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Quantifiers as second-level concepts

In §21 of Grundgesetze der Arithmetik asks us to consider the forms:

a a2 = 4 and a a > 0

and notices that they can be obtained from a φ(a) by replacing

the function-name placeholder φ(ξ) by names for the functions ξ2 = 4 and

ξ > 0 (and the placeholder cannot be replaced by names of objects or of

functions of 2 arguments).

So the above forms can be regarded as values of the same function for

different arguments, which are, in turn, themselves functions.

Since the values of the second-level function a φ(a) are always

truth values, the functions is a second-level concept.
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Generalized Quantifiers

The modern study of generalized quantifiers begins with Mostowski [1957]

and continues with Montague [1974]. The work on generalized quantifiers

spans linguistics and mathematical logic, the linguists focusing on

quantifiers as tools for natural language semantics, and the logicians

focusing on the expressive power and properties such as axiomatizability,

decidability etc.

A quantifier Q over a domain D is just a collection of subsets of D:

Q ⊆ P(D).

For instance:

• ∀ = {D};

• ∃ = {X ⊆ D : X 6= ∅};

• ∃!k = {X ⊆ D : |X| = k};

• John = {X ⊆ D : John ∈ X}.
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Binary, ternary quantifiers

Some quantifiers are best viewed as n-ary relations over P(D). Here are

some examples:

• All A are B: All = {(A,B) : A ⊆ B}

• Some A are B: Some = {(A,B) : A ∩B 6= ∅}

• Most A are B: Most = {(A,B) : |A ∩B| > |A−B|};

• Twice as many A as B are C:

Twice = {(A,B,C) : |A ∩ C| = 2 · |B ∩ C|}.

Some binary quantifiers can be represented by means of the corresponding

unary quantifier applied to a Boolean combination of their arguments:

All[A,B] = ∀[−A ∪B)],

but for instance Most cannot be so represented.
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Classification of quantifiers

Quantifiers are distinguished by their arity as well as their adicity, where

the former is the number of arguments (formulas) they take, and the

latter is the number of variables of such formulas.

All(A,B) is a binary monadic quantifier, whereas Q(R) = 1 ⇔ ∀x∀yRxy is

a unary dyadic quantifier.

In general, the type of a quantifier Q can be represented by a type

〈n1, . . . , nk〉, where k represents the arity, and ni the adicity of the i-th

argument: Q ∈ 〈n1, . . . , nk〉 ⇐⇒ Q ⊆
∏

k

i=1
P(Dni).

Second order quantifiers are just collections (relations) of first-order

quantifiers. Consider the sentence ∃Pφ(P ): the quantifier has type 〈〈1〉〉

and can be identified with {X ∈ P2(D) : X 6= ∅}.

The distinction is semantical, not merely notational.
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Properties of quantifiers

Several important properties have been singled out for binary quantifiers

Q(A,B):

• Conservativity: Q(A,B) = Q(A,A ∩B);

• Right monotony: Q(A,B) and B ⊆ C implies Q(A,C) (all, most);

• Left monotony: Q(A,B) and A ⊆ C implies Q(C,B);

• Right anti-monotony: Q(A,B) and C ⊆ B implies Q(A,C) (no, few);

• Left anti-monotony: Q(A,B) and C ⊆ A implies Q(C,B);

• Permutation invariance: if π is a permutation of D, then Q(A,B)

holds iff Q(π[A], π[B]) holds.
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New quantifiers from old ones

Several constructions have been singled out to combine quantifiers to

obtain new ones.

ITERATION: Noun phrases such as John can be viewed as

arity-reducing (projection) operators. If R is a k + 1-ary relation, then:

John(R) = RJohn,

where Ra = {(x1, . . . , xk) : R(x1 . . . , xk, a)}.

This subsumes the monadic case, viewing true, false as 0-ary relations.

Then:

John kissed Mary = John(Mary(kissed))
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New quantifiers from old ones, cont’d

In general, define:

• R0 = {true, false}

• Rn+1 = P(Dn+1).

Then:

ARk = {Q : R ∈ Rn+k ⇒ Q(R) ∈ Rn}.

COMPOSITION: Quantifiers in ARk are closed under composition: if

Q1 ∈ ARn and Q2 ∈ ARk then Q1 Q2 ∈ ARn+k

Note that composition is associative, so we can write Q1 Q2 . . .Qn.
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First-Order Definability

A (binary) quantifier Q(A,B) is first-order definable over D iff there is a

formula φ ∈ L (P,Q) such that

〈D,A,B〉 |= φ.

For instance, at least two is first order definable.

A quantifier Q(A,B) is proportional (over finite D) iff

∃m,n ∈ N

[

Q(A,B) ⇔
|A ∩B|

|A|
≥
m

n

]

The quantifiers most, at least half, more than 10%, . . . are all proportional.

Thorem: Proportional quantifiers are not first-order definable.
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Cardinality Quantifiers

We single out two closely related quantifiers that deal with cardinality

restrictions:

• The Härtig quantifier : I(A,B) ⇔ |A| = |B|;

• the Rescher quantifier : R(A,B) ⇔ |A| > |B|. These quantifiers, first

introduced by Rescher [1962] and Härtig [1965], have been extensively

studied from a mathematical point of view.

• Härtig’s quantifier is definable from Rescher’s (using choice) but not

vice-versa: I(A,B) ⇔ ¬R(B,A) ∧ ¬R(A,B).

• Neither quantifier is conservative: the following both fail

� I(A,B) ⇔ I(A,A ∩B);

� R(A,B) ⇔ R(A,A ∩B).

• Both quantifiers are obviously permutation-invariant.

• Both quantifiers have type 〈1, 1〉 and hence are first-order.
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Detour: the neo-logicist program

With the recent neo-logicist work of Hale and Wright [2001] the

logical/epistemological status of cardinality notions (equinumerosity etc.)

has come into focus.

The neo-logicists focus on the so-called Hume’s Principle specifying

identity conditions for numerical terms:

The number of F = the number of G iff F ≈ G,

where F ≈ G is the second-order statement that there is a 1-1

correspondence of the F onto the G.

Hume’s principle has a privileged epistemological status (analytic,

explicative, constitutive of the notion of number).

The number of . . . operator maps concepts into the objects, in such a

way that equinumerous concepts are mapped into the same object. The

right-hand-side of Hume’s principle is usually taken to be logically

innocent (and the innocence seeps into the left-hand-side)
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Cardinality quantifiers and the neo-logicist program

The neologicists have claimed (at times) that Hume’s principle is (close

to) a logical truth, and that therefore, by implication, that only logical

notions are mentioned in it.

If the notion of equinumerosity is so logically innocent, it is interesting

then, to see what happens when we take the idea that equinumerosity is a

logical notion seriously.

In order to get an unobstructed view we consider this notion in

conjunction with only the barest of logical apparatus.
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The Frege quantifier F

We consider a first-order language L with formulas built up from

individual, predicate, and function constants by means of Boolean

connectives (∧, ∨, ¬, and →, say) and the quantifier Fx satisfying the

clause:

if φ, ψ are formulas and x a variable, then Fx(φ, ψ) is a formula.

So F x is a binary quantifier (like All) with the intuitive interpretation

(similar to that of the Rescher quantifier R) that there is an injection of

the φ’s into the ψ’s.

As for the Rescher quantifier, we abbreviate ¬Fx(φ, ψ) ∧ ¬ F x(ψ, φ) by

Ix(φ, ψ).
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Standard semantics for LF

A model M with non-empty domain D provides an interpretation for the

non-logical constants of L in the usual way (e.g., n-place predicates are

mapped onto relations ⊆ Dn, etc.)

Given a formula φ(x) and a function s assigning objects from D to the

variables of L , satisfaction M |= φ[s] is defined in the usual way, with the

clause:

M |= Fx(φ, ψ)[s] ⇔ ∃f : {s(x) : M |= φ[s]}
1−1
−→ {s(x) : M |= ψ[s]}.

Alternatively, if sa
x

is just like s, except “shifted” to assign a = a1, . . . , ak

to x = x1, . . . , xk (respectively), we can define:

JφKx

s = {a : M |= φ[sa

x]};

then the above clause becomes:

M |= Fx(φ, ψ)[s] ⇔ ∃f : JφKx

s

1−1
−→ JψKx

s .
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Expressibility in LF

• The standard first order quantifiers are expressible in LF:

� ∀xφ(x) = Fx(¬φ(x), x 6= x);

� ∃xφ(x) = ¬ Fx(φ(x), x 6= x).

• There is an axiom of infinity in the pure identity fragment of LF:

AxInf: ∃y Fx(x = x, x 6= y).

• AxInf is true in all and only the infinite models, and therefore, its

negation is true in all and only the finite models.

• As a consequence, compactness fails in LF.

• Let us abbreviate by Fin x(φ(x)) the statement that {x : φ(x)} is

Dedekind finite: ∀y¬ F x(φ(x), φ(x) ∧ x 6= y).
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Characterizing N

It’s easy to see that there is a sentence φ of LF(<) which is true if and

only if < has order type ≤ ω. Such a sentence says:

• < is a strict transitive linear order; and

• ∃x∀y(y 6= x→ x < y); and

• ∀xFin y(y < x).

Then φ ∧ AxInf is true precisely if < is a countably infinite linear order,

which can be conjoined with a set of arithmetical axioms (such as PA

minus induction) to characterize the standard model (N,+,×) up to

isomorphism.

As further consequences we have that:

• the set of LF(+,×) validities is not recursively axiomatizable

(although LI(<) validities are decidable);

• The Löwenheim-Skolem theorem for LF (and LI) fails vary badly.
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Further properties of F

It is well known that addition is not definable in first-order logic over the

structure (N, <), the following defines in LF:

a+ b = c⇔ (N, <) |= Ix(x < b, a ≤ x < c) :

a b

c

Further evidence of how badly Löwenheim-Skolem fails: there are

sentences φ1 and φ2 of LF such that φ1 is true in all and only the

successor cardinalities and φ2 is true in all and only the limit cardinalities.

Since N is categorically definable in LF, we can define a Gödel numbering

of finite sequences and finite sets, and hence implicitly define satisfaction.

Since by Tarski’s theorem satisfaction is not explicitly definable we have:

the Beth definability property fails in LF.
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Non-standard semantics for F

A general model M for LF provides a non-empty domain D,

interpretations for the non-logical constants, and a collection F of 1-1

functions f : A→ B with dom(f) = A, and rng(f) ⊆ B, for A,B ∈ P(D).

The satisfaction clause for the quantifier F then becomes:

M |= F x(φ, ψ)[s] ⇔ (∃f ∈ F)f : JφKx

s

1−1
−→ JψKx

s .

In practice, we expect F to satisfy certain closure conditions, such as, for

instance:

• For each A, the identity map on A belongs to F (including the empty

map on ∅);

• if f ∈ F and f : A→ B and x /∈ A and y /∈ B, then there is a g ∈ F

such that g : A ∪ {x} → B ∪ {y}.
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A system of axioms for F

Consider the following set of axioms for the general interpretation of LF:

1. Fx(φ(x), x 6= x) → ¬φ(t) provided t is free for x in φ (universal

instantiation);

2. Fx(φ, ψ) ∧ F x(ψ, θ) → F x(φ, θ) (transitivity);

3. ∀x(φ→ ψ) → F x(φ, ψ) (if A ⊆ B then |A| < |B|);

4. (F z(φ, ψ) ∧ ¬φ(x) ∧ ¬ψ(y)) → F z(φ(z) ∨ z = x, ψ(z) ∨ z = y)

(extension of injections).

These axioms are valid in every standard model. Axioms 1 and 2 are valid

in every non-standard model, regardless of closure conditions; Axiom 3

holds as long as the identity map belongs to F ; and axiom 4 holds in

models whose maps are closed under finite unions.

Claim: The axioms are complete for the class of non-standard models

satisfying the closure conditions.
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The existential quantifier ∃

• Just like F can be given a non-stantard or general interpretation, so

can ∃.

• Define a general first-order model M as providing a non-empty domain

D along with a collection E of non-empty subsets A ⊆ D.

• The satisfaction clause for the quantifier then becomes:

M |= ∃xφ[s] ⇐⇒ JφKx

s ∈ E .

• Notice that this quantifier is not permutation invariant, and hence its

logical nature can be questioned.

• Question: What is the logic of the non standard ∃?
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The logic of the generalized ∃

A general model ME provides a class E ⊆ P(D) \ {∅}.

An alternative is given by outer-inner domain models, where such a

model supplies a non-empty domain D as well as a (possibly empty)

subset D′ of D (the “inner domain”), with the clause:

M |= ∃xφ[s] ⇔ ∃d ∈ D′ : M |= φ[s(d/x)].

We can go back and forth between the two kinds of models by putting

E = {X ⊆ D : X ∩D′ 6= ∅}, and conversely D′ =
⋃

E . The two maps

preserve satisfaction and hence the two kinds of models give rise to the

same set of validities.

but the logic of outer-domain models is well known: it is the free logic

axiomatized by K. Lambert by dropping universal instantiation and

replacing it with the axiom ∃x(x = t) → (∀xφ(x) → φ(t)) or, better:

∀y(∀xφ(x) → φ(y)).
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Concluding questions

• The expressive power of F under the standard interpretation raises the

question whether it really is first-order. But being first-order is a genuine

semantical property, not a mere notational convenience.

• The same expressive power (even in the absence of an explicit notion of

number as contained in Hume’s principle) leads to the question of whether

cardinality really is a logical notion, and the implications this has for the

neo-logicist program.

• The expressive power of a genuine first-order quantifier further leads to the

conclusion that there is more to first-order quantifiers than ∃ and ∀.

• As to the general (non-standard) interpretation of ∃, we observed that the

quantifier is not invariant. Of course, we knew that the outer domain

semantics is also not invariant, but that semantics has been regarded as

artificial. In contrast, we now have a completely natural route to an

equivalent semantics.

• The non invariance of ∃ under the natural generalization leads to the

question of whether free logic really is logic.
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