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PHILOSOPHY SOUTH

Zeno-machines and the 
metaphysics of time
Augusto Andraus1

Opposing views about the passage of time

In contemporary philosophy, there is a hot debate on the ontological nature of time and, in 
particular, on the nature of the passage of time. Most of the current literature on this topic derives 
from McTaggart’s initial argument (1908), in which he presents an abstraction of the concept of 
time’s passage and the ontological nature of change and permanence, under two alternative theo-
ries, respectively labelled the A-theory and the B-theory of the passage of time. McTaggart propos-
es to identify change in the states of affairs of the world by serializing events in accordance with 
the temporal instant in which they occur. There are two main arrangements for the series: In the 
A-series, events are ordered by their tense predicate; more specifically, each event index is deter-
mined by an intrinsic, monadic property (labelled the A-property), which carries the tenseness 
of that event in relation to the present instant, indicating whether that particular event occurs in 
the past, present, or future. In the B-series, events are tenseless, without any hard-coded temporal 
reference in the events themselves, so the temporal relation between events determines the series 
sequential order. Thus, the temporal information is inferred from the indexical relation between 
the series elements, rather than from an intrinsic property. According to the A-theory of time, 
the present is the instant in which the A-series is arranged, so it has a privileged status, being the 
reference point used to index all other events in the series. However, in the B-series the temporal 
relation between events is independent of the moment at which the B-series is arranged; hence, 
the concept of presentness has no special significance for the B-theory of time.

These theories summarize contemporary approaches to the analysis of ontologies in the passage 
of time. For the A-theorist, time effectively flows at a constant, inexorable steady pace towards the 
future as present events unfold and recede away into the past. For the B-theorist, time is conceived as 
something akin to a spatial dimension and, as such, is static, as space itself is conceived to be.

Most contemporary philosophers of time agree that presentism is the most radical 
form of A-theory of time, in opposition to eternalism as a B-theory of time. There is con-
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tinuous debate about which theory represents a better on-
tology for the passage of time, which can be traced back 
to the pre-Socratic period in Heraclitus’s everlasting cycle 
of creation and destruction, against Parmenides’s eternal 
static permanence (Dainton, 2010). The fundamental as-
pect of the presentist thesis is that only present states of 
affairs are considered real and only present statements are 
true, in opposition to the eternalist thesis that all events, 
past, present, or future are equally real. So, for an eternal-
ist, present events bear no special, privileged status, and no 
particular property, nor any other distinction from past or 
future events.2

It is relevant to consider these opposing theories of time 
in relation to both our intuitions and scientific theories. In 
particular, Einstein’s special relativity and its derived math-
ematical model in Minkowski’s spacetime carry strong phil-
osophical implications for the issue of the passage of time, 
among which the following:

(a)  There is no absolute simultaneity, so there is no ab-
solute flow of time nor a privileged reference frame;

(b)  Time and space in distinct reference frames will 
respectively dilate and contract, depending on the 
relative velocity or spatio-temporal distance of the 
reference frames;

(c)  Time and space are tied together, effectively being 
denoted as timespace.3

In view of these implications of special relativity theory, 
it seems difficult to reconcile non-eternalist approaches and 
other A-theoretical variants with special relativity. Such ef-
fort typically involves either reinterpreting or rejecting some 
of these implications (Mellor, 1974). This topic shall be re-
sumed further below.

In the following section, I will introduce the concept 
of Zeno-machines, in the context of classical computational 
limits, tracing their origins back to Zeno’s dichotomy para-
dox. Later, I will examine Zeno’s paradox from the perspec-
tive of McTaggart’s theories of time’s passage; in particular, 
suggesting a B-theoretical approach to illustrate and support 
Russell’s solution to the paradox. Finally, the idea of a Ze-
no-machine enabled by a relativistic, B-theoretical spacetime 
will be examined, along with its main objections.

Zeno-machines and supertasks

Zeno-machines are hypothetical machines that belong 
to the hypercomputation subgroup of computability theory 
and computer science, which encompasses computation-
al models that could supposedly perform beyond the limits 
set by the Church-Turing thesis4 (Copeland and Proudfoot, 
1999; Copeland and Shagrir, 2011). By definition, Zeno-ma-
chines are devices capable of computing infinite steps in fi-
nite time (Weyl, 1949). This concept is named after Zeno’s 
dichotomy paradox, since each computational step takes a 
fraction, usually half, of the computational time elapsed in the 
previous step. For instance, suppose that the first iteration of 
the algorithm takes one second to complete, and subsequent 
iterations will respectively take 1

2
 second, 1

4
 of a second, 1

8  of 
a second, and so on, ad infinitum on ℕ. The full time required 
to complete the computation can be expressed as a geometric 
infinite sum series, whose limit will converge to 2 seconds:

computationTime = ∑
∞

n=0

1
2n

 = 2

The summation represented in this equation shows 
that even though there are infinite steps to perform, this 
is a denumerable, Cantorian infinite (ω). Appropriately, a 
Zeno-machine is also known as an accelerating Turing-ma-
chine (Copeland and Proudfoot, 1999). Such a machine ap-
parently has a paradoxical nature, incurring similar prob-
lems as those highlighted by Zeno’s dichotomy paradox. 
One interesting property of a Zeno-machine is that it can 
be clearly distinguished from other non-Turing-machines, 
like oracle machines or super-p machines, that have been 
postulated as black boxes of an unknown internal na-
ture, being capable of solving even undecidable problems 
in just a single operation (Turing, 1939). Moreover, the 
property that distinguishes Zeno-machines from regular 
Turing-machines is their accelerated iterative process (Co-
peland, 2002),5 thus making them capable of performing 
supertasks, as defined by Weyl.6

2 There are other, intermediate views regarding the reality of tenseness. The growing block theory states that present and past events 
are real and true, while future events are not. However, such distinctions about tense realism are not central to the scope of this essay. 
For an in-depth view about tenseness realism, see Zimmerman (2005) and Boccardi (2013).
3 For an informative account of Einstein’s special relativity theory and Minkowski’s mathematical spacetime model, see Russell (1969), 
Brown (2007), and Dainton (2010).
4 A capsule, simplified version of the Church-Turing thesis (or conjecture) says that a function on the natural numbers is computable if, 
and only if, it is computable by a Turing-machine. A full account of the Church-Turing thesis raises controversial and still-debated issues 
in computability theory, and therefore falls beyond the scope of the present essay. Müller (2011) provides a detailed discussion of the 
Church-Turing thesisor thesesin the context of hypercomputation.
5 In algorithm complexity theory, a strong premise is that every iteration of any algorithm takes the same fixed amount of computational 
time. This premise is precisely what is distinct in a Zeno-machine.
6 A supertask is a task that takes infinite steps to be completed, but it is somehow completed in a finite amount of time. Thomson (1954) 
coined this term, inspired by Weyl’s concept of an infinity machine (1949).
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When Thomson (1954) discussed the concept of super-
tasks, he coined a philosophical puzzle, ultimately aiming to 
provide evidence for the unfeasibility of supertasks. Thomson 
proposed a device that, at each step of its iterative process, 
toggles a lamp on or off depending upon its previous state. If 
the lamp was off, it will be turned on, and vice-versa. Being 
a device of supertask capability, Thomson’s Lamp’s first step 
will take one second to perform, and each following step will 
take half the time of the previous step, in the spirit of Zeno’s 
dichotomy. The question that Thomson proposes is the fol-
lowing: What is the lamp’s state after two full seconds have 
elapsed, when all infinite iterations are complete? Thomson 
then proceeds to conclude that supertasks are impossible, 
since the lamp’s state cannot be determined at the end of the 
process, even if an end could theoretically be reached.

Benacerraf (1962) claims that Thomson’s conclusion is 
erroneous by arguing that it is impossible to determine the 
lamp’s state in its final, transfinite state (ω + 1) by inferring 
it from the previous state in the series. The transitioning gap 
between the infinite series to the supertask end state (ω + 1) 
became known as Benacerraf’s Gap; bridging this gap is at the 
core of the discussion about supertasks. It is also relevant to 
note that the infinite series of Thomson’s Lamp actually cor-
responds to Grandi’s series:7 it is a divergent series and thus 
its limit towards infinity is mathematically indeterminate. 
However, indetermination at the infinite limit is not a true 
condition for every denumerable infinite series. Effectively, 
Zeno’s own dichotomy series converges at its infinite limit. 
Many philosophers hold Benacerraf ’s response in high regard, 
and even Thomson himself acknowledges the failure of his 
original argument (Shagrir, 2004)even if he still rejects the 
viability of supertasks.

Zeno’s dichotomy paradox  
and the metaphysics of time

When discussing Zeno-machines and supertasks, it 
is important to distinguish the nature of the problem to be 
solved and the infinite recursion involved, or else one is bound 
to incur Benacerraf ’s Gap paradoxes at the transfinite state 
(ω + 1) of the computation.8 However, it does not necessarily 
follow that these paradoxes are evidence or proof of an in-
ternal incoherence of supertasks simpliciter. The decidability 
of the supertask problem is very relevant for such analysis, as 
exemplified by Benacerraf ’s response to Thomson’s challenge.

To analyse Zeno-machines’ feasibility, we need first to 
examine Zeno’s original dichotomy paradox, as both scenar-
ios share a similar recursive structure. Russell (1903) pro-
vides a sharp argument to dissolve Zeno’s motion paradox, 
colloquially labelled the “at-at theory of motion”, built on 

Aristotle’s response to Zeno. Russell claims that the core of 
the paradox lies in trying to determine kinematic motion 
as a property of one infinitesimal instant. As Russell argues, 
motion, by definition, needs a time interval to be defined, 
or if we abstract time by discrete points, at least two data 
points are needed to characterize kinematic motion (Boc-
cardi, 2013). Surely, atomizing and individualizing instants, 
and then trying to identify kinematic motion, is bound to 
bring us to a paradox.

An interpretation of Russell’s argument can be made in 
the light of McTaggart’s temporal series: Zeno is effectively 
using a temporal B-series to track the history of the runner’s 
spatial positions, recursively bi-partitioning the B-series ad 
infinitum, and finally, trying to identify motion at a discrete, 
infinitesimal instant t. This scenario is equivalent to trying to 
infer a temporal property from a single element of the B-se-
ries. As outlined earlier, however, in the B-series the notion 
of the passage of time is the relation between elements of the 
series, so a B-element does not contain any intrinsic temporal 
property. So, in McTaggart’s terms, the root of Zeno’s contra-
diction can be interpreted as trying to retrieve an A-property 
from a single element of the B-series, since Zeno’s partitioning 
process, at its infinite limit, removes the temporal informa-
tion from the picture.

It is difficult to infer Zeno’s true intentions in framing his 
paradoxes. However, taking into account that Aristotle talks 
about Zeno as a disciple of Parmenides, perhaps one could 
speculate that his point is made precisely to subtly emphasize 
an eternalist, tenseless approach to temporal metaphysics.

The feasibility of Zeno-machines 
in relativistic spacetimes

In the previous sections, I argued that both Einstein’s 
special relativity and Russell’s solution to Zeno’s dichot-
omy paradox align nicely with the B-theory of time and 
the eternalist view. In this section, I will suggest that Ze-
no-machines are coherent under the eternalist B-theo-
retical framework, particularly when Einstein’s relativity 
theories are taken into account. One of the main issues to 
be addressed is how to bridge the gap between the infinite 
iterative process and the transfinite end state of the su-
pertask. A sensible choice would be to approach this issue 
from a relativistic perspective: is it possible to find a refer-
ence frame to perform the infinite iterative process, and 
yet another distinct reference frame to present the com-
putational result? Could this relativistic spacetime config-
uration enable Zeno-machines?

Relativistic spacetimes have already been suggested as 
a fruitful framework to hypothetically perform the infinite 

7 ∑∞
n=0

 (– 1)n

8 For a comprehensive analysis of well-established supertask paradoxes due to heterogeneous indeterminate end-state configurations 
including Ross’s paradox, see Earman and Norton (1996).
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iterative process of supertasks, due to the time dilation that 
occurs as consequence of the difference between reference 
frames in inertial systems. Pitowsky (1990) has proposed the 
idea of a bifurcated supertask, defining a spacetime in general 
relativity, in a scenario similar to the twin effect thought ex-
periment of special relativity: a slave machine is placed at a 
world line γ

1
, such as that it can compute its infinite iterative 

process in its own (infinite) time, while an observer, placed 
at a different world line γ

2
, will acknowledge the result of the 

computation. Pitowsky invents a tale about verifying Fermat’s 
last theorem:9

While [the mathematician] M [at γ
2
] peace-

fully cruises in orbit, his graduate students 
[at γ

1
] examine Fermat’s conjecture one case 

after the other. […] When they grow old, or 
become professors, they transmit the holy 
task to their own disciples, and so on. If a 
counterexample to Fermat’s conjecture is 
ever encountered, a message is sent to M. 
In this case M has a fraction of a second to 
hit the brakes and return home. If no mes-
sage arrives, M disintegrate with a smile, 
knowing that Fermat was right after all (cf. 
Earman and Norton, 1993, p. 25; Pitowsky, 
1990, p. 83).

Earman and Norton (1993) have pointed to some phys-
ical inconsistencies in this story, however: M at γ

2
 is actually 

accelerating at unbearable magnitudes and subject to g-forc-
es, so its cruise is not so peaceful after all, and will certainly 
collapse. Whatever the case may be regarding these physical 
qualms, Pitowsky’s story also involves a more pervasive, con-
ceptual problem: in case Fermat’s conjecture is correct, M will 
never receive a signal from γ

1
, and there is no way for M to 

know if the reason for the absence of the signal is actually a 
confirmation of Fermat’s conjecture or not.

Malament-Hogarth spacetime was proposed to circum-
vent these difficulties, currently consisting of the most notable 
relativistic spacetime to postulate Zeno-machines, arranged 
in such a way as to avoid the problems of Pitowsky spacetime. 
Earman and Norton (1993, 1996) have successfully demon-
strated that Malament-Hogarth spacetimes are theoretically 
consistent in general relativity theory by satisfying Einstein’s 
field equations and energy constraints. This spacetime is de-
fined in such a way that there will be a future-directed time-
like curve γ

2
 from a point q to p, where q can be located at the 

causal future of the past endpoint of γ
1
, meaning that if no 

signal ever reaches event p, Fermat’s conjecture can be con-
firmed as actually right, as expected in Pitowsky’s thought ex-
periment. Several other authors have entered the debate over 
Zeno-machines in Malament-Hogarth spacetimes, raising 

new objections or presenting new arguments, but these will 
not be examined here.10

Objections

As briefly discussed earlier, the main problem for super-
tasks is to find a way to bridge Benacerraf ’s transfinite gap. 
Benacerraf suggests that a divergent series is indeterminate 
in its transfinite state; however, a convergent series may not 
be so. One approach would be to formulate the supertask in 
a semi-decidable manner. A classic example of an undecid-
able supertask would be to expand all decimal digits of p (the 
postulated, black box super-p machine is an instance of a ma-
chine that could perform this supertask). No supertask, bifur-
cated or otherwise, will be able to provide answers to contra-
dictory end-states, nor iterate through the cardinality of the 
continuum. However, a semi-decidable formulation could be 
admitted: instead of trying to fully expand the decimal digits 
of p, one could verify whether there is a sequence of 777 in 
the decimal expansion of p, as famously questioned by Witt-
genstein (Copeland, 2002).

Another point of disagreement is whether Zeno-ma-
chines actually compute. The issue here lies in the definition 
of both computability and Turing-machines. By definition, 
Zeno-machines compute what Turing-machines cannot 
compute. Also by definition, anything that computes is a 
Turing-machine. That makes Zeno-machines Turing-ma-
chines that are not Turing-machines. Contradiction looms 
again. There are some ways to avoid such a deadlock, such 
as extending the definition of computation or rejecting the 
idea that Zeno-machines actually compute. Shagrir (2004) 
proposes classifying Zeno-machines as non-Turing-ma-
chines on the same grounds as Benacerraf ’s response to 
Thomson’s Lamp, namely by defining the transfinite final 
state (ω + 1) of the computation as a physical state in-
stead of a Turing-machine state, so that the halting task is 
left to the physical layer of the system. Another alternative 
would be to extend the definition of a Turing-machine to 
include the transfinite state in the regular computation, as 
proposed by Hamkins and Lewis (2000), under the form of 
infinite-time Turing-machines.

There are other arguments, more conceptual in na-
ture, against the coherence of Zeno-machines or supertasks, 
which reject the metaphysical premises on which Zeno-ma-
chines are based. The first class of arguments stems from the 
adoption of an A-theoretical approach, rejecting Einstein’s 
special relativity and defining a privileged, absolute spa-
tio-temporal reference frame. Perhaps the most well known 
instance of this view is the form of neo-Lorentzian relativity 
put forward by Craig (2000) and Hinchliff (2000), among 

9 Fermat’s last theorem, or Fermat’s conjecture, states that there are no three natural numbers (a, b, c) such that can satisfy the equation 
an + bn = cn for any integer n > 2.
10 For a complete definition of Malament-Hogarth spacetimes and their applicability to Zeno-machines with sufficient mathematical 
strictness, see Earman and Norton (1993), Etesi and Németi (2002), and Welch (2008).
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others. This approach incorporates the empirical findings 
of relativity into the presentist A-theory, by positing an ab-
solute frame of reference, not unlike Lorentz’s æther, and 
acknowledging relativistic phenomena like time dilation 
and spatial contraction, always from the perspective of this 
privileged reference frame.

Since this hypothetical privileged reference frame can-
not be detected experimentally, from an empirical standpoint 
the proposal seems to have no significant consequence for 
general relativity, so Malament-Hogarth spacetimes could 
still theoretically be viable even under such assumptions. 
However, from a metaphysical perspective, this line of rea-
soning arguably falls victim to Occam’s razor, since special rel-
ativity is more consistent and surprisingly elegant in its sim-
plicity, in comparison to the neo-Lorentzian approach.

Craig’s defence of a privileged frame of reference and the 
presentist arrow of time seems to be driven by his theologi-
cal-causal view of metaphysics, and the same can be said of 
his finitist rejection of Cantorian transfinite arithmetic. But 
dismissing a highly praised and well-established theory by 
evoking theological premises makes a weak philosophical ar-
gument in itself (Balashov and Janssen, 2003).

Another possible critique comes from finitism, which 
tends to follow from intuitionism (much like presentism it-
self ); as a consequence, the concept of Zeno-machines would 
equally be rejected. Ironically, the introduction of the idea of 
supertasks by Weyl (1949) is elaborated as a finitist argument 
for the impossibility of supertasks. Nonetheless, finitism is a 
hot topic in philosophy of mathematics and set theory, and 
falls beyond the limits of this essay.11

Finally, there are a couple of remaining critiques of the 
standard interpretation of special relativity yet to be ad-
dressed. The first, from Markosian (2004), uses an a priori 
argument in order to reduce special relativity to a theory 
based exclusively on empirical evidence, a philosophically aus-
tere theory, as he puts it, and thus rejects the existence of rel-
ative simultaneity, as implied by relativity theory. The second 
critique comes from Craig, a presentist himself, and curiously 
proposes a distinct objection: that special relativity is based on 
postulates devoid of proper empirical import (Balashov and 
Janssen, 2003).

Both objections miss important aspects of special relativ-
ity theory. As defined by Einstein, special relativity is a theory 
of principle, with a strong deductive structure. Yet relativity is 
consistently corroborated by empirical evidence. Markosian 
dismisses the deductive structure of relativity, basing his argu-
ment on empirical verificacionism only, while Craig ignores 
the empirical evidence for relativity. These points can be tak-

en as evidence of the contingency of both the philosophical 
austere and empirically devoid objections; I thus opt to dismiss 
both of them.

Conclusion

In this essay I have argued that Zeno-machines are co-
herent, at least in a specific relativistic theoretical setting; that 
relativity theory is well aligned with McTaggart’s B-theory of 
time; that the B-theory of time is also consistent with Russell’s 
resolution of Zeno’s paradox; and thus that Zeno-machines 
can be seen as integrating the cohesive B-package theory of 
time, as coined by Boccardi (2013).

In the previous section I discussed a few objections to 
Zeno-machines and concluded that these objections can be 
circumvented by accepting the B-theory of time. However, I 
also noted that supertasks are still bound by computability 
limits and so must be formulated at least as semi-decidable 
problems, bound by denumerable infinity, unlike other hy-
percomputing black box oracles.

It is also clear that beyond the ontological aspect, there 
are important physical limits to be considered. Berkenstein 
bound and Bremermann’s limit12 are probably serious chal-
lenges to infinity machines, and there is no viable technolo-
gy to implement such devices. In addition, epistemic limits 
in general relativity theory still need to be expanded, and 
thus Zeno-machines are completely implausible in the actual 
world, both now and in the foreseeable future.

Besides these physical limits, Aaronson has also pro-
posed a normative argument against Zeno-machines:

We should immediately be skeptical that, 
if Nature was going to give us these vast 
computational powers, she would do so in 
a way that’s so mundane, so uninteresting 
(Aaronson, 2013, p. 31).

This statement resonates with the problem of whether 
Zeno-machines are computing machines or not. Aaronson’s re-
mark is certainly appealing for most computer scientists, since 
one of the core activities of theoretical computer science con-
sists in finding ingenious algorithms to solve hard computation-
al problems. So, from a normative standpoint, I agree with Aar-
onson and Shagrir: Zeno-machines are not Turing-machines, as 
they deviate beyond the core of theoretical computer science; in 
this sense, I think that hypercomputation is a misnomer for this 
class of para-computational, hypothetical machines.

11 For a few examples of the finitism/infinitism debate, see Bendegem (1987) and Dummett (1975); in relation to the metaphysics of 
time, see Dummett (2000).
12 In physics, the Berkenstein bound is a theory that implies an upper limit on the entropy that can be contained within a finite spatial 
region with a finite amount of energy. In computer science, the Bremermann’s limit is a theory derived from Berkenstein bound that 
postulates the upper computational speed of a self-contained computational system. For an in-depth examination on computational 
physical limits, see Markov (2014).
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Nonetheless, there is certainly room for fresh research 
on all these issues, in both theoretical and practical terms, in 
philosophy, physics, mathematics and computer science, par-
ticularly for general relativists.

In the classical Turing conception of a computing ma-
chine, there is no reference to the time elapsed in each op-
erational step, and the common intuition of absolute time in 
our privileged, earth-bound frame of reference is implicitly 
assumed, since it conforms to the most common human in-
tuitions about the natural “flow” of time. The same can be said 
about classical Newtonian physics. Nonetheless, the image of 
unorthodox models springing from scientific and metaphys-
ical theories is very captivating, as the ontological debate on 
the nature of time’s passage positively enriches both science 
and philosophy, even if common intuitions are challenged. As 
Kuhn said:

Scientific revolutions are inaugurated by a 
growing sense, again often restricted to a 
narrow subdivision of the scientific commu-
nity, that an existing paradigm has ceased 
to function adequately in the exploration of 
an aspect of nature to which that paradigm 
itself had previously led the way (Kuhn, 
1962, p. 92).

Thinking along these lines, the debate over the meta-
physics of time could be seen as a by-product of a clash of sci-
entific paradigms dating back, in terms of its deep conceptual 
origins, to pre-Socratic times. Last, to deny the possibility of 
supertasks and Zeno-machines, one has to deny Einsteinian 
relativity and its contemporary developments both in the sci-
ences and philosophy. It seems to me that to reject such pos-
sibilities is a high price to pay, for the sake of preserving one’s 
cherished intuitions.
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