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Abstract. In this paper we investigate the complexity of m-diagrams of models of

various completions of first-order Peano Arithmetic (PA). We obtain characteriza-

tions that extend Solovay’s results for open diagrams of models of completions of PA.

We first characterize the m-diagrams of models of True Arithmetic by showing that

the degrees of m-diagrams of nonstandard models A of TA are the same for all m ≥ 0.

Next, we obtain a more complicated characterization for arbitrary completions of PA.

We then provide examples showing that some of the extra complication is needed.

Lastly, we characterize sequences of Turing degrees that occur as (deg(T ∩Σn))n∈ω ,

where T is a completion of PA.

§1. Introduction. We use P (ω) to denote the class of all subsets
of ω. Let LPA be the usual language of PA: relations +, ·, S, and <;
and constants 0 and 1. We abbreviate True Arithmetic, the theory
of the standard model of PA, by the initials TA. We use Sn(0) to
denote the numeral for n

We continue with some preliminary definitions and results. A Bn

formula is a boolean combination of Σn formulas. A complete Bn

type is the set of all Bn formulas true of some tuple in some struc-
ture. The open diagram of a structure A, denoted D(A), is the
collection of open sentences, with constants from A, that are true in
A. Similarly, the m-diagram of A, denoted Dm(A), is the collection
of Bm sentences, with constants from A, that are true in A.

Behind most of what we know about models and completions of
PA is the notion of a Scott set:

Definition 1.1. A Scott set is a nonempty family of sets S ⊆
P (ω) such that

1. if X ∈ S and Y ≤T X, then Y ∈ S,
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2. if X, Y ∈ S, then X ⊕ Y ∈ S,
3. if T ⊆ 2<ω is an infinite tree in S, then T has a path in S.

Equivalently, if A is a consistent set of sentences in S, then
some complete extension of A is in S.

The family of arithmetical sets forms a Scott set. Scott sets are the
ω-models of the axiom system WKL0 as studied in reverse mathe-
matics (and where the model is identified with the power set part
of the structure, as in [14]). For a nonstandard model A |= PA, let
SS(A) = {da : a ∈ A}, where

da = {n ∈ ω : A |= pn|a}

where (pk)k∈ω is the sequence of primes.

Theorem 1.2 (Scott). For a nonstandard model A |= PA, SS(A)
is a Scott set.

We thus call SS(A) the Scott set of the model A.
The following well-known lemma is a sort of weak saturation prop-

erty for bounded types in a Scott set:

Lemma 1.3. Let A be a nonstandard model of PA. Let Γ(u, x) be
a complete Bm type, with a ∈ A a tuple that can be substituted for u
in Γ. Then Γ(a, x) is realized by some c ∈ A if and only if Γ(a, x) ∪
Dm+1(A) is consistent and Γ(u, x) ∈ SS(A).

Scott was originally interested in Scott sets because they are closely
tied to the notion of “representability”. He wanted to characterize
the families of sets representable with respect to completions of PA.

Definition 1.4. For a theory T in the language of PA, a set X ⊆
ω is representable by T if there is a formula ϕ such that for n ∈
X,T ` ϕ(S(n)(0)), and for n 6∈ X,T ` ¬ϕ(S(n)(0)).

We denote the collection of sets representable by a theory T by
Rep(T ). Scott [12] showed the following fact relating Scott sets and
Rep(T ):

Theorem 1.5 (Scott). For a countable collection S ⊆ P (ω), S is
a Scott set if and only if there exists a completion T of PA such that
Rep(T ) = S.

Feferman [3] noted the following fact about nonstandard models
of TA:
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Theorem 1.6 (Feferman). Let A be a nonstandard model of TA.
Then SS(A) contains the arithmetical sets.

Feferman gave the result only for TA. However, for essentially the
same reasons we also get the following result, for any model of PA:

Theorem 1.7. Let A be a nonstandard model of PA. Then SS(A)
contains Rep(T ). Equivalently, SS(A) contains Tn = T ∩Σn, for all
n.

Theorem 1.7 implies Theorem 1.6, because for T = TA, Tn ≡T ∅(n)

for all n. Theorem 1.7 suggests the following definition:

Definition 1.8. A Scott set S is appropriate for a theory T if
Tn ∈ S for all n. Equivalently, S is appropriate for T if Rep(T ) ∈ S.

Using this definition, we can restate Theorem 1.7 as:

Theorem 1.9. Let A be a nonstandard model of PA. Then SS(A)
is appropriate for T .

A notion we shall use in connection with Scott sets is that of an
“enumeration”.

Definition 1.10. An enumeration of a set S ⊆ P (ω) is a binary
relation R such that S = {Rn : n ∈ ω}, where

Rn = {k : (n, k) ∈ R}.
An R-index for X is some k ∈ ω such that Rk = X.

Definition 1.11. For a nonstandard modelA of PA with universe
ω,

R = {(a, n) : A |= pn|a}
is called the canonical enumeration of SS(A).

We have the well-known fact:

Proposition 1.12. Let A be any nonstandard model of PA with
universe ω and let R be the canonical enumeration of SS(A). Then
R ≤T D(A).

This follows from the fact that the open diagram D(A) witnesses
true instances of the division algorithm. The following corollary
follows from the fact that D(A) ≤T Dm(A), for m ≥ 0:

Corollary 1.13. For A a nonstandard model of PA with uni-
verse ω, if R is the canonical enumeration of SS(A), then R ≤T
Dm(A), for m ≥ 0.
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Solovay defined the notion of an “effective enumeration”:

Definition 1.14. For a countable Scott set S, an effective enu-
meration is an enumeration R, with associated functions f, g, and h
witnessing that S is a Scott set. These functions have the following
properties:

1. if ϕRi
e = χX , then f(i, e) is an R-index for X,

2. g(i, j) is an R-index for Ri ⊕Rj,
3. if Ri is an infinite tree T ⊆ 2<ω, then h(i) is an R-index for a

set X such that χX is a path through T .

We say that an effective enumeration is computable in a set X if
the enumeration and the three functions are all computable in X.
Effective enumerations are available to us in light of the following
result [7]:

Theorem 1.15 (Marker). Let S be a countable Scott set. If S
has an enumeration computable in X, then it also has an effective
enumeration computable in X.

Solovay gave a characterization of the degrees (of open diagrams)
of nonstandard models of TA in terms of effective enumerations [15].
Marker simplified Solovay’s result by applying Theorem 1.15 [7]. The
result is the following characterization:

Theorem 1.16 (Solovay / Marker). The degrees of nonstandard
models of TA are the degrees of enumerations of Scott sets containing
the arithmetical sets.

Solovay also characterized the degrees of (open diagrams of) non-
standard models of other completions of PA. The result is more dif-
ficult to state than the result for TA. To see why, let us highlight
the difference between TA and arbitrary completions of PA. For a
nonstandard model A of TA, A′′ yields the theory (and indices for
the Σn fragments). For an arbitrary completion of PA this may not
be so, as we will illustrate in Section 4.

Solovay found the general relationship between jumps of the model
and indices for fragments of the theory. The result is the following
characterization:

Theorem 1.17 (Solovay). Suppose T is a completion of PA. The
degrees of nonstandard models of T are the degrees of sets X such
that:
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(a) There is an enumeration R ≤T X of a Scott set S appropriate
for T ; and

(b) There are functions tn for n ≥ 1,∆0
n(X) uniformly in n, such

that lim
s→∞

tn(s) is an index for Tn and for all s, tn(s) is an R-

index for a subset of Tn.

Solovay did not publish these results we are attributing to him. In
[6], Julia Knight has given proofs of Theorems 1.16 and 1.17. Our
proofs in Sections 2 and 3 follow those of [6], extending Solovay’s re-
sults. In Section 2, we extend Solovay and Marker’s characterization
to include m-diagrams of nonstandard models of TA. In Section 3,
we extend Solovay’s characterization for arbitrary completions of PA
to include m-diagrams. In Section 4, we will develop a class of theo-
ries T (X) illustrating why the extra conditions in the more general
characterization for arbitrary completions of PA given in Section 3
cannot simply be dropped. As part of doing this, we give a proof of
Harrington’s result that there exists a nonstandard model A |= PA
such that A ≤T 0′ and Th(A) is not arithmetical [5]. Lastly, in
Section 5, we examine the relationship between sequences of Turing
degrees and completions of PA.

§2. True Arithmetic. In this section we characterize the degrees
of m-diagrams of nonstandard models of TA as the degrees of enu-
merations of Scott sets containing the arithmetical sets. We first
show that for a nonstandard model of TA, we can find an enumera-
tion below the m-diagram (in terms of Turing reducibility). We then
show that for a suitable enumeration, we can find the m-diagram of
a nonstandard model of TA below it. The second step requires more
work. We use the fact that if R is an enumeration of a Scott set con-
taining the arithmetical sets, then computably in R′′ we can compute
a sequence (in)n∈ω of indices such that Rik = TA ∩ Σk for each k.
The fact holds because we can use R′′ to list ∅′ and find its index in
R; we may then use R′′ to list (∅′)′, find its index in R, and so on.
Using this fact, we can construct a nonstandard model C such that
Dm(C) ≤T R′′ and such that the set

Q = {(i, a) : Ri is the complete Bm+1 type of a}

is Σ0
2(R). This is the content of Theorem 2.1. We then use ∆0

1(R) to
approximate C, building an isomorphic copy A such that Dm(A) ≤T
R. This is the content of Theorem 2.2. We then combine these
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results in Theorem 2.3 and apply them in the main result, Theorem
2.6. We now give the results.

Theorem 2.1. Let T be a completion of PA and X any set. Sup-
pose R ≤T X is an enumeration of a Scott set S, and t is a ∆0

3(X)
function such that for all n, t(n) is an R-index for Tn = T ∩ Σn.
Then T has a model A with SS(A) = S, such that for m ≥ 0,

Q = {(i, a) : Ri is the complete Bm+1 type of a}
is Σ0

2(X).

The result for m = 1 is Theorem 2.2 in [6]. The proof for arbitrary
m is essentially the same, so we omit the details. It is a finite injury
priority construction.

Here is the other result we need to establish Theorem 2.3:

Theorem 2.2. Let S be a countable Scott set and let A be a non-
standard model of PA such that SS(A) = S. Suppose S has an
enumeration R ≤T X and Q = {(i, a) : Ri is the complete Bm+1 type
of a} is Σ0

2(X), for m ≥ 0. Then there exists a nonstandard model
B of PA such that B ∼= A and Dm(B) ≤T X.

The result for m = 1 is Theorem 2.1 in [6]. Again, the proof for
arbitrary m is essentially the same, so we omit details. Again, it is
a finite injury priority construction.

We may combine these two results into the following single result:

Theorem 2.3. Let T be a completion of PA and suppose m ≥ 0.
Suppose R ≤T X is an enumeration of a Scott set S, and t(n) is a
∆0

3(X) function such that for all n, t(n) is an R-index for Tn = T ∩
Σn. Then T has a model A with SS(A) = S such that Dm(B) ≤T X.

We need two more lemmas before we can give our characterization
for m-diagrams of nonstandard models of TA. The first lemma is
an extension of the well-known fact that the set of degrees of open
diagram copies of a nonstandard model of a completion of PA is
upward closed (see [8]). The second lemma is a fact about the degrees
of enumerations of families of more than one set. We give proofs for
each.

Lemma 2.4. Let A be a fixed ordered structure (with universe ω)
and let m ≥ 0. For any D >T Dm(A), there exists B ∼= A such that
Dm(B) ≡T D.
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Proof. LetA = {an : n ∈ ω}. We indicate how to build B = {bn :
n ∈ ω} using D. We need to show that B ∼= A and Dm(B) ≡T D.

To show the former, we specify an isomorphism F : B → A, F ≤T
D. We give the isomorphism on two elements of B at a time. Let
F (b2k) = a2k and F (b2k+1) = a2k+1 if either k ∈ D and A |= a2k <
a2k+1 or k 6∈ D and A |= a2k+1 < a2k. Let F (b2k) = a2k+1 and
F (b2k+1) = a2k if either k ∈ D and A |= a2k+1 < a2k or k 6∈ D and
A |= a2k < a2k+1. Thus the isomorphism F is computable in D.
Furthermore, B |= b2k < b2k+1 iff k ∈ D.

Next, we need to show that Dm(B) ≤T D. Let ϕ(x) be an arbitrary
Bm formula. We indicate how to decide if ϕ(b) ∈ Dm(B) using D.
By our isomorphism we have that B |= ϕ(b) iff A |= ϕ(F (b)). Using
oracle D, we compute F (b) = a. Since D >T Dm(A), we use D to
determine whether ϕ(a) ∈ Dm(A).

Finally, we show thatD ≤t Dm(B). We use the fact that B |= b2k <
b2k+1 iff k ∈ D. To decide if k ∈ D, we ask Dm(B) if b2k < b2k+1. If
b2k < b2k+1, then k ∈ D; otherwise, k 6∈ D. a

The next lemma is well-known.

Lemma 2.5. Let S be a family of sets containing at least two sets.
Let En(S) be the set of all enumerations of S. If R ∈ En(S) and
R <T D, then there exists R∗ ∈ En(S) such that R∗ ≡T D.

Proof. Suppose S ⊆ P (ω), with A0 6= A1 elements of S. Let a0

be an element witnessing that A0 6= A1. Without loss of generality,
suppose a0 ∈ A0 − A1.

Given R ∈ En(S) and D >T R, we indicate how to construct R∗.
Let R∗2k = Rk for each k ∈ I. We let R∗2k+1 = A0 if k ∈ D and
R∗2k+1 = A1 if k 6∈ D.

By our construction we have that k ∈ D iff a0 ∈ R∗2k+1. Thus it
follows immediately that R∗ ≡T D. a

By Theorem 1.6 (Feferman’s result), we know that for any non-
standard A |= PA and for all n, Tn ∈ SS(A). For TA, each fragment
Tn is Turing equivalent to the arithmetical set ∅(n). Thus the only
possible Scott sets of nonstandard models of TA are those that con-
tain the arithmetical sets. We may now characterize the degrees of
m-diagrams of nonstandard models of TA.

Theorem 2.6. For any m ≥ 0, the degrees of m-diagrams of non-
standard models of TA are the degrees of enumerations of Scott sets
containing the arithmetical sets.
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Proof. By Lemma 2.4, we have that the degrees of m-diagrams
of nonstandard models of completions of PA are closed upward. By
Lemma 2.5 we have that the set of degrees of enumerations of a given
Scott set S is closed upward.

Suppose A is a nonstandard model of TA such that SS(A) = S.
Assuming the universe of A to be ω, we use Corollary 1.13 to see
that the canonical enumeration of SS(A) is computable in Dm(A).

Next, suppose S is a Scott set containing the arithmetical sets and
that R is an enumeration of S. We may use Marker’s result again and
take R to be an effective enumeration. To apply Theorem 2.3 and
conclude the proof, we use a ∆0

3(R) function t(n) giving an R-index
for Tn = TA ∩ Σn. Let t(n) be the least R-index of TA ∩ Σn.

We show how to compute t(n) using ∆0
3(R). Note first that TA ∩

Σn ≤T TA ∩ Σn+1 and TA ∩ Σn+1 ≤T (TA ∩ Σn)′ uniformly in n.
Note also that the relation

J(i, j) = {(i, j) : ∀x[x ∈ Rj ↔ x ∈ (Ri)
′]}

is ∆0
3(R). Beginning with t(r), an index for TA ∩ Σr, we use J to

get an index for (TA∩Σr)
′. Since TA∩Σr+1 ≤T (TA∩Σr)

′, we use
our effective enumeration to get an index for TA∩Σr+1. This index
is t(r + 1).

We have thus shown t(n) to be ∆0
3(R). We may now apply Theo-

rem 2.3 to get a nonstandard model A of TA such that SS(A) = S
and Dm(A) ≤T R. a

As a corollary to the previous result, we have the following:

Corollary 2.7. The degrees of m-diagrams of nonstandard mod-
els A of TA are the same for all m ≥ 0.

§3. Other completions of PA. In this section we give a char-
acterization of the m-degrees of nonstandard models of other com-
pletions of PA. This new characterization (Theorem 3.4) will be like
the characterization for TA (Theorem 2.6) in that it involves enu-
merations of an appropriate Scott set. It differs from the earlier
characterization in that it additionally involves a sequence of ap-
proximating functions.

To prove this characterization, we need to use the sequence of
oracles (∆0

i (X))i∈ω to prove a more general version of Theorem 2.1.
To prove this result, Theorem 3.1, we use a infinitely nested priority
construction. The result for m = 1 is Theorem 2.3 in [6]. Again, the
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proof for arbitrary m is essentially the same, so we omit details and
give only a sketch.

As with the TA case, we can break the characterization into two
parts. The model-construction part, Theorem 3.2, can itself again be
separated into two separate priority constructions. The first priority
construction for TA, Theorem 2.1, used ∆0

2(X) to approximate a
∆0

3(X) function. In the case of arbitrary completions of PA, we need
to approximate not a single ∆0

3(X) function, but rather a sequence
of functions tm+n, ∆0

n(X) uniformly in n, approximating T ∩ Σn for
each n relative to X. We thus need to prove a more general version of
Theorem 2.1. Here we use an infinitely nested priority construction.

Infinitely nested priority constructions are difficult to do in general.
However, there is a metatheorem giving conditions under which some
may be done. Solovay’s theorem and our generalization follow from
the metatheorem 4.1 in [6].

As with TA, our plan is to build a nonstandard model B such that
Dm(B) ≤T X ′′ and such that the set

Q = {(i, a) : Ri is the complete Bm+1 type of a}
is Σ0

2(X). The metatheorem shows that under certain conditions
such a construction can be effected.

The result of this construction is the following:

Theorem 3.1. Let T be a completion of PA and let m ≥ 0. Sup-
pose R ≤T X is an enumeration of a Scott set S, with functions tm+n

for n ≥ 2,∆0
n(X) uniformly in n, such that lim

s→∞
tm+n(s) is an index

for Tm+n and for all s, tm+n(s) is an index for a subset of Tm+n.
Then T has a model A such that SS(A) = S and Q = {(i, a) : Ri is
the complete Bm+1 type of a} is Σ0

2(X).

We may now reuse Theorem 2.2, using ∆0
1(X) to approximate B,

building an isomorphic copy A such that Dm(A) ≤T X. These
constructions can then be combined into one result:

Theorem 3.2. Let T be a complete theory and let m ≥ 0. Suppose
R ≤T X is an enumeration of a Scott set S, with functions tm+n for
n ≥ 2,∆0

n(X) uniformly in n, such that lim
s→∞

tm+n(s) is an index for

Tm+n and for all s, tm+n(s) is an index for a subset of Tm+n. Then
T has a model A with SS(A) = S such that Dm(A) ≤T X.

To show the enumeration half of the main theorem, we need a
modified version of Solovay’s Approximation Lemma form-diagrams.
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The original version for m = 1 appears in [6] along with a proof. We
omit the details here, as the proof for arbitrary m is essentially the
same.

Lemma 3.3. Let A be a nonstandard model of PA with universe
ω, and let R be the canonical enumeration of SS(A). Then for any
m ≥ 0, there are functions tm+n,∆

0
n(Dm(A)) uniformly in n, such

that lim
s→∞

tm+n(s) is an R-index for Tm+n(A). Furthermore, for r <

s,Rtn(r) ⊆ Rtn(s).

We can now give the main result giving the characterization for an
arbitrary completion of PA:

Theorem 3.4. Suppose T is a completion of PA. For any m ≥ 0,
the degrees of m-diagrams of nonstandard models of T are the degrees
of sets X such that:

(a) There is an enumeration R ≤T X of a Scott set S appropriate
for T ; and

(b) There are functions tm+n for n ≥ 1,∆0
n(X) uniformly in n, such

that lim
s→∞

tm+n(s) is an index for Tm+n and for all s, tm+n(s) is

an R-index for a subset of Tm+n.

Proof. Suppose first that R ≤T X is an enumeration S satisfying
condition (2) above. Using Theorem 3.2, we get a model A |= T
with SS(A) = S such that Dm(B) ≤T R. Next, suppose we start
with A |= T with SS(A) = S such that Dm(B) ≤T X. Using the
canonical enumeration R of SS(A), we get that R ≤T Dm(A). Then
by Lemma 3.3, functions satisfying (b) exist as needed. a

§4. Examples. In this section, we present examples illustrating
aspects of Solovay’s results. First, we give a theory T with enumer-
ation R of Rep(T ) such that there is no model of T computable in
R. Next, we present Harrington’s result that there is a model A of
PA that is computable in 0′, but Th(A) is not arithmetical. Hence,
Th(A) 6≤T A(n) for any n. Thus, Solovay’s results in general re-
quire an infinite sequence of approximating functions. In this sense
especially, arbitrary completions of PA differ from TA.

We provide a general procedure for constructing the theories we use
in these examples in Theorem 4.4. The construction uses the Gödel-
Rosser Incompleteness Theorem, as well as Scott’s modification of
this theorem. We will review the Gödel-Rosser and Scott results
before giving our results.
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Independence was first explored by Gödel in his landmark 1931
paper [4]. Rosser tightened the result by modifying the sentence
shown to be independent [11]. We state a variant of the Gödel-
Rosser Theorem that we will make use of later:

Lemma 4.1 (Gödel-Rosser). There is a computable sequence of sen-
tences (ϕn)n∈ω such that ϕn is Πn+1 and for any set Γ of Bn sentences
consistent with PA, ϕn is independent over PA ∪ Γ.

Note that we may also extend the axioms of PA by any computable
set and preserve the result.

We continue with Scott’s results. In arriving at his results re-
garding Scott sets, Scott investigated the notion of independence for
formulas.

Definition 4.2. For a set of sentences Γ and a formula ϕ(x), ϕ(x)
is independent over Γ if for all X ⊆ ω, the set

Γ ∪ {ϕ(S(n)(0)) : n ∈ X} ∪ {¬ϕ(S(n)(0)) : n 6∈ X}
is consistent.

By varying the Gödel-Rosser independent sentence, Scott was able
to show the following result [12]:

Lemma 4.3 (Scott). There is a computable sequence of formulas
(ϕn(x))n∈ω such that ϕn is Πn+2 and if Γ is a set of Bn sentences
such that PA ∪ Γ is consistent, then ϕn is independent over PA ∪ Γ.

Let’s consider briefly the construction of these independent for-
mulas. Fix n. We sketch the construction of the formula ϕn(x) in
two steps. The first step is to define a sequence of Πn+1 sentences
(ψσ)σ∈2<ω , which we think of as being on a binary-branching tree τ .
We describe the first few levels of τ . At level 0 of τ , let the root be
a variant of the Gödel-Rosser sentence that says “for any proof of
me from PA and true Bn sentences, there is a smaller proof of my
negation from the same axioms”; call this sentence ψ<∅>. The root
ψ<∅> branches left to a sentence ψ<0> that says, “for any proof of
me from PA, true Bn sentences, and ψ<∅>, there is a smaller proof
of my negation from the same axioms”. Similarly, ψ<∅> branches
right to ψ<1>, which says, “for any proof of me from PA, true Bn

sentences, and ¬ψ<∅>, there is a smaller proof of my negation from
the same axioms”. Both ψ<0> and ψ<1> are at level 1 of τ . We
may continue and define the level 2 sentences of τ similarly: ψ<0>

branches to the left to a sentence ψ<00> that says “for any proof of
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me from PA, true Bn sentences, ψ<∅>, and ψ<0>, there is a smaller
proof of my negation from the same axioms”, while ψ<0> branches
to the right to a sentence ψ<01> that says “for any proof of me from
PA, true Bn sentences, ψ<∅>, and ¬ψ<0>, there is a smaller proof of
my negation from the same axioms”. Accordingly, ψ<1> branches to
sentences ψ<10> and ψ<11>. For each σ ∈ 2<ω, the sentence ψσ is
defined as above, using σ to determine which axioms ψσ mentions.
Each sentence ψσ is independent over PA, Γ, and the axioms ±ψς
that ψσ mentions.

Using this sequence (ψσ)σ∈2<ω of Πn+1 sentences, we specify an-
other sequence of sentences (µn)n∈ω. Each sentence µi expresses the
disjunction of all paths of length i+ 1 through τ that branch to the
left at level i. We illustrate this by giving the first three sentences
of this sequence. First, let

µ0 = ψ<∅>.

Next, let
µ1 = (ψ<∅> ∧ ψ<0>) ∨ (¬ψ<∅> ∧ ψ<1>).

Continuing, let

µ2 = (ψ<∅> ∧ ψ<0> ∧ ψ<00>) ∨ (ψ<∅> ∧ ¬ψ<0> ∧ ψ<01>)∨
(¬ψ<∅> ∧ ψ<1> ∧ ψ<10>) ∨ (¬ψ<∅> ∧ ¬ψ<1> ∧ ψ<11>).

Continue this way for all levels i. Since these sentences µn are
boolean combinations of Πn+1 sentences, each µn may be taken to
be Bn+1.

We are now finally ready to describe the formula ϕn(x) described
in the lemma. Let ϕn(x) = SatBn+1(µx). We may take SatBn+1(x) to
be both Πn+2 and Σn+2.

We will use Lemmas 4.1 and 4.3 for our examples, by way of the
following construction. We remark that Marker proved essentially
the same result in his Ph.D. thesis [9], using essentially the same
proof. The result appears there as Theorem 1.27.

Theorem 4.4. Let R be an enumeration of a Scott set S. For any
set X, there is a completion T (X,R) of PA with Rep(T (X,R)) = S
and T (X,R) ∩B3n ≤T (X ∩ n)⊕R, uniformly in n.

Proof. We may supposeR is an effective enumeration, by Marker’s
Theorem 1.15. We construct the appropriate theory T (X). We start
with a computable sequence (ϕn(x))n∈ω of independent formulas as
in Lemma 4.3, where ϕn(x) is Πn+2. We also start with a computable
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sequence (ϕ∗n)n∈ω of independent sentences as in Lemma 4.1, where
ϕ∗n is Πn+1. Let T be any completion of PA. We build T (X,R) using
the following list of requirements:

Code0: Take the Π1 sentence ϕ∗0 from the sequence given by Lemma
4.1, where ϕ∗0 is independent over PA.

If 0 ∈ X, let T ∗1 = a completion of PA ∪ {ϕ∗0} in S.
If 0 6∈ X, let T ∗1 = a completion of PA ∪ {¬ϕ∗0} in S.
We may do this because ϕ∗0 and ¬ϕ∗0 are both consistent with

PA ∪ (T ∩ B0). In either case we can effectively find the index i∗1 of
the completion.

Let T1 = T ∗1 ∩ B1. We can find its index i1 effectively as well.
Informally, T1 ‘codes’ whether or not 0 ∈ X.

Code1: Take the Π3 formula ϕ1(x) from the sequence given by
Scott’s Lemma 4.3, where ϕ1(x) is independent over PA ∪ T1. For
k ∈ R0, put ϕ1(S(k)(0)) into T ∗3 . For k 6∈ R0, put ¬ϕ1(S(k)(0)) into
T ∗3 .

Next, we find the index for a completion of PA∪T1∪{ϕ1(S(k)(0)) :
k ∈ R0} ∪ {¬ϕ1(S(k)(0)) : k 6∈ R0}. Then let T3 be the B3 part of
this completion, again finding its index i3. Informally, T3 codes that
R0 is in Rep(T ).

Code2n: Take the Π3n+1 sentence ϕ∗3n, where ϕ∗3n is independent
over PA ∪ T3n.

If n ∈ X, let T ∗3n+1 = a completion of PA ∪ (T3n ∩B3n) ∪ {ϕ∗3n} in
S.

If n 6∈ X, let T ∗3n+1 = a completion of PA∪ (T3n ∩B3n)∪ {¬ϕ∗n} in
S.

Once again, we can effectively find the index i∗3n+1 of T ∗3n+1. Let
T3n+1 = T ∗3n+1∩B3n+1. We can find its index i3n+1 effectively as well.

Code2n+1: Take the Π3n+3 formula ϕ3n+1(x) of our sequence, where
ϕ3n+1(x) is independent over PA ∪T3n+1. For k ∈ Rn, put ϕ3n+1(S(k)(0))
into T ∗3n+3. For k 6∈ Rn, put ¬ϕ3n+1(S(k)(0)) into T ∗3n+3.

Next, we find an index for a completion of

PA∪T3n+1∪{ϕ3n+1(S(k)(0)) : k ∈ Rn}∪{¬ϕ3n+1(S(k)(0)) : k 6∈ Rn}.

Then let T3n+3 be the B3n+3 part of this completion, finding its index
i3n+3.

This ends our inductive definition of T (X,R). By our construction,
it is clear that Rep(T (X,R)) = S.
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a
Note that our construction also gives that X ≤T T (X,R). To

determine if n ∈ X, we may ask T (X,R) which of ±ϕ∗3n ∈ T (X,R).
If ϕ∗3n ∈ T (X,R), then n ∈ X; if ¬ϕ∗3n ∈ T (X,R), then n 6∈ X.

We can use this construction to build the following theory, demon-
strating that the extra conditions requiring approximating functions
for the fragments of the theory in Theorems 1.17 and 3.4 cannot be
dropped:

Corollary 4.5. For any enumeration R of a Scott set S, there
is a completion T of PA such that Rep(T ) = S and there is no model
A |= T such that A ≤T R.

Proof. Let X be a set such that X 6≤T R(ω). Let T be a com-
pletion given by the construction of Theorem 4.4. We show that if
A |= T , then A 6≤T R. If A |= T and A ≤T R, then we have X ≤T
T ≤T A(ω) ≤T R(ω), contradicting the fact that X 6≤T R(ω). a

We can use Theorems 1.17 and 4.4 to prove the following related
theorem of Harrington [5]:

Theorem 4.6 (Harrington). There exists a nonstandard model A |=
PA such that A ≤T 0′ and Th(A) is not arithmetical.

Proof. We show how to use Solovay’s Theorem 1.17 and Theorem
4.4 to prove Harrington’s Theorem. Choose X ≡T TA ≡T ∅(ω) as
follows:

n =< n0, n1 >∈ X ⇔ n1 ∈ ∅(n0).

Let R ≤T ∅′ be an enumeration of a Scott set S. By Marker’s
result, we may take R to be an effective enumeration. Use Theorem
4.4 to obtain a completion T (X,R) of PA.

We claim that there is a model A with SS(A) = S such that
A ≤T R. In order to use Solovay’s Theorem to get A, we need to
specify the functions tn for n ≥ 1,∆0

n(X) uniformly in n, such that
lim
s→∞

tn(s) is an index for T (X,R)∩Σn and for all s, tn(s) is an index

for a subset of T (X,R) ∩ Σn. We begin by letting t1(0) = R-index
for T (X,R) ∩ Σ1. We show how to use ∆0

n(R) to find R-indices
for T (X,R) ∩ Σ1. These functions tn will be constant for all s.
Thus the requirement that for all s, tn(s) is an index for a subset of
T (X,R) ∩ Σn will be satisfied.

Fix n. We define tn(s) as follows. Using ∆0
n(R), we proceed

through the first 2n steps of the construction in the proof of Theorem
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4.4, finding an R-index for T (X,R) ∩ B3n. Since T (X,R) ∩ Σn ≤T
T (X,R)∩B3n, we may use our effective enumeration R to obtain an
R-index for T (X,R) ∩ Σn. Let tn(s) equal this R-index, for all s.

We may now apply Solovay’s Theorem 1.17. We obtain a model
A |= T (X,R) such that SS(S) = S and A ≤T R. Since R ≤T ∅′,
we get that A ≤T ∅′, as required. Since X ≤T T (X,R), we get that
Th(A) is not arithmetical.

a
As a consequence of Harrington’s Theorem we get that the follow-

ing holds:

Corollary 4.7. There is a completion T of PA with a nonstan-
dard model A such that T 6≤T A(n) for any n.

The examples we have given here show that we cannot simply
drop condition (2) of Solovay’s Theorem 1.17. In a related paper [1],
we have shown that Solovay’s Theorem 1.17 cannot be simplified as
follows. We cannot simplify the result by restricting the approximat-
ing functions to being only (i) constant functions, (ii) functions that
change values only k many times for some fixed k, or (iii) functions
that change values f(n) many times for each n, for some computable
function f .

§5. Sequences of degrees and completions of PA. In this
last section we leave Solovay’s results behind and consider the pos-
sible sequences of degrees deg(T ∩ Σn), where T is a completion of
PA. We make use of the following notion: for sets A and B, A << B
iff there is a completion T such that T ≤T B and A ∈ Rep(T ).
This notion extends naturally from sets to degrees. For more results
regarding this notion, see [13].

Our main result in this section is:

Theorem 5.1. For any sequence (dn)n∈ω of Turing degrees, the
following are equivalent:

(1) There exists a completion T of PA such that for all n, dn =
deg(Tn).

(2) 0 = d0 << d1 << d2 << . . . .

In Theorem 5.1 and in the rest of the section, Tn denotes T ∩ Σn,
when T is a completion of PA.

In what follows we use the fact, due to Gödel [4] and Matijasevich
[10], that we may bound quantifiers by a primitive recursive func-
tion without increasing the complexity of formulas in which we use
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these quantifiers. Thus, we may take the primitive recursion function

p(s) =
∏
i<s

pi, as a bound on existential quantifiers without increasing

the complexity of formulas. For perspicuity, we will abuse notation
and identify this function with its represented counterpart.

We prove Theorem 5.1 by breaking it into two pieces, Theorems
5.2 and 5.5. Here is the first direction:

Theorem 5.2. Let T be any completion of PA. Then Tn << Tn+1,
for each n ≥ 0.

For any completion T of PA and any n, let T̃n = Tn + {¬ϕ :
ϕ is Σn, ϕ 6∈ Tn}. To prove Theorem 5.2, we use the following two
lemmas:

Lemma 5.3. Let T be a completion of PA and let n be given. If
τ ⊆ 2<ω is computable in Tn, then there are formulas, Πn+1 and

Σn+1 respectively, such that each formula represents τ in PA + T̃n.

Note that these formulas represent τ in any completion T ∗ such
that T ∗ ∩ Σn = Tn.

Lemma 5.4. Let T be a completion of PA and let n be given. If
τ ⊆ 2<ω is representable by both a Πn+1 and a Σn+1 formula in T ,
then τ has a path computable in T ∩ Σn+1.

Using Lemmas 5.3 and 5.4, here is how we prove Theorem 5.2:

Proof. Fix T . We show that for every fragment Tn of T , there
is another completion T ∗ ≤T Tn+1, with Tn ∈ Rep(T ∗). We find
T ∗ ≤T Tn+1 by using Tn+1 to compute a path through a tree of

completions of PA + T̃n. This path is our T ∗.
Here is how we define this tree of completions. Let (ϕk)k∈ω be a

computable list of all sentences in LPA. We construct the tree of

completions of PA + T̃n, denoted τn, as an infinite binary-branching
tree as follows. A node σ ∈ 2<ω is in τn iff there is no proof of a
contradiction of length less than len(σ) from the set

PA ∪ T̃n ∪ {ϕk : σ(k) = 1} ∪ {¬ϕk : σ(k) = 0}.

Each path through τn corresponds to a completion of PA + T̃n, since
paths decide every sentence from (ϕk)k∈ω consistently.

Fix n ≥ 0. Note that τn ≤T Tn. By Lemmas 5.3 and 5.4, there is
a path T ∗ through τn computable in Tn+1. Note that we have that
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Tn = T ∗n and T ∗n ≤T T ∗. Then, since Rep(T ∗) is a Scott set, we have
that T ∗n ∈ Rep(T ∗). Hence Tn ∈ Rep(T ∗).

a
Next, we prove Lemmas 5.3 and 5.4. First, we prove Lemma 5.3:

Proof. Fix n. Since τ ≤T Tn, there is some e such that χτ (x) =
ϕTn
e (x). It is well-known that there are Π1 and Σ1 formulas ψΠ(e, x, y, z, σ)

and ψΣ(e, x, y, z, σ) representing that y is a computation of ϕe on in-
put x using oracle σ with output y. To represent the oracle Tn, we
make use of the formula Satn(x), defining truth for Σn sentences.
It is well-known that Satn(x) is Σn. Using Satn(x), we give a Σn+1

formula for representing ϕTn
e (x):

δΣ(x) = ∃y∃σ[ψΣ(e, x, y, 1, σ) ∧ ∀t < len(σ)[(σ(t) = 1→ Satn(t))∧
(σ(t) = 0→ ¬Satn(t))]].

We also give a Πn+1 representing formula:

δΠ = ∀y∀σ[ψΣ(e, x, y, 0, σ)→
∃t < len(σ)[(σ(t) = 1 ∧ ¬Satn(t)) ∨ (σ(t) = 0 ∧ Satn(t))]].

a
We now prove Lemma 5.4:

Proof. There are two cases to consider. In Case 1, we assume
that T proves that τ has an infinite path. In Case 2, we assume that
T proves that τ does not have an infinite path. In both cases, we
show how to find ζ, a path through τ .

Case 1: T proves that τ has an infinite path.

We first present a Πn+1 formula infinite-left(τ) that holds iff a node
σ ∈ τ has an infinite extension in τ to its left:

infinite-left(σ) := ∀s > len(σ)∃γ ≤ p(s+ 1)[(len(γ) = s+ 1)∧
((σ ∧ 0) ⊆ γ) ∧ δΠ(γ)].

Suppose we have determined an initial segment σi of our path ζ
through τ , where σi has length i. Here is how we decide whether to
branch to the left or right at the ith level in our path. We update
our path to σi ∧ 0 if infinite-left(σi) ∈ Tn+1. We update our path to
σi ∧ 1 if ¬infinite-left(σi) ∈ Tn+1. We do this for every i ≥ 0. Let

ζ =
⋃
i∈ω

σi.

Since we use Tn+1 as an oracle, we get that ζ ≤T Tn+1.
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Case 2: T does not prove that τ has an infinite path.

In this case, T proves that there is some level past which no node in
the tree can be consistently extended. We extend an initial segment
to this maximum level, and take this initial segment to be our ζ.
Since we will use Tn+1 as an oracle, we will have ζ ≤T Tn+1.

Suppose we have determined an initial segment σi of our path ζ
through τ , where σi has length i. Here is how we decide whether
to branch to the left or right at the ith level in our path. Since we
are in Case 2, T witnesses that τ is finite. Thus T proves that there
is some first level s0 to the left of σi and some first level s1 to the
right of σi, beyond which no path can be consistently extended. We
extend to σi ∧ 0 if s0 > s1, while we extend to σi ∧ 1 if s1 ≥ s0.

To decide whether s0 > s1 or s1 ≥ s0, we use two Σn+1 formulas,
ψ0(π) and ψ1(π). The formula ψ0(π) holds if there is a level s such
that there is some node extending the node π to the left that is
contained in τ ; while at the same time, there is no node at level s
extending π to the right that is contained in τ . The formula ψ1 is
similar but considers extensions to the right. Here are the formulas:

ψ0(π) := ∃s∃σ ≤ p(s+ 1)(len(σ) = s+ 1) ∧ ((π ∧ 0) ⊆ σ) ∧ δΣ(σ)∧

∀λ ≤ p(s+ 1)[(len(λ) = s+ 1) ∧ ((π ∧ 1) ⊆ λ)→ ¬δΠ(λ)]

and

ψ1(π) := ∃s∃σ ≤ p(s+ 1)[[(len(σ) = s+ 1)∧ ((π ∧ 1) ⊆ σ)∧ δΣ(σ)]∧

∀λ ≤ p(s+ 1)[(len(λ) = s+ 1) ∧ ((π ∧ 0) ⊆ λ)→ ¬δΠ(λ)]].

If ψ0(τt) ∈ Tn+1, then s0 > s1. If ψ1(τt) ∈ Tn+1, then s1 ≥ s0.
If neither is in Tn+1 for some level i∗, then we have reached the
maximum extendible level of τ , according to Tn+1. Let

T ∗ =
⋃
i<i∗

σi.

Since we use Tn+1 as an oracle, we get that T ∗ ≤T Tn+1.
a

This completes the proof of the (1) ⇒ (2) direction of Theorem
5.1. Next, we give the (2) ⇒ (1) direction, with proof:



POSSIBLE m-DIAGRAMS OF MODELS OF ARITHMETIC 19

Theorem 5.5. Suppose (dn)n∈ω is a sequence of Turing degrees
such that

0 = d0 << d1 << d2 << . . . .

Then there exists a completion T of PA such that for all n, dn =
deg(Tn).

Proof. We build the completion T inductively by determining
each of its fragments Ti. Let T0 = PA ∩ Σ0. For our inductive step,
suppose we have specified Tn−1. We build Tn so that Tn ≡T Dn, for
Dn a fixed representative from dn. After we show how to construct
Tn, we will show that Tn ≡T Dn, by how we have constructed Tn.

By assumption, there is a completion T ∗ such that T ∗ ≤T Dn and
Tn−1 ∈ Rep(T ∗). Let ϕk be a computable list of the Σn sentences of
LPA. We break our construction into attempts to meet the following
requirements, for k ≥ 0:

R2k: Put one of ϕk or ¬ϕk into Tn

R2k+1: Code whether k ∈ Dn into Tn.

To meet these requirements, we define sets Ai such that⋃
i∈ω

Ai = Tn.

First, let A0 = PA ∪ Tn−1. Suppose we have already defined Aj.
There are two cases to consider:

Case 1: j is even

Then j = 2k, for some k ≥ 0. We define A2k+1, in an attempt
to meet requirement R2k. To decide whether to add ϕk or ¬ϕk to
Tn, we use the following notion. We say that A2k ∪ {ϕk} is more
inconsistent than A2k ∪ {¬ϕk}, according to T ∗, iff T ∗ proves that
there is a smaller proof of an inconsistency from A2k ∪ {ϕk} than
there is from A2k ∪{¬ϕk}. Let γk be the sentence in LPA expressing
that A2k ∪ {ϕk} is more inconsistent than A2k ∪ {¬ϕk}.

Claim 1: If γk ∈ T ∗, then A2k ∪ {¬ϕk} is consistent.
If we are in this case, then we put ¬ϕk into Tn. Let A2k+1 :=

A2k ∪ {¬ϕk}.

Claim 2: If γk 6∈ T ∗, then A2k ∪ {ϕk} is consistent.
If we are in this case, then we put ϕk into Tn. Let A2k+1 :=

A2k ∪ {ϕk}.
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To finish describing how to meet the even requirements, we need
to prove Claims 1 and 2. We leave those proofs until the end.

Case 2: j is odd
Then j = 2k + 1, for some k ≥ 0. We build A2k+2, in an attempt

to meet requirement R2k+1 Use Lemma 4.1, the variant of the Gödel
– Rosser Theorem, to get a Πn sentence ψk, independent over A2k+1.

If k ∈ Dn, put ¬ψk into Tn. Let A2k+2 = A2k+1 ∪ {¬ψk}.
If k 6∈ Dn, put ψk into Tn. Let A2k+2 = A2k+1 ∪ {ψk}.

This ends our description of the construction. No injury ever
threatens these requirements, so in the limit they will all be met.

Let
⋃
i∈ω

Ai = Tn.

To show that Tn ≡T Dn, we must show both that Dn ≤T Tn and
Tn ≤T Dn. First, we show that Dn ≤T Tn. To do this, we need to
decode if k ∈ Dn, computably in Tn, by following the construction
through requirement R2k+1. We reuse the computable list (ϕk)k∈ω of
Σn sentences of LPA. To begin decoding, ask Tn if ϕ0 ∈ Tn. Using
the answer, update the set A1. Using A1, we may use Lemma 4.1 to
compute the Πn sentence ψ0 that is independent over A1. Using Tn,
we check whether ±ψ0 ∈ Tn. If ψ0 ∈ Tn, then we know that 0 6∈ Dn,
by construction. If ¬ψ0 ∈ Tn, then we know 0 ∈ Dn. In either case,
we have decoded whether or not 0 ∈ Dn. Use this answer to update
A2.

At step 2k, ask Tn if ±ϕk is in Tn, as described above for step 0.
Update A2k+1. Do step 2k + 1, deciding if ±ψk in Tn as above for
step 1, and hence decoding whether k ∈ Dn.

Next, we show that Tn ≤T Dn. For a Bn sentence α, we want
to determine whether α ∈ Tn. By assumption, we have that there
is a completion T ∗ such that T ∗ ≤T Dn. We may follow through
the steps of the construction given above, computably in Dn. At
each even step 2k, building A2k+1, we check if α = ±ϕk. If it is, by
following through the steps in Case 1, we determine whether or not
we put α ∈ A2k+1. If it is not, we follow through the steps of Case 1
and Case 2, reaching the next even step. Since our computable list
(ϕi)i∈ω contains every Σk sentence in LPA, we will eventually reach
an even step 2k where α = ±ϕk.

Finally, we give the proofs of Claims 1 and 2.
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Proof of Claim 1: Suppose γk ∈ T ∗. Let p witness γk in T ∗. Then
p is a proof of ⊥ from A2k ∪ {ϕk} in T ∗, and for all q < p, q is not a
proof of ⊥ from A2k ∪{¬ϕk} in T ∗. If p is standard, then there is no
standard proof of ⊥ from A2k ∪{¬ϕk}, so A2k ∪{¬ϕk} is consistent.
If p is nonstandard, then since there is no smaller proof of ⊥ from
A2k ∪{¬ϕk}, in particular there can be no standard proof of ⊥ from
A2k ∪ {¬ϕk}. Again, A2k ∪ {¬ϕk} is consistent.

Proof of Claim 2: Suppose γk 6∈ T ∗. If there is no proof of ⊥
from A2k ∪ {ϕk}, then we are finished. Suppose p is a proof of ⊥
from A2k ∪ {ϕk}. If p is standard, then there is a proof q < p of
⊥ from A2k ∪ {¬ϕk}. We then have that A2k ` ¬(ϕk ∨ ¬ϕk), or
equivalently, A2k ` ϕk ∧¬ϕk. This contradicts the fact that we have
built A2k to be consistent. Thus p cannot be standard, so A2k∪{ϕk}
is consistent.

a
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