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This collection of essays explores what makes modern mathematics
‘modern’, where ‘modern mathematics’ is understood as the mathe-
matics done in the West from roughly 1800 to 1970. This is not the
trivial matter of exploring what makes recent mathematics recent. The
term ‘modern’ (or ‘modernism’) is used widely in the humanities to de-
scribe the era since about 1900, exemplified by Picasso or Kandinsky
in the visual arts, Rilke or Pound in poetry, or Le Corbusier or Loos
in architecture (a building by the latter graces the cover of this book’s
dust jacket).

Though it is hard to say precisely what modernism is, or what dis-
tinguishes it from other eras, Gray attempts a definition in his closing
essay in this collection:

Modernism can be defined as an autonomous body of
ideas, pursued with little outward reference, maintaining
a complicated, rather than a naive, relationship with the
day-to-day world and drawn to the formal aspects of the
discipline. (374)

This is a good start. Gray mentions modern algebra, topology, and
logic as examples fitting this description, and explains why they fit.
These characteristics, though, fit high-profile examples of mathematics
before this era also. Ancient geometry as in Euclid’s Elements seems
to have been pursued as an autonomous body of ideas, at least as far as
I understand what this means. D’Alembert’s work on differential equa-
tions, for instance on the vibrating string problem, was criticized for
failing to model empirical reality adequately, though d’Alembert dis-
puted this: hence d’Alembert’s work had a complicated, rather than
naive, relationship with the day-to-day world. Lastly, Euler and La-
grange, among many others in the eighteenth century, were drawn to
the formal aspects of analysis. Perhaps Gray’s definition of modernism
could be tightened to disqualify these examples. But if we are going to
make a case for the continuity of modern mathematics with modernism,
we must look beyond Gray’s definition for another account.

I think we can explain how the essays in this collection contribute to-
ward answering what makes modern mathematics modern if we instead
view modernism as a crisis concerning foundations. Let me explain.

1This paper appeared in the Mathematical Intelligencer, vol. 30, no. 4, 2008.
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Each of the artists and architects mentioned above took themselves to
be finding a new way of practicing their art, because the old ways had
been discredited or had ceased to speak to them. This loss opened up
many new possibilities for their work. As a result, each experimented
with form and content. The results were radically new, and many
found it alien upon first contact. Think of people asking if Kandin-
sky’s spirals of color are really ‘art’. What would it be to really be
art? Modern artists realized many answers to this question that would
not have seemed open in earlier times. This sense of openness, in con-
trast to a time in which some options would have seemed inescapably
‘correct’, is what I want to call a foundational crisis.

As has often been remarked, mathematics in the early twentieth cen-
tury underwent a foundational crisis. This is usually said to be a re-
sult of the paradoxes in set theory, which threw into question whether
mathematics was consistent. I agree that this was a crisis of sorts,
but there was another crisis contemporaneous with this one that had
wider reach. This wider foundational crisis mirrors the crisis in art
just discussed. There had been consensus in the past on what makes a
mathematical theory such as arithmetic true: it was true if it described
the way things really were. By the turn of the twentieth century, this
view had lost much of its credibility. It now seemed open whether there
were any true mathematical theories, and if so, there were a variety of
possible answers to this question that had not seemed open in earlier
times. As with art, I want to call this sense of openness in mathematics
a foundational crisis. Viewing modernism as a foundational crisis in
the sense described here gives a sharper answer to what makes mod-
ern mathematics modern. The modern turn in mathematics happens
in parallel with the modern turn in the arts, both trying to progress
despite an awareness that old orders which used to underwrite their
ontologies and values had been discredited.

The essays in the collection under review address this modernist
foundational crisis in mathematics in a variety of ways. These essays
concern the years following 1800, when non-Euclidean geometries were
beginning to receive attention. These geometries gave new urgency
to the problem of what it was for a mathematical theory to be true.
Which one is the real geometry of space? On this question, there had
been consensus in the past: it was true if it described the way things
really were. Until the mid-eighteenth century, there were two main
explanations of how this worked: either this description of reality was
a result of abstraction from nature, or an expression of Platonic forms
and their ordering. On either view, Euclidean geometry was thought
to be a true description of space.
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During the eighteenth century, another explanation gained currency.
Gray describes this view as follows: mathematics is “what is presented
by idealized common-sense.” (p. 390) On this view, “every rational
person can recognize a straight line when they see one”. The true
geometry is thus the one acknowledged by all rational people; naturally
this was thought to be Euclidean geometry. Around the turn of the
nineteenth century, Kant offered a more sophisticated version of this
view. He held, roughly, that the world appears to us the way it does
(for instance, as having unified objects) because our minds structure it
to appear that way. We can’t help but experience the world as we do,
but whether the world really is as we experience it is unanswerable. A
theory of space is true, on this account, if it expresses the structure that
our minds are constrained to experience space as having. (Kant seems
to have thought that Euclidean geometry expressed this structure.)

During the nineteenth century, mathematicians became aware of al-
ternatives to Euclidean geometry, known together as non-Euclidean
geometries. In light of this new work, it neither seemed obvious that
space really is Euclidean, nor that the mind structures spatial expe-
rience as Euclidean. The foundational crisis for mathematics that I
described earlier begins here.

One option is to conclude that no geometry is the ‘true’ one. In-
stead, there are different geometries that express possible perspectives
on space, and none of them is any more true than the others. The
best we can say is that some geometries suit our individual situations
and present purposes better than others, while noting that our sit-
uations and purposes can change. This view is quite similar to the
philosopher Friedrich Nietzsche’s ‘perspectivalism’ on moral and scien-
tific matters. Nietzsche thought that there is no single ‘true’, ‘God’s eye
view’ of morality and the world, but rather only individual perspectives.
Each individual perspective is biased, and to see things more clearly
we should learn to view morality and the world from many different
perspectives. As Moritz Epple explains in his fascinating essay in this
volume, one mathematician who explicitly took up this Nietzschean
banner in his work was Felix Hausdorff. Epple describes how Haus-
dorff lived a double life in print, publishing as a mathematician under
the name Felix Hausdorff, and as a Nietzschean philosopher under the
name Paul Mongré. Hausdorff’s view, which he called “considered em-
piricism”, was that mathematics is useful for constructing axiomatic
theories that ‘model’ empirical phenomena. He thought of each theory
as representing a ‘perspective’ on the empirical matter it concerned.
Whether a theory is good is a practical question, to be evaluated based
on how well the theory describes, explains, and predicts data. Since
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the empirical data may be consistent with several different mathemat-
ical theories, each theory should continue to be developed; Hausdorff
thought this was the case with the dimensionality of space, and saw
his work on Hausdorff dimension in this way. He also viewed the on-
going development of various axiomatic geometries this way. None of
these were absolutely true; each was merely a perspective to be adopted
inasmuch as it suits our purposes.

Relativism regarding the truth of mathematical theories is a radi-
cal departure from what had been believed in the past. It constrains
mathematical activity to the construction of theories, without any pre-
tensions to ‘getting it right’. On this view, there is no ‘right’ way to
think of space—there are just different perspectives, expressed as dif-
ferent geometries. There is no single true analysis of the concepts of
circle or line or continuity—there are just different definitions of these
concepts that are to be adopted when useful and ignored otherwise.

Relativism can extend beyond geometry, even into the allegedly
‘foundational’ areas of arithmetic and set theory. The relativist con-
cerning arithmetic says that there is no single true arithmetic. There
are many axiomatic theories of arithmetic that we can study freely for
their mathematical structure, but we must not confuse any of them
with the ‘real thing’, for there isn’t such a ‘real’ thing. There are just
different theories of the natural numbers, to be adopted or rejected
based on how well they suit our aspirations. Similarly, while many
want to claim that set theory is what mathematics is ‘about’, there are
many different set theories, and so the relativist can claim that none
is absolutely true. As Epple explains, this is what Hausdorff did: he
became interested in a set-theoretic approach to topology in seeking a
continuous model of space and time, which led him to Cantor’s point
set analysis of the continuum. Yet he thought this analysis should not
be taken as absolutely true, but just as a perspective on the continuum.

Alfred Tarski’s work on logical consequence, nicely discussed in this
collection by Paolo Mancosu, gave more tools to the technically-minded
relativist. Tarski gave an analysis of logical consequence, that is, of
when one sentence follows logically from another. Today we follow
Tarski in saying that a sentence σ is a logical consequence of a set of
sentences Σ if every interpretation or ‘model’ of all the sentences in Σ
is also a model of σ. But the ‘every’ in this analysis of logical conse-
quence raises a question. Suppose we are asking whether a sentence
in the language of arithmetic is a logical consequence of the axioms of
arithmetic. Should we consider just models with the intended domain
N for arithmetic, or do we consider models with other domains also?
This could be taken to bear on relativism: the more radical conception
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is to vary domains widely, perhaps out of skepticism that the notion of
an ‘intended domain’ makes any sense. Mancosu argues that in 1936
at least, Tarski avoided the more radical option. Against other recent
readings, Mancosu argues that Tarski thought we should only consider
models with a fixed universe in his watershed 1936 paper on logical
consequence. I find Mancosu’s argument convincing, but more work is
being done on this topic and there may be new arguments worth con-
sidering. In any case, Mancosu’s article is an excellent starting point
for understanding this active area of research.

In his essay, Gray notes that an even more radical relativism arose
in the early twentieth century, concerning logic itself. He writes

The Modernist foundations of mathematics ultimately
dispensed with the idea that the subject matter of logic
was the correct rules of reason—those that would be
followed by any undamaged mind. A part of logic does
consider such rules, but it seemed ever more obvious that
the logic needed to create genuine mathematics is not
a candidate for even an idealized description of the way
people think. Not only geometry, not only the concep-
tion of number, but eventually any simple-minded as-
sociation of logic with correct thinking was made anew.
(p. 396)

Hausdorff vigorously embraced what I am calling relativism, both
within and without mathematics. Many others have found this view
unattractive, and have sought to retain the traditional view that we can
get right or wrong what a circle or continuity really is, or that there
are true and false geometries. Is there a principled reason to reject
relativism, and maintain the traditional view? Because this question is
a live one, I call the ongoing situation a foundational crisis. Epple and
Gray’s essays explore (without advocating) this crisis directly, while
Mancosu’s essay bears on this issue without addressing it explicitly.
I also see the other essays as responding to this view, in one way or
another, as I will now explain.

David Hilbert was acutely aware of these philosophical matters, ex-
ploring the new geometries and refining their axiomatizations in his
Grundlagen der Geometrie. He cannily declared his philosophical al-
legiance by beginning that text with a quote from Kant. Two of the
essays in this collection concern, in different ways, Hilbert’s attempt
to reconcile a Kantian approach with these new mathematical devel-
opments. Wilfried Sieg’s essay concerns ongoing developments in the



6

spirit of “Hilbert’s program” in proof theory. Hilbert thought math-
ematical methods could be divided into two categories, the ‘real’ and
the ‘ideal’. Historically natural and real numbers, and points in ordi-
nary diagrams, were thought of as ‘real’, while imaginary numbers and
points at infinity in projective geometry were thought of as ‘ideal’. At
the time of the Grundlagen Hilbert was mostly concerned with this way
of drawing this distinction. Later, he identified the finitary mathemat-
ics of the natural numbers as real and the infinitary methods of higher
mathematics as ideal. In drawing a real/ideal distinction, Hilbert was
echoing Kant’s distinction between constitutive and regulative princi-
ples, where the former are realized in experience, whereas the latter
are not but instead are tools for organizing our thoughts concerning
experience. Theorems proved by real methods were contentual, while
theorems proved by ideal methods were useful tools for theorizing, but
lacked content. Hilbert hoped to show that every theorem provable by
ideal methods could be proved by real methods—thus Hilbert’s “pro-
gram” of showing the consistency of ideal mathematics by using just
real methods.

Sieg agrees with the received view that Hilbert’s program is dead,
as a result of Gödel’s second incompleteness theorem. But he thinks
ongoing work in proof theory might salvage something like Hilbert’s
program. This work shows that several formalized theories of classi-
cal mathematics, including many impredicative theories, can be proved
consistent in (arguably) constructive theories such as intuitionistic num-
ber theory. This could salvage something like Hilbert’s program, Sieg
says, if the base theory is “accessible”—that is, if it has “a unique
build-up through basic operations from distinguished objects”, so that
it consists of “principles that are evident”. For then the base theory
would be like Hilbert’s finitary mathematics: contentual and thus ca-
pable of yielding knowledge. Sieg doesn’t offer criteria for evaluating
when an operation is basic, or for when a principle is evident. In-
stead, he raises this as a project for future work, but points out that
proof theorists have many related results that would be worth further
philosophical reflection.

Though there are important Kantian elements in Hilbert’s thought,
Hilbert rejected the details of Kant’s views on intuition as “anthro-
pomorphic garbage”. Nevertheless, intuition and experience, and in
particular visualization, played an important role in Hilbert’s thought.
In his essay in this collection, Leo Corry writes about Hilbert’s views
on the relation of experience to geometry. Corry explains that Hilbert
believed that we are guided in our formulations of axiomatic theories
of geometry by intuition and experience, and that Hilbert continued to
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believe this even as he came to understand general relativity. While in
the past he had thought Euclidean geometry was the true geometry of
space, he recognized that general relativity cast doubt on this. This was
no problem for Hilbert’s views about axioms and experience, because
as our experience changes, so should our axiomatic theories. Such a
view, though, seems to leave open the question of whether mathematics
can ‘get it right’ when describing the world, or if instead it is just our
way of describing things, which can only be judged pragmatically by
what those models can do for us. That is, Hilbert’s view as described
by Corry leaves open the possibility of relativism for geometry.

These matters troubled Hilbert’s student Hermann Weyl, whose fas-
cinating views Erhard Scholz nicely discusses in his essay in this collec-
tion. Like Hausdorff and Hilbert, Weyl thought mathematical activity
was largely a matter of producing systems of symbols. But Scholz ex-
plains that Weyl was no relativist. According to Scholz, Weyl thought
that

mathematics did more than offer mere tools for the for-
mation of mathematical models of processes or struc-
tures, in a purely pragmatic sense. A good mathemati-
cal theory of nature. . . expressed, if well done, an aspect
of transcendent reality in ‘symbolical form’. (p. 296)

That is, a good mathematical theory must include a “metaphysical be-
lief in some transcendent world core”, so that the meanings of the
symbols used in ordinary practice are not merely the stipulations of
individual practitioners (as the relativist would have it), but instead
are rooted in a transcendent reality. On Scholz’s reading, Weyl thought
this because he thought otherwise “no meaningful communicative scien-
tific practice would be possible.” Hilbert had also been concerned with
the intersubjectivity of mathematical practice, but Weyl did not fol-
low Hilbert’s approach by invoking intuition. Instead, Scholz explains,
Weyl was interested in taking an approach inspired by post-Kantian
German philosophy, particularly the work of Wilhelm von Humboldt,
Martin Heidegger, Karl Jaspers, and Ernst Cassirer. Following the
writings of these philosophers, Weyl conceived of our use of symbols
in communicative practices by an analogy with the use of tools by
carpenters and other craftsmen. What it is for a tool to be good for
the practice of a carpenter is not up to him. The raw materials, the
abilities of the carpenter, and the item the carpenter wants to build,
all put demands on what makes a tool for that task good. Similarly,
Weyl seems to have wanted to say, mathematical language is a tool
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for the mathematician, and it is not entirely up to the mathemati-
cian what makes that tool good. Scholz does not explain what Weyl
thought would constrain the goodness of mathematical tools, or how
this constraining would work. He seems to have thought the ordinary
practices of mathematicians would play a key role, but this isn’t fully
worked out. I agree with Scholz that Weyl’s idea is more a plan for
future work than a complete solution. But it is a fascinating idea, and
one that is worth developing. (In his fine article, Jean-Pierre Marquis
also takes up the idea of tool production and usage in mathematics,
arguing that some mathematical theories, specifically homotopy the-
ory, are worth knowing only because of their practical value for work
in other subject-matters of intrinsic interest, even if these theories are
not themselves of intrinsic interest.)

I want to turn now to the essays on Gottlob Frege. Frege was a
key instigator of the contemporary Anglo-American approach to phi-
losophy, in which the logical analysis of language is of central impor-
tance. Though this approach has been adopted by more recent thinkers
throughout philosophy, including ethics, Frege’s foremost concern was
mathematics. For while Frege is mostly studied by philosophers nowa-
days, he was very much a mathematician: his doctorate was in math-
ematics; he was employed in the Jena mathematics department; and
he regularly taught courses in complex analysis, elliptic functions, and
potential theory. Within the philosophy of mathematics, he is best
known for his ‘logicist’ project, the goal of which was to show that all
the truths of arithmetic and analysis (though not geometry) were really
truths of logic.

Like the others mentioned above, Frege was concerned about the
problem of relativism, particularly for the concept of number. As he
wrote in the introduction to his Foundations of Arithmetic,

Yet if everyone had to understand by this name [‘the
number one’] whatever he pleased, then the same propo-
sition about one would mean different things for differ-
ent people,—such propositions would have no common
content. (p. i, [FA])

Like Hilbert and Weyl, Frege was concerned that if there is no single
correct answer to what a number is, then the intersubjectivity of arith-
metic and analysis would fail. Frege understood his work as having
given the correct answer. He accounted for his answer’s correctness by
appealing to his logicism, that is, to his view that the laws of arithmetic
are reducible to the laws of logic, which are laws of thought and thus
common to every rational person.
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Despite having appealed to deep features of human rationality in
order to license the correctness of his definition of number, Frege rec-
ognized that human practices played a role in making explicit the
sense of the number concept. Michael Beaney’s essay in this volume
carefully explores how Frege went about “elucidating” the basic con-
cepts of arithmetic and analysis. Beaney explains how Frege drew on
“our common conceptual heritage” (p. 53), revealed by the roles our
concepts have played in practice throughout history, in making ex-
plicit what these concepts really are. (In her fine article on twentieth-
century French philosophy of mathematics in this volume, Hourya Be-
nis Sinaceur’s description of Jean Cavaillès’ project of unwinding the
historical ‘dialectic’ of mathematical concepts suggests parallels with
Frege’s idea of elucidation, though these parallels are not explored in
this volume.)

While Frege’s most-scrutinized writings concern arithmetic, Frege
was also actively interested in analysis. In his essay in this volume,
Jamie Tappenden carefully situates Frege within the nineteenth-century
struggle in Germany over how best to think about complex analysis.
This was (roughly) a struggle between two camps, one led by Rie-
mann, the other led by Weierstrass. Weierstrass and his followers
thought complex analysis should be ‘arithmetized’, meaning in par-
ticular that analytic functions should be defined as functions repre-
sentable by power series. By contrast, Riemann and his followers fa-
vored representation-independent definitions, which in practice meant
defining analytic functions as those satisfying the Cauchy-Riemann
equations. The Riemannian approach then develops the theory of ana-
lytic functions without having to consider particular explicitly defined
analytic functions. Riemann pioneered the term “geometric” for this
kind of approach to analysis, but this wasn’t a stretch: he encour-
aged visualization in analysis, developing the notion of a Riemann sur-
face to help. He even encouraged physical reasoning in analysis, using
Dirichlet’s principle freely even though his evidence for it was based
on potential theory. (Riemann’s own reflections on these matters were
quite rich, provocatively engaging philosophical matters, as Ferreirós
documents in his fine essay in this volume.)

Tappenden thinks the received view of the importance of Frege’s
work—in which Frege’s definition of number is the culmination of the
rigorization project that begins with the definition of reals by Cauchy
sequences of rationals, rationals by pairs of integers, and integers by
sets via Frege’s definition—is wrong. That is, it is wrong to see Frege
as a Weierstrassian. Instead, he argues, Frege’s work should be seen
within the Riemannian tradition, where a central aspiration was the
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identification and clarification of concepts—in Frege’s case, of the con-
cept of number. Tappenden gives two main reasons for why it’s impor-
tant to see Frege as a Riemannian. Firstly, it is because Frege’s logicist
project was to be a reduction of arithmetic and analysis to logic, and so
knowing that what Frege meant by ‘analysis’ was Riemannian analysis
can help us better understand his logicism. Secondly, it is because we
can understand Frege’s peculiar demands for rigorous definition better
when we understand the constraints Riemannians put on definition.

Tappenden remarks that the Riemannian school called their ap-
proach to mathematics “conceptual”, because it sought definitions of
concepts that used “internal characteristic properties” of the domain
under investigation rather than mere “external” properties. Tappen-
den’s essay nicely helps navigate this unfamiliar terminology, which
goes back to Gauss and even further to Leibniz. He remarks that while
it is a difficult philosophical question to say precisely what was meant
by these terms, within the practice of e.g. nineteenth century German
complex analysis the cash value of these terms was well-known. As he
writes of the upshot of the Riemannian approach:

Weierstrass holds that there can be no dispute about the
kind of thing that counts as a basic operation or con-
cept: the basic operations are the familiar arithmetic
ones like plus and times. Nothing could be clearer or
more elementary than explanation in those terms. Se-
ries representations count as acceptable basic represen-
tations because they use only these terms. By contrast,
the Riemannian stance is that even what is to count as
a characterization in terms of basic properties should be
up for grabs. What is to count as fundamental in a given
area of investigation has to be discovered.” (p. 112)

As a result, Tappenden concludes, the Riemannian must embark on a
“quest for the ‘right’ definition of key functions and objects”, presum-
ably one in terms only of what is ‘fundamental’ in that area. He argues
that Frege’s attempt to give a logicist definition of number should be
understood as an instance of this general Riemannian quest.

To understand better what this quest is all about, I want to pose
and try to answer two questions about these Riemannian definitional
‘quests’. Firstly, does the Riemannian think there must always be a
‘right’ definition, and if so, what makes it right? Secondly, how does the
Riemannian think we are to know when the ‘right’ definition has been
found? On the first question, I think Tappenden’s discussion is incon-
clusive. When he says that the Riemannian thinks what is fundamental
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in an area has to be discovered, it is unclear whether he means that the
Riemannian always thinks there’s a fact about this to be discovered.
If that if the answer is ‘no’, then the Riemannian is a relativist. As to
the second question, Tappenden’s answer is that for the Riemannian,
definitions prove their correctness by their ‘fruitfulness’, for instance in
organizing our practice well or in playing a role in important further
research. Tappenden discusses this view in more detail in other work,
but we can address it without leaving this volume by turning instead to
the essays on the Riemannians Richard Dedekind and Emmy Noether,
by Jeremy Avigad and Colin McLarty, respectively.

In his essay, Avigad writes about Dedekind’s Riemannian approach
to developing ideal theory, which he took to mean in practice avoid-
ing computation as much as possible. Dedekind instead adopted the
axiomatic, set-theoretic approach familiar to us from contemporary al-
gebra. His work in turn influenced Noether and subsequently a central
strand of twentieth-century algebra and algebraic geometry. McLarty
gives an overview of how Noether brought this contemporary approach
to topology. Continuing Dedekind’s Riemannian quest to avoid compu-
tation in algebra, Noether took a “purely set-theoretic” approach that
was, in her words, “independent of any operations” (p. 193). Instead
of studying addition or multiplication of the elements of a ring, for in-
stance, she proposed studying particular subsets and homomorphisms
preserving the structure of those subsets. In Riemann’s terms, she saw
these structural properties as the ‘internal characteristic properties” of
rings, rather than the computational properties which she thought were
merely ‘external’. This approach gives special value to homomorphism
theorems, as McLarty ably documents.

Thus both Dedekind and Noether had views on what the ‘right’
definitions are in algebra and algebraic topology, as required by the
Riemannian program articulated by Tappenden. How did they think
we were to know when we’d found those right definitions? Avigad sug-
gests some answers for the case of Dedekind, and I want to consider
three of these. Firstly, Avigad suggests that Dedekind thought the
right definitions in algebra would avoid elements “extraneous” to alge-
bra. This suggestion just pushes the question back, into what it is to
be extraneous to algebra. Secondly, Avigad suggests Dedekind thought
the right definitions in algebra would unify the domain being defined;
as he puts it, “A single uniform definition of the real numbers gives an
account of what it is that particular expressions are supposed to rep-
resent” (p. 178). But why should we expect that the right definitions
will be uniform, rather than having lots of case distinctions? It would
be nice if that were so, but wishing doesn’t make it so, unless what
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makes a definition right is that it’s the one we want. Correct definition
as wish-fulfillment: if this were Dedekind’s view, he would have been
a relativist.

Fortunately, there is a third possibility. Avigad suggests that Dedekind
thought the right definitions for a domain would yield properties fa-
miliar from other domains. For instance, in ideal theory Dedekind’s
“overall goal [was] to restore the property of unique factorization, which
[had] proved to be important to the ordinary integers” (p. 171). Then
many results following from unique factorization in the integers could
be carried over to ideal theory. This is surely an important labor-saving
technique. But why should we think that this technique leads to the
right definitions for a domain? There would have to be something ‘in-
evitable’ about those properties if this technique were to avoid being an-
other type of relativism. And indeed Dedekind seems to have thought
certain properties were inevitable. Like Frege, Dedekind thought the
familiar laws of arithmetic are laws of logic, and seems to have believed
that laws of logic are laws of thought; thus, we can’t help but arrive
at the properties we do in arithmetic, because of the way our minds
are constrained to think. Furthermore, he thought that this made in-
evitable properties in higher mathematics also: as he wrote in his 1888
essay “Was sind und was sollen die Zahlen?”, “every theorem of alge-
bra and higher analysis, no matter how remote, can be expressed as
a theorem about natural numbers—a declaration I have heard repeat-
edly from the lips of Dirichlet.” Thus Dedekind resorted to logicism to
solve the foundational crisis.

I’ve addressed these matters about the Riemannian project at length
because they help make clear the unity of the subject matter of this
essay collection. Each essay documents a reaction to the problem of
relativism, a problem I’ve tried to argue here is central to understanding
modernity not just in mathematics, but in our culture generally. The
essays are uniformly a joy to read, and the bibliography is ample, giving
interested readers an extensive springboard for further exploration. I
recommend the book highly. [Thanks to my colleague Amy Lara for
helpful comments on an earlier draft.]
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