to how matter is fundamentally made up of discrete parti-
cles. In the context of space-time, the term �atomic structure� is used
metaphorically to suggest a discrete or granular nature at extremely
small scales. In Einstein's special theory of relativity, there is a max-
imum limit of speed, beyond which no point of mass in an inertial
reference frame can travel. In the following, I will demonstrate that
in a given inertial reference frame, in addition to the existence of an
upper limit velocity of the motion of a point of mass, there are also
logical reasons to think that space and time have an atomic structure.
The basic idea of this argument was suggested by Zeno's well-known
aporias.

Keywords: philosophy of physics, special theory of relativity, space-
time, discrete space-time, Zeno's aporias

Introduction

In Einstein's special theory of relativity, it is asserted that there is a
maximum limit of speed, beyond which no point of mass in an inertial
reference frame can travel. In the following, I will demonstrate in ad-
dition that in an inertial reference frame, there are also logical reasons
to think that space and time have an atomic structure. The basic idea
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of the argument was suggested by Zeno's well-known aporias.1

Premises

Suppose that mass point m passes along a straight line from point A
to point B, beginning at time t1 and arriving at time t2.

(1) We assume that the distance travelled and the associated time are
both discrete and non-continuous, meaning nothing more than
that there is an isomorphic order between the domain of space
and time atoms and the domain of integers ordered by magnitude.
In a given inertial frame, for any two instants t1 and t2, either t1
is earlier than t2, or t2 is earlier than t1, or t1 is the same as t2.
In this way, we can represent both space and time coordinates
by a series of integers. Then, assumptions (1.1) and (1.2) follow:

(1.1) There are only a �nite number of points between points A and
B, and for each of these, the previous and following points are
clearly de�ned. For any point x point, x + 1 is the next point
and x− 1 is the preceding one.

(1.2) The points of the route through which mass point m passes are
arranged in such a way that we can decide determine of any two
di�erent points which is closer to the endpoint, namely to B.

(2) A point is somewhere at all times, that is, it has a place at every
moment, and that place is a point on a line.

(3) If the point is somewhere, it is so at a time.

(4) The point m may move from a point to the next or previous one.
The places to which the point may move at the following time are
here called adjacent places. The concept of an adjacent space can
also be interpreted in two or more dimensional discrete spaces,
as I discuss later.

(5) In the case of present movement, a point never moves backward
in time, so during the movement of the point m it touches all
places between A and B, omitting and skipping none.

The following assumption is valid only in a deterministic world:

(6) The point is in one and only one place at each time, and the
given place is a deterministic characteristic of the point. In an-
other framework, it is also conceivable that the location of a point

1The �rst version of my thoughts appeared (in Hungarian) as part of a discussion paper
in Hungarian Physical Review 2005/9. My source for the Zeno's aporias is Ruzsa (1966).
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is interpretable only as a probability, i.e., the location of is a func-
tion of a statistical distribution. Let us suppose the following:

(7) A point is continuously advancing, so that if time x is later than
y, then the position of the point at x is closer to B than the
position at an earlier time y. Thus, it follows that the point
moves continuously the range between t1 and t2,including t1 and
t2, as it travels. In continuous motion, if the two times are not the
same, the two corresponding points of the point are also di�erent.

Conclusion

Thus, the point can only travel at a single speed, which is the maxi-
mum speed as determined by the shortest length and duration.

Proof

Suppose that at one time atom, a point travels two or more space
atoms. Because we assumed that the point omits no space and is
always somewhere, we cannot know on a discrete time scale where
the point is if it is travelling across several spatial atoms at one time.
It must be somewhere, and we assumed it could not be in multiple
places at one time. This contradicts its necessity to travel across no
more than one space atom at one time. In contrast, if the point travels
more slowly than the maximum speed, then some two adjacent times
show the point at the same place, which in turn violates the condition
of continuous progress. If continuous progress is discarded, slower
velocities can be matched by the intermittent advancement of the point
and interspersed with times where it remains in place for longer or
shorter periods of time, depending on the velocity. Thus, the point
may travel more slowly than the maximum speed in such a special
intermittent manner. (See �gure 1 below.)

Proof in formal logic language

Notations:

S(x) := x is a location

S(x) ∧ S(y) ∧ x < y := y is further from the origo than x

T (x) := x is a time atom
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Figure 1: World lines in atomic space-time

T (x) ∧ T (y) ∧ x < y := y later than x

sm is the time-distance function of m mass point

y = sm(x) := distance of m mass point is y at x time

Premises:

(1) ∀x∀y∀z(¬x < x∧(x < y → ¬y < x)∧((x < y∧y < z) → x < z))

The relation < is asymmetric and transitive (strict ordering).

(2) S(A) ∧ S(B) ∧ ¬∃x(S(x) ∧ x < A) ∧ ¬∃x(S(x) ∧B < x)

The distance has a start (A) and end point (B).

(3) ∀x∀y((T (x) ∧ T (y)) → (x < y ∨ y < x ∨ x = y))

(4) ∀x∀y((S(x) ∧ S(y)) → (x < y ∨ y < x ∨ x = y))

Any two time or place atoms are comparable.

(5) ∀x(x−1 < x∧x < x+1)∧∀x¬∃y(x < y∧y < x+1)∧∀x¬∃y(x−
1 < y ∧ y < x) ∧ ∀x(x ̸= x− 1) ∧ ∀x(x ̸= x+ 1))

Space and time have an atomic structure.
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(6) ∀y(S(y) → ∃x(y = sm(x) ∧ T (x))) ∧ ∀x(T (x) → ∃y(y = sm(x) ∧
S(y)))

(7) ∀x∀y∀z((S(x) ∧ S(y) ∧ S(z) ∧ x < y ∧ y < z) →
∃u∃v∃w(T (u) ∧ T (v) ∧ T (w) ∧ x = sm(u) ∧ y = sm(v) ∧ z =
sm(w) ∧ u < v ∧ v < w))

The moving point does not miss or skip places.

(8) ∀x∀y((T (x) ∧ T (y) ∧ x < y) → sm(x) < sm(y))

A point is continuously advancing.

����

Deductions:

Suppose that m moves more than one distance atom in a period:
(9) y = sm(x) ∧ z = sm(x+ 1) ∧ y + 1 < z

This is impossible because it contradicts (5)(7).
(9.1) a = sm(x) ∧ b = sm(x+ 1) ∧ a+ 1 < b (9)
(9.2) a < a+ 1 ∧ a+ 1 < b (5)(9.1)
(9.3) a = sm(x) ∧ b = sm(x+ 1) (9.1)
(9.4) ∃v(a = sm(x) ∧ a+ 1 = sm(v) ∧ b = sm(x+ 1)) (7)(9.3)(9.2)
(9.5) ∃v(x < v ∧ v < x+ 1) (7) (9.4)
(9.6) ¬∃v(x < v ∧ v < x+ 1) (5)
(9.7) ¬∃v(x < v ∧ v < x+ 1) ∧ ∃v(x < v ∧ v < x+ 1) (9.5) (9.6)

Suppose that m passes less than one atom distance.
(10) y = sm(x) ∧ z = sm(x+ 1) ∧ y < z ∧ z < y + 1

This is impossible because it contradicts (5).
(10.1) a = sm(x) ∧ b = sm(x+ 1) ∧ a < b ∧ b < a+ 1 (10)
(10.2) ¬∃y(a < y ∧ y < a+ 1) (5)
(10.3) ∃y(a < y ∧ y < a+ 1) (10.1)
(10.4) ¬∃y(a < y ∧ y < a+ 1) ∧ ∃y(a < y ∧ y < a+ 1) (10.2)(10.3)
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Suppose that m does not move in a range of time.
(11) y = sm(x) ∧ y = sm(x+ 1)

This is impossible because it contradicts (8).
(11.1) a = sm(1) ∧ a = sm(2) (11)
(11.2) sm(1) < sm(2) (8)(11.1)
(11.3) a < a (11.1)(11.2)
(11.4) ¬a < a (1)
(11.5) ¬a < a ∧ a < a (11.3)(11.4)

The remaining possibility is that m mass point move continuously with
maximum velocity.

(12) ∀x∀y((T (x) ∧ S(y)) → (y = sm(x) → y + 1 = sm(x+ 1)))

As I noted earlier, if continuous progress is discarded, slower veloc-
ities can be matched by the intermittent advancement of the point and
interspersed with times where it remains in place for longer or shorter
periods of time, depending on the velocity. Thus, the point may travel
more slowly than the maximum speed in such a special intermittent
manner.

Open questions

This intermittent progress is peculiar but not contradictory, but the
atomic structure of space-time raises a number of additional questions.

In the �gure, I plot coordinates using a regular straight line. How-
ever, if the distance is indeed made up of discrete atomistic places, the
regular arrangement of discrete space atoms is not in evidence. Only
condition (1) determines the logic of discrete spatial atoms. Viewed
from a continuous world, the spatial atoms of the discrete world may
also be located on a wave�they are not limited to being a straight
line. It follows that a square grid representing one-dimensional space-
time does not necessarily have to exhibit a regular geometric shape
when viewed from a continuous world. If we draw a square grid of
one-dimensional space-time on a rubber sheet that we can stretch and
shrink the rubber sheet, it still the logical requirements are still met.
What is the essence of these logical requirements? Namely, that you
cannot skip grid points in space-time. This is the reason why I also
provide a stair graph for maximum speed and not simply a line.2 The

2I take the consideration of grid points from a 2006 lecture by Tamás Sándor Bíró at
the Skeptic Conference.
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signi�cance of this can be better understood when we think in two-
dimensional space.

Why do we consider that the distance between two points is rep-
resented by a straight line and not a curved line? This is because
we believe distance is the shortest path between the two points, and
the piece of rope corresponding to a straight line is shorter than the
rope corresponding to a curved line. For simplicity's sake, let us stick
to regular layouts. Let the twelve atomic locations given in a two-
dimensional discrete world be in the following arrangement (See table
1 below.):

A E I
B F J
C G K
D H L

Table 1: Two dimensional �nite space

How far is A from K? It depends on how we move forward. In
point (3), I declared that in one-dimensional space, the motion can
always take place only at the adjacent location at consecutive, dis-
crete times. In one-dimensional space, the concept of adjacent space is
obvious, but in two-dimensional or multidimensional space, this is no
longer the case, and we can choose between several options. If we move
obliquely, then touching F , the distance between two atoms between
A and K is the shortest path. If we can only move left or right and
up or down, then the distance is four square spaces.

How far apart are points A and D? Our intuition suggests that
they are at three atoms' distance. Is this the shortest distance be-
tween A and D? The answer to this now also depends on how we
expect to proceed. If we are allowed to move in any direction between
the grid points, we can connect D to E. Point A is next to point E,
and so there are only two atomic distances between A and D. If the
shortest path between two points is the distance, and nothing is for-
bidden by this path, we must accept that the distance between A and
D is three. However, this contradicts the previous stipulation, namely,
that points cannot be skipped or avoided in one-dimensional travel.
However, we have just done this, so we rule out this possibility. The
question is whether movement such as from A to F , is permissible:
can we move obliquely? (A similar question can be asked with respect
to three-dimensional space.)
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How far apart are A and L? If we allow oblique travel but prohibit
jumping, there are three di�erent routes of three atomic distances A
and L : A−B−G−L,A−F −K−L,A−F −G−L. The understand-
ing of a line connecting two points is therefore unclear. If we stipulate
that the position of a point can only change to the right or left and up
or at any instance��so there is no oblique motion��the line remains
ambiguous, but the shortest distance between A and L becomes �ve
atoms. However, the Pythagorean Theorem is not valid in any case,
nor does it help to divide distances by many points.3

A continuous space-time would come in handy in avoiding these
dilemmas. Perhaps a continuous space-time model can be mapped to
a probabilistic atomic space-time model, where random information
replaces the surplus information of the continuous quantities (in real
numbers). This would be a solution to the problem of atomic space-
time.

Epilogue

At present, there are no widely embraced physical theories positing
an atomic structure for space-time. For classical physics, the prevail-
ing view is that space and time are continuous and in�nitely divisible.
This notion of continuous space and time is also ingrained in Ein-
stein's general relativity, in which gravity is depicted as the curvature
of space-time. However, it is noteworthy that certain experimental
theories in the realm of quantum gravity, such as loop quantum grav-
ity, propose a discrete nature of space-time at extremely small scales.
These theories hypothesize that space-time is fundamentally composed
of discrete units or �atoms� of space, similar to the way in which mat-
ter consists of discrete particles. The proposed limitation on the time
interval in these theories is approximately 10−43 seconds, known as
the Planck time. The corresponding Planck distance, representing the
distance that light travels in one unit of Planck time, is estimated to
be around 10−35 meters.

3McDaniel (2007).
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