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Abstract

In this paper we investigate explanatory proofs in mathematics. We
do this via an extended case study from descriptive set theory. The
aim is to shed light on what makes explanatory proofs explanatory.
Building on earlier work, we argue that there may be more than one
notion of explanation in operation in mathematics: there does not
seem to be a single account that ties together the different explanatory
proofs we find in the various areas of mathematics. We then attempt
to give a characterisation of the different notions of explanation in play
and how these sit with accounts of explanation found elsewhere.

1 Introduction

We are interested in explanations in mathematics. These are some-
times called intra-mathematical explanations and involve one mathe-
matical result being explained in terms of further mathematics. For
example, some proofs are explanatory: they do more than merely show
that a given theorem is true; they demonstrate why the theorem is true.
It is an interesting, open question whether explanation in mathematics
is always connected with a proof of a theorem. While there is good
reason to suspect that proof may not be the only locus of explanation
in mathematicsﬂ it is, at least, one such locus. For present purposes,
we set aside the issue of non-proof-based explanation and concentrate
on explanations arising from proofs.

Explanation in mathematics is important for a number of reasons.
For a start, such explanation is clearly not causal so is not accommo-
dated by causal accounts of explanation, such as those advanced by
Lewis (1986). At least as traditionally construed, mathematical facts
are necessarily true, so counterfactual accounts of explanation run into
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2 Levels of Explanation

trivialism issues when applied to mathematicsﬂ In light of all this,
mathematical explanation is an interesting test case for theories of ex-
planation and presents problems for any ambitions for a single, unified
theory of explanation (see Reutlinger et al. (2022). Of course, mathe-
matical explanation is interesting in its own right. In this paper, we are
less interested in the broader philosophical issueﬂ and more concerned
with understanding mathematical explanation in its own terms.

In pursuit of this goal, it is instructive to look at theorems that
have different styles of proofs. In particular, it is good to look at
explanatory proofs and non-explanatory proofs of a particular result.
The fact that such pairs of proofs exist for some theorems helps estab-
lish that it is not the theorem itself that is explanatory or not. The
explanation seems to reside in at least some proofs. Moreover, looking
at such pairs of proofs allows us to identify the explanatorily-relevant
differences between the proofs and thus help identify what makes a
proof explanatory. This, in turn, helps us get a grip on what a theory
of explanation in mathematics might look like. Also of interest are
pairs of proofs of a particular theorem that each has some claim to
being explanatory but in different ways (or perhaps at different levels
of generality).

Thus far, the philosophical literature on mathematical explanation
has mostly focussed on examples of proofs from elementary number
theory, Euclidian geometry, and the like. Focussing on such basic
mathematics is understandable. Indeed, it is usually advisable to use
as simple an example or case study as is needed for the task at hand.
And, of course, examples from elementary mathematics will be acces-
sible to a broader range of readers. The problem with this, however,
is that we run a risk of developing an account of explanation that is
based on too limited a stock of examples and does not do justice to
mathematics as a whole. We think it is important to draw examples
from different areas of mathematics. We hold this view for a couple
of reasons. First, if we focus too narrowly on elementary examples,
we might be misled about the nature of mathematical explanation in
higher mathematics. We need at least some examples from advanced
mathematics. Second, there may well be different explanatory goals
and even different standards of proof in different areas of mathemat-
ics. We thus must consider examples from at least some of the many
different branches of mathematics. Ideally, we would draw examples
from across all areas of mathematics. This is impractical in a paper
such as this. Instead we see this paper as a contribution to this larger
task: the diversification of examples needed for informed philosophical

2The core idea of a counterfactual account of explanation is that A explains B just in
case the following counterfactual holds: had A not been the case, then B would not be the
case. But in mathematics, both A and B are necessary, so the counterfactual in question
has an impossible antecedent so is trivially true (at least, according to the usual semantics
for counterfactuals). There has been some work on extending such counterfactual accounts
to deal with mathematical explanation by invoking counterpossibles (see |[Baron et al.
(2020)).

3See Mancosu| (2008); [Colyvan| (2018) for more on this.
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discussion about mathematical explanationﬁ Our main focus will be
on proofs in one advanced area of modern mathematics — descriptive
set theory —where there has been some very interesting debate over
mathematical explanation in dichotomy theorems.

Finally, we note that we need to draw on the judgements of math-
ematicians about which proofs are explanatory, if we are to respect
mathematical practice here. It is all too easy for philosopher’s judge-
ments about which proofs are explanatory to be clouded by other philo-
sophical commitments (e.g. in metaphysics, in epistemology, and in the
philosophy of explanation). In a naturalist spirit, we see our task to be
that of taking the judgements of mathematicians and trying to make
philosophical sense of these.

2 Fermat’s Little Theorem

Before we get to our main case study in descriptive set theory, it will
be useful to warm up with an elementary example. This will help to
get a feel for the issues in question. The example of this section is from
number theory and is known as Fermat’s Little Theorem[]

Theorem 1 (Fermat’s Little Theorem). If p is prime and a is a posi-
tive integer such that p { a (p does not divide a), then a?~* = 1 (mod p).

There are many different proofs of this theorem. Arguably many of
these proofs give different insights into the theorem and forge connec-
tions with different branches of mathematics. Here we’re content to
provide sketches of three different proofs and make some suggestions
about their relative explanatoriness.

2.1 A Number Theory Proof

Consider the set of p — 1 integers S = {a, 2a,3a,...(p — 1)a}. None of
these integers is divisible by p, for if p | ja (i.e. p divides ja) for 1 < j <
(p — 1), then, since p { a, we’d have the impossibility: p | j. Moreover,
no two of the integers in S are congruent modulo p. If they were, we’d
have j and k less than (p — 1) such that ja = ka (mod p). But since
p 1 a, this means that j = &k (mod p) but this is impossible since both
7 and k are less than p — 1. This means that the least positive residues
(modulo p) of the members of S are the integers 1,2,3,...(p — 1). So
a-2a-3a,---(p—1)a=1-2-3---(p—1) (mod p). Thus a?~(p—1)! =
(p—1)! (mod p). Since (p—1)! and p are relatively prime, we can divide
both sides of the last equivalence by (p — 1)! to give us the required
result: a?~' = 1 (mod p)[f]

This proof uses only number-theoretic resources and has some claim
to being explanatory. It shows that the result holds because of facts

4There has already been some work in this direction, e.g. [Lange| (2017); [Colyvan et al.
(2018).

®Thanks to Hannes Leitgeb for suggesting this example and for his mathematically-
informed intuitions about which of the proofs is more explanatory.

A version of this proof can be found in [Rosen| (1988).



4 Levels of Explanation

about prime numbers, divisibility, and the like. In essence, we have a
number-theory result spelled out in terms of the properties of numbers.
Such proofs are valued in number theory and are called “elementary
proofs” and are contrasted with some proofs that proceed via meth-
ods from complex analysis. It is not clear that elementary proofs in
number theory are valued for their explanatoriness but this is a fair
assumption. After all, if we have a theorem about prime numbers, we
could reasonably expect that an explanation of this would be in terms
of properties of prime numbers —not rely on facts about analytic func-
tions on the complex domainm This proof fits the bill and seems to
give us insights into why the theorem holds. But can we do better?

2.2 A Group Theory Proof

It is straightforward to show that G = {1,2,3,...p — 1}, with the
operation of multiplication (mod p), is a group. Next we reduce a
modulo p so we can assume that 1 < a < p— 1. That is, a € G. Let
k be the smallest positive integer such that a* = 1 (mod p). Then the
set containing the numbers 1, a,a?,...a* !, reduced modulo p, forms
a subgroup of G with order k. We then invoke Lagrange’s Theorenﬂ
to show that k divides p — 1 (which is the order of G). So we have
p — 1 = kn, for some positive integer n. Thus a?~! = ¢ = 1" =
1 (mod p), as requiredﬂ

This proof shows that Fermat’s Little Theorem is an instance of
a more general group-theoretic result. At least, the proof places this
number-theoretic result in a broader context of group theory. Indeed,
Lagrange’s theorem is the key to this particular proof. It is worth not-
ing that there are group-theoretic proofs that do not invoke the full
generality of Lagrange’s theorem but, instead, prove the crucial step
directly by proving, in effect, a special case of Lagrange’s theoremm
It is the generality delivered by this proof that gives it its claim to
explanatoriness. While Fermat’s Little Theorem is a number-theoretic
result, this group theory proof, we think, is more explanatory. But
this does raise an interesting question about whether it is generality
that matters most or proving a result in a particular area by appealing
to details of the area in question["] The number theory proof in the
previous section had the latter virtue. We might think of this earlier
proof as delivering a local or intrinsic notion of explanation, while the
group theory proof offers a more unifying or global notion of explana-
tion. Indeed, these might be thought of as distinct axes of evaluation
of a proof, both relevant in their own right, but not always offering

"The preference for elementary proofs in number theory resonates with Hartry Field’s
Field| (2016) argument preferring intrinsic explanation in science.

8This theorem states that the order of any subgroup of a finite group G, divides the
order of G.

9A version of this proof can be found in [Weil and Rosenlicht| (1979).

YFuler provided such a proof [Euler| (1761)).

"This raises the interesting question of whether levels of generality might correspond
to levels of explanation.
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a best balance between the two. We will return to such issues in our
discussion of the major case study presented in the next section.

2.3 A Combinatorial Proof

As before, assume that p is prime and a is a positive integer such that
p 1 a. Suppose we have a different coloured beads and we wish to make
necklaces with p beads in each. First we place p beads on a string
and we note that there are aP such possible strings. We discard the
strings consisting of beads of only one colour. This leaves a? —a strings.
Now we join the ends of the strings to form the necklaces. We note
that some of the necklaces are cyclic permutations of others. While
the cyclic permutations are distinguishable as untied strings, they are
indistinguishable as necklaces. Since there are p cyclic permutations of
the beads on the string, and p is prime, the number of distinguishable
necklaces is (a? — a)/p and this must be an integer. From this the
result follows[™]

This is an interesting proof. It uses the least sophisticated mathe-
matics: there’s no group theory or even much by way of number theory
here. Moreover, the appeal to necklaces helps with visualisation. In-
deed, the proof has the reader build a mental model in the service of
delivering the result in question. For these reasons, this proof is very
useful pedagogically. It is explanatory in the sense that it helps new-
comers to number theory get a grip on Fermat’s Little Theorem. But it
also has some claim to being explanatory in the sense of revealing the
real reason that the result holds. After all, the construction of neck-
laces and discarding duplicates is, in a sense, just some do-it-yourself
group theory. Or rather, what we have here is a particular instance of
the group-theoretic approach but without invoking the full generality
of group theory. There is no appeal to groups or Lagrange’s theorem
to be seen in this proof, yet it is a particular instance of Lagrange’s
theorem, applied to the case at hand, that lies at the heart of this
proof. So this proof might be thought to have many of the virtues
of the group theory proof but without the full generality afforded by
group theory. This proof thus does not (explicitly, at least) forge a
connection between number theory and group theory. For this reason,
it might be argued that this proof is, indeed, explanatory but perhaps
not as explanatory as the more unifying group theory proof.

Nothing hangs on our tentative suggestions about the relative ex-
planatoriness of the above three proofs. We simply note that if these
proofs all have some claim to explanatoriness, arguably, it is for differ-
ent reasons. Moreover, it seems that explanatoriness comes in degrees;
we are not dealing with an all-or-nothing concept here.

12This proof can be found in |Goloumb| (1956).
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3 Dichotomy Theorems in Descriptive Set
Theory

This case study is from descriptive set theory, a sub-area (or perhaps
even a neighbouring area) of set theory that is more strongly con-
nected to standard mathematics than the more abstract, logical areas
of common set theory. Here we will outline an example from recent
descriptive set theory that showcases different aspects of explanatori-
ness in the proofs of a class of theorems: the dichotomy theorems. This
class encompasses a number of theorems which are based on a classi-
cal result by Cantor and then generalised to ever more abstract levels.
Our focus here lies on the existence of two main proof types for these
theorems, where the introduction of the second proof type signified a
strong discontinuity in proving such theorems. In the following we will
give the argument that both proof types present us with elements that
make them explanatory, albeit in very different ways.

The main aim of giving this case study is to present an example
about explanatoriness from very recent research, something that is
missing in the literature on mathematical explanation. We think that
such an example can shed further light on the complexities of mathe-
matical explanation and its impact on recent research. In particular,
our example will show that the search for explanatoriness is a major
motivating factor for producing new and fruitful research, leading to
fundamental discussions in the expert community and influencing the
direction of research. Furthermore, we will show how a type of plural-
ism in explanatoriness can occur that is related to different sub-areas
in mathematics and their respective communities.

Studying such an advanced example brings some peculiarities in
presentation as well as content. We will usually not be able to give the
whole proofs under consideration or even a detailed outline of them,
as the mathematical background theory is too technical and would
involve more setting up than we can accomplish here. Instead, we
will present the main mathematical intuitions behind the results in
question, leaving the details to textbooks and articles on the subject.
However, we think that these limits in exposition are compensated
by some unique insights with which examples from recent research
provides us.

One advantage is the possibility to observe current discussions about
explanatoriness and related questions by mathematicians themselves.
We can see this more clearly in recent research because we have access
not only to the formalised content as presented in textbooks or papers
but also to informal material such as slides from talks, programmatic
research statements and discussions with the mathematicians them-

selves[T3]

13For historical case studies, similar things can sometimes be found in correspondences
or in cases the theorems are especially surprising (for such a case study see [Hafner and
Mancosu| (2005))).
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Further, when considering recent research we are often presented
with a far more complex and advanced mathematical setting, making
it hard for an average investigator into explanatoriness to develop an
intuition of her own that goes beyond reconstructing the reasoning of
the experts. Here we have to solely rely on the intuition about explana-
toriness of the mathematicians in the relevant field thus making our
approach more independent from our own views on the matter. The
complexity of recent mathematical research can also highlight problems
with accounts of explanatoriness that are not so clearly seen when con-
sidering examples from more elementary mathematics. One instance
for this is that of the explanatoriness of parts of proofs. For example,
one could ask whether for a proof to be explanatory, do all the proofs
of all the lemmata, theorems or basic facts that are used in it have to
be explanatory as well? Typical examples from contemporary math-
ematics will make issues such as these more pressing, as they usually
rely on a wide-spread network of existing mathematical results.

Descriptive set theory is a part of set theory that studies definable
subsets of the real numbers in certain topological spaces. Although it
is considered to be a sub-discipline of set theory, it is also connected
to more mainstream mathematics — areas such as topology and func-
tional analysis.

Dichotomy theorems are a class of theorems that go back to the
beginnings of (descriptive) set theory. Indeed, as with so many things
in set theory, the earliest version of such a dichotomy theorem arose in
the works of Cantor when searching for a solution to the Continuum
Hypothesis (CH), the hypothesis that there are no infinite cardinals
strictly between the size of the natural and the real numbers. One
partial result by Cantor (1884) implies that the CH holds for closed
sets, i.e. sets that contain all of their limit points. This was the starting
point for a line of theorems, the set-theoretic dichotomy theorem (they
state either-or results), that generalise Cantor’s result step by step
by considering every more abstract definable subsets of the real line.
Together they provide detailed insight into the mathematical structure
of the continuum and constitute one of the core areas of descriptive set
theory.

Following the exposition of the history of set-theoretic dichotomy
theorems provided in Miller| (2012), we can see that the continuity
in ever more general versions of set-theoretic dichotomy results did
not transfer to the proof structure of these theorems. Instead, [Miller
(2012) points to a strong discontinuity between the proof of Cantor’s
theorem and early generalisations to Borel and analytic setﬂ on the
one hand, and, on the other hand, the proofs of a later generalisation
by [Silver| (1980) and subsequent work. There is a proof type for the
earlier theorems that has a mathematical construction at heart that is
considered to be especially informative (we will call this the classical
proof type). For the later theorems such a type of proof was not avail-
able for some decades. Instead, these proof relied on very advanced

M The definitions will be provided in the next sections, when the relevant theorems are
considered in more detail.
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techniques from other areas of mathematical logic, in particular from
recursion theory and general set theory (we will call this the advanced
logic proof type). Only very recently B. Miller was able to find a proof
that relies on comparable principles as the one for the older theorems
(see for example Miller| (2011))). For a partial timeline of the theorems
and proofs, see the chart below:

Year Dichotomy Theorems Proof Type
1884 Cantor-Bendixon Classical
1916 Hausdorft/Alexandroff Classical
1917 Souslin Classical
1980 Silver Advanced logic
1990 Harrington-Kechris-Louveau Advanced logic
1999 Kechris-Solecki-Todorcevic (KST) | Advanced logic
to the present
2010 KST, Silver etc. (new) classical
to the present :

As we will see below, that classical proof type relies on the con-
struction of so-called Cantor-Bendixon derivatives (see Definition [2)).
The new classical proof scheme uses a similar construction while at the
same time forgoing the use of advanced logical techniques that where
introduced for the original proof of Silver’s Theorem. In the literature,
the classical and new classical proof scheme are therefore considered
as one type of proof and the advanced logic proof as another.

In the following we will analyse these two types of proofs with
respect to their explanatory value. As the main arguments for the ex-
planatoriness of the proof types often involves several of the dichotomy
theorems or the interrelations between them, we will mostly consider
(parts of) the class of dichotomy theorems instead of one single theo-
rem

3.1 The Classical Proof Schema
3.1.1 Early Dichotomy Theorems

As the classical proof schema goes back to the first version of a di-
chotomy theorem related to Cantor’s result in |Cantor| (1884). We will
start by considering this example in greater detail, as it provides the
basic construction that is used in the classical proof schema: “We can
think of the Cantor-Bendixon Theorem as a construction principle,
since it gives us a method of building up the closed sets from the ap-

5However, there are a few that come up more often, because of their general significance.
Amongst these are the Cantor-Bendixon theorem |Cantor| (1884)), Souslin’s theorem for
analytic sets Souslin| (1917)), and Silver’s theorem [Silver| (1980)).
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parently simpler perfect sets and countable sets.” (Moschovakis, 2009,
51)

Definition 1. [If]

o A space is perfect if all its points are limit points. If P is a subset
of a topological space X, we call P perfect in X if P is closed
and perfect in its relative topology.

e A point x in a topological space X is a condensation point if every
open neighbourhood of x is uncountable.

Theorem 2 (Cantor-Bendixon). Let X be a Polish space (i.e. a sep-
arable completely metrisable space). Then X can be uniquely written
as X = PUC, with P a perfect subset of X and C is countable and

openE

This theorem can be proven in a quite simple manner, where we
provide a construction of the partition of X:
P ={z € X : xis a condensation point of X} and C = X \ PE
However there is also a more general construction mechanism for
the perfect set. The idea is that the perfect set we are looking for is a
specific set in a decreasing transfinite sequence of closed subsets of the
space X. The definition goes as follows:

Definition 2. For any topological space X, let
X' ={x € X :x is a limit point of X}.

We call X' the Cantor-Bendizon derivative of X. Then X' is closed,
X s perfect if and only if X = X'. Repeating this definition trans-
finitely many times gives rise to the following construction: Let X< be
the iterated Cantor-Bendixon derivatives for all ordinals o, defined as

follows:
X=X,
Xa+1 — (Xa>/7
XN = () X, if X is limit.
a<A

Then (X“)acorD 18 a decreasing transfinite sequence of closed sub-
sets of X.

It can now be shown that the perfect kernel P of the Cantor-
Bendixon Theorem is X“°, where «g is a countable cardinal for which
X% = Xay for all o > g (that such an aq exists follows from a more
general fact about specific descending Sequences)E

16Unless marked otherwise, the following definitions, theorems, and proofs are taken
from [Kechris| (1995)). See there for more details and background.

"To better see the connection with the later theorems, consider a different version of
this theorem: Suppose that X is a Polish space and C' C X is closed. Then exactly one
of the following holds: Either C is countable or there is a perfect subset of C.

18Tt remains to show the desired properties of P and C and prove the uniqueness of the
partition; see (Kechris, [1995| 32).

19See (Kechris| [1995, 33-34) for the full proof.
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3.1.2 The Explanatory Value of the Classical Proof
Type

It is interesting to note how these two proof for the Cantor-Bendixon
theorem are evaluated: Although the proof via condensation points
is simpler that the proof via the derivative, the derivative proof is of
greater importance: Two of the most standard textbooks of descriptive
set theory, Kechris| (1995) and Moschovakis| (2009), point out that it is
important for generalisations of the theorem, for example for analytic
setsm But they also consider this proof to be “more informative”
than the simpler proof via condensation points@

We understand this use of “more informative” at least partly to
mean “more explanatory”: the more informative construction of the
Cantor-Bendixon derivative provides us with greater insight into the
general nature of these perfect sets. In other words, the easier construc-
tion (P as the set of condensation points) shows us what the perfect
set looks like, but the construction via derivatives additionally shows
us why the perfect set looks like that and this holds not only for one
theorem, but all the dichotomy theorems before Silver’s:

One was therefore led naturally to the belief that the abun-
dance of such derivatives is the driving force underlying the
great variety of dichotomy theorems in descriptive set the-
ory. (Miller| 2009} Introduction/A brief history)

What is this “driving force” in terms of explanatoriness? Con-
sidering the proof using the iterated Cantor-Bendixon derivatives, its
explanatoriness arises from the way in which the perfect set is built.
We construct a set that consists solely of limit points by “sorting out”
more and more of the non-limit points and at the same time closing
under limit points in transfinitely many steps. By construction, there
is a point in these steps, g, where this process stabilises and naturally
produces the desired set: the set that contains all and only its limit
points. Following this construction we are able to “observe” how the
perfect set grows out of the inherent properties of the construction (i.e.
the definition of the derivative operation, the property that such an g
exists etc.).

This construction fits a type of explanatoriness given by [Steiner
(1978)@ Steiner identifies two components explanatory proofs should
have, namely they should refer to a characterising property of an en-
tity in the theorem such that “from the proof it is evident that the
result depends on the property” (Steiner, [1978| 143); and they should

20Gee for example (Moschovakis| [2009, 59-60) for Souslin’s theorem

218ee (([Kechris| [1995] 33): “a more informative construction of the kernel”, the kernel
being the perfect set; |[Moschovakis| (2009, 59) calls the whole argument “more informative”.

22Here we do not claim, that Steiner’s account of explanatoriness is the best or “right”
one; we see it as one way of giving an account for the explanatoriness of a proof. In our
case, mathematicians see the proof as explanatory so we use Steiner’s theory to try to
ascertain what features make this proof explanatory. See |Colyvan and Resnik| (forthcom-
ing) for discussion of Steiner’s account and its influence in contemporary philosophy of
mathematics.
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provide the possibility of generalising the feature(s) connected to this
characterising property to produce other, related theorems and proofs.
Both features are present in the classical proof type: The characterising
property occurring in the theorem is the property of being perfect@
The classical proof refers to this property by showing how it can be
produced through the derivative construction. So one fundamental fea-
ture of the property of being perfect is its construction via derivatives
and this feature fulfils Steiner’s second criterion of generalisability. In
the case of the early dichotomy theorems, the classical proof fulfils this
in a very strong way, as varying this feature produces proofs for ever
more general dichotomy theorems.

Colyvan et al.| (2018) discuss the local dependence-based explana-
tion, a more general form of explanation stemming from considerations
in the philosophy of science@ Local dependence-based explanations
involve constructions of mathematical objects that then exhibit the
desired property in a deep way, meaning that the property “[does not
only follow] logically [...] from the construction in question, rather,
we mean that the [...] property naturally arises from the core proper-
ties of the construction in question.” (Colyvan et all 2018, 14). This
fits the classical proof quite well; we already used terms like “naturally
produces” and “grows out of” above to describe the construction of
the perfect set.

We conclude that the classical proof for the early dichotomy the-
orems is explanatory, based primarily on the intuition of mathemati-
cians such as Miller, Kechris and Moschovakis. But it is interesting
that this proof also fits well with a couple of philosophical accounts of
mathematical explanation.

3.1.3 A “New” Classical Proof

As we already noted, the classical proof type was not (and could not be)
used any longer for Silver’s theorem and later generalisations. However,
around 2010 Ben Miller developed a new proof for the Kechris-Solecki-
Todorcevic theorem a very advanced general dichotomy result, that
exhibits features that are very similar to the classical proof type. Miller
introduces what he calls the “graph-theoretic approach to dichotomy
theorems” @ This approach developed out of the modern work on di-
chotomy theorems such as Silver’s that generalise the older theorems
by focusing on definable equivalence relations, i.e. subsets of X x X for
a Polish space X that are definable in a certain manner (e.g. analytic,
Borel etc.). Most notable are the new dichotomies introduced in (Har-
rington et al., |1990)), (Hjorth and Kechris, [1997) and (Kechris et al.,

2350me of these theorems are also called “perfect set theorems”.
24Gee (Colyvan et al.,[2018| 13-16) for more information.

25See [Kechris et al.] (1999).

26Gee for example (Miller) [2012).
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1999)), where the latter one specifically produces dichotomy theorems
for graphs@

Miller based his work specifically on the notions used in (Kechris
et all [1999) using graphs and colourings of graphs to build up a new
proof for the Kechris-Solecki-Todoercevic (KST) dichotomy theorem
that had until then only a proof of the advanced logic type. This
proof is much too complex to present here; an excellent survey of this
approach is presented in (Miller, [2012). We therefore refer to this expo-
sition for more details and only discuss its details against the backdrop
of the classical Cantor-Bendixon derivative proof given above.

Most importantly, the heart of Miller’s proof consists of a transfinite
construction similar to the iterative Cantor-Bendixon derivative con-
struction, only that here we transfinitely construct Borel sets on which
a graph G has a Borel Rg-colouring. Miller himself considers this con-
struction to be the more complex analogue to the classical proof of the
early dichotomy theorems: “[One] obtains a classical proof [...] resem-
bling that of Cantor’s perfect set theorem via the Cantor-Bendixson
derivative.” (Miller, 2012} 6)

Although presenting us with a much more complex situation than
in the contexts of the earlier classical proofs, Miller’s proof inherits its
explanatory features from them. Miller himself remarks upon this fact
in a lecture given on his work on the subject, when his proof was still
work in progress (emphasis added):

The new ideas described here appear to be leading towards a
classical explanation of descriptive set-theoretic dichotomy
theorems. [...] the new proofs restore the intuition that
the abundance of derivatives is at the heart of the mat-
ter. (Miller, [2009, Conclusions/Advantages of the new tech-
nique)

Returning to Steiner’s account, we see a very similar picture to the
classical proof of the early theorems: we have a construction that builds
up the characterising feature we are after, the Xg-colouring of a graph.
The generalisability is a strong point in favour of this proof. Most
of (Miller, 2012) is concerned with presenting various ways in which
the graph-theoretic approach can be varied to produce a cornucopia of
variations, specifications, and generalisations of the previously known
dichotomy results. The generalisability of the graph-theoretic proof is
therefore much greater than that of the standard classical proof,which
ceased to be generalisable for Silver’s theorem and later ones.

When looking at the local dependence-based model of explanation
the situation is not that clear, as it will be nearly impossible for the
average investigator into mathematical explanation to judge the “nat-
uralness” of the graph-theoretic approach to dichotomy theorems. The
mathematical details are too complex and the mathematical theory on
which it rests is too expansive to be clearly and deeply understood
by more than a handful of experts in this area. We therefore have to

2T A graph is an irreflexive symmetric subset of the product of the underlying Polish
space.
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rely on the intuition of the experts to find evidence for explanatori-
ness. In our case, this intuition points towards a strong analogy in the
general set-up of the classical early proofs and the proof in the graph-
theoretic setting, going so far as to see the different types of transfinite
constructions used in the proof to produce the same type of entity,
namely derivatives. Furthermore, both constructions are judged to
be explanatory because of the same way in which they produce these
derivatives (see (Miller, 2009) and (Miller, 2012)). So based on our
judgement that the classical proof is explanatory in the way in which
it naturally gives rise to the property in question, the graph-theoretic
approach does the same in its respective construction.

3.2 The Advanced Logic Proof

We now turn to the advanced logic proof type that was initially devel-
oped by Silver to prove a further generalisation of the early dichotomy
theorems:

Theorem 3 (Silver). If X is a Polish space and E C X? a ®1 equiv-
alence relation, then either E has only countable many equivalence
classes or there exists a perfect set of pairwise inequivalent elements@

The proof given by |Silver| (1980) and the improvement thereof by
Harrington, (1976) and |[Louveau, (1979) are of a totally different kind
than proofs by derivative-style constructions. The Silver proof makes
use of an advanced logical set-up, relating to the other, perhaps more
“meta-mathematical” fields of set theory and mathematical logic in
general.

Silver himself used three logical tools in the proof of his theorem,
namely the technique of forcing— developed to show undecidability
results in set theory — methods from effective descriptive set theory —
a recursion theoretic analog to descriptive set theory — and iterates
of the Power Set axiom. Harrington simplified this by getting rid
of the last technique (therefore he called it a “powerless” proof in
Harrington| (1976)), but he still relied on forcing and methods from
recursion theory (for a different version see also [Harrington and Shelah
(1982)). Finally, Louveau| (1979) produced a proof that formulates the
forcing part of Harrington’s proof in a topological manner using the so-
called Gandy-Harrington topology@ It therefore does not use forcing,

28The expressions X7, &7, A" marks the complexity of a set (or formula that defines a
set) with respects to some mathematical concept. According to this complexity hierarchies
of sets can be given. One example is the Borel hierarchy, where the complexity is measured
with respect to taking countable unions and complements; a different example is the Lévy
hierarchy where formulas are more complex the more often their unbounded quantifiers
change. Here ®] refers to a co-analytic set, meaning that it is a complement of an analytic
(1) set; it is part of the Projective hierarchy.

For a definition see (Harrington et al. (1990 917)
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but still relies on techniques from topology and effective descriptive set
theory@

Both the proof of Harringtorﬁ and the proof type of Louveau are
still in use, however the topological (and not forcing-related) approach
of the latter seems to be used more often in the proof of recent di-
chotomy results. In particular, the use of effective methods is more
essential than the use of forcing because it is used in both proof types
and because the relationship between effective descriptive set theory
(EDST) and the non-effective, classical descriptive set theory (CDST)
has more wide-ranging applications, unrelated to dichotomy theorems.
We will therefore focus our account of explanatoriness on this advanced
logic part of the proof type.

Effective descriptive set theory goes back to the work of S. Kleene@
Initially he developed it outside of descriptive set theory by using meth-
ods from recursion theory to study sets. Instead of considering sets that
are definable in a certain manner, one studies their recursion-theoretic
analogues (that still are definable in a certain manner). As a basic ex-
ample, a set is recursive if it is computable in the sense that there exists
an algorithm that always decides in a finite amount of time whether
something is an element of the set or not. Likewise, a recursively-
enumerable set is one in which the algorithm decides in the above way
whether something is an element, but can sometimes return no answer.
These notions can be spelled out mathematically via functions and are
basic notions in the field of recursion theory.

It turns out, that there is a whole field of research analogous to
CDST that makes use of these recursion-theoretic notions. As an ex-
ample let us consider basic sets studied in CDST: Here a A9 pointclass
(in bold font) is one where the elements are closed and open. It cor-
responds to the (non-bold font) A pointclass that consists of the re-
cursive pointsets; likewise the 9 pointclass (open sets) correspond to
the XY pointclass (recursively enumerable sets) and so on (the effective
versions are the parameter free versions of the classical definitions).
Based on these relations, whole hierarchies of sets can be build up in
CDST that have an analogous version in EDST, giving rise to theorems
that have classical versions (the CDST version) and effective versions
in the formulation of EDST.

Based on Kleene’s work, Addison developed the exact analogies
between CDST and EDST. Since then, mathematical work has shown
that this is not a local phenomenon but holds on a fundamental level
in many areas of DST@

30Such a topological version of Harrington’s proof is also given in (Martin and Kechris)
1980), however, according to (Harrington et al., {1990, 907) it is based on seminar notes of
Louveau.

31Gee for example (Miller, [1995, 113-115).

32For short introductions into EDST with reference to dichotomy theorems see (Har-
rington et al., [1990, chap. 3) or (Martin and Kechris, [1980). For a more general account
see for example (Moschovakis| [2009)).

33For more on the historical development see Kanamori (1995) and (Moschovakis}, [2009)
Introduction).
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It therefore turns out that CDST and EDST are very tightly inter-
connected up to a point where both can be seen to be refinements of
the other (emphasis in the original):

Over the years and with the work of many people, what
was first conceived as “analogies” developed into a general
theory which yields in a unified manner both the classical
results and the theorems of the recursion theorists; more
precisely, this effective theory yields refinements of the clas-
sical results. (Moschovakis| 2009, 5)@

We will now study what role this relation plays in the proof of
dichotomy theorems; in particular we will study the example of the
KST theorem (Theorem 6.3 in (Kechris et al., [1999)) as this was also
the theorem for which the first “new” classical proof was developed.

Theorem 4 (Kechris-Solecki-Todorcevic). Let X be a Polish space
and G(X, R) an analytic graph (i.e. R C X? is analytic). Then ezactly
one of the following holds:

1. xB(G) < Ng or
2. gO Sc g

Here Gy is a certain minimal graph and x g(G) the Borel chromatic
number of the graph G (all of the definitions can be found in (Kechris
et al.;|1999)). We don’t need to understand the exact definitions of the
notions involved here to study this as an example of the set-up of the
advanced logic proof type. For that let us look at how the authors of
the theorems begin its proof. Directly after stating the theorem, they
continue in the following manner:

This result is proved using methods of effective descriptive
set theory, in particular the Gandy-Harrington topology.
In fact one has the following effective version (which by
standard arguments implies the above theorem) (Kechris
et al., 1999, 21)

They proceed to give the effective version:

Theorem 5. Let G = (NY, R) be a Xi-graph (i.e. R C (NY)2 is ©1).
Then exactly one of the following holds:

1. There is a A} colouring ¢ : NN — N for G;
2. gO Sc g

Again, we don’t need to grasp all the relevant definitions to see the
main point of this approach: we have a theorem that can be presented
in two versions, one using classical notions and one using effective
notions from descriptive set theory (e.g. in the first, the graph is given
as analytic, which is boldface X}; in the second, it is lightface ¥, the
effective version). This procedure goes back to proofs of dichotomy

34For the other direction of refinements see [Moschovakis| (2010)
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theorems in (Harrington et al., |1990)), where the classical results are
obtained by relativising the effective version to a parameter

To summarise the above: The advanced logic proof does not show
the connections with derivatives; in fact, it represents a clear break
with the proofs of the earlier dichotomy theorems. Instead, it links the
dichotomy theorems to EDST as well as providing a further example for
the connection of CDST and EDST. Thereby it both uses and strength-
ens the interconnection between CDST and its effective counterpart.
Through this interconnection, the proof situates the dichotomy the-
orems in the larger context of this general feature of descriptive set
theory and therefore unifies dichotomy theorems with other results
that make use of this feature as well.

This interconnection also lies at the heart of the explanatory value
that advanced logic proof provides us with. We mentioned above that
the classical proof type fits the local dependency-based account of ex-
planation as given in (Colyvan et al.l [2018). There the authors also
outline another kind of explanation, the global unification-based ex-

planationﬂ

[A] theorem is explained by deriving the theorem using a
proof that unifies many diverse theorems, and thereby show-
ing that the theorem is part of a very general, perhaps ut-
terly pervasive, pattern of theorems in mathematics. (Coly-
van et al, 2018] 15)

As we are already looking at a certain class of theorems— the di-
chotomy theorems in DST —that is defined by the common charac-
teristics of its members, let us rephrase this for this situation: a class
of theorems is explained by deriving its members using a proof type
that shows that the class of theorems is part of a very general, per-
haps utterly pervasive, pattern that is characteristic for the area of
mathematics it is a part of.

The advanced logic proof type provides us with this kind of ex-
planatory value: Looking at the pervasive pattern of the close analo-
gies between CDST and EDST that have shown themselves in various
areas before the advanced logic proof, shows how dichotomy theorems
are a very fruitful part of this pattern. As one example, consider how
this back and forth between DST and its effective version is used in
the proofs of dichotomy theorems such as Theorem 6.3 and Theorem
6.4 in (Kechris et all [1999] 21).

This back and forth can also be applied to earlier dichotomy the-
orems that are usually proven via the classical proof and give rise to

35See (Harrington et al., 1990, 916) for an introduction to such relativisations; the
complete proof on which the proof of the KST theorem depends on in a crucial manner
can be found in (Harrington et al., 1990, 919-927).

36This account can also be related to Kitcher’s unificatory account for explanations in
mathematics and the sciences, see for example (Kitcher| [1989). Indeed we think a case
can be made that the advanced logic type is a very good candidate for what Kitcher calls
the explanatory store for a system of beliefs.
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concrete examples of explanation. For an example that provides a con-
crete way in which the relation to EDST can be explanatory consider
the followingﬁ

Theorem 6 (Souslin, 1917). FEwvery uncountable analytic set has a
non-empty perfect subset.

Moschovakis points out] that an effective version of this result
provides an explanation of the theorem “in terms of definability rather
than size: an analytic set P has a perfect subset if it has at least one
member which is more difficult to define than P itself.” Such an ef-
fective version is due to a result by Harrison from 1967 (see Harrison
(1967)). After Silver’s theorem provided a proof of the advanced logic
type for the first time, it thereby established the connections to effec-
tive DST. So although Souslin’s theorem can be proven directly by an
easier classical-type proof, the connection to effective DST provide a
different kind of explanation.

This is also emphasised by Ramez Sami who points out the added
value the advanced logic proofs provide:

The present note greatly antedates the more recent “back-
to-classical” movement developed con maestria [by Ben Miller].
We still hold that effective methods will often yield simpler
proofs of stronger and finer results. (Samil (2019} 4039)

A similar sentiment with regards to explanatoriness was expressed
by Sami in an online event with one of the authors on 25 November
2020. We therefore have a similar situation for the advanced logic
proof type as with the classical proof type: intuitions by mathemati-
cians tell us that the proof is explanatory and we can back this up by
showing how it fits with at least some of the philosophical accounts of
mathematical explanation.

4 Conclusions

The dichotomy theorems in DST are good examples of how questions
of explanatoriness not only play a role in but also can direct mathe-
matical research@ The lack of a classical proof for Silver’s theorem
and further generalisations was the main motivation for searching, and
finally producing, a different proof that supplies us with a deeper un-
derstanding of the theorem, showing not only that it holds but also
why it holdsm This new proof led to a reconsideration of the field
of dichotomy results in descriptive set theory, not only by re-proving
already known theorems, but also by introducing a new approach to
this area that produces new theorems and new generalisations.

3"The authors would like to thank Yiannis Moschovakis for pointing out this example.

38In private communication with the authors; e-mail from 12 September 2020.

39This has been called into question for example by |Zelcer| (2013).

40B. Miller confirmed that this was his main motivation in reproving Silver’s theorem
and generalisations thereof. (Personal communication with one of the authors; virtual
meeting on 8 July 2020)



18 Levels of Explanation

These arguments and others given in Section [3:1]show that the clas-
sical proof can be considered to be explanatory. However, we have also
seen that there are arguments for the explanatoriness of the advanced
logic proof. This points towards a pluralist picture of what explana-
tion is in mathematics. Taking the intuitions of mathematicians as
our evidence, it might be argued that one type of explanatoriness is as
valid as the other, precisely because mathematicians’ intuitions do not
converge.

If we accept such a pluralist picture of explanatoriness, we might
ask where this pluralism comes from. For the case of dichotomy theo-
rems, let us outline one possibility@ Here, we can relate the different
intuitions about explanatoriness to the communities of different sub-
areas of DST. So, for researchers who primarily consider dichotomy
theorems from the classical point of view, focusing on inherent similar-
ities of the dichotomy theorems “from within” (i.e. the way in which
they are built up via derivatives and the inherent properties of objects
like perfect sets), the classical proof is more explanatory because it
provides one with a vivid picture of how the inherent properties of the
objects in question give rise to the various theorems.

If one approaches the dichotomy theorems from the viewpoint of
general descriptive set theory, where a lot of research has gone into
the interconnections between CDST and EDST, we consider the theo-
rems “from outside” and see them as one example for a more general
pattern in the theory. The advanced logic proof is thus seen as more
explanatory because it ties in with these general patterns.

Indeed, such sentiments were expressed by the mathematicians
themselves. B. Miller, for example, mentioned that people who deeply
work with dichotomy theorems prefer the classical proof, while it might
be different for people whose work is more closely connected to effective
DSTE So what mathematicians see as explanatory seems to be mo-
tivated by the epistemic interest they pursue in their practice. These
epistemic interests can be the search for basic entities that lie at the
heart of a collection of theorems— the search for overarching patterns
in mathematical reasoning etc.

We conclude that our main case study — the dichotomy theorems in
descriptive set theory —as well as the elementary example we started
with — Fermat’s Little Theorem from elementary number theory —
suggest a kind of explanatory pluralism. It would appear that whether
a proof is seen as more explanatory than another depends on the epis-
temic interests and goals of the practitioners. These epistemic interests
can be connected to (unofficial) research agendas or other practices of

"We do not claim that this is the only or even the main reason for every case of
pluralism in explanations. There is also the difficult task of distinguishing explanatoriness
from other virtues found in good mathematics and, indeed, determining what makes for
good mathematical proofs—such as those that Paul Erdos referred to as coming from
God’s book of the best proofs or simply “from the book” (Aigner and Ziegler| (2010)).
The virtues of good mathematics include beauty, simplicity, elegance explanatory power,
and so on (see [Taol (2007); Inglis and Aberdein| (2015))).

42Personal communication with one of the authors; virtual meeting on 8 July 2020.
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sub-communities of a discipline. In this sense, the explanatoriness or
otherwise of a proof must be assessed in relation to the wider mathe-
matical context in which it sits. Perhaps this is not surprising. But ac-
cepting such a context-sensitive notion of explanation in mathematics
would be a serious blow for those of us with monist leanings — those
who seek a single, elegant, and unified account of mathematical ex-
planation. For better or worse, we have good reason to believe that
explanation in mathematics is more complex and more interesting than
the monist would wish.

This raises interesting questions about the nature of any potential
pluralism. For instance, if there is explanatory pluralism in mathemat-
ics, does this arise because there are different levels of explanation in
operation in mathematics? As we have seen, there are different levels
of abstraction in mathematics and explanations arising at these dif-
ferent levels. It seems a good working hypothesis that these different
explanations correspond to different levels of explanation. But an alter-
native might be that the different explanations are in fact answering
different why questions—perhaps why questions pitched at different
levels of abstraction. What might these different why questions be? In
our experience, mathematicians tend to be interested in explanation in
an apparently unitary sense: why does the theorem in question holds.
On the face of it, at least, this looks like a single why question but
appearances may be deceptive here. Indeed, the lack of precision in
the question “why does the theorem hold?” may be hiding ambiguity
about exactly what is being asked. Is it an ambiguous question or is
it inviting different levels of explanation?

These interesting issues require much further work. Any attempt
to settle them now would be misguided. As things currently stand,
philosophical work on mathematical explanation is in its infancy. In
our view, work on mathematical explanation requires more case studies
to draw upon before we tackle some of the questions just raised about
the nature of any potential explanatory pluralism in mathematics@
The purpose of this paper is to provide a couple more case studies that
we trust will be helpful in addressing some of the many puzzles about
mathematical explanation@

43For obvious reasons, we do not want to develop a philosophical account of mathemat-
ical explanation based on a few examples from one or two areas on mathematics. Just as
an account of scientific explanation needs to work across all areas of empirical science, an
account of mathematical explanation should work across all areas of mathematics.

44Wed like to thank Neil Barton, Hazel Brickhill, Erik Curiel, Clio Cresswell, Ben
Eva, Stephan Hartmann, Anthony Henderson, Leon Horsten, Silvia Jonas, Deborah Kant,
Daniel Kuby, Randall McCutcheon, Ben Miller, Yiannis Moschovakis, Hannes Leitgeb,
Miklés, Rédei, Maté Wierdl, Geordie Williamson, and Alistair Windsor for very helpful
discussions on the topic of this paper. We are especially indebted to Alistair Wllson’s for
detailed comments on an earlier draft of this paper and for his many helpful suggestions.
Carolin Antos’s work on this paper was supported by the Volkswagen Foundation (Freigeist
Grant) and the Zukunftskolleg (University of Konstanz, Germany). Mark Colyvan’s work
on this paper was supported by an Australian Research Council Future Fellowship (grant
number: FT110100909) and a Carl Friedrich von Siemens Research Award of the Alexan-
der von Humboldt Foundation.
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