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Abstract Every quantum state can be represented as a probability distribution over
the outcomes of an informationally complete measurement. But not all probabil-
ity distributions correspond to quantum states. Quantum state space may thus be
thought of as a restricted subset of all potentially available probabilities. A recent
publication (Fuchs and Schack, arXiv:0906.2187v1, 2009) advocates such a repre-
sentation using symmetric informationally complete (SIC) measurements. Building
upon this work we study how this subset—quantum-state space—might be char-
acterized. Our leading characteristic is that the inner products of the probabilities
are bounded, a simple condition with nontrivial consequences. To get quantum-state
space something more detailed about the extreme points is needed. No definitive
characterization is reached, but we see several new interesting features over those in
Fuchs and Schack (arXiv:0906.2187v1, 2009), and all in conformity with quantum
theory.

Keywords Quantum-state space · SIC-POVM · Bayesian · Interpretation

1 Introduction

When striving to grasp the meaning of quantum theory, an essential issue is to under-
stand its space of states. What is quantum-state space, and how does it compare to
classical state space and other possible theories?

An example of an approach widely used to compare quantum states with classical
states is to study the Wigner-function representation of the former. Quantum states
are almost like probability distributions over a classical phase space, but the catch
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is that these functions can be negative. With the purpose of differentiating quan-
tum theory from other theories—classical, or any of a wide variety of other strange
creatures—another approach has got a lot of attention lately. This is the convex oper-
ational framework [2–4]. From general considerations about measurements and mea-
surement outcomes (and the probabilities for those outcomes) one derives that the
state space of a theory is a convex set and measurements are related to the cone dual
to the cone having the state space as its base. The motivation for these studies comes
from quantum information theory with its no-cloning theorem, secret key distribu-
tion, teleportation, no bit-commitment and more. Within the convex-sets framework
one can consider more general theories and ask to what extent “quantum” features
appear in these as well. In the convex sets framework classical theory corresponds
to a simplex, the simplex of all probabilities, and the convex set of quantum states
is just the ordinary set of density matrices, that is, all positive-semidefinite unit-trace
operators on some complex Hilbert space.

We will consider a similar kind of representation of quantum states recently put
forward by one of us, Fuchs, together with Schack (F&S hereafter) [1]. See also
the contribution by Fuchs and Schack in this special issue [5]. By use of a special
measurement—a symmetric informationally complete (SIC) measurement—the set
of density matrices in finite dimensions can be mapped uniquely to a set of proba-
bility distributions over a fixed number of outcomes. In this way, the set of quantum
states can be seen as a convex set of probability distributions, with a single prob-
ability distribution corresponding to each state. But not all probability distributions
correspond to quantum states—quantum-state space is a subset of the probability
simplex. From this point of view, quantum-state space is a restriction of the standard
probabilistic case—namely, it is a statistical model [6]—as opposed to the common
view that quantum theory is a noncommuting generalization of probability theory. In
the following we will study how this restriction may be characterized. We will use
inequalities that depend on the Born rule in an interesting way. In this setting, the
Born rule concerns how to assign probabilities to the outcomes of one measurement
when given the probabilities for the outcomes of another, counterfactual, measure-
ment. The requirement that all the probabilities really are probabilities—that is, that
they are positive and sum to one—gives a restriction that tells us at least part of the
story of what quantum-state space looks like.

Additional criteria include requiring a special basis of distributions and a state-
ment about extreme points. These are either proposed or hinted at in F&S [1]. This
paper extends that work, demonstrating a few new properties for state spaces of this
variety. We also provide some alternative, clarified proofs for some of the previous
results in [1]. We call our state spaces “QBist”, alluding to the term “QBism” coined
by F&S for the quantum-Bayesianism interpretation of quantum mechanics they are
developing. The point of view taken seriously in their approach is that all probabili-
ties, thus also quantum states, are personal in the Bayesian sense.

In the following section the SIC-representation of quantum states is reviewed. Sec-
tion 3 is the main part of the paper, where we explore aspects of the characterization
of QBist state spaces. Finally in Sect. 4 we briefly discuss where things stand.
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2 Quantum States in Probability Space

A set of d2 one-dimensional projectors {�i}d2

i=1 on a Hilbert space Hd is called sym-
metric informationally complete, or SIC for short, if

tr(�k�l) = 1

d + 1
, k �= l. (1)

The value 1
d+1 is implied by requiring the trace inner product of any pair of projectors

to be equal.
The corresponding operators Ei = 1

d
�i then form a symmetric informationally

complete positive operator-valued measure (POVM)—since Ei ≥ 0 and it can be
shown that

∑
i Ei = 1—and thus may be seen as an physically possible measure-

ment. We will use the term SIC for this measurement as well [7, 8]. It is informa-
tionally complete because the operators Ei span the full d2-dimensional space of
Hermitian operators on Hd , also a consequence of (1). And it is called symmetric
because the Ei sit at the vertices of a regular simplex in the space of all operators;
this is a geometrical reformulation of the equality of the trace inner products in (1).
Moreover the SIC-measurement is minimal since the operators Ei are linearly in-
dependent, which entails that no measurement with fewer POVM-elements can be
complete. In the simplest case, d = 2, the four SIC-projectors sit at the vertices of a
tetrahedron within the Bloch ball (Fig. 1).

From the informational completeness of a SIC, it follows that a quantum state,
usually thought of as a density matrix ρ, is fully determined by the d2 probabilities
for the outcomes of such a measurement,

pi = tr(ρEi). (2)

Thus if we choose a fiducial SIC-measurement, every quantum state can be repre-
sented as a probability distribution p in the simplex �d2 of all probability vectors
(pi ≥ 0 and

∑
pi = 1) with d2 components. The density matrix is given by

ρ =
d2
∑

i=1

(

(d + 1)pi − 1

d

)

�i = (d + 1)

d2
∑

i=1

pi�i − 1. (3)

The coefficients for the SIC-projectors in this expansion are simple functions of the
probabilities due to the symmetry of the SIC.

Fig. 1 The SIC-projectors
when d = 2 are the corners of a
regular tetrahedron inscribed in
the Bloch sphere
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Although every quantum state is uniquely represented by a probability vector, not
all probability vectors correspond to quantum states. A simple example is to take
p1 = 1 and the rest pi = 0 in (3)—this will not give a positive-semidefinite operator.
Thus the density matrices map to a subset of the probability simplex. When the map-
ping is restricted to be solely between the set of density matrices and this subset, it
becomes both one-to-one and onto.

For the last ten years, there has been a lot of research on SICs, and some also
earlier under the name of equiangular lines (a selection of references: [9–13]). To
define SICs is very simple but to find them is really hard. To this date they have
been found numerically only in dimensions d ≤ 67 (though with precision 10−38). A
list of SICs can be found at a web-page by A. J. Scott [14]. Furthermore, analytical
solutions are known in dimensions d = 2–15, 19, and 24 [15]. Since the SICs have
been found in all dimensions where a serious numerical search has been done, we
have significant faith they probably exist for all finite dimensions, and in the following
we shall assume so.

Let us turn to the description of quantum-state space as a subset within the prob-
ability simplex. Density matrices for pure quantum states are rank-one projection
operators; these are the Hermitian matrices with ρ2 = ρ. Using the expression (3)
this translates to

pk = 1

3
(d + 1)

∑

ij

αijkpipj + 2

3d(d + 1)
, k = 1, . . . , d2, (4)

where αijk are structure constants defined by �i�j = ∑
k αijk�k (more about the

structure constants is in [1]; we will not use them here). These d2 coupled quadratic
equations determine which probability vectors p correspond to pure quantum states.
An equivalent requirement for pure density matrices is that the operators squared and
cubed have unit trace [16]:

trρ2 = 1, trρ3 = 1. (5)

The corresponding equations for the probabilities for a SIC-measurement are then:

(i)
∑

i

p2
i = 2

d(d + 1)
,

(6)

(ii)
∑

ijk

αijkpipjpk = 4

d(d + 1)2
.

This way we get one quadratic equation and one cubic. (i) says extreme probabilities,
that is, the probability vectors corresponding to extreme elements of the convex set
of quantum states, lie on a sphere. (ii) includes the structure of the SICs and encodes
which part of the sphere actually corresponds to quantum states. The full quantum-
state space is the convex hull of the probabilities fulfilling (i) and (ii).

Since the extreme points lie on a sphere the length of every vector will be less than
or equal to the radius, hence the scalar product of any two probability vectors will be
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bounded:

p · q ≤ 2

d(d + 1)
. (7)

There is equality if and only if p = q and p is an extreme point. Looking at the trace
inner product of a pair of density operators ρ and σ in terms of the corresponding
probabilities p and q we can also get a lower bound on p · q. That is, since

trρσ = d(d + 1)p · q − 1, (8)

and trρσ ≥ 0, it follows that

p · q ≥ 1

d(d + 1)
. (9)

In F&S [1] (and [5]) it is argued that the Born rule, in its deepest understand-
ing, concerns how to assign probabilities for the outcomes of any possible mea-
surement in terms of the probabilities for the outcomes of a counterfactual two-step
measurement—the first step being a SIC measurement that will not actually be per-
formed in the real-world case. Translating the Born rule to SIC-language, one finds
that the probability of getting outcome j if one performs a measurement described
by POVM-elements Fj is

Pr(j) =
∑

i

(

(d + 1)pi − 1

d

)

r(j |i), (10)

where the conditional probabilities r(j |i) are given by

r(j |i) = Tr�iFj . (11)

The probability r(j |i) is the probability for obtaining the outcome related to Fj if
one first had performed the SIC-measurement and obtained outcome i. In the SIC-
representation the stochastic matrix with elements r(j |i) uniquely specifies the mea-
surement operators Fj . The law of total probability states that the probability of out-
come j is

∑
i pir(j |i) in the case that the SIC-measurement will first be performed.

The Born rule as in (10) is the modification needed to take into account that quantum
coherence is kept when the SIC-measurement will not be performed. Since proba-
bility theory itself says nothing about what the probability Pr(j) (for a performed
experiment) will be in terms of pi and r(j |i) (for an unperformed one), the Born rule
can be thought of as an empirical addition to probability theory.

Next in their development, F&S assume the Born rule in these terms to be a starting
point of quantum mechanics—it is taken as a postulate. Probabilities are thus assumed
to be calculated according to formula (10), where p now stands for the prior for the
outcomes of some standard measurement apparatus. The requirement that everything
in (10) that should be a probability (i.e. Pr(j), pi , and r(j |i)) actually is a probability
(a set of numbers between zero and one and that sum to one) then gives restrictions
on what probabilities can correspond to valid quantum states. When this is combined
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Fig. 2 Sometimes it is
convenient to have the uniform
distribution c as origin. The
probability p will then be
represented by the vector p′

with some assumptions regarding measurements, the inequalities (7) and (9) can be
re-derived.

The assumptions in short are the following. The probabilities p are assumed to
span the probability simplex (hence cannot be represented as points in a lower dimen-
sional space). The Principle of Reciprocity has the content that the set of valid priors
for the standard measurement is the same as the set of posteriors which one might
assign for the standard measurement after having performed any other measurement.
Already this requires that the so-called basis distributions—see (15)—be valid. These
are the probabilities we would assign for the outcomes of a SIC-measurement per-
formed on one of the SIC-projectors. The next assumption is more complicated.
A measurement is said to have in-step unpredictability (ISU) if the probability as-
signment for its outcomes is uniform whenever the prior p is uniform. Consider the
posteriors (from which the uniform distribution is updated) after an ISU measurement
with d outcomes has been performed. The assumption is that one of the basis distri-
butions can be obtained as one of the ISU-measurement posteriors, and furthermore
that if this had been our prior (as it can be by the Principle of Reciprocity) we would
be certain of the outcome of the ISU measurement. For details, further explanations,
and motivations, see F&S [1, 5]. This leads to the inequalities (7) and (9) that we
know are true for valid quantum states.

Here we will investigate some implications of these inequalities. The question is,
how much of the structure of the set of quantum states is already contained in this
constraint?

Before we go on to our study, we note a minor re-expression of probability distri-
butions and the inequalities. It is often helpful to represent points in the simplex by
vectors from the midpoint of the simplex rather than as probability vectors p from the
origin in the space coordinatized by outcome probabilities pi . These vectors are par-
allel to the hyperplane (defined by

∑
pi = 1) containing the simplex (Fig. 2). They

are given by

p′ = p − c, where c =
(

1

d2
, . . . ,

1

d2

)

. (12)

c is the midpoint vector, the uniform distribution. Whenever ′ is used it refers to a
vector parallel to the hyperplane. The condition pi ≥ 0 for probabilities translates to
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p′
i ≥ − 1

d2 . With this we get a second version of inequalities (7) and (9),

−1

d2(d + 1)
≤ p′ · q′ ≤ d − 1

d2(d + 1)
. (13)

3 QBist Convex Sets

We will consider subsets S ⊂ �d2 of the probability simplex for which the following
holds:

(a) S is consistent, which means that for any p,q ∈ S

1

d(d + 1)
≤ p · q ≤ 2

d(d + 1)
. (14)

(b) S is maximal in the sense that adding any further p ∈ �d2 to S makes it incon-
sistent.

(c) S contains d2 probability vectors called basis distributions; these are

ek =
(

1

d(d + 1)
, . . . ,

1

d(d + 1)
,

1

d
,

1

d(d + 1)
, . . . ,

1

d(d + 1)

)

, k = 1, . . . , d2,

(15)
with the larger value 1

d
in the kth position.

(d) Every p for which the upper bound in (a) is attained when q = p belongs to at
least one set {pk} with a maximum number m of maximally distant points allowed
by (a). This means that the lower bound in (a) is attained for every distinct pair
pk and pl . All together,

pk · pl = δkl + 1

d(d + 1)
, k, l = 1, . . . ,m. (16)

Sets S satisfying these criteria will be called QBist state spaces.

Remarks (a) Is, as stated in the previous section, a consequence of taking the Born
rule as it appears in SIC-language as a postulate together with a few other assump-
tions. Instead of the bounds (14) in (a) we frequently use the equivalent bounds given
in equation (13) for vectors in the hyperplane of the simplex.

(b) Is reasonable if we want to accept all probability assignments not ruled out
by the other conditions. Note however, that as stated it is not clear that a set which
is maximal can fulfill also (c) and (d). (For example, it might be that the extension
to a maximal set will always violate (d), although we have seen no indication to
something like that.)

(c) Might seem an ad hoc assumption at first sight, but the validity of these prob-
abilities, that is that they should be included in the state space, is, as mentioned in
the previous section, a natural fallout of the analysis by F&S [1] leading to inequali-
ties (a).

(d) Introduces a maximum number m, which will be shown to be equal d . This
criterion is a way to “spread out” the set S as much as possible and at the same time



Found Phys (2011) 41: 564–579 571

ascertain an equal footing for all probabilities that are extreme in the sense that p · p
attains the upper bound in (a). This requirement seems rather strong and we guess it
might be crucial for ultimately re-obtaining quantum-state space. Nonetheless, it will
play a minor role in the investigations of the present paper.

We will see that already the seemingly simple requirements (a) and (b) of consis-
tency and maximality lead to nontrivial features for the sets S , some of which are
discernable also for the set of quantum states. When we further impose (c) and (d),
about basis distributions and maximally distant points, we know yet only of one ex-
ample of such a set S , the actual quantum-state space.

3.1 Maximally Consistent Means Quantum When d = 2

We first have a quite detailed look at the special case when d = 2. From (a) in the
form of (13) we get

−1

12
≤ p′ · q′ ≤ 1

12
. (17)

The upper bound gives a sphere (with radius 1/
√

12). The lower bound doesn’t give
any constraint since even two “opposite” vectors on the sphere (as if q′ = −p′) do
not give a smaller scalar product. Thus, because of (b) every p′ within this sphere
should be included in S . Now we need to ascertain that all vectors in the sphere are
probabilities, that is, that the whole sphere lies within the probability simplex, in this
case a tetrahedron. Well, the probability p = ( 1

3 , 1
3 , 1

3 ,0) is one of the boundary points
of the tetrahedron being closest to the midpoint c—it is the midpoint of a facet—and
the distance is 1/

√
12. Since this is the same as the radius of our sphere, we see that

it actually is the insphere of the tetrahedron (Fig. 3).
(c) requires vectors like e1 = ( 1

2 , 1
6 , 1

6 , 1
6 ) to belong to S. They are on the sphere

since e1 · e1 = 1
3 is just the upper bound in (a). The maximal distance is for antipodal

points on the sphere, p and −p, so the maximum number of maximally distant points
is m = 2. Obviously every point on the sphere is in a set of two antipodal points and
thereby (d) is satisfied too.

This unique maximally consistent set S is actual quantum-state space in SIC rep-
resentation. When d = 2, pure density matrices are determined by trρ2 = 1, which
is equivalent to the sphere condition. The more complicated equation (ii) in (6) is
automatically satisfied in this case; it only becomes nonredundant in d ≥ 3.

Fig. 3 When d = 2
quantum-state space is the
insphere of the probability
simplex. It is fully characterized
by maximality and consistency
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3.2 Convexity, Compactness and Strict Bounds

All QBist state spaces S are convex. For, if p1 and p2 are in the set, so is p = λp1 +
(1 − λ)p1, 0 < λ < 1. This follows from the linearity of the scalar product and the
maximality of S .

S is bounded by the sphere centered at the midpoint of the simplex with radius r ′,
determined by (13) to be given by

r ′2 = d − 1

d2(d + 1)
. (18)

Because of condition (c) it follows that this is the minimal circumscribed sphere
of S . The basis distributions ek lie on the sphere and they form a regular (d2 −
1)-dimensional simplex (since they are all at the same distance from each other)
inscribed in the sphere. Later we show that this sphere is not completely contained
within the probability simplex for d > 2.

Because the inequalities in (a) are not strict, S is not only bounded but also closed
and thus compact. For, consider any point p̄ ∈ S̄ , S̄ being the closure of S . By defin-
ition there is a sequence pt in S converging to p̄. For each pt in the sequence and all
q ∈ S it holds that

1

d(d + 1)
≤ pt · q ≤ 2

d(d + 1)
. (19)

This inequality will then hold also for the limit point p̄ and we have by maximality
that S = S̄ .

Using the terminology of convex sets, S consists of two distinct subsets: the ex-
treme points (vectors that cannot be obtained as a convex combination of any others
in S ) and the mixed points (convex combinations of extreme ones). Especially every
point in S on the sphere will be extreme. In the language of quantum mechanics
extreme points are pure states.

From these geometrical considerations one can see that the upper bound in (a) is
strict,

1

d(d + 1)
≤ p · q <

2

d(d + 1)
, (20)

whenever q �= p, or when p = q but p is interior to the sphere. We can also prove it
algebraically by contradiction: Assume there is equality in the upper bound for p · q.
This would give

∑

i

(pi − qi)
2 = p · p − 2p · q + q · q ≤ 2

d(d + 1)
− 2

2

d(d + 1)
+ 2

d(d + 1)
= 0,

(21)
where the inequality comes from the terms p · p and q · q. If there is a strict inequality
in the middle this line is just false, thus we have a contradiction to the assumption
that p · q attains the upper bound. In the case of equality in the middle—that is, if
both p and q are on the sphere—the conclusion is that p = q.
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3.3 Maximally Distant Points

Consider probability distributions pk and pl in S that fulfill (16) in condition (d).
They are points on the sphere such that the vectors pk and pl are “as orthogonal as
possible”, without violating (a). Or, when considering the vectors p′

k and p′
l , they

are as anti-parallel as possible. Criterion (d) includes a maximum number m of such
maximally distant points. In F&S [1] this value was shown to be at most d by means
of considering a Gram matrix. Here we give a more elementary argument for this
bound.

The set of m maximally distant points will form a regular simplex �m. The open-
ing angle δm between the lines from the midpoint of such an (m − 1)-dimensional
simplex to the vertices is cos δm = −1

m−1 . Now assume the bounds in (13) are attained:

p′
k · p′

k = p′
l · p′

l = d − 1

d2(d + 1)
, p′

k · p′
l = −1

d2(d + 1)
. (22)

Let θ be the angle between p′
k and p′

l and combine the equations above:

p′
k · p′

l = |p′
k||p′

l | cos θ = |p′
k|2 cos θ = p′

k · p′
k cos θ (23)

⇒ cos θ = p′
k · p′

l

p′
k · p′

k

= −1

d − 1
. (24)

This is the same as for the opening angle of a (d − 1)-dimensional simplex �d .
Thus we can choose maximally distant points to form a simplex centered at the mid-
point of the probability simplex �d2 , or equivalently the midpoint of the sphere, and
then there will be d maximally distant points. One can think of the vertices of this
lower dimensional simplex �d as situated at a (d − 1)-dimensional “equator” of the
(d2 − 1)-dimensional sphere. Any set of maximally distant points not centered at the
midpoint of the sphere will have fewer than d vertices.

That there can be no more than d maximally distant points is clearly seen if we
calculate the length of the vector G′ = ∑m

k=1 p′
k , which of course has to be positive:

G′ · G′ =
m∑

k,l=1

p′
k · p′

l =
m∑

k,l=1

dδkl − 1

d2(d + 1)
= m(d − m)

d2(d + 1)
. (25)

These considerations also show that the uniform mixture—the convex combina-
tions with equal weights—of a set of d maximally distant probabilities has to be the
uniform probability distribution c:

|G′| = 0 ⇔
d∑

k=1

1

d
p′

k = 0 ⇔
d∑

k=1

1

d
pk = c. (26)

Note that the above argument makes no reference to the nonnegativity of the com-
ponents of the pk . That is, it was shown that there can be at most d maximally distant
points on the sphere, but can these points all really be probabilities? Or, would making
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explicit use of the constraint that all the components of all the vectors be nonnega-
tive force a tighter upper bound that is something below d . As will be seen in a later
section, some parts of our sphere are actually outside the probability simplex. That
is, some parts of the sphere are not elements of S . So this is not a trivial question.
However, that it is possible to orientate a simplex �d so that it is contained in the
probability simplex �d2 can be seen by invoking quantum mechanics. An orthogonal
basis in Hilbert space Hd corresponds, via the SIC-representation, to a set of d maxi-
mally distant points (see (8) and (9)). It would be nice not to have to refer to quantum
mechanics and SICs to show that our bound is tight, but so far a direct proof eludes
us.

3.4 Maximal-Valued Probabilities

A vector like p = (1,0, . . . ,0) is outside the sphere from condition (a), so we cannot
have an outcome probability pi = 1 for any vector in S . What then, is the largest
probability pi allowed? That the maximal value is pi = 1

d
can be seen in several ways.

In F&S [1] it is shown by looking at the scalar product with the basis distributions,
included in S according to condition (c). We have

p · ek = 1

d(d + 1)
+ pk

1

(d + 1)
, k = 1, . . . , d2. (27)

This is greater than the bound in (a) unless pk ≤ 1
d

for all k. So the basis distributions
are examples—in fact the only ones—of probability vectors with a maximal-valued
element.

Even if we do not assume (c), that is that the basis distributions have to be included
in S , the same bound holds. This follows because e1 is a probability vector on the
sphere that bounds S , whether it is in S or not. Moreover e1 has one large component
p1 = 1

d
with the rest being equal and smaller. From symmetry it must be the point

on the sphere closest to the vertex (1,0, . . . ,0) of the probability simplex. Hence no
other point on the sphere or within it—in particular no point in S —can have a larger
probability than 1

d
for the first outcome, or of course for any other outcome either.

A formalized version of the argument goes like this. Start with the sphere condi-
tion, assume p1 is maximal-valued, use a variant of the Schwarz inequality, and that
the probabilities sum to one:

2

d(d + 1)
=

d2
∑

i=1

p2
i = p2

1 +
d2
∑

i=2

p2
i ≥ p2

1 + 1

d2 − 1

(
d2
∑

i=2

pi

)2

= p2
1 + 1

d2 − 1
(1 − p1)

2. (28)

A little algebra and this gives p1 ≤ 1
d

, where there is equality if all the other pi are
equal.

The quantum density operators corresponding to the basis distributions ek are the
SIC-projectors �k themselves. That probabilities are bounded is a general feature
of informationally complete measurements, since the POVM-elements are then not
orthogonal.
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3.5 Zero-Probabilities and Broken Symmetry

We have seen that the extreme value pi = 1 is not possible, but what about probability
vectors with some probabilities pi = 0? If any component of a vector p is zero this
means that it lies on the boundary of the probability simplex. If there are n zero-
probabilities pi = 0, then p is a point in a face of dimension d2 −n− 1. The question
of how many zero-probabilities are possible is thus a question of how far out the
sphere reaches, which faces it intersects.

The point in a (d2 − n − 1)-dimensional face that is closest to the midpoint
c = ( 1

d2 , . . . , 1
d2 ) of the simplex is ( 1

d2−n
, . . . , 1

d2−n
,0, . . . ,0), or some permutation

thereof, at a distance dface given by

d2
face = (d2 − n)

(
1

d2
− 1

d2 − n

)2

+ n

(
1

d2 − 0

)2

= n

d2(d2 − n)
.

This should be compared to the radius r ′ of the sphere given by (18). Requiring
r ′2 ≥ d2

face gives the bound

n ≤ 1

2
d(d − 1) (29)

for the maximal number of zero-probabilities. Furthermore, an equality means
that the sphere just touches the face at its midpoint, that is, a point like p =
( 2
d(d+1)

, . . . , 2
d(d+1)

,0, . . . ,0). Up to permutations, this is the only probability vector

on the sphere having 1
2d(d − 1) zeroes, and hence 1

2d(d + 1) nonzero probabilities.
Similar to our alternative for finding the maximal probability via the Schwarz

inequality, this bound on the maximal number of zero-probabilities can be obtained
from the following line of reasoning:

1 =
( ∑

{i|pi �=0}
pi

)2

≤ (d2 − n)
∑

{i|pi �=0}
p2

i ≤ (d2 − n)
2

d(d + 1)
. (30)

We have seen that the sphere reaches to faces of dimension 1
2d(d + 1) − 1. Lower

dimensional faces of the probability simplex lie fully on the outside of the sphere,
whereas the sphere pokes out of the simplex through the higher dimensional faces
(unless d = 2 which was studied earlier). So some parts of the sphere have to be
excluded from the set S , since those points do not correspond to probabilities (Fig. 4).
Furthermore, because of the lower bound in (a), still more points have to be excluded:
As we will see, it means that at least some vectors with n = 1

2d(d − 1) zeroes cannot
be included in S .

Assume the vector

p = 2

d(d + 1)
(1, . . . ,1
︸ ︷︷ ︸
1
2 d(d+1)

,0, . . . ,0
︸ ︷︷ ︸
1
2 d(d−1)

) (31)

is in the set S . This is compatible with criteria (a)–(c)—especially it can be verified
that the scalar product, p · ek , with the basis distributions are within the limits of (a).
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Fig. 4 A schematic picture of how the sphere constraining the set S relates to different faces of the
probability simplex (note that this only indicates the situation in higher dimensions; when d = 2 the sphere
is inscribed in the tetrahedron)

For each ek with k > 1
2d(d + 1), this scalar product attains the minimum, hence p

is maximally distant to those ek . Whether (d) can also be fulfilled is too early to
say.

If p is allowed, it might seem reasonable that the vectors obtained from permuting
the components of p, for example

p̃ = 2

d(d + 1)
(0, . . . ,0,1, . . . ,1), (32)

should also be allowed. But p · p̃ is too small, they are too far apart, whenever d > 3.
Those vectors valid together with p are permutations where the number of nonzero
components not altered is at least

s1 ≥ 1

4
d(d + 1). (33)

The upper bound p · p = 2
d(d+1)

is obtained when all nonzero components “over-

lap” and the lower bound p · pσ = 1
d(d+1)

when half of the nonzero components
“overlap” after some suitable permutation σ . This is clearly only possible when d

or d + 1 is divisible by 4; for other dimensions consistent pairs of vectors of this type
is not maximally distant. The number of zero components in same position will be
s0 ≥ 1

4d(d − 3), and, to play around with numbers a little more, the total number of
components in the same position has to be s ≥ 1

2d(d − 1).
The above is a straightforward consequence of the limits in criteria (a), but it is still

rather surprising. We are studying subsets S of the probability simplex �d2 , and we
are requiring that the d2 basis distributions in (d), symmetrically positioned relative
to the probability simplex, is in our set. Despite this it turns out the symmetry of the
set is not the permutational symmetry of the simplex. This broken symmetry does not
hinge crucially on including one of these max-zeroes vectors, the situation is similar
for other vectors.
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Fig. 5 A state vector which is orthogonal to three linearly dependent SIC-vectors in H3 and its corre-
sponding probability representation

If a quantum state p in the SIC-representation contains zero-probabilities pi = 0,
this is equivalent to the corresponding density matrix ρ being orthogonal to the SIC-
projectors �i (from (2)). Consider the SIC-vectors in Hilbert space Hd . Take any
d − 1 of them and they will for sure lie in a (d − 1)-dimensional subspace (or lower
if they are linearly dependent). Then there exists a pure state |ψ〉 orthogonal to these
chosen d − 1 SIC-vectors, and the corresponding SIC-representation p will have ze-
roes for these components. So from quantum mechanics we see that d − 1 zero-
probabilities pi = 0 will for sure be possible; this is a lower bound on the upper
bound on the maximal number of zeroes.

Finding an upper bound within quantum mechanics boils down to the question of
how many of all d2 SIC-vectors can be confined into a (d − 1)-dimensional subspace
of Hd . The best known general bound is 1

2d(d − 1), which is the same as the one we
found for any consistent set S .

In dimension d = 3 no permutation of 1
6 (1,1,1,1,1,1,0,0,0) will be excluded

from the pairwise scalar product. When no zeroes “overlap” the lower bound in (a)
will be attained and thus the points are maximally distant. But not all those vectors
are quantum states in a SIC-representation. Dimension 3 is special in that there is
a one-parameter family of distinct SICs known. Some of these have the property
that for any two SIC-vectors chosen there is a third one linearly dependent (Fig. 5).
Equivalently, for any two pi = 0 there is a third one which can also be zero. Also
for some of the other SICs one can find three SIC-vectors in a subspace, thus the
potentiality of having three pi = 0, but there are not as many possible combinations.
Still other SICs might not allow more than two zeroes.

In dimensions d = 4 and d = 5 exhaustive searches for the known SIC-sets show
that there is no set of more than d − 1, that is 3 respectively 4, SIC-vectors in a
(d − 1)-dimensional subspace. But in dimension 6 there is again sets of d vectors
confined in a (d − 1)-dimensional subspace. We do not know what the situation is for
higher dimensions.

In dimension d = 4 the exclusion of some permuted probability vectors might be
more forceful when considered together with condition (d). Start with a vector of
the form (31). To find vectors pσ maximally distant, and also pairwise maximally
distant, is a combinatorial task. By trial and error we found that there can be no
more than three, which is less than the m = 4 bound on maximally distant points.
Perhaps this is a clue that no probabilities with as many as 6 zeroes occur for quantum
states.
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4 Discussion

We have imposed four criteria (a)–(d) on a set S that is a subset of the probability
simplex �d2 . In short they are as follows:

(a) Places upper and lower bounds on scalar products—the set should be consistent.
(b) Requires the set to be maximal (no more point can be added consistently).
(c) Includes d2 basis distributions.
(d) Is a condition regarding maximally distant points.

To some degree these have been motivated by F&S [1] when they, in their advance-
ment of Quantum Bayesianism, propose that the Born rule seen as an empirical addi-
tion to probability theory is the primal law of quantum mechanics. Our aim here has
been to begin investigating what one can say about this type of set S , and to see how
close examples of the type are to quantum-state space (in SIC-representation).

In dimension 2 the only maximally consistent set is quantum-state space itself. In
higher dimensions we can think of other maximally consistent sets, but we do not
know of any other than quantum-state space that fulfills all the conditions (a)–(d).

As an example of another maximally consistent set, start with a small cap of the
circumscribed sphere, that is, everything in the (d2 −2)-dimensional spherical hyper-
surface within a solid angle which is not too large so that the bounds in (a) are ful-
filled. Extend this set by adding points consistently until it is maximal. Such a set is
not quantum-state space. It cannot be “quantum” since every point in the cap is ex-
treme and this set of extreme points is thus of too high a dimension. A set built in this
way will violate condition (d) about maximally distant points. For, consider a point
somewhere in the interior of the cap and another point maximally distant from the
first. This second point will be too far away from some points in the neighborhood of
the first (unless d = 2, when maximally distant points are antipodal points).

The argument above shows that the requirement of maximally distant points con-
strains the dimension of the set of extreme points (at least those in the circumscribed
sphere). All extreme points of quantum-state space—the pure states—lie on the cir-
cumscribed sphere and form a connected set of dimension 2d − 2. Is it possible to
deduce these properties from the criteria (a)–(d)? We hope future work will give an
answer. An additional criterion could be that all extreme states must lie on the circum-
scribed sphere, that is, attaining the upper bound in (a). Yet it might not be needed.
If the set S could be confined to one end of the probability simplex there would
be extreme points not on the sphere, but this cannot be the case because the basis
distributions in (c) are spread out in all directions.

When discussing extreme states and sets of maximally distant states it is worth
mentioning a very special property of quantum-state space. Any quantum state, al-
though in (d2 − 1) dimensions, can be written as a convex combination of no more
than d extreme states. Furthermore, these extreme states form a set of maximally
distant points (the probability distributions corresponding to an orthogonal basis in
Hilbert space). For a general point in a general convex set of the same dimension
one would need a convex combination of d2 extreme points by Carathéodory’s the-
orem. Thus quantum-state space holds a unique position with respect to some very
basic convexity properties. We wish we knew whether one could prove such a tighter
bound for QBist state spaces.
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Quantum state space in the SIC-representation is determined by two equations (6):
(i) asserts that extreme states lie on a sphere, whereas (ii) is more complicated and
includes structure constants αijk . These hold the details of the actual SIC, and indi-
rectly the structure of the unitary group SU(d). This is what we want to characterize
without referring to a given SIC. Still it can of course only be achieved under the
assumption that SICs exist.

The hope is that quantum-state space can be characterized by something similar
to the criteria (a)–(d) above, perhaps only with minor extensions. Although still far
from a proof of such a characterization, we have demonstrated that all QBist state
spaces display several nontrivial similarities with quantum-state space. Furthermore,
we know quantum-state space is a QBist state space, and so far it is the only example
we know.
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