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Chapter 1

Introduction

In this book I examine evolutionary explanations of altruism that are
based on computer simulations. When speaking of explanations of al-
truism, this means that this book is not primarily a study that tries
to explain altruism itself, but a critical examination of how these ex-
planations work. Its aim is twofold: On the one hand, it will expound
this type of explanations of altruism, describe its working mechanisms
and the results that can be obtained. In this respect this book strongly
draws on the simulation based approach to the evolution of altruism
that was pioneered by Robert Axelrod and William D. Hamilton (Ax-
elrod and Hamilton, 1981) and made popular through Axelrod’s book
on “The Evolution of Cooperation” (Axelrod, 1984). However, after the
more than twenty years that have passed since the publication of this
book, the fact can hardly be ignored that the simulation-based approach
to the explanation of altruism did not quite live up to the very expec-
tations and aspirations that it once gave rise to and to the “simulation
hype” it caused. Therefore, this book will on the other hand broadly
discuss the limits of this approach. My aim is to give a clear diagnosis of
this failure, to explain why this approach remained largely unsuccessful
and also to point out what lessons regarding the research design of com-
puter simulations can be learned in order to allow a more purposeful
employment of computer simulations for scientific explanations in the
future.

In this introduction, I first say a few words about the topic and
theoretical background that is, about why the evolution of altruism is a
topic that interests us, why an evolutionary approach may be suitable to
tackle the question of altruism and, finally, how computer simulations
come into play here. Then, I briefly explain my method for examin-
ing the simulation-based evolutionary explanations of altruism and its
alleged failure. Basically, my method consists in conducting some sim-
ulations in the common fashion of this approach myself and looking at

1
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the corresponding empirical research both in biology and in the social
sciences. I also give in this introduction a very brief overview of the
main results of my inquiry. Finally, I present the structuring of this
book and, in this context, further describe the methodological decisions
I have taken.

1.1 The explanation of altruism as a scientific prob-

lem

The explanation of altruism poses an intriguing riddle both in biology
and in the social sciences. In biology the question is how, if “survival
of the fittest” is the rule, altruistic behavioral traits can evolve when
altruism means by definition the giving-up of some of an organism’s
own fitness in order to increase the fitness of another organism. Yet,
as ants, honeybees or the behavior of brood care in almost any species
testify, altruism does exist in nature. How then, did it arise?

Similarly, while we all believe that humans are moral creatures that
can by proper education and appropriate incentives learn to behave as
altruists, the question still remains why, if – as we observe in many areas
of life – egoism is the road to success, altruistic norms should continue
to enjoy a high and general esteem. Should not a lack of secular success
of the adherents of altruistic norms mark such norms as unrealistic if
not foolish?

Moreover, altruism raises not only important questions in the em-
pirical sciences, but also for moral philosophy and metaphysics. For,
when we postulate altruistic moral norms we surely want to know (if
we are not pure Gesinnungsethiker) whether and to what degree we can
realistically expect obedience to these norms. From a metaphysical per-
spective the question of the viability of altruism links to the old question
of whether the world as a whole is good or bad and, if bad, whether it
can be made any better or if we will have to cope with the fact that
“the realm of virtue is not from this earth” (Schopenhauer, 1977).

Thus, the existence of altruism demands an explanation and the de-
sirability of altruism calls for an understanding of the circumstances
under which altruism can flourish. In this book an examination will be
made as to what an evolutionary simulation-based approach can con-
tribute to the understanding of altruism.
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1.2 Method and central theses

Why use an evolutionary approach for the explanation of altruism? In
biology the answer to this question is obvious: Any phenotypic trait
of any organism must – according to Darwin’s theory of evolution –
have evolved through natural selection. If a certain organism or species
exposes an altruistic behavioral trait then there must be an evolutionary
explanation for it. The situation is different in the social sciences. As
is usual in the social sciences there exist many competing paradigms
upon which a scientist could draw in order to explain the genesis of
social norms, including norms that prescribe altruistic conduct. The
evolutionary theory of culture which seeks to apply the principles of the
Darwinian theory of evolution (reproduction, variation, selection) to
the evolution of cultural traits is a comparatively young contender. Its
practical value for the social sciences is still disputed1 and, due to the
fact that there exist many good alternative explanations for cultural
developments, it would be too much to expect that the evolutionary
theory of culture could repeat in the social sciences the very success
that Darwinism had in biology. Yet, there are some good points in favor
of it. First of all, the evolutionary theory of culture may prove able
to explain things that other theories of cultural developments cannot
explain.2 Then, where it proves able to explain cultural developments,
it most probably can provide general patterns of explanation that can
be applied both in biology and in social sciences. If the evolutionary
theory of culture should prove to be successful then it could be regarded
as a great advance in terms of the economy of knowledge. Finally,
explanatory patterns that cover different areas of research may profit
from synergistic effects, which means that an advancement of modeling
or empirical research in one of the fields may carry over to the other
fields.

However, there are also downsides to such a generalizing approach.
Most notably there is the danger of overlooking peculiarities of the re-
spective areas of research and, as always with generalizing, there is the
danger of oversimplification. Ultimately, the choice to use an evolu-
tionary approach to study altruism is – as far as the social sciences are
concerned – to some degree a matter of preference and motivated by the
desire to find an explanation for altruism as broad as possible.

Given that it has been decided to use an evolutionary approach to
study altruism the next question would be why computer simulations
should be employed to furnish the evolutionary research on altruism. In

1See Bryant (Bryant, 2004) for a fundamental criticism of the evolutionary theory of culture.
2See Arnold (Arnold, 2002) for some speculations on this topic.
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principle, there would be four different alternatives: 1) One could rely
on purely verbal reasoning to explain the evolution of altruism. But
then, verbal evolutionary explanations tend to be notoriously weak. It
is almost always possible to construct some sort of evolutionary story
of why some certain trait had to evolve and often it is just as easy to
explain on the same level why its opposite should have evolved (even
if in fact it did not) if only because it is usually easy to feign some
plausible selective conditions under which the trait in question would
be advantageous. 2) Another alternative is mathematical modeling. It
allows – as one should presume – for a very precise expression of the con-
cepts in question, but it can easily become extremely complicated and
tedious, once it rises above the mere expression of the concept of, say,
reciprocal altruism to models that can halfway realistically depict a sit-
uation in the real world where altruism evolved.3 3) The latter problem
can potentially be addressed by numerical models, which class includes
also the computer simulations of altruism. Computer simulations are
an extremely flexible, easy to use and powerful tool. Of course all com-
puter simulations rely on mathematical background theories such as, for
example, evolutionary game theory. In this sense there does not really
exist an opposition between computer simulations and mathematics but
rather a dependency. But with computer simulations it is easily possible
to go beyond what can be modeled in purely mathematical terms. Be-
cause of their ease and power, computer simulations seem to have been
regarded by many as the tool of choice for the study of the evolution
of altruism. 4) Last but not least, there is the empirical approach to
altruism, which roughly means looking at empirical instances of poten-
tially altruistic behavior and drawing inferences about these by means
of common reasoning.

In principle, the empirical approach should not be regarded as an
alternative to the theoretical approaches described above. For, any sys-
tematic empirical research must be guided by theories or at least the-
oretical preconceptions about the subject matter. In turn, the models
and theories should of course be tested against empirical data. However,
in practice there really exist two approaches with quite a different style
and flavor to each of them. The empirical approach is a“bottom up”ap-
proach, where scientists start with empirical observations and gradually
develop more and more complex models to account for them. The the-

3See Boorman and Levitt (Boorman and Levitt, 1980) for a comprehensive treatment of the mathe-
matical modeling on the genetics of altruism. It seems that Boorman and Levitt received comparatively
little attention in the philosophical literature on the evolution of altruism. This may be due the difficulties
for most readers to understand the mathematical presentation or to the fact that computer simulations
of altruism have become so popular in the meantime.
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oretical approach (as opposed to the empirical approach) is what could
be called a “top down” approach, where scientists start with theoretical
considerations and models and then (hopefully) adjust them to the em-
pirical instances that these are to be applied to. Unfortunately, in the
case of the research on altruism there exists a wide gap between the the-
oretical and the empirical research4. From the vast amount of computer
simulations on altruism produced, hardly any has been successfully ap-
plied in empirical research. Partly, this gap is due to the division of
labor in science, where one group of scientists develops the models and
another group does the empirical research. But this alone cannot ex-
plain why there is such a lasting discrepancy between the computer
simulation based theories and the empirical research.5 The discussion
of this problem, the understanding of its causes and the consequences
that should be drawn form the central topic of this book.

In the course of this book, I look at both computer simulations and
empirical research in order to examine this question. Purely mathemat-
ical models of altruism will not be discussed. The reasons for leaving
them out are primarily of pragmatic nature. The epistemological ques-
tions concerning mathematical models are not exactly the same as those
concerning computer simulations, although presumably many of the re-
sults about the epistemology of computer simulations arrived at in this
book will also hold true for purely mathematical models. Also, the just
mentioned problem of a strong discrepancy between theoretical mod-
eling and empirical research in the study of the evolution of altruism
seems to be even more glaring in the case of computer simulations if only
because the use of computer simulations makes modeling much easier
and more powerful so that the mere popularity of this tool has exposed
dangers that are already imminent in purely mathematical modeling.

In order to better understand how computer simulations of the evo-
lution of altruism work, several simulations and simulation series in the
Axelrod-fashion will be carried through to simulate different kinds of
altruism. There are basically three different kinds of altruism: Recip-
rocal altruism, kin selection and group selection. Most simulations will
be done on reciprocal altruism and some on group selection. For the
sake of completeness, kin selection will also briefly be discussed but
not simulated. Although they are intended to illustrate the use of a
certain method rather than to be particularly original, the simulations
presented here are new in the sense that they are not merely repeti-
tions of computer simulations that have already been carried out and
described in the scientific literature on the subject. It is, however, one

4See Dugatkin (Dugatkin, 1998) for a discussion of this problem.
5See Hammerstein (Hammerstein, 2003a) for a vivid depiction of this discrepancy.
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of the main points to be established in this book that the results of such
purely theoretical simulations (be they as new or unique as they may)
are typically not of great scientific relevance.6

Just how irrelevant very many of the models of reciprocal altruism
are becomes obvious when they are held against the empirical research
on altruism. No empirical research has been done specifically for this
book. Instead I review some of the empirical research that has been
done in biology and in the social sciences, especially in behavioral eco-
nomics. Not being a specialist in either biology or economics I am quite
aware of the dangers involved with reviewing the results of branches of
science that one can at best claim to have a laymans knowledge of.7

The dangers include misunderstanding, misrepresenting, mistaking the
inessential for the essential etc. But these are problems that any kind
of interdisciplinary research faces. The only secure way to avoid these
dangers would be to refrain from interdisciplinary research altogether
or to ignore scientific results in philosophy, neither of which can seri-
ously be considered an option. To the extent to which the more recent
scientific research in the two above mentioned fields has found its way
into textbooks it is still fairly easy to access. Therefore, I have tried as
far as possible to rely on this kind of scientific literature. However, the
latest research can only be found in articles in scientific journals. As far
as these are concerned, I can only say that I have tried to report the
content of the articles that I have quoted as faithfully and accurately as
I could as a layman.

Having shown by examining the empirical research that computer
models of the evolution of cooperation or altruism can tell us only very
little about how altruism evolves, this naturally raises the question why
they failed to do so. My answer to this question, which is at the same
time my central thesis, generalizes from the simulations of the evolution
of altruism and states that the main reason why computer simulations
often fail to fulfill their expectations in science is that the epistemologi-
cal conditions under which they can possibly explain or prove something
are not yet well understood. Computer simulations are still a relatively
new tool in science so that “best practices” for their design or employ-

6The reason why I do not think they are is explained in chapter 4.1.6.
7My field of specialization is political science. Regarding political science, however, I seriously doubt

that computer simulations of the evolution of cooperation can provide us with any important insights
beyond mere trivialities. See Arnold (Arnold, 2005a) for an extensive criticism of this approach, which
also contains in nuce some of the arguments that have been expounded in greater detail in this book. In
this scepticism regarding the value of mathematical models for political science I feel strongly confirmed
by the criticism of the rational choice approach as applied to the political sciences by Ian Shapiro and
Donald Green (Green and Shapiro, 1994; Shapiro, 2005), which unfortunately I had not been acquainted
with at the time of writing this book.
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ment are only beginning to emerge. There still seem to exist quite a
few insecurities as to how computer simulations can be used properly
in the context of scientific explanations. At any rate, the “tradition” of
Axelrod-style simulations of the evolution of cooperation seems to have
gone astray if the aim really was to explain how cooperation or altruism
evolves. That a whole school or “tradition”, if I may call it so, of science
is going amiss may be due to the fact that the very business of science
sometimes proceeds in an astonishingly naive if not narrow-minded way.
In this case, Axelrod had set with his computer simulations a seemingly
successful new role model for the study of the evolution of cooperation.
What could have been more advisory for aspiring scientists in this field
than to pick up Axelrod’s model, change it here and there a little bit
or even challenge it by designing a similar model that would lead to di-
vergent conclusions and thus produce fascinating new results about the
evolution of altruism? And it was so easy: One only needed to know
a little bit about computer programming and one could do research on
“the evolution of cooperation”. (Even philosophers could do that!) Now,
the naivety with which science sometimes proceeds – and it certainly
proceeded too naively in this case – is to some degree to be excused
because if one wants to examine some subject matter one cannot for
(economical reasons) at the same time occupy oneself too much with
the examination of the method of the examination of the same subject
matter. But if this is true then it surely is a philosopher’s job to make
up leeway and to reflect on what science does and whether it does right
what it does. Therefore, the final and most important part of this book
is dedicated to the discussion of the epistemological conditions under
which computer simulations can be used in the context of scientific ex-
planations. Just as we demand from ordinary scientific theories that
they be empirically testable before we grant them the honorable status
of a “scientific” theory (that is a theory that can potentially explain cer-
tain empirical phenomena), we need criteria for computer simulations
that allow us to classify computer simulations into those for which it can
(empirically) be decided if they simulate correctly and those for which
this cannot be done. The criteria I am going to propose in this book are
those of empirical adequacy, robustness and non triviality. “Empirical
adequacy” means that all causal factors that have a significant impact
on the outcome of the simulated process are somewhere represented in
the simulation. “Robustness” requires that the output of the simulation
is stable within the range of measurement inaccuracy of the input pa-
rameters. And “non triviality” simply requires that the output of the
simulation gives us some important information about the outcome of
the simulated empirical process. (The last criteria may seem trivial or
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self-evident itself, but unfortunately experience has shown that this is
not the case.8) These criteria raise the bar for“explanatory simulations”
quite high and it will be discussed at some length if such strict crite-
ria are really necessary. But if they are more or less accepted then it
follows that the sort of example simulations that have been presented
in this book to demonstrate the principle of Axelrod-style simulations,
and with them very many of the simulations published in the litera-
ture on the evolution of altruism must be rated as insufficient if any
explanatory claim would be based on them. This is quite in accordance
with the lack of empirical success of the simulation-based approach to
altruism mentioned earlier. But with the above mentioned criteria at
hand we can better understand just why most of the computer models
of the evolution of altruism had to fail.

Once the epistemological conditions for the proper application of
computer simulations in an explanatory context are well understood, it
is not only possible to soundly criticize the misguided use of computer
simulations. It is just as well possible to derive guidelines of how to
design and use computer simulations properly. In order to supplement
the critical discussion of what I consider to be a failure of computer sim-
ulations with a positive outlook for the future, I offer my own proposal
for such guidelines in form of a few simple recipes that scientists can
follow if they want to be assured that their simulations are epistemically
valid.

1.3 On the structure of this book

The book is organized into four parts. In the first part (chapter 2 and
chapter 3) I explain why the existence of altruism, which is a fact of
the natural as well as the social world, poses a scientific and philo-
sophical problem. Furthermore, I give a definition of altruism that is
broad enough for both biology and the social sciences and I justify this
definition at some length. The first part closes with an exposition of
the “generalized theory of evolution” (Schurz, 2001), which constitutes
the greater theoretical context into which the following models of the

8To me it seems that the sort of computer simulations that Brian Skyrms devised for the study of the
“social contract”(Skyrms, 1996) or“social structure”Skyrms (2004) are trivial to a point where they must
be regarded as mere toys. It would be very difficult to draw from his simulations any tenable conclusions
with regard to the subject matter of political order (social contract) or social structure that they are
allegedly related to. (For a criticism of Skyrms see Arnold (Arnold, 2005a).) A similar objection holds
for Schüßler’s simulations of cooperation on “anonymous markets”, only that Schüßler is at least aware
of the problem and honest enough to discuss it (Schüßler, 1990, p. 91f.).
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evolution of altruism can be integrated.9 Because the application of
evolutionary theory outside the field of biology is a controversial issue,
the different flavors of theories of cultural evolution will be discussed at
some length.

In the second part (chapter 4) the three basic evolutionary explana-
tions of altruism will be explained and the modeling on the evolution of
altruism will be discussed. The presentation of a whole field or branch
of science always raises a certain methodological question: Should one
rather give an extensive but in its details necessarily sketchy overview
over the whole field or should one present and discuss a few select exam-
ples “pars pro toto” in all detail. I have taken the second approach and
will present a few self-made computer simulations in order to demon-
strate how this type of modeling works in detail. Of course, I could also
have taken models that were described in articles in scientific journals.
But usually the description in journal articles does not present all the
details of a simulation, hardly ever is the source code of the simulation
software given and often the information is too sketchy to reconstruct
the simulation in an unambiguous way. Also, programming simulations
on one’s own is quite an instructive exercise. It allows one to notice how
many ad hoc decisions enter into the construction of a simulation. By
presenting the computer simulations and their results in detail it will be
possible to point out both the usual working mechanisms of such sim-
ulations as well as the common traps and pitfalls of simulations. The
description of these (as I hope) paradigmatic example simulations will
be supplemented by a review of a selection of the simulations of the evo-
lution of altruism published in the respective literature. The discussion
will cover all forms of evolutionary altruism that is, reciprocal altruism,
kin selection and group selection. The greatest emphasis is laid on re-
ciprocal altruism as this is the type of altruism for which the method
of computer simulations has been used the most excessively. As will
become apparent from the discussion of the simulations conducted by
myself as well as those published in the literature on the subject, there
is an arbitrary large space of logical possibilities that could be explored
by simulations while at the same time hardly any generalizable results
can be derived from simulations alone. The reason why all three forms
of altruism are covered even though reciprocal altruism would arguably
have sufficed to prove the point against the method computer simula-

9Of course the models of the evolution altruism do not necessarily need to be understood in the
context of a generalized theory of evolution. For example, as long as we only talk about altruism among
animals it would suffice to interpret them against the background of the theory of evolution in biology.
But as evolutionary explanations of altruism can be given both in biology and in the social sciences a
generalized theory of evolution that does not confine itself to genetic evolution alone provides a very
suitable paradigmatic background.
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tions is that these different forms of altruism do often not appear strictly
separated in the empirical literature on the subject (if only because it
is often very difficult to tell apart the different forms of altruism in an
empirical context) and it would otherwise be difficult to compare the
simulation studies with the empirical research.

In the third part (chapter 5) of this book the results of the computer
simulations will be contrasted with the empirical research on the evolu-
tion of altruism. It is here where it becomes most obvious that a wide
gap exists between the simulation research and the assumptions about
the evolution of altruism based on it on the one hand and the empirical
research on the other hand. Again, when presenting the results of the
empirical research on the evolution of altruism, a similar methodological
issue as in the case of the presentation of the simulation research arises.
Should one rather give a broad overview of the research or should one
discuss only a few exemplary studies in detail. I have tried to combine
both approaches and therefore give a broad – though for the sheer size
of the topic necessarily incomplete – overview of the empirical research
(in biology) first. This way the fact can be assessed that cases where
empirical researchers could make good use of the results of simulation
studies on the evolution of altruism are extremely rare. In order to
understand just why they are so rare, I pick out some examples (both
from biology and from social sciences) and discuss them in detail. Since
I am going to make a case against the simulation based approach, I was
careful to pick out examples that could (at the time of their publication)
be considered as showcases for the application of the results of simula-
tion based research to empirical problems of the evolution of altruism.
If these fail then the simulation based approach in its present form is
confronted with a serious problem. And they do fail, as I hope to be
able to demonstrate.

Turning from the diagnosis of failure in the third (and partly already
the second part) of this book to the explanation of the failure in the
fourth part (chapter 6), I propose and discuss the above mentioned cri-
teria for“explanatory simulations”. It can easily be seen that hardly any
of the simulations on the“evolution of cooperation”meets these criteria.
It is more difficult to show that the fulfillment of these criteria is both
necessary and sufficient for a computer simulation to claim explanatory
power in a scientific context. Since the epistemology of computer simu-
lations is a relatively young field in the philosophy of science with many
open questions, I can hardly maintain to have found the definite answer
to the question of potentially explanatory qualities of computer simu-
lations. The fourth part therefore has more or less the character of a
philosophical discussion that is, I try to defend these criteria as good
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as possible against conceivable objections. Given that the proposed cri-
teria provide at least a reasonable guidance, I finally turn to practical
considerations and try to devise some “recipes” for the proper use of
computer simulations in a scientific context.

In a short concluding chapter the results of this book will be summed
up. The main results are that the simulation based approach to the
study of the evolution of altruism was largely a failure. This failure
resulted from a lack of understanding of the epistemological conditions
and requirements of the employment of computer simulations in the
context of scientific explanations. Yet, if carefully applied, computer
simulations can be a very valuable tool of scientific research. Regarding
the requirements of “good” computer simulations, I have made a few
proposals in the last part of my book. These may or may not prove
sufficient and practical in the future, but if I was able to convey a sense
for the necessity to take epistemological considerations into account for
a proper research design of simulation based research, then my attempts
have not been wholly futile.
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Chapter 2

The riddle of altruism

In this chapter it will be explained why the existence of altruism poses a
philosophical (and scientific) problem. I try to give a precise definition
of altruism that (1) matches our intuitions about altruism and is – save
for its greater precision – more or less equivalent to the common sense
meaning of the word “altruism”, (2) is wide enough to be applied to
both biological and social contexts, (3) can be used in the context of a
Darwinian theory of evolution. In the following chapter (3), I discuss
the generalized theory of evolution, which is the theoretical framework
into which later the computer models of the evolution of altruism are
to be embedded.

2.1 Altruism in a hostile world

It is commonplace that altruism is a highly desirable attitude. Chris-
tianity even declares charity, which is altruism in its highest form, the
prime virtue of man. At the same time moralists of all epochs and cul-
tures could never help noticing the deplorable lack of altruism, charity
and virtuous observance of the others needs among humans. It would
not need the constant admonitions of teachears, priests, prophets and
philosophers if altruism was so common and natural a gift as becomes
a creature that – according to the book of genesis – is the very image
of a benevolent god. The book of genesis has an explanation for this
unpleasant state of affairs for sure: It was primordial sin that brought
evil into this world.

But when we turn from mythology to science we are apt to get the
impression that it is not at all the existence of sin that poses a riddle
because the sciences almost univocally assume a human nature that
is thoroughly egoistic, if not worse. For economists human beings are
pure egoists that, given their preferences, employ their gift of reason
solely to the end and purpose of maximizing utility for themselves. The
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same concept of human nature is shared by many sociologists, especially
those that endorse the principle of methodological individualism.1 And
if political scientists do not strictly adhere to the picture of humans as
rational egoists then only because they allow deviations to the worse.
As Machiavelli put it (when giving the reason for his warning that the
duke should reign in blood but not touch his subjects wives or fortunes):
“For people sooner forget the death of their own father than the loss of
their father’s heritage” (Machiavelli, 1980, p. 69 (my translation from
German, E.A.)). By saying so, Machiavelli merely put into words a
premise that most of the more prudent political thinkers do at least
tacitly presume. Among the human sciences (Humanwissenschaften) it
is – as can be expected – at best pedagogics that offers a more optimistic
view of human nature and, possibly, also psychology to some degree.
The presupposition that man is by nature an egoistic creature becomes
even more credible when we turn to biology. For, the theory of evolution
is virtually based on the idea that can – albeit coarsely – be described
as the“survival of the fittest”, a principle that seems to rule out any non
egoistic behavioral traits other than those which are directed towards the
closest relatives right from the start. It is this (supposed) consequence of
evolution that induced T.H. Huxley to coin the equally popular phrase
about “nature, red in tooth and claw”.2 Thus, from a scientific point
of view the question is not how sin came to this world, but, quite the
contrary, how altruism could come into this world and how it had any
chance to survive therein.

Of course the picture of man as a dyed-in-the-wool egoist (if not
worse) is far too bleak and it may justly be objected that this picture
is cynical and contrary to everday experience. But still the question re-
mains if people (sometimes) really are altruistic, how can they afford to
be so and, if altruism is desirable, how can people be induced to behave
altruistically? It is no answer to this question that altruism provides so
much benefit “to all of us”. For, altruism is good for anybody but not
for the altruist himself or herself. And altruism is best for the egoist
that benefits from the altruism of the others but does not give anything
in return. So, once again, how can altruism survive in the long run?

1Methodological individualism is the doctrine that social phenomena should be explained as the result
of the actions of individuals (Heath, 2005). In order to explain the actions of the individuals in turn, it
is convenient to resort to the assumption of utility maximization, i.e. rational egoism.

2For the sake of fairness it should be noted that neither Herbart Spencer nor Thomas Huxley fully
endorsed the view that evolution rules out altruism. However, they both thought of ethics and evolution as
being antagonistic, so that if ethics (that is the Christian ethics of altruism, benevolence and compassion)
is to prevail then only because the civilizational process of society can (in the long run) somehow overcome
the iron laws of evolution (Spencer, 1993; Huxley, 1993). It is the opposite view that is advocated here:
Evolution can by itself produce altruistic ethics.
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To answer the question in this general form an evolutionary approach
seems quite suited. There is a strong similarity between the question of
when and how altruistic behavioral traits can evolve in animals and the
question of how altruistic norms can emerge and be sustained in human
society. But before any explanation can be given, a clarification of the
concept of altruism is necessary. So, what exactly is altruism?

2.2 The definition of altruism

As has to be expected when using words from everyday language, the
terms“altruism”and“cooperation” turn out to be somewhat ambiguous
upon closer inspection. For example, is any behavior that turns out to
be beneficial to somebody else to be called “altruistic” or only when it
is done with the intention to benefit the other person? And what if
something is done with the honest intention to serve somebody else but
only on the premise that the other person will be grateful and eventually
return the favor. Is this kind of mutual exchange of benefits to be called
altruism? And, if yes, must we then count every instance of a successful
business transaction as“altruistic”because, if carried through freely, it is
to the mutual benefit of the business partners? Part of these ambiguities
of the term “altruism” stem from the fact that the common notion of
“altruism”is closely connected with moral questions and certain ideals of
moral virtue. To avoid confounding the different meanings and aspects
of altruism, an explicit definition of the term “altruism” is needed.

In this section “altruism”will be defined in view of the general theory
of evolution that will constitute the framework of this examination.
In order to assure that the definition of altruism meets our research
interests, the consequences of this definition will be discussed at some
length, thereby comparing it with the ordinary language understanding
of altruism. The definition of altruism must not only be clear enough to
allow the examination of the problem within an evolutionary approach,
it is also important that the kind of altruism captured by the following
definition is the very altruism for which the “riddle” of how and why it
came into this world and whether and under what conditions it has a
chance to survive is to be solved.

For the rest of this study the following definition of altruism will be
used: A trait or a type of behavior of an individual is called altruistic if
it benefits another individual at a cost for the individual itself without
immediate or equal return. Some behavior is thus altruistic,

1. if it is beneficial for another individual
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2. and if it is costly for oneself

3. and if an equal return is not guaranteed

4. and if the altruist chooses (or, in case of non-intentional animal
behavior, simply if it depends on the altruist) whether the transfer
of benefits takes place

The definition is abstract enough to be applied both to sociological
and biological settings, for it is not required to assume that the individ-
uals can think or even have a consciousness at all. In a biological setting
the costs of the individuals would be interpreted as fitness costs in the
sense of adverse effects on the reproduction rate. Also, the definition
is designed to be wide enough to cover both reciprocal altruism and
genuine altruism. Reciprocal altruism is altruism on the premise that
the bestowed benefits will be returned, but with a certain risk that this
might not happen. (Only when the latter is excluded, it is, according to
the definition, not called “altruism”, any more. This would be the case
if the return was immediate.) Thus, even when favors are reciprocated
we speak of altruism, but we only speak of altruism when there exists
an opportunity for cheating.

Genuine altruism on the other hand means that it is sure that the
costs for benefiting other individuals will never be returned. In a bi-
ological setting a certain behavioral trait of an individual is genuinely
altruistic if it helps increasing the reproduction rate of some other in-
dividual and at the same time decreases the reproduction rate of itself.
That this is indeed possible and that therefore genuine altruism can sur-
vive in nature despite the fact that the survival of some phenotypic trait
crucially depends on its increasing the reproduction rate of its bearer
over his or her competitors, is one of the most astonishing results of
group selection that will be discussed in chapter 4.3.

But does the above definition match our common understanding of
altruism? The definition is in some respects rather wide so that it might
be disputed that all of the possible types of behavior that match the
definition can legitimately be called altruism. For example, a carpet-
bagger investing a high amount of money into some risky business with
the hope of getting a multiple of his investment back would – according
to the above definition – have to be classified as an altruist, although
we probably would not call his financial speculation “altruism” in ev-
erydays life. We might even hesitate to speak of “cooperation” in this
case. The above definition is indeed counter-intuitive in cases like this
one. The problem is not specific to this definition but it is already ap-
parent in the notion of “reciprocal altruism” which for this reason could
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equally well be called “reciprocal egoism”.3 The main reason that – in
spite of these objections – speaks for a wide definition of altruism is
that it captures all behavioral traits that lead in some form or another
to cooperation. If the less genuine forms of altruism were named“recip-
rocal egoism” or similar, there would still be the need for a distinction
between types of egoism that encourage cooperation and others that do
not. Since we want to find out what chances of survival altruism and
cooperation have in a competitive world, it is therefore advantageous to
draw the line between altruism and egoism in such a way that the realm
of altruism more or less matches that of cooperation. In order to avoid
too great a confusion with the common usage of words, it might help to
think of“reciprocal altruism”as of a diminutive of altruism. “Reciprocal
altruism” is then a kind of altruism that is merely reciprocal but not
more.

There are also a few other points that have to be noted about the
above definition of altruism. Although the questions discussed in this
study have a moral connotation as well, the definition above is purely de-
scriptive. The difference this makes can be explained as follows: When
speaking of “cooperation” or “altruism” the moral connotation usually
suggests that cooperation and altruism are generally good and laud-
able. But this is not necessarily the case: The (illegal) pre-arrangement
of prices by competitors on a market, for example, is certainly not a
laudable case of cooperation and it could hardly be labeled “altruism”
because – since altruism is commonly considered laudable – the word
would not be used in cases of cooperation that seem ethically doubt-
ful in the broader context. The problem that this example exposes is,
however, not a problem specific of the above definition of altruism, but
a fundamental problem of moral philosophy: Moral philosophy tries to
classify human actions and attitudes into categories of good and bad.
But even actions that are generally thought of as being morally laudable
can, when appropriate circumstances are given, turn out to be morally
deplorable. Killing people is generally considered bad and saving lives
is good, but for a soldier in war killing people is a virtue. The problem
has to do with the contextuality of moral attributes. To avoid false
conclusions this kind of contextuality should be borne in mind.

In addition to the fact that altruism is typically considered to be
morally laudable, there exists a more specific reason, why the descrip-
tive definition of “altruism” given above is important for the discussion
of ethical questions. Even if “altruism” in a descriptive sense can also
be applied to cases of illegal or antimoral conspiracy, it is hardly imag-

3This was suggested by Gerhard Schurz.
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inable (except may be for extreme ethical standpoints like Nietzsche’s
“Herrenmoral” or Ayn Rand’s “Objectivism”) that there can be such a
thing as moral conduct that does not involve altruism in any form. Al-
truism in a descriptive sense thus seems to be a necessary though not
sufficient condition for morality. Moral conduct typically demands from
the individual to follow certain norms even though this may be costly
and even when no reward is assured. Thus the questions of whether and
to what extent morality has a chance to flourish in a competitive world
crucially depends on the question of whether altruism in the descriptive
sense is possible in a competitive world.

The above definition of altruism does not contain any psychological
or teleological elements such as intention (if humans are meant) or func-
tional design (if organisms are concerned) directed towards benefiting
the other. This might appear odd at first sight because cases of involun-
tarily benefiting others or of benefits which are mere side effects do not
seem to be excluded (as they should). As an example a tree that casts
a shadow during a hot summer day might be taken. The tree’s shade
is most welcome for humans resting under it. But is the tree’s cast-
ing a shadow therefore to be called an example of biological altruism?
The obvious objection would be that the tree is not designed to provide
needful humans or animals with a pleasant shade on a hot summer day.
It is designed to catch sunlight for photosynthesis, the shade being an
unintended side effect. To call this “altruism” would surely overstretch
the meaning of the word. This objection would be valid, but luckily
cases like this one are covered by the requirement that altruism should
be costly. There are no extra costs for the tree to cast a shadow. Thus
casting shadows does not count as altruistic according to our definition.
(Biologists sometimes treat this kind of phenomena under the heading of
“byproduct mutualism”, where “byproduct mutualism” can be regarded
as a degenerate case of altruism (Dugatkin, 1997, p. 42).4) But if the
tree were an apple tree then its growing fruits would legitimately be
called altruistic because growing fruits involves a cost for the tree. It
does not matter here that the tree is a plant and therefore cannot have
intentions. Presumably, the tree’s growing fruits is a case of reciprocal
altruism, as the humans or animals eating the apples might help the
tree to spread its seeds in return.

One might even take this question a step further by arguing that while

4From an empirical point of view it is quite reasonable to discuss byproduct mutualism in connection
with altruism because 1) it is often very hard to distinguish empirically whether some kind of behavior is an
instance of, say, reciprocal altruism or merely byproduct mutualism and 2) there is evidence that in many
cases byproduct mutualism is a stepping stone in the evolutionary path that leads to the development of
altruism. (See chapter 5.1 for the empirical examples in biology, where this question can often be raised.)
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merely accidental benefits for others are excluded by the criterion of cost,
this leaves open the possibility for altruistic acts that are not bestowed
from a benefactor on a beneficiary but reaped from the benefactor by
force. An example would be a rabbit that is eaten by a fox. It would not
help to reintroduce the notion of functional design into the definition
because a rabbit is – in a way – perfectly well designed to serve as
fox food. Absurd cases like that of the rabbit that altruistically lends
itself to be eaten by a fox or – to take an example from social life –
of crime victims that serve as altruistic benefactors to robbers, thieves
and burglars are ruled out by the fourth criterion, according to which it
must depend on the altruist whether the transfer of benefits takes place.
The criterion is wide enough to capture altruistic actions by humans as
well as animals. Even though it may not be apparent at first sight,
the criterion can also be applied to inborn (or genetically determined)
altruistic traits as they occur in mutualisms.5 In this case “to depend”
means two things: 1) that it is a genetically determined trait of the
altruist that makes the transfer of benefits possible and 2) the altruist
could also exist without this trait.

The choice of costs rather than intentions as a criterion for altruism
has the advantage that it is more objective and that it can be applied
equally in biological and sociological settings without the need for differ-
entiating between human intentions, animal intentions, mere functional
design of primitive organisms that do not have intentions etc. Further-
more, in a sociological setting the assumption is certainly unproblematic
that whenever some altruistic act needs a certain effort, it will not be
performed without the intention to perform it.

There is, however, also a downside to neglecting intentions in the
definition of altruism. In everday life, especially when human relations
like friendship and love are concerned, there exists a distinction which
is closely connected to the psychological aspects of altruism and which
is at the same time crucial for the valuation of altruism: The distinction
between real or true altruism on the one hand and false or merely pre-
tended altruism on the other hand. Altruism is commonly regarded as
true only if the benefits one person bestows unto another are given for
the sake of the other person and not merely out of egoistic motives like
prestige or the hope for a reward. In the latter case the kind of altruism
displayed would be regarded as merely pretended and not as honest.
Such psychological subtleties are not covered by the above definition of
altruism, which is designed to be operational in the first place. Still,
should the question arise, the definition of altruism can easily be ren-

5A mutualism is an interspecific association of different species to their mutual benefit. An example
would be the association of hermit crabs and sea anemones.
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dered more precise, especially so, since the distinction between altruism
out of friendship and opportunistic altruism also leaves its mark in the
outer world: As the psychological findings indicate, the kind of altruism
that friendship evokes is reciprocal only on a long term basis and even
defies short term reciprocity (Silk, 2003).

As a final remark, it should be noted that there exists a very specifi-
cally philosophical question about altruism, which will only be discussed
here briefly and in the following be left out completely. It is the ques-
tion whether true altruism is possible at all. It could be argued that
whenever a person behaves altruistically, he or she does so only because
he or she derives at least an emotional reward of some kind such as,
say, personal satisfaction. But then – as the argument runs – the ac-
tion would not be truly altruistic any more because it is done for one’s
own satisfaction. Indeed, it is difficult to believe that anybody can do
anything without at least some kind of inner reward. Only a perfect
saint might be able to commit the most gracious acts of altruism and
charity and at the same time be wholly disgusted by what he is doing.
If one insists on speaking of true altruism only where it reaches a level
of perfect saintliness then there is no altruism in this world. But as long
as it is not deliverance that is sought and the problem of altruism is
confined to how and to what extent altruism has a chance to emerge in
natural and cultural evolution, it is safe to assume that already levels
of altruism below perfect saintliness can be morally satisfactory.



Chapter 3

The generalized theory of evolution
as theoretical framework

Having defined altruism, it is now time to discuss the theoretical frame-
work in which the so defined concept of altruism is to be applied. In
this book, I discuss altruism in a Darwinian evolutionary framework
with special emphasis on the method of computer simulations. The
application of Darwinian evolutionary concepts to the evolution of al-
truism in a cultural context as it is intended by generalized theories
of evolution requires some explanation: While evolutionary theory in
biology is well established, the application of evolutionary concepts in
the social sciences is still the object of much debate. There exist several
different approaches to employing evolutionary thinking in the social sci-
ences. None of these attempts goes uncontested and there is of course
some dispute whether an “evolutionary theory” based on the concept of
selection is of much use in the social sciences at all. Therefore, the ques-
tions surrounding the application of evolutionary concepts to cultural
developments will be discussed at some length.

In the following, I first define the concepts of “Darwinian evolution”
and “evolutionary theory in a Darwinian sense” and I describe how evo-
lutionary explanations work. Then, I discuss in which areas of science
we can make use of evolutionary explanations and I also briefly touch the
question, how they relate to competing non evolutionary theories. The
answer to this question is trivial only in biology, where evolutionary the-
ory remains uncontested and where the explanation for the emergence
of any (altruistic) trait must therefore be found in the realm of evolu-
tionary theory. But this is not the case in the social sciences, where
the employment of evolutionary explanations requires some justifica-
tion. This becomes even more important as there exist different brands
of evolutionary theories in the social sciences like sociobiology, which re-
lies on genetic evolution, and theories of cultural evolution, which seek
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to explain the development of culture in analogy to biological evolution
but not by the evolution of genes itself. And there exist mixed forms of
both theories. I confine myself to the discussion of evolutionary psychol-
ogy as an example of the genetic brand (section 3.3.1) and the theory
of cultural evolution (section 3.3.2), which assumes that the evolution
of culture is a process that proceeds largely independently from genetic
evolution. Alongside with the presentation of these approaches, I am
going to discuss some of the criticism that has been put forward against
these theories and point out possible limitations. Finally, I discuss the
place that the explanations for altruism based on evolutionary computer
simulations have within this theoretical framework (section 3.4).

3.1 The concept of Darwinian evolution

The word“evolution”, when taken in its most general meaning, describes
a process of change over time which has a determinable direction. In
the following, however, when speaking of “evolution” or “evolutionary
processes”what is meant is always evolution in a narrower, “Darwinian”
sense. Evolution in a Darwinian sense is a process the course of which
is determined by the joint effect of three factors (“Darwinian modules”):
reproduction, variation and, most prominently, selection. We assume
here that there exist some determinable evolving entities upon which
these factors act, resulting in a directed evolutionary process. In more
detail these three factors (or“Darwinian modules”) can be characterized
as follows:1

1. Reproduction: There is a set of evolving entities (as for example
genes in natural evolution or certain cultural traits2 in cultural
evolution) that is reproduced in generational cycles.

2. Variation: In every generation there is a certain amount of variation
among the evolving entities, that is, they differ according to their
respective properties. Even if some types of entities die out after
a while, variation may still be kept up by the the spontaneous
appearance of new types (“mutations”).

3. Selection: The reproduction rate of the evolving entities differs de-
pendent on the interaction of the entities’ properties with the envi-
ronment. Thus the environment selects for certain types of entities

1The characterization of Darwinian evolution follows (Schurz, 2001, p. 329ff.).
2I am not, as it is often done, speaking of memes here because it is still doubtful whether memes exist

as entities.
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that can then be regarded as “better adapted” than other types of
entities.

These three factors are the defining characteristics of a “Darwinian
evolutionary process”. It cannot be assumed that these three factors
alone lead to a directed evolutionary process without any further con-
ditions being fullfilled. For example, evolution can only take place in
a more or less stable environment (Schurz, 2001, p. 336/336.). Also,
there must be a large enough range of variable types of the evolving en-
tity. In the case of the genome, this is certainly true, as there exists an
enormous number of possible combinations of the basic building blocks
of the DNA. And one could easily think of further conditions. Still we
will not make these conditions part of our definition, but we will speak
of “Darwinian evolution” if there is a directed evolutionary process and
if this process is determined by at least the three factors reproduction,
variation and selection plus potentially further conditions. We will not
speak of “Darwinian evolution” or “evolution in a strict sense” if one or
more of these factors is absent. (To guard oneself against misunder-
standings it is important to keep in mind that especially in the social
sciences the terms “evolution” and “evolutionary” are usually not used
in the strict Darwinian sense. Even where authors assume that they are
describing some social or cultural development process in Darwinian
terms it may turn out upon closer inspection that they are in fact not
doing so, but that they are merely applying some arbitrary selectionist
paradigm.)

Having defined the concept of “Darwinian evolution” we can now
define what a “Darwinian evolutionary theory” (or just “evolutionary
theory”) is. An “evolutionary theory” is a theory of a development pro-
cess that uses the concept of Darwinian evolution for the explanation of
this process. Now, this raises the question to what empirical processes
theories of Darwinian evolution can reasonably be applied. If we think
of evolution in the broadest sense there are basically three strata of evo-
lution which are of philosophical interest to us: 1) The evolution of the
universe, 2) the evolution of life (including the evolution of humans), 3)
the evolution of culture, i.e. human history. It seems quite obvious that
the evolution of the universe is not an instance of Darwinian evolution.
One could of course speak of the evolution of galaxies and solar systems,
but it is hard to envisage how reproduction and selection come into play
here. Therefore, when looking for possible instances of Darwinian evolu-
tion, we must confine ourselves to the evolution of life and the evolution
of culture. The merits of the Darwinian theory of evolution in the one
field and its prospects in the other will be discussed in the following.
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3.2 Biological evolution

Only little needs to be said about biological evolution here. The the-
ory of evolution has by now for a long time been firmly established in
biology.3 As is well known it was first put forward by Charles Darwin
to account for the origin and the diversity of the existing plant and an-
imal species. Very simply put, one could say it gives answers to three
questions: Why is there such a multitude of different species? How did
each single one of them come into existence? (And in particular: How
did the human race come into existence?) How come that all of the
species are so well adapted to their respective environment? The an-
swers that the theory of evolution gives to these question are (last one
first): 1) Living beings are so well adapted to their environment because
they have evolved through natural selection. Those types that are not
well adapted (or less well adapted than other types sharing the same
habitat) die out, leaving just types that have a functional design that
makes them well adapted to their environment. 2) Each single species
came into existence by gradual evolution from (usually) more primitive
species. This also explains how man came into being and thus gives
an answer to one of the most fundamental philosophical questions. 3)
Finally, the variety of species existing in this world is to be explained by
the fact that species may split due to spatial separation or other causes
and then evolve into different directions, occupying different ecological
niches.

But the theory of evolution is not only able to answer such general
questions. It also has a direct impact on the explanation of the char-
acteristics and phenotypic traits found in living organisms. In fact the
theory of evolution is the only theory that offers an ultimate explanation
for why organisms have certain traits. A phenotypic trait can be any
characteristic feature of the organism itself or of its behavior (some au-
thors even include the nests and buildings animals construct like spiders
webs, rabbit burrows etc. into the phenotype of the respective animal
(Dawkins, 1982)). Therefore, behavioral characteristics such as altruis-
tic or egoistic behavior must also be regarded as part of the phenotype
of an organism, and their existence must be explained on the basis of
the theory of evolution. This means that for any specific trait of any or-
ganism it is either true that (1) it is a functional adaptation to a certain
aspect of its habitat and it has evolved by natural selection or (2) it is a
by-product of other adaptations of the organism to its environment or
(3) it is the heritage of an adaptation in the evolutionary history of the

3Most of the information about the biological theory of evolution that is given in the following is taken
from the book of Ernst Mayr (Mayr, 2001).
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organism or (4) it is the result of sexual selection.
But why can we be so sure that the explanation of a certain trait

must fall into one of these categories or, more broadly speaking, why
can we be sure that the explanation for the existence of a phenotypic
trait of an organism must be an evolutionary one? The answer to this
question has two parts. One part of the answer is that the theory of evo-
lution is an extremely well confirmed theory. A broad range of empirical
evidence supports this theory (Mayr, 2001, p. 12ff.). This evidence in-
cludes among other things the fossil record, field observations as well as
breeding experiments and molecular genetics. The latter is of particu-
lar importance because at the time when Darwin invented the theory of
evolution, the specific mechanism of inheritance had not yet been found.
When the laws of genetics were discovered this not only solved one of
the major riddles about evolution, namely whether acquired properties
are passed on to the descendants (which is not the case), but it also
turned out that genetics and the theory of evolution fit together like
one puzzle piece to another. If it is possible to link independently con-
firmed theories together, as in this case the theory of evolution and the
theory of genetics, then this is always a major scientific achievement.
One could say that the successful linking of theories strengthens both
theories by providing them with additional, holistic evidence.

The other part of the answer to the question why the ultimate expla-
nation for any phenotypic trait of an organism can only be an evolution-
ary one consists in the fact that the theory of evolution is without any
competitors. It is the only theory that can explain why organisms are
functionally adapted to their environment or, to put it in a more philo-
sophical jargon, why organisms expose a teleological structure. There
is no other way to explain this teleological structure of organisms than
by the theory of evolution. This does not mean that we can give a
precise evolutionary explanation for each single instance of a functional
adaptation. But we can always be sure that there exists an evolution-
ary explanation. And the reason why we can be sure it exists is that
(1) it is possible to give precise evolutionary explanations for functional
adaptations in many other cases (2) there is no case where the theory of
evolution has been falsified (for example by demonstrating that a cer-
tain trait exists although it reduces fitness and is at the same time not
an artifact of sexual selection) (3) there is, as has just been mentioned,
no alternative theory that could possibly offer an explanation. We are
therefore entitled to assume that even in those cases where we cannot
give a precise account, the ultimate causes must still have been those
that are described by the theory of evolution.

I emphasize the point that there exists no rival to the theory of evo-
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lution in biology so much because this is one of the major differences
between evolutionary theory in biology and evolutionary theory when it
is applied to cultural evolution. There exist many theories that account
in one way or other for cultural developments and evolutionary pro-
cesses (in a broad sense) in human history as well as for the functional
adaptations or teleological structures we may find in human cultures.
We therefore cannot beforehand assume that the explanation for any
instance of functional adaptation or any evolutionary process (in the
broad sense of “evolution”) in human culture must be Darwinian in the
above defined sense. Instead, if we want to make the assertion that
a certain feature of culture as for example a social norm or a certain
technology is the product of a Darwinian evolutionary process then we
have to demonstrate that our evolutionary explanation works precisely
in this case and we would have to defend it against possible alternative
explanations.

Remaining in the field of biology, how does a “precise” evolutionary
explanation for a an evolved trait work? Basically, what evolutionary
theory asserts is the following: (1) There is a connection between the
reproduction rate and the adaptedness of an organism to its environ-
ment. (2) All traits that are too complex to have evolved through a
single genetic variation must have evolved through a closed sequence
of variation and selection cycles with no gaps. These two assertions
show, by the way, that the theory of evolution is not, as it is sometimes
charged with, tautological because both assertions can in principle fail
empirically.4 (In fact the first assertion does fail in cases where a trait
has evolved through sexual selection in contrast to natural selection,
but it would lead too far to go into this topic here.) In order to demon-
strate that a trait has evolved in the sense of the Darwinian theory of
evolution, what must be shown is that organisms that have the trait
are better adapted to their environment and do therefore enjoy a higher
reproduction rate than members of the same species that do not possess
this trait. For more complex traits like specialized organs the evolution-
ary history must be clarified. The task of proving that a certain trait
confers to its bearer an evolutionary advantage is often not as easy as
it might at first sight seem. For, in order to give such a proof the net
result of all evolutionary forces acting upon the organism because of this
trait must be taken into account. The difficulties involved in drawing
up an evolutionary explanation for some trait can be explained with the
example of the long neck of a giraffe (Dupré, 2003, p. 37-40): It seems

4Though the second assertion may be difficult to falsify because one can always maintain that the
intermediary steps filling an alleged evolutionary gap have not been discovered yet. See also (Schurz,
2001, p. 335) for some remarks about the falsifiability of the theory of evolution.
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plausible to assume that the long neck of the giraffe has evolved because
it allows the giraffe to eat the leaves of trees high above the ground. But
then a long neck is also a very heavy neck and should under this aspect
probably be regarded as an evolutionary disadvantage. In order to pre-
cisely explain the fact that a giraffe has a long neck on an evolutionary
basis it would be necessary to give an accurate account of the possible
advantages and disadvantages such a long neck might have. It is ob-
vious that this is quite a difficult thing to do, though not necessarily
an impossible one.5 Of course, we can be sure that the long neck of
the giraffe must have evolved for some such reason as the advantage of
picking leaves from trees. But then, the only reason why we can assume
this is because the theory of evolution has been so well confirmed in
other cases, not because we are able to track down the selective forces
in this particular case. We will later see that it is precisely the problem
of giving a quantitative account of the advantages and disadvantages of
certain types of animal behavior, which makes it so difficult to test our
theoretical assumptions about the evolution of altruism empirically.6 At
the same time it is, of course, all to easy to invent “evolutionary stories”
about why some trait is an adaption to the environment. This kind of
evolutionary story telling is a danger that is especially imminent in the
application of evolutionary theory to human culture, to which we will
turn our attention now.

3.3 Evolutionary theories of culture

Darwinian evolutionary theories of culture come in many different fla-
vors. In a recent overview Kevin N. Laland and Gilian R. Brown discuss
human sociobiology, human behavioral ecology, evolutionary psychol-
ogy, memetics, gene-culture co-evolution (Laland and Brown, 2004).
The multitude of different approaches alone shows that there is not one
canonical way of applying (Darwinian) evolutionary thinking to human
culture. However, all of these different approaches can be traced back
to two basic types: Theories that explain human behavior and human
culture by the evolved genetic nature of man and theories that assume
an autonomous evolutionary process of culture that is not determined
by the human genes. The above mentioned approaches fall either in the
one or the other of these two categories or can be regarded as a mixed
form of both. To simplify matters, I discuss only the two basic types in

5As Dupré notices (Dupré, 2003, p. 38), this is much less of a problem in the case of specialized organs
because here the evolutionary advantage (i.e. the specific purpose of the organ) is quite obvious.

6See chapter 5.1.
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the following.

It is important not to forget that the Darwinian evolutionary theories
of culture constitute only a small fraction among the many theories of
cultural evolution or development that exist in the social sciences. For
the understanding and explanation of the process of civilization there
are – to name just a few arbitrary examples – the theory that civi-
lization is a process of rationalization (Max Weber), the theory that
civilization is a process of internalization of external compulsory forces
(Norbert Elias), modernization theories according to which progress in
one realm, say, technology, necessitates progress in other realms, say,
governmental structure, the theory of history as the history of class
struggles (Karl Marx), and many more. The social sciences did not
wait for Darwinian theories of evolution to arrive in order to explain
functionalistic (or “teleological”) structures in the realm of human cul-
ture. Also, since Darwin’s“Origin of Species” (Darwin, 1859) there have
been many attempts to apply Darwinian approaches to human culture,
none of which had a lasting success so far. This alone does not exclude
the possibility that one day one of these theories will prevail, but it
should make one suspicious about the bold claims sometimes raised by
evolutionary theorists. It is simply not very credible that any Darwinian
evolutionary theory of culture will supersede or integrate all the exist-
ing Non-Darwinian theories of cultural evolution, many of which will
surely remain much better suited to their specific purposes. Besides, a
pluralism of paradigms is typical for the social sciences, and it would be
very suprising if this changed just now, although some of the proponents
of the newer Darwinian evolutionary theories of culture entertain such
hopes (Tooby and Cosmides, 1992; Mesoudi et al., 2006).

When, in the following, we confine our focus to Darwinian evolu-
tionary theories of culture, this should therefore be understood as a
topical decision and not as presuming that other approaches would not
have anything important to say about the evolution of altruism as far
as human society is concerned. On the other hand we will not expect
the evolutionary theory of culture to afford an overall explanation of
altruism if human behavior is concerned. If an evolutionary theory of
culture can highlight some aspects of altruistic behavior among humans
then this should be considered as sufficient to give it a right to exis-
tence among the many rivaling theories in the social sciences that could
possibly be consulted for the explanation of human altruism.
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3.3.1 Genetic theories of human behavior

One important class of evolutionary theories of human culture is formed
by the genetic theories of human behavior. Sociobiology and evolution-
ary psychology are the most recent and prominent representatives of
this class. The genetic approach to human behavior is motivated by
the fact that human nature has been formed by evolution just as the
nature of any other animal. At the same time the patterns of human
behavior are much more flexible and variegated than those of any other
animal species and it is hard to deny that this variety must be due to
the cultural environment in which a human is raised. But just to what
extent our behavior is the result of genetically transmitted properties
and to what extent it is a cultural acquisition is subject to debate. In
this “nature-nurture” debate sociobiology and evolutionary psychology
clearly take the nature stance. As evolutionary psychology can in many
respects be regarded as the successor of sociobiology (Dupré, 2001, p.
21), only evolutionary psychology will (briefly) be discussed in the fol-
lowing. It will be discussed under the following four aspects: (1) Its
motivation and scientific intention, (2) its basic conception of human
nature, in this case specifically of the human mind, (3) its research
strategy and major achievements and (4) a critical discussion of the ap-
proach with respect to the question of how well it can possibly explain
the evolution of altruism in humans.

(1) Motivation and scientific intention

The locus classicus of evolutionary psychology is a programmatic man-
ifest by John Tooby and Leda Cosmides on “The Psychological Foun-
dations of Culture” (Tooby and Cosmides, 1992). In this more than
a hundred pages long manifest Tooby and Cosmides broadly describe
their idea of a new science of culture with evolutionary psychology in
its center. In their opinion the existing social sciences have come to a
dead end, mainly, because they rest on a set of false assumptions which
is called the “standard social science model” by Tooby and Cosmides
and at the core of which Tooby and Cosmides suspect the belief that
the human mind is essentially a tabula rasa that gets its shape only
by childhood education and by the impact of the society an individual
grows up in (Tooby and Cosmides, 1992, p. 24ff.). According to Tooby
and Cosmides, this model has effectively prevented the social sciences
from making rapid progress and also made it difficult to connect them
to adjoining human sciences like evolutionary biology or neuro-science,
although this would certainly be desirable. Tooby and Cosmides are
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confident that once the “standard social science model” is given up and
replaced by their own more appropriate model, this impasse will be re-
solved. It will then become possible to integrate the social sciences into
a unified field of human sciences and rapid scientific progress will ensue
(Tooby and Cosmides, 1992, p. 19ff.). The appeal to the unity of sciences
and the emphasis that is laid on the connectivity to other scientific fields
is fairly typical for the justification of scientistic approaches in the so-
cial sciences. (We will see it recur in the programmatic scriptures of the
non-genetic theories of cultural evolution.) But Tooby and Cosmides
do not only base their claim on such assumed secondary advantages.
They also believe that their own model is simply more adequate when
it comes to explaining human psychology.

(2) Basic conceptions

The model that Toby and Cosmides propose as the alternative to the
“standard social science model” is named by them “integrated causal
model” (Tooby and Cosmides, 1992, p. 23/24). It is primarily a model
about the human mind and can best be described by the popular tool-
box metaphor. Rather than assuming – as the “standard social science
model” tacitly does according to Tooby’s and Cosmides’ estimate – that
the mind is a tabula rasa or a sort of computer that can be programmed
in arbitrary ways to solve any sort of problem, they assume that the hu-
man mind is a toolbox containing an intricate set of diverse capabilities
each of which is highly specialized in order to fulfill a certain task. These
context specific capabilities, they reason, must have evolved through
natural selection to address specific challenges in the environment of
the ancestral humans. Why nature could not have provided humans
with a general problem solving brain rather than a toolbox-brain is a
point on which Tooby and Cosmides remain a bit vague. They sug-
gest that it would have been somehow uneconomical for evolution to do
so. In evolutionary psychology, the evolved context specific capabilities
are commonly called “modules”. One of the prime example for such
a module of the adapted mind is that of language acquisition (Tooby
and Cosmides, 1992, p. 70). If, as Tooby and Cosmides do, one follows
Chomsky and assumes that there is a deep structure to language which
underlies all world languages and which must for various reasons be con-
nected to some inborn capability of language acquisition and language
generation, then this inborn capability is indeed an excellent example
for a highly specialized evolved module of the human brain.
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(3) Research strategy and achievements

In connection with their so called “integrated causal model” Tooby and
Cosmides propose a very concrete research design by which to prove the
existence of a “module” of the mind. This design consists of five steps
(Tooby and Cosmides, 1992, p. 73/74): a) Identification of an adap-
tive target, which is a certain challenge or problem in the life world of
our ancestors to which the assumed module would pose a solution. b)
Considering the background conditions, i.e. recurring structures of the
ancestral world of hunter gatherer societies, under which the module
has evolved. In relation to the ancestral world, evolutionary psycholo-
gists usually refer to the late Pleistocene. They speak of the human life
conditions of this period as of the “environment of evolutionary adapt-
edness” (Tooby and Cosmides, 1992, p. 69) because they assume that
major genetic adaptations cannot have occurred in the relatively short
period of time after the invention of agriculture. c) Drawing up of a de-
sign: a description of the module itself under the assumption that it is
designed to meet the requirements of the adaptive target. The last two
steps would then be d) a performance examination and e) a performance
evaluation of the design. Only if a design performs well (under ancestral
conditions) can the researcher assume that he or she has identified an
adaptation.

A great number of research projects in evolutionary psychology have
made use of this research design scheme. One of the allegedly most
impressive achievements in this respect is Leda Cosmides’ research on
psychological mechanisms for detecting cheaters (Laland and Brown,
2004, p. 168/169). Based on previous works of Peter Wason, she could
show by a series of experiments that people have a highly developed
ability for detecting violators of social rules, but easily fail to solve
analogous tasks when these are presented in a different setting. The
conclusion that the human brain is equipped with a special module for
cheater detection rather than with the general capacity of solving logical
puzzles that could then be directed to the task of cheater detection
appears quite compelling in this case.

(4) Critical objections

However, in other areas such as mate choice, homicide and rape7 the
results evolutionary psychology has produced have been much more de-
bated. But it would lead too far to enter into the details of these con-

7Evolutionary psychology seems to have inherited from sociobiology a certain liking for “sex and crime”
themes (Dupré, 1996, p. 44ff.).
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troversies here, which are well described in (Dupré, 2001, p. 48ff.) and
(Laland and Brown, 2004, p. 170ff.). What is of interest here is how
well genetic evolution can possibly account for altruism among humans.
If the basic assumptions of Tooby and Cosmides (and the evolution-
ary psychologists following their approach) are correct, then altruism
among humans would in some way or other have to be explained by an
evolved altruism-module of the mind or by a reciprocity-module or by a
morality-module which includes altruism. In order to examine the ques-
tion whether an (evolutionary) explanation of human altruism should
primarily be sought on a genetic basis, we will first ask how credible
the evolutionary psychologist’s approach by Tooby and Cosmides is in
general when it comes to understanding human culture and then how
the case is to be decided for the evolution of altruism in particular.

As far as the general case is concerned, Tooby and Cosmides have
raised the bar for themselves quite high by the bold claim that any kind
of human behavior could be explained in terms of the “integrated causal
model”. After all, they were aiming at a new unified approach to the
science of human nature. But at the same time it is often very difficult to
discern just when and to what degree a certain regular pattern of human
behavior that we find in culture is due to an evolved module of the brain
and when it is not. For example, we could think of a group of people
that enjoys singing folk songs and dancing folk dances. Moreover, we
know that dancing and singing are common patterns of human behavior
found across all or at least most cultures. Now, are we to assume that
there exists a module for folk dances or folk songs? Or, is there a
module for singing and dancing? Or, is there maybe just a module for
music and rhythm? If we decide for one of the latter two alternatives
then this means that there remain interesting and important questions
about singing and dancing that evolutionary psychology cannot explain
on the basis of mental modules, namely the questions of how and why
certain types of folk dances and folk songs evolved within a certain
culture. But if in turn we are to decide in favor of the first alternative
and assume that there exists a specialized module for folk dancing and
folk songs then we are confronted with the problem that we would have
to assume many more specialized modules of the mind in similar cases.
We are then somehow left with the question where there is to be an end
– if there ever is any – to postulating highly specialized modules of the
mind.8

8For a more elaborate criticism of the use of “modules” in evolutionary psychology see (Dupré, 2001, p.
40ff). – As a historical side note it may be mentioned that a very similar discussion had many years earlier
already arisen in another context in connection with the philosophical anthropology of the 20th century.
Arnold Gehlen, when justifying his assumption that human nature is highly flexible and is shaped not
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But it is not only the problem that there seems to be such a liberty
of postulating modules that has caught the attention of critics of evo-
lutionary psychology (Dupré, 2001, p. 40ff.). The research design pro-
posed by Tooby and Cosmides is also flawed in another aspect, namely,
regarding the identification of an adaptive target and the background
conditions. If we are to believe the critics of this research design then
the usual talk about the life conditions of our ancestors that appears in
studies of evolutionary psychologists is often quite arbitrary and results
in reiterating the same clichés and stereotypes about the life of hunter
gatherer societies over and over again (Dupré, 2001, p. 23ff.). One of the
common clichés about these societies is that they are highly egalitarian
(Richerson et al., 2003, p. 372ff.). This may be empirically true, but
at the same time we find in modern societies a psychology that is very
well adjusted to the social hierarchies that pervade modern societies on
almost all levels of professional and private life. Therefore, it is doubt-
ful whether this assumption about the egalitarian character of ancestral
societies is helpful when we want to understand the behavior of humans
in today’s societies. It is a feature not only of evolutionary psychology
but also of other strata of Darwinian evolutionary theories of human
culture that at some point or other they seem to revert to evolutionary
just-so-story telling. In the case of evolutionary psychology this point
seems to be reached when it comes to the question of the life conditions
of our ancestors and the supposed consequences these have for how we
handle modern life (Dupré, 2001, p. 21ff.).

If thus the “imperialist” claim of evolutionary psychology to provide
a unified alternative to the “standard social science model” proves to
be largely unfounded and leaves open the possibility to seek explana-
tions for human behavior within other paradigms including that of a
non-genetic theory of cultural evolution, the question still remains if
the foundations of human altruism in particular are not, if only to some

by inborn instincts but by the institutions society provides had to argue against the then so common
drive-theories in psychology, which in some respect resemble the “modules” of evolutionary psychology
(Gehlen, 1983, p. 50ff.). Doing so he pointed to the simple fact that different authors postulated quite
diverse numbers and kinds of drives, some authors needed more than 50 drives, others were content
with only two or three. Gehlen concluded that other than for the organically represented drives (hunger
and sex) there was no sure foundation for assuming the existence of drives and that therefore it was for
pragmatic reasons advisable to circumvent the question of drives altogether and find some other key to
the explanation of human behavior. Making this historical comment is not to say that the whole question
would not have needed to be discussed in the context of evolutionary psychology if only the participants
had known the history of philosophy a little better. Since the evolutionary psychologists had proposed a
new research design, the question of innate capabilities (drives or modules) that direct human behavior
certainly deserved reexamination, even if the result that the usefulness of the toolbox-metaphor of the
human brain remains confined to only a limited array of questions touching human behavior has in the
end turned out to be same as the one which philosophical anthropology had already arrived at half a
century earlier.
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degree, genetically determined. Generally, any trait that is constant
across all human cultures is a good candidate for a genetically deter-
mined feature of human nature. In the case of altruistic behavior there
are several indicators which render the assumption plausible: Moral be-
havior and understanding of basic moral categories is constant across
different cultures. Even if the norms differ, one would expect to find
some norms commanding altruistic behavior in any culture. Another
pattern that is more or less universal is the markedly distinct behavior
between in-group (family, tribe or other association) behavior and out-
group behavior. Here again we could expect to find a kind altruistic
behavior in in-group relations that probably also has a genetic basis.
Finally, specific behavioral categories that can be found in any culture
like that of reciprocity may be an indication for the existence of certain
types of genetically programmed altruism.

The abstract models of altruism that will be discussed in chapter 4
can in principle be applied to both genetically and culturally evolved
altruism. Since, as has just been argued, there is enough reason to
assume that altruism among humans may also have a genetic founda-
tion, the possibility of interpreting these models within a theoretical
framework of genetic evolutionary theory of human behavior, i.e. evo-
lutionary psychology, should not be dismissed altogether. On the other
hand, there is no doubt that the scope, strength and specific form of
most altruistic norms is shaped by culture. In the following we will
therefore examine the theory of cultural evolution as an alternative (or
supplementary) framework for understanding human altruism. A third
possibility should at least be mentioned here: It is quite plausible to
assume – as some researchers do (Laland and Brown, 2004, p. 241ff.) –
that, for a certain period in the history of the human race, a co-evolution
of genetic and cultural altruism in humans has taken place, where both
forms of altruism evolved alongside each other mutually strengthening
each other.

3.3.2 Cultural evolution as a Darwinian process

Once we reject the assumption that human behavior and, consequently,
also the development of human culture is to the larger degree deter-
mined by the genes, a wide field of diverse theories that seek to explain
the course of human history or the evolution of human cultures opens
up. One of these theories, but – as has been stated earlier – by no
means the only such theory, is the theory of cultural evolution that
treats the evolution of human culture as a Darwinian process, where
reproduction, variation and selection of cultural traits form the agens of
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human history. This theory comes in different flavors either as a theory
or“science of cultural evolution” (Mesoudi et al., 2006) or as “memetics”
(Blackmore, 2000), i.e. a theory of cultural traits called “memes”, or as
a “generalized theory of evolution” (Schurz, 2001). But I will in the fol-
lowing only speak of the theory of “cultural evolution” and occasionally
point out the differences between its variants. Just as in the case of the
genetic evolutionary explanations of human culture, I discuss (1) the in-
tention and motivation of the theory of cultural evolution, (2) its basic
assumptions, (3) its resarch strategies and achievements and (4) critical
objections. Doing so, I rely mainly on the accounts given in (Mesoudi
et al., 2006), (Schurz, 2001) and (Laland and Brown, 2004). I do not
so much take into account the literature about “memetics” because the
concept of a “meme” does not yet seem ripe for serious scientific appli-
cation.9 At the same time “memetics” is not at all indispensable for a
theory of cultural evolution. For in any specific case of cultural evolu-
tion we can specify the entity the evolution of which is in question, say
a social norm or a social institution, and study its evolution without
assuming that this entity is an instance of or composed of some such
things as “memes”. The question whether memes exist or not is a ques-
tion with respect to which one can remain completely neutral as long
as only a specific instance of cultural development is to be explained on
an evolutionary basis.

(1) Motivation and scientific intention

There exist several levels of motivation and justification for the Dar-
winian theory of cultural evolution, discerned by the ambition of the
respective scientific program. On the lowest level, the Darwinian theory
of cultural evolution tries to transfer the successful models and methods
from evolutionary biology to the study of cultural development (Arnold,
2005b). It is assumed that there exist sufficient similarities between cul-
tural development processes and evolution in nature to warrant such a
transfer. On a more ambitious level, the theory of cultural evolution is
motivated by the zeal to provide a unified coherent framework for the
whole body of sciences dealing with human culture, just like the theory

9See my objections on page 37. – The concept of a “meme” was originally invented by the biologist
Richard Dawkins (Dawkins, 1976, p. 304-322.). Later, however, Dawkins seems to have grown a bit
suspicious of his own concept, for he writes “My own feeling is that its [the meme concept’s, E.A.] value
may lie not so much in helping us to understand human culture as in sharpening our perception of genetic
natural selection.” (Dawkins, 1982, p. 112). Dawkins preface to Susan Blackmore’s manifesto “The Meme
Machine” sounds equally sceptical (Blackmore, 2000, p. 7-21.). Even Laland and Brown have to admit
that the idea of “memes” has mainly been popular among “computer geeks” but not among serious social
scientists (Laland and Brown, 2004, p. 200).
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of evolution provides the overarching conceptual framework in biology.
At the same time it is assumed that applying the same methods that
are successful in biology should allow the social sciences to yield much
better results than has hitherto been achieved in the fragmented land-
scape of social science theories (Mesoudi et al., 2006, p. 329-332). This
is very much the same “imperialist” story as it has been told by Tooby
and Cosmides in their programmatic scripture on evolutionary psychol-
ogy: The social sciences supposedly find themselves in a hopeless mess.
In no way are they are able to rival the success of the natural sciences.
The reason for this annoying state of affairs is that they lack a unify-
ing theoretical framework and proper exact methodologies. If only the
social scientists were willing to learn from the exact sciences and adopt
their methods and succumb to a unified theory then a great leap forward
in the scientific advancement of the social sciences would be positively
inescapable. (Or so the story goes...)

Yet another, though similar, motivation for the theory of cultural
evolution is to fully exploit the potential of the Darwinian model of
evolutionary processes and to give it as broad a scope as possible. This
is the motivation behind the “generalized theory of evolution” (Schurz,
2001). The sort of generalization that is meant here, does not lie on the
ontological level in the sense that one type of evolutionary process is
meant to explain as many phenomena as possible, i.e. biological evolu-
tion as well as cultural evolution, as it is done in human sociobiology and
in evolutionary psychology, both of which explain cultural developments
largely by the same process of genetic evolution that does also account
for the evolution of species. Rather, the generality is to be found on
the level of theoretical abstraction. It is assumed that the same core
principles of Darwinianism can explain evolutionary processes in dif-
ferent branches of science with different evolving entities. In biology
they describe the evolution of genes. In social sciences they describe
the evolution of diverse cultural traits or of “memes” (if we assume that
such distinct entities as “memes” underlying all cultural traits do ex-
ist). Strictly speaking the generalized theory of evolution is not a single
theory but encompasses a family of evolutionary theories. All of these
have in common that they share the same three core principles of Dar-
winian evolution described above. But each member of the family is
distinguished by additional specific principles or axioms which further
describe the evolutionary process in its realm. Thus a theory of genetic
evolution as one particular member of the family of evolutionary theo-
ries can be further narrowed down by adding the laws which describe
genetic transmission and mutation. And a theory of cultural evolution,
another member of the family, could contain principles that describe the
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transmission and change of cultural traits. In the following, however,
we will not be concerned with the generalized theory of evolution in its
broadest sense, but only with that part which concerns the evolution of
culture.

(2) Basic assumptions

The central assumption of the evolutionary theory of culture is that
some cultural developments – or, if we follow the more “imperialistic”
programs, all cultural developments – can be explained as cases of Dar-
winian evolution by reproduction, variation and selection of certain cul-
tural entities. What has to be clarified, when one wants to construct
an evolutionary theory of culture in analogy to the theory of evolu-
tion in biology, is what the evolving entities are, and how reproduction,
variation and selection of these entities takes place.

The entities of cultural evolution A cultural entity that evolves can be
about anything: It can be technology, it can be social norms and cus-
toms, it can be laws, it can be institutions, it could possibly also be
economic or political systems and maybe, though this seems somewhat
doubtful, it could be even arts. Generally speaking, an evolving entity in
cultural evolution can be any discernible and identifiable cultural trait.
As has been mentioned earlier, some authors apply the ubiquitous term
“meme” for any of these entities. But there exist several drawbacks to
the “meme”-terminology: 1) The above listed entities are of a very dif-
ferent kind and it must be expected that the conditions of reproduction,
variation and selection also differ in each single case. But then it will
not be of much use to try to generalize over all of these different in-
stances of cultural evolution by inventing a “meme” theory. 2) Some
authors hope that the just mentioned limitation can be overcome by a
neuronal definition of the meme. A neuronal definition of the meme that
defines the meme in terms of its neuronal representation in the human
brain would have to be more atomic than the evolving cultural entities
mentioned before. However, the research in this direction is not very
far advanced to say the least. At present stage a neuronal definition of
the meme is science fiction.10 3) In fact, there does not only exist no
(generally accepted) neuronal definition of the meme, but there exists

10While the search for the neuronal basis of cultural traits may be an interesting research program
of its own, theories about the neuronal representation of cultural traits will begin to be useful for the
explanation of cultural developments (which, after all, is the primary purpose of the theory of cultural
evolution) only by the time when the neuronal representation “can be clearly observed or measured” and
at the same time unambiguously be linked to the cultural phenomena the explanation of which is in
question. At present stage neuro-science seems to be far from fulfilling this requirement.
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no precise definition of the “meme” at all. Usually what is offered is
just examples and illustrations of a rather trivial kind. Instead of pro-
viding a workable definition of the meme, “memetics” is thus indulged
in all kinds of dogmatic discussions concerning the nature and essence
of a meme, like the question whether an evolving technology is itself to
be considered a meme or the blueprints for this technology or just the
mental representation of the blueprints in a person’s mind.11 But these
dogmatic disputes are of little significance if one is primarily interested
in explaining the evolution of some kind of technology or other cultural
achievements.12

Fortunately, it is possible to circumvent the difficulties that surround
the meme concept. For, when we want to explain the evolution of certain
cultural traits like altruistic norms, we can simply study how these traits
evolve in terms of reproduction, variation and selection without even
bothering whether they are instances of some such thing as a meme or
not.13

Reproduction, variation and selection in cultural evolution In cultural evo-
lution the three “Darwinian modules” reproduction, variation and selec-
tion take a form that is quite different from their counterparts in biology.
More importantly, they can differ depending on the evolving entity that
is under consideration. Here, only a very general overview can be given.
Reproduction can take place either through teaching and learning or
through imitation or through both. It seems obvious that some things
can only be reproduced by teaching as, for the example, the knowledge
how to read and write, while other things can easily be imitated. In
contrast to the reproduction of genes in multicellular organisms in biol-
ogy, knowledge and cultural techniques can be transmitted horizontally

11See (Salwiczek, 2001, p. 164ff.) for a number of such discussion points, most of which are peculiar to
the meme concept.

12A very extreme example for this purely dogmatic (if not almost ideological) and thus very uninspir-
ing mode of discussion about evolutionary theory in the social sciences is delivered by Alex Rosenberg
(Rosenberg, 2005).

13One might object that any other concept in place of the “meme” would have to suffer the same
drawbacks as the meme-concept. But this is not the case. Cavalli-Sforza and Feldman, for example,
define the term“cultural trait”(which is roughly their equivalent for“meme”) as“the result of any cultural
action that can be clearly observed or measured on a discontinuous or continuous scale” (Cavalli-Sforza
and M.Feldman, 1981, p. 73). The term“cultural trait”and the pertinent definition has several advantages
over the “meme”-terminology: 1) Right from the beginning it is clear that cultural traits can be many
different things and that it does not denote a single type of entities as the “meme”-terminology notoriously
suggests. The largely meaningless question “What is a meme?” is thus evaded. 2) The requirement that
the trait should be observable and measurable defies premature attempts of a neuronal definition of
cultural traits (the other variant of the misleading attempt to find a fundamental, potentially hidden
entity behind cultural evolutionary processes). 3) Finally, it is just a fact that memetics has spurred a
good deal of poor quality literature on cultural evolution. It seems that despite Aristotle’s saying that
one should not argue about words, terminology does matter.
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and not only vertically to descendants. Depending on the mode of re-
production and the entity reproduced a different rate of reproduction or
imitation errors is to be expected. Such imitation errors already resem-
ble one mode of variation in cultural evolution. Imitation errors occur
unintentional, but variation in cultural evolution frequently occurs as
the result of intended change. For example, many technologies we use
are constantly being improved. The evolution of technology is therefore
one where variation occurs to a high degree in the form of intentional
change.

Selection is somewhat more difficult to specify for cultural evolution
because when dealing with cultural evolution, there are two different
kinds of selection that we can think of. First of all, there is the kind
of selection that occurs when people choose to keep or adopt a cultural
technique (in the broadest sense, encompassing technology as well as
customs, norms, policies etc.) or not to do so. This kind of selection
is the selection of cultural traits through the bearers of culture, that is,
through humans.14 A theoretical difficulty with this kind of selection is
that there can be all kinds of reasons why people adopt cultural tech-
niques and why not. They may do so because they believe that this will
make their life better or allow them to compete more successfully with
other people for power, wealth or prestige. But the reasons may also be
of a wholly idiosyncratic nature. Therefore, the conditions of this kind
of selection can be difficult to specify. The other kind of selection occurs
when people that have adopted a certain cultural technology turn out
to be very successful (or vice versa very unsuccessful) and simply drive
out other people who have not adopted the respective techniques. This
may be the case for intrasocietal competition as well as for intersocietal
competition. Both kinds of selection are interrelated because, usually, if
a certain cultural technique promotes success (in inter- or intrasocietal
competition) then people will want to adopt it.

The basic assumptions of the theory of cultural evolution can thus be
summed up: Cultural evolution in a Darwinian sense occurs when some
cultural entity evolves through reproduction, variation and selection.
The evolving entity can be of arbitrary kind with the only restriction
that it must be a discernible and identifiable trait of culture. Similarly,
the three“Darwinian modules”can take a somewhat different shape from
case to case. Already at this point it may be remarked that lacking an
equivalent for the sure foundation that the biological theory of evolution
has in genetics, the theory of cultural evolution turns out to be much

14“Memeticists” also like to speak in this connection of “memes” competing for brainspace. If a cultural
technique has been adopted then – described in “meme-speak” – its “memes” have successfully competed
for human brainspace.
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more vague and less concise. But this does not mean that it does not
have its assets. Let us see what it can do:

(3) Research strategy and achievements

Given that it is reasonable to assume that at least some cultural devel-
opment processes follow a Darwinian pattern, it appears only natural
to try to apply some of the more specific methods used in evolutionary
biology to problems of the social sciences where appropriate. This is
what Mesoudi, Laland and Whiten suggest (Mesoudi et al., 2006) and
they list a number of fields where this is already being done or can be
done with some hope of success. In this respect they refer for example
to linguistic studies of the development of languages that apply cladistic
methods similar to those used in biology (Mesoudi et al., 2006, p. 333).
The development of language seems particularly well suited for an evolu-
tionary explanation because it is a gradual process and at the same time
one that is largely unaffected by human intentions, which could distort
the selection processes that assumedly promote the development of lan-
guage. Another, even more striking instance of the transfer of methods
from evolutionary biology to the social sciences is the use of evolution-
ary models borrowed from paleobiology by archaeologists in order to
trace the lineages in the development of human artifacts such as coins
or projectiles (Mesoudi et al., 2006, p. 334). Yet another field where
similarities between biological and cultural evolution can be exploited
is that of human behavioral ecology, which studies in how far patterns of
human behavior or, likewise, other cultural traits result from an adap-
tation of human culture to the environment (Mesoudi et al., 2006, p.
335).

While the examples just given all more or less concern the evolu-
tion of cultures as wholes and are accordingly subsumed by Mesoudi,
Laland and Whiten under the heading of macroevolution, Mesoudi, La-
land and Whiten also find ample evidence for microevolution, that is,
the evolution and selection of cultural traits within cultures or single so-
cieties. On a par with theoretical population genetics as a subdiscipline
in biology they enumerate a number of mathematical and computer
models of cultural evolution and gene-culture co-evolution as they have
been put forward by Boyd and Richerson (Boyd and Richerson, 1985)
and Cavalli-Sforza and Feldman (Cavalli-Sforza and M.Feldman, 1981)
among others. So far this research has remained mostly theoretical and
it therefore remains to be seen whether the reservations against it will
eventually cease as they did in the corresponding case of the mathemat-
ical models of population genetics in biology (Mesoudi et al., 2006, p.
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338). More empirically orientated research has been done on cultural
transmission. Mesoudi, Laland and Whiten list several examples of ex-
perimental research. Many of these start with a group of people that has
to solve certain tasks. Then, the members of the group are replaced one
by one in order find out if and how traditions of solution strategies to
the tasks evolve and are transmitted. There are indeed some similarities
to research on the heritability of traits in biology. The respective field
research on cultural transmission is criticized by Mesoudi, Laland and
Whiten for its not identifying the putative selection pressure (Mesoudi
et al., 2006, p. 340). But this criticism is somewhat question begging
because the criticized deficiency could equally well be interpreted as re-
flecting the fact that the selectionist paradigm is simply not adequate
for this type of research. Finally Mesoudi, Laland and Whiten mention
some research on “memetics” as the cultural equivalent to genes in biol-
ogy, but they admit that the concept of the “meme” is still very debated
in many respects (Mesoudi et al., 2006, p. 342-344).

Summing it up, while it seems reasonable or at least worthwhile try-
ing some of the methods of evolutionary biology in the social sciences,
there obviously exist only few instances where this has already been
done with success. But this also means that some instances do indeed
exist. And further instances of the successful transfer of methods be-
tween evolutionary biology and the social sciences could certainly be
added to what Mesoudi, Laland and Whiten mention. From its type of
modeling and its kind of thinking, economics seems to be the branch
of the social sciences which is the most akin to biology. As evolution-
ary game theory testifies, the transfer works in both directions15 (which
raises some further doubts about the “imperialist” claim of Mesoudi,
Laland and Whiten). But it is only on certain occasions that the trans-
fer works and many fields of the social sciences remain untouched by
it. Therefore, one should conclude that rather than becoming the new
overarching paradigm of the social sciences, the theory of cultural evo-
lution marks a border region between the social sciences and biology
where methods developed in biology can fruitfully be transferred to the
social sciences (and vice versa).

(4) Critical objections

Surely, the weakest point of the theory of cultural evolution are the
“imperialist” aspirations of some of its proponents. The naive expec-
tation that everything in social science must fit into an evolutionary
framework because this works so well in biology can of course hardly

15See (Arnold, 2005b) for further examples of the transfer of models between biology and economics.
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be taken serious.16 But then, the scientific value of the evolutionary
theory of culture does not depend on the fulfillment of its far fetched
“imperialistic” claims. If there exist but a few cases where it proves to
be useful then this would suffice to justify the approach. But even as
far as this goes the theory of cultural evolution has called forth severe
criticism. The following critical discussion of the theory of cultural evo-
lution is organized under the headings of three different questions each
of which highlights a particular problem of the theory of cultural evolu-
tion. What will be discussed is 1) if the theory of cultural evolution is
able to explain any phenomena that could not be explained otherwise
at all and what these are (“What is the riddle?”), 2) where the theory of
cultural evolution does not explain anything new, if it does at least offer
better explanation (“Where are the advantages?”) and 3) if there exist
any monographic studies about cultural phenomena where the theory
of cultural evolution has successfully been employed (“Where are the
showcases?”). The discussion strongly relies on the criticism b Joseph
Bryant (Bryant, 2004), which is a very acute criticism of the theory of
cultural evolution. While there are certainly many scientists, especially
in the humanities, who reject the attempt to apply Darwinian thinking
to the evolution of culture, only few – like Joseph Bryant – have taken
the pains to deliver a detailed criticism. Since in my oppinion such crit-
icism is strongly needed and since on the other hand there are enough
books and papers heavily advertising the Darwinian theory of cultural
evolution (Mesoudi et al., 2006; Laland and Brown, 2004; Dennett, 2006,
1996), the following critical discussion is deliberately kept much more
extensive than the previous description of this theory.

1. What is the riddle? A good scientific theory is one that gives us true
answers to questions arising from the empirical world. That is, it tells
us something we wanted to know or, to put it yet another way, it solves
a riddle, right? Now, as has been mentioned earlier, the theory of evo-
lution in biology is certainly a great theory because it solves some of
the biggest riddles of our living world, among others, the riddle why all
living beings are so extremely well designed to live in their respective
habitats. But what is the riddle that the theory of cultural evolution
could possibly solve? Design features of our cultural world provide cer-
tainly much less of a riddle than those in the natural world. Why is it,
for example, that doors have handles? It does not take an evolutionary
theory to answer this question because there exists a much simpler and

16Similarly, the expectation that the propagation of knowledge must be explainable with reference to
self replicating entities called “memes”, just because the metaphor of the “egoistic gene” worked so well
in genetics must be regarded as quite naive.
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straightforward answer: Doors have handles because it is very conve-
nient to have a handle on a door and, therefore, people attach handles
to doors. Many functional adaptations in our cultural world can be ex-
plained by the fact that they were intentionally designed to be that way.
So, when the evolution or development of culture is concerned there ex-
ists right from the beginning much less of a riddle that a Darwinian
theory of evolution would be needed for to provide a solution.

There are two answers that can be given to this objection from the
standpoint of the evolutionary theory of culture. First of all, even
though many features of culture are intentionally designed and therefore
do not require an explanation by a selection process, many or even most
of the long term developments of culture can hardly be the result of con-
scious planning by humans. But also these long term developments do
often expose characteristics of functional adaptation either of the whole
culture or society to its living environment or of the mutual sectors of
the culture (religion, economics, law etc.) to each other. From the point
of view of the evolutionary theory of culture those features of cultural
development that result from intentional design merely represent single
steps in the long term evolutionary process. The fact that these single
steps are in many cases consciously designed (in contrast to the acci-
dental mutations in genetic evolution) just means that the evolutionary
process will take place much faster (Schurz, 2001, p. 345) (Cavalli-Sforza
and M.Feldman, 1981, p. 66). Still, this means that the evolutionary
scheme will only be applicable in certain cases, while it will not be of
much use in many other cases: It will not help us along if the cultural
phenomena we want to explain represent just single steps in the evo-
lutionary scheme. But it may be a good candidate for an explanation
if the cultural phenomena we want to explain are unplanned adaptive
long term developments of culture. But even then it may be a mistake
to assume that “directed mutations” (i.e. changes that are intentionally
brought about by humans with the aim of ameliorating some cultural
technology) merely speed up the processes of evolution. The existence
of directed mutations can lead to a totally different adaptation process
because adaptation can then occur as a sequence of directed mutations
on top of each other without any selection being involved.17 Also, there
always remains the question whether it is really possible to spell out
such evolutionary explanations when it comes to explaining any such

17In this connection proponents of the evolutionary theory of culture sometimes casually refer to evolu-
tionary“trial and error processes”just as if any trial and error process must by necessity be an evolutionary
one (in a selectionist sense). But this is of course not true. (If a counter example should seriously be
needed for proving this point: Backtracking algorithms rely on trial and error but are not evolutionary
nonetheless.)
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long term developments of culture. This may be quite difficult to ac-
complish, as we will see when we look at some monographic studies
which attempt to do so, later.

The other reply that could be given to the objection that there is
not really a riddle for the theory of cultural evolution that needs to be
solved is that even if this were true – which is only partly the case,
as has just been argued – the theory of cultural evolution may still
prove to be valuable in that it solves some of the problems of cultural
developments that are already addressed by other theories better than
these theories do. It is three advantages in particular that proponents
of the theory of cultural evolution claim for their approach apart from
potentially solving riddles about cultural developments yet unsolved: 1)
Generality. The theory of cultural evolution allows for greater gener-
alization. This would especially be the case if it is understood in the
sense of the aforementioned generalized theory of evolution. 2) Unity.
Closely linked with the claim of greater generality is the claim that
it provides a unified scientific approach to the problems of the social
sciences with all the supposed benefits that come with the unity of sci-
ences. 3) Greater scientific rigor. Finally, it is often claimed that the
evolutionary approach is more scientific than many other approaches in
the social sciences. These three supposed advantages will be discussed
in detail below.

So far, we can summarize that there exist at least some questions
(“riddles”) about cultural developments, namely about unplanned long
term adjustments or adaptations within cultures, which it would be
difficult to account for on the basis of historical of sociological theories
which are centered around intentional action or intentional “responses”
to “challenges” or the like and for which an evolutionary theory might
provide answers. The theory of cultural evolution would then be worth
while because it allows us to solve new scientific riddles that have not
been solved or not even been taken notice of before. Other than that it is
claimed that the theory of cultural evolution can give better answers to
existing riddles. Whether this latter claim is warranted will be examined
now.

2. Where are the advantages? A new scientific approach or theory can
be justified either because it opens up new fields of knowledge to us, for-
merly unknown or not paid attention to by science or because it gives
us better insights into existing subject matters. As has been argued
before, the theory of cultural evolution may be able to solve some rid-
dles that have never properly been considered before and in this sense
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may allow us to gain new insights. But most of the time when pro-
ponents of the theory of cultural evolution give examples for instances
of cultural evolution they refer to subject matter that is well known
and covered by existing scientific theories already.18 Where, then, are
the great advantages of giving an evolutionary account instead of stay-
ing with conventional explanations? Supposedly, these advantages lie
a) in the higher level of generality of the evolutionary approach, b) in
the unification or linking of different fields of social sciences and even
natural sciences (biology) and c) in its being more scientific than other
approaches. Let’s examine these claims one by one.

a) Generalization. Generalization could be a possible benefit of an
evolutionary approach. However, regarding generalizations we have to
distinguish between real scientific generalizations, where the relatively
more specialized laws and concepts can be deduced from the more gen-
eral laws and concepts, and a purely verbal generalization, where just
the same kind of jargon is applied in many different cases. An example
for the former, scientific type of generalization would be Newton’s me-
chanics in relation to the laws of Kepler and other more specific laws
like the law that states that the acceleration near the earth’s surface
is 9, 81m/s2. A good example for the latter kind is Hegel’s dialectics
in philosophy because Hegel believed that everything in this world fol-
lows the principles of dialectics and in his “Encyclopedia” he cast as
much as he knew about any science or subject matter from physics
to political philosophy and history into a dialectical jargon. But it is
extremely doubtful whether in this way he achieved any informative
kind of generalization beyond mere jargonization.19 If Joseph Bryant’s
criticism of the theory of cultural evolution is right then the sort of

18This is particularly true for one topic that seems to be a favorite among evolutionary theorists of
culture, namely, the history of religion. Examples of this brand are Wilson (Wilson, 2002) and Dennett
(Dennett, 2006).

19The point I am making here against Hegel can most easily be explained using an example which
Friedrich Engels, a most faithful adherent of Hegel’s dialectics, has given (Engels, 1998, p. 248). The
example which was supposed to demonstrate that everything in this world follows the dialectical scheme
of thesis, antithesis and synthesis runs as follows: Take a grain of barley and plant it in the earth. The
grain of barley is the thesis so to say. In the earth the germ buds and a new barley plant develops,
which is the negation of the corn (antithesis). But then, as according to dialectics the negation is to be
followed by a negation of the negation (or a synthesis) the barley plant itself produces many new barley
grains. Unfortunately, far from demonstrating how general dialectics is, the example merely shows how
useless it is. For, in order to know that what grows from a barley grain is a barley plant and not, say,
potatoes we need to know – in addition to the dialectical principle – the laws of botanics. If, on the other
hand, we already know the laws of botanics, we do not need to know dialectics any more to tell us what
becomes of the barley grain. Because the same problem occurs in as good as every other application case
of dialectics, dialectics is quite useless if considered as a scientific method or theory. A similar case can,
as I believe, easily be made against most examples of memetics.
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generalization this theory provides lies mainly on the verbal level of ap-
plying a vague and ubiquitous jargon to all kinds of already well known
phenomena. Bryant speaks in this respect of a mere “schematic ’repack-
aging’ ” (Bryant, 2004, p. 471) and demonstrates in two examples of
monographic evolutionary studies of cultural phenomena (Runciman’s
evolutionary interpretation of the replacement of “hoplite warrior cul-
ture” of Greek city states at the time of Alexander by larger kingdoms
that relied on standing armies and mercenaries (Runciman, 1990) and
the interpretation of the development of religion in evolutionary terms
as it has been attempted among others by Wilson (Wilson, 2002)) that
the evolutionary approach merely results in a much less concise if not
distortive presentation of well known materials and at the same time
falls short of the scientific level of conventional, non evolutionary ac-
counts. Bryant’s examples will be discussed in detail below.20 In or-
der to estimate in how far Bryant’s criticism is not only confined to
the two examples he discusses but resembles, as he believes, notorious
weaknesses of the attempt to apply Darwinian figures of explanation
in social sciences, it would of course be necessary to examine further
examples of attempted evolutionary explanations of social or cultural
phenomena, which goes beyond the scope of this book. Still, a few fur-
ther considerations suggest that it may indeed prove difficult for the
theory of cultural evolution to achieve a kind of generalization that is
truly informative. As has been argued before, there exist different kinds
of cultural entities and the way these entities reproduce, change and are
selected is different according to the type of entity in question. (This is
different in biological evolution, where reproduction and mutation occur
in more or less the same way for most organisms.) But then the hint
that all cultural entities, the evolution of which can be explained by a
Darwinian theory of cultural evolution, evolve through the three Dar-
winian modules reproduction, variation and selection is just not very
informative. In order to explain how and why a specific cultural entity,
say, computer technology evolves, what we mainly need to know is the
specific laws and circumstances that govern the evolution of this par-
ticular entity. But then we do not have much of a generalized theory
any more. We will see that this particular limitation of the evolutionary
approach will reappear when we examine the empirical applicability of
simulation models from evolutionary game theory to the social sciences.
Often when applying game theoretical models, the greatest part of the
explanatory work is done not by the very abstract and general model
but by the specific assumptions that enter into the determination of

20See page 50.
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the input parameters with which the model is fed.21 To be fair, it has
to be said that it is always very difficult in the social sciences to find
laws which are very general and at the same time highly informative. It
seems that for the subject matter dealt with in the social sciences there
usually is a payoff between generality and being informative and that
the most useful laws and connections are to be found on an intermediate
level of generality. If this is true, however, then it also shows how naive
and misplaced some of the aspirations of the theory of cultural evolution
are.

Another consideration that suggests that it is advisable to be suspi-
cious of the generalizing claims of the theory of cultural evolution is the
fact that it is all too easy to cast any conventional explanation of some
cultural development into an evolutionary jargon. Just take an arbitrary
explanation of any cultural development, relabel what would commonly
be understood as “causes” into “conditions of selection” or some sim-
ilar phrase from the evolutionary dictionary and, voilà, ready is your
evolutionary explanation! It is in particular the branch of “memetics”
that lends itself to this kind rephrasing. For example, assume social
scientists had found out that more and more reports about terrorism
in the news cause many people to live in fear of terrorism then here
is the evolutionary explanation: Fear of terrorism spreads because the
increasing number of reports about terrorism in the news exerts a posi-
tive selection pressure on the “be afraid of terrorists”-meme. Of course,
nothing substantial is gained by this kind of rephrasing and certainly
not a generalization of any valuable kind. The memetics-literature is full
of examples of this very trivial kind of reframing common knowledge in
an awkward evolutionary jargon.22 Of course trying to understand so-

21See chapter 5.2.2 for an example where this problem occurs.
22The following excerpt from a manifesto on memetics may serve to illustrate this charge. It is typical

for the way in which examples are constructed in memetics-literature: “A memetical example is the
beginning of Christianity. Adherents of the new creed were prosecuted in order to conserve the previously
dominant paganism and to destroy the upcoming religion. Kindreds of the faith in Jesus the Nazarean
joined together, went into the underground and thus survived in the spiritual community. As the religious
convictions, which one can also describe as memes, were adopted by those in power that is were copied, the
memecomplex Christianity could prevail over the previous memepool (Constantinian turn!).” (Salwiczek,
2001, p. 129, my translation) This memetical account of a well known historical fact is distinguished
from conventional descriptions by nothing but an awkward jargon. Technically speaking, the memetical
account merely adds a few irrelevant premises, namely the laws of memetics. The qualification of religious
groups as “memecomplexes” does not at all help us to explain why one of them (Christianity) won over
the other (Paganism). For, since both are memecomplexes just the like, the explanation must lie within
specific properties of each of them and cannot be due to their being memecomplexes. – More examples
of this kind of trivial rephrasing of common knowledge in an evolutionary jargon can easily be found in
Susan Blackmore’s book “The meme machine” (Blackmore, 2000). Also quite notorious is the example
of the chain letter, which is reiterated again and again in the memetical literature despite its utter
triviality(Laland and Brown, 2004). One might object that examples such as the one just quoted were
merely meant to explain what the meme concept means and not to prove its value. But then, the literature
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cial developments in evolutionary terms is not necessarily bound to end
up in trivial reframing of common knowledge. If done seriously it will
be quite a demanding task, where one has to consider carefully whether
and how the causes of the development in question can be interpreted
either as conditions of selection or variation or reproduction. And one
cannot be sure beforehand that the endeavor will be crowned by suc-
cess. But there also exists the cheap way of doing it that bears a similar
risk of intellectual self betrayel as Hegelian dialectics once did, which by
ardent Hegelians was believed to capture a general pattern underlying
any natural or historical process in this world whatsoever (Hegel, 1998;
Engels, 1998).

b) Unification. Regarding the question whether the evolutionary the-
ory of culture provides the right framework for a unified science of cul-
tural evolution, it can only be repeated that at the present stage the
Darwinian theory of cultural evolution is far cry from offering anything
that could fulfill this claim. It may offer a few good models for a few
special cases of cultural development, but it simply covers too little of
the vast and varied field of the evolution (in a non Darwinian sense) of
culture. At the same time it is by no means clear that the Darwinian
scheme is in all cases better or at least as good as competing explana-
tions for cultural development. Unified Science is a kind of pertinacious
myth. Some scientists and philosophers seem to believe that whenever
a science is being unified then this should give it a boost of scientific
discoveries (Tooby and Cosmides, 1992, p. 19ff.) (Mesoudi et al., 2006,
p. 329ff.). But in fact it is the other way round: Unification of sciences
is the consequence rather than the prerequirement of dramatic scientific
advances. It arises more or less by itself whenever different neighboring
scientific fields have evolved far enough to merge. But it is not much
use trying to impose a unification. Some philosophers of science even
dispute that the sciences can be or should be unified at all (Dupré, 1996;
Cartwright, 1999). Notwithstanding the question whether the skeptics
of unified science are right or wrong, it seems fairly obvious that unity
or, what amounts to the same, connectivity to other, specifically the
natural sciences is a second rank criteria like generality, parsimony, sim-
plicity and others. First of all it matters whether a scientific theory can
explain anything and whether the explanation is true or false. And only
if it is true, we can start worrying about whether it is parsimonious,
general or how well it can be connected to other theories.

Besides, when talking about a unified science of culture, there is the

on memetics often does not advance beyond such trivial demonstrations.
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question of why it must necessarily be a unified evolutionary theory of
culture. One could equally well demand that it be a unified economic
theory of culture based on the utility calculus and the laws of the market.
Economics is, after all, no less rigorous than population genetics and it
certainly is much closer to the other social sciences than biology. In the
end it seems that the call for a unified science is just imperialist science
badly disguised.

c) Scientific rigor. What about the evolutionary approach being more
scientific than other approaches in the social sciences? When Mesoudi,
Laland and Whiten complain that cultural or social anthropology has
made so little progress in comparison with evolutionary biology (and
similarly when Tooby and Cosmides complain that the social sciences
in general have made very little progress lately) then what they im-
ply is that this is due to a lack of proper methodology and scientific
rigor. And they profess to offer a proper methodology by transferring
methods and research designs from evolutionary biology to cultural an-
thropology. How successful this endeavor will be can ultimately be
judged only by looking at the very results and concrete examples of
this undertaking. But a few general considerations seem appropriate
nonetheless: For example, it cannot generally be assumed that trans-
ferring certain concepts, methods or paradigms from one field of science
where they have been employed with greatest success to another field
will retain their success or even just their rigor.23 Moreover, scientific
rigor is not something that could be called in or that depends merely
on the willingness of the scientists to apply rigorous methods. It also
depends on the subject matter at hand. This is especially true for the
application of formal or mathematical methods. Many branches of sci-
ence simply do not lend themselves to mathematization. It would be
laughable to complain that, say, classical philology has not made quite
the same progress during the last two hundred years as astronomy or
particle physics and to attribute this supposed defect to the lack of rig-
orous scientific methodology. On the other hand, it is of course always

23A comparison of genetics in biology and the parallel approach of “memetics” in cultural evolution is
quite instructive in this respect. The usual bad excuse that“memetics” is only at its very beginnings won’t
do here. Apart from the fact that the “meme” concept is more than a quarter of a century old – which is
ages on the time scale of modern science – and we still wait for great achievements, genetics in contrast
was able to offer substantial new insights right from the beginning as is testified by the Mendelian laws.
Daniel Dennet has a very simple explanation for the fact that memetics, despite its age and popularity,
has hardly had any impact on cultural history. He believes that this omission is due to the wanton
ignorance of “ ’humanist’ minds” (Dennett, 1996, p. 361). But surely, if the only explanation for the lack
of secular success of memetics that an ardent proponent of this concept can find is a kind of conspiracy
theory then it is much more plausible to conclude that the meme concept found no followers among the
experts in the cultural sciences because memetics is simply a bad theory.
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worthwhile trying. One just should not be overly optimistic about the
theory of cultural evolution allowing for a more rigorous treatment of
cultural developments than conventional theories of cultural develop-
ments. For the time being this seems to be a largely unfulfilled claim,
but the future may still prove the opposite.

Summing it up, in those areas where the theory of cultural evolution
does not solve any new riddles it does not have much to offer that would
convince a scientist to give preference to this particular theory over
other more conventional approaches. Its supposed generality seems to
be accomplished mainly at the expense of a loss of substantial content.
To effect a unification of cultural studies under its hood, it is just too
sparsely applicable, and whether the acclaimed scientific rigour of its
models really proves tenable remains to be seen. Of course, all of these
considerations have remained somewhat abstract and tentative. In the
end the decisive step to justify a scientific approach or paradigm is to
employ it in scientific practice. If anybody were able to draw up a
really convincing explanation of some cultural phenomenon based on
the theory of cultural evolution then this would certainly do more to
the justification of this paradigm (and to the abashment of its critics)
than any abstract considerations. Therefore, let us now have a look at
some case studies.

3. Where are the showcases? The best proof of the fertility of a general
scientific theory is when it spawns many monographic studies where its
laws and concepts find a useful and appropriate application to specific
subject matters. How does the theory of cultural evolution fare in this
respect? There certainly exist quite a few monographic studies dedi-
cated to this paradigm. But are they good enough to convince us of
the merits of this approach? For his criticism of the theory of cultural
evolution, Joseph Bryant has examined two such studies (Bryant, 2004).
Because the errors in reasoning he discovers seem to be quite typical for
the evolutionary approach, it is worthwhile to take a closer look at his
reasoning.

Bryant sets out with some general considerations about the question
whether there really are any strong analogies between biological evolu-
tion and evolutionary processes in culture (Bryant, 2004, p. 459-469).
His criticism suffers a bit from the fact that he assumes that the trans-
fer of evolutionary constructs from biology to the social sciences would
require that we find some kind of analogon to the laws of genetics in the
cultural sphere, which is obviously very difficult to find(Bryant, 2004, p.
461ff.). But in fact the theory of cultural evolution does not at all rely
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on such an analogy. Even those variants of the theory of cultural evolu-
tion that employ the concept of the“meme”as a parallel concept to that
of the “gene” in biology do not assume that the proliferation of “memes”
is guided by the same laws as govern the propagation of “genes” in biol-
ogy. Still, Bryant hits upon an important point insofar as without any
analogon to genetics the theory of cultural evolution tends to be much
less concise than its biological counterpart. But more important than
Bryant’s general criticism are his case studies of two attempts to employ
the theory of cultural evolution to the explanation of certain historical
developments. These attempts are: 1) Runciman’s interpretation of the
displacement of the ancient Greek “hoplite” caste towards the end of
the classical period in ancient Greece (Bryant, 2004, p. 470-481) and 2)
Interpretations of the history of the Christian religion in Darwinian evo-
lutionary terms, a typical example of which is D.S.Wilson’s “Darwin’s
Cathedral” (Wilson, 2002) (Bryant, 2004, p. 481-488). Both attempts
fall within scientific fields that are already well covered by a specialist
literature on the respective topics. It is therefore not new riddles that
Runciman and Wilson solve, but new solutions to old riddles they offer.
The question is: Are the evolutionary answers any better?

In Runciman’s case, the vanishing of the “hoplite”-caste and its spe-
cific cultural codes in ancient Greece is interpreted as the result of evolu-
tionary forces acting against it (Runciman, 1990). “Hoplites” in ancient
Greek were heavy armored soldiers that made up the core of the Greek
city state’s armed forces. Because a full armour was expensive it was
the rich and nobles of the Greek cities that had the honor to fight in
the hoplite-phalanxes. An important aspect of the hoplite warrior cul-
ture was that the Greek city states did not entertain standing armies.
Those that fought for their city state in the army were citizens that
took part in seasonal warfares and pursued other obligations during
the rest of the year. According to Runciman the hoplite culture was
“doomed to extinction” towards the end of classical greek antiquity be-
cause it had evolved under different circumstances and could not adapt
quickly enough to a suddenly changed environment (Runciman, 1990,
p. 355f.). The hoplite armies with their part-time warriors and with
them the hoplite warrior and citizen culture became replaced by stand-
ing armies supplemented with paid mercenaries. The paradigmatic case
of these new and more successful formations is the Macedonian army
under Philipp and Alexander. This change in the military sector was
accompanied by changes in the social formation and political organiza-
tion. Although they still remained important cultural centres for a long
time afterwards, the Greek city states were eventually replaced as ma-
jor political players by the rising new empires like the Macedonian and,
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later, the Roman empire. One of the main driving forces behind the
erosion of the hoplite culture was the growing number of mercenaries
as a result of continuous warfare and political unrest among and within
the Greek poleis. People who became expelled from their home cities
often did not have any other alternative than to let themselves be hired
as soldiers, and in a time of constant unrest there were always those
in need of their service. Runciman treats this process as an evolution-
ary selection process, wherein the social model of the hoplite culture,
treated by him as a complex of interlocking social regulations on differ-
ent sectors, military, economic, social and religious (Runciman, 1990,
p. 351ff.), was ultimately replaced by more successful models of social
organization.

Bryant finds fault with this evolutionary account of antique history
for two reasons: The first objection is that Runciman’s account is just
another example of the mere rephrasing of terminology that, if we follow
Bryant’s criticism, is one of the main effects of the application of Dar-
winian evolutionary thinking to the social sciences. According to Bryant
what Runciman tells us does not got beyond what we know from ordi-
nary accounts of antique history. Nor is Runciman able to give a better
explanation. He merely casts well known facts and connections into a
peculiar evolutionary narrative (Bryant, 2004, p. 470). Without gain-
ing any advantages by drawing on evolutionary concepts Runciman’s
account turns thus out to be just a less concise presentation of a well
known subject matter. But Bryant finds an even greater flaw in Runci-
man’s evolutionary presentation. By employing evolutionary concepts
which just do not fit very well to the subject matter in question, Runci-
man slips into the error of retrospective determinism (Bryant, 2004, p.
478).24 Because evolutionary accounts of cultural processes typically
downplay the role of human intention, they underestimate the degree
to which the outcome of historical processes is liable to human action
and planning. According to Bryant the social and cultural transitions
that took place at the end of the Hellenic age can be much better un-
derstood with the figure of challenge and response than in evolutionary
terms.25 The Greek city states faced a challenge in form of growing num-

24Next to the fault of retrospective determinism Bryant identifies four other pitfalls that Runciman’s
evolutionary approach has fallen into: 1) Misidentification and misrepresentation of causal processes, 2)
supplanting and effacing of the intentionality of real flesh-and-blood actors by ambiguous and implausible
biological hypostazations such as memes, mutants and environmental pressures, 3) obfuscatory superim-
position of internally most differentiated social processes and arrangements by screening abridgments
such as fitness, adaptation and extinction, 4) Underplaying or bypassing of the “ideational or symboli-
cally constructed dimensions and characteristics of social life ... in a strained effort to reconfigure the
field of action along the lines of an organism-environment duality” (Bryant, 2004, p. 481).

25To people unacquainted with the way explanations in social sciences usually work, the figure of
“challenge and response” might as such appear much more vague, ambiguous and less concise than the
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bers of soldier armies and the visible military advantages that could be
gained with professional combatants instead of part time combatants.
But in no way they were thereby “doomed to extinction” as Runciman
believed. Rather, the question was if they were able to find an ade-
quate response to this challenge. And indeed they did respond to the
challenge by employing professional militias themselves and by forming
alliances (Bryant, 2004, p. 480). In the end they were not successful,
which may partly also be due to contingent factors such as the loss of a
small number of decisive battles. Had the response been successful, the
“hoplite culture” could have been retained with only minor adjustments.

Of course one could ask at this point whether the fault really lies
with the theory of cultural evolution. Maybe Runciman just did not
make a very clever use of the evolutionary concepts. After all, there is
no strict necessity by which an evolutionary account of some process in
cultural history must slip into the mistake of retrospective determinism
or any of the several other defects that Bryant diagnoses (Bryant, 2004,
p. 481). Maybe, such mistakes could be avoided, while still employing
evolutionary concepts. But then, specific theoretical approaches are
often in a certain way suggestive. And it seems that the evolutionary
approach is just not very appropriate to explain the kind of short term
cultural transition processes that Runciman submits to an evolutionary
analysis. Further below, however, we will see that even for long term
cultural development processes it can be very difficult to draw up a
precise evolutionary description.

Taking Bryant’s criticism a step further and linking it with some
of our previous reflections about suitable application scenarios or ap-
plication limits of a Darwinian evolutionary theory of culture, we can
conjecture26 that Runciman’s basic mistake was to apply the evolu-
tionary scheme to a process that took place on a time scale which is
short enough to fall into the time horizon of human planning. Now,
while the theory of cultural evolution does take account of intentional
or planned human action by treating it as “directed mutations” (kinds
of mutations for which there exists no analogon in biological evolution,
where mutations are always random mutations) it does not explain the
single directed mutations itself. Therefore, the theory of cultural evolu-
tion will not yield an appropriate explanation of cultural development
processes that consist, technically speaking, only of one or a few single

concept of a Darwinian evolutionary process. But as spelled out by Bryant in the case of the “hoplite
culture” it is in fact no less concise but at the same time much more appropriate to the subject matter
than Runciman’s evolutionary account (Bryant, 2004, p. 470ff.).

26To actually demonstrate this conjecture a more detailed analysis of Runciman’s evolutionary concepts
would be necessary.
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“mutations”.
The other one of Bryant’s two case studies of the failure of the evo-

lutionary theory of culture concerns the possibility of interpreting the
genesis of the Christian religion on the basis of Darwinian cultural evo-
lution. An ambitious study that follows this approach is David Sloan
Wilson’s “Darwin’s Cathedral” (Wilson, 2002). Wilson, who is other-
wise known for his collaborate work with Elliott Sober “Unto Others”,
where they make a case for group selection (Sober and Wilson, 1998),
sets out to describe the mechanism of group selection and to explain
why he sees human groups as adaptive units that are subject to group
selection mechanisms. This part, where Wilson is completely on his own
terrain is still the best part of his book (Wilson, 2002, p. 5ff.). But then
his reasoning becomes rather naive. Because group selection is a mecha-
nism that renders functionalistic explanations27 plausible (under certain
conditions) he hopes to revive a kind of sociological structural function-
alism, just as he and Sober were able to revive group selection which
had formerly fallen into disgrace among biologists due to its seemingly
functionalistic nature (Sober and Wilson, 1998, p. 55ff.). But then he
never really shows just how the evolution of religious movements that
demand a high degree of dedication and, in extreme cases, even self
sacrifice from their members was due to group selection mechanisms or
to Darwinian evolutionary mechanisms in general. In this respect his
treatment unfortunately remains very vague. Also, as Bryant contends,
Wilson’s Sketch of early Christianity almost entirely rests on the works
of the rational choice school of the sociology of religion like those by Rod-
ney Stark as one of its most prominent representatives (Bryant, 2004,
p. 482). Wilson has hardly any insights to offer that go beyond what
rational choice sociologists like Rodney Stark have already said about
the Christian Religion (Wilson, 2002, p. 147ff.).28 Therefore, Wilson’s
“Darwin’s Cathedral” is again an example where the evolutionary theory
of culture offers just old wine in new bottles.

In the two examples discussed by Bryant the Darwinian evolutionary
theory of culture was thus not able to provide any new insights. On the
contrary, it led in the case of Runciman even to a somewhat distorted
interpretation of the analyzed historical process. But are these two ex-
amples really symptomatic for the weaknesses of the evolutionary theory

27A functionalistic explanation is an explanation where a phenomenon is not explained by its causes
(causal explanation) but by its function, e.g. “ants are collaborative animals because this contributes
to the survival of the anthill (or of the ant species etc.)”. Functionalistic explanations are never proper
explanations because serving a certain function is not a sufficient reason for the existence of a certain
trait.

28This is also true of Wilson’s other examples, the presentation of which to a large extent consist of
lengthy quotations of what other author’s have said on the topic.
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of culture, as Bryant holds, or are they just examples where the evolu-
tionary theory of culture has been badly applied? A complete answer to
this question would require carrying out a systematic survey, which goes
beyond the scope of this book. However, there is a provisional short cut
which can help us to get around this difficulty: Instead of looking at
further examples of evolutionary theory in order to find out how well
they deal with cultural history, we can also look at some examples of
cultural history in order to find out in how far they are evolutionary.
There is one very prolific recent author whose latest works seem partic-
ularly well suited for such an attempt. This author is Jarred Diamond
who has presented in his books “Guns, Germs and Steel” (Diamond,
1998) and “Collapse” (Diamond, 2005) a fascinating and fresh approach
to the study of cultural history based on geological and archeological
data. Diamond is an evolutionary biologist who only lately turned to
cultural history. He therefore knows the Darwinian theory of evolution
very well. If we can expect anyone to transfer Darwinian evolutionary
concepts from biology to the study of human culture then we can expect
this the most likely from a biologist turned historian of culture.29 The
first of the two mentioned books“Guns, Germs and Steel”covers roughly
the last 13 000 years of human history and tries to answer the question
as to why some civilizations were more successful than others and why
ultimately the Europeans won over most of the other civilizations and
not the other way round. The book thus covers processes within a very
large time horizon, large enough so that the problem of the short time
horizon which rendered Runciman’s evolutionary account of a phase in
ancient Greek history implausible will not interfere. The second book is
about past and present environmental catastrophes. The subtitle “how
societies chose to fail or succeed”suggests that societies differ in whether
they manage to solve the environmental problems or whether they fail
to do so. Is there maybe a process of selection going on here?

Let us look at “Guns, Germs and Steel” first. Diamond examines the
question why some civilizations develop technologies that make them
stronger than others, why some are faster doing so than others and why
some societies carry germs with them that are lethal to others but not
the other way round. Why, for example, did the Indians die from the
diseases the European invaders brought to them, while the European in-
vaders did not die from any Indian diseases? The answer that Diamond
gives, and which is strikingly well supported by the empirical evidence
Diamond relates to, is that this depends primarily on the habitat a so-
ciety lives in and the environmental conditions it faces. Why do some

29In fact, Diamond’s “Guns, Germs and Steel” is a favorite reference of adherents of a Darwinian
evolutionary theory of culture. See, for example, (Dennett, 2006, p. 104f.).
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societies have agriculture and others do not? Because plants that are
suitable for agriculture (and there exists only a small number of plant
species for which this is the case) grow naturally only in some specific ar-
eas of the world (Diamond, 1998, p. 131ff.). Why do some societies raise
livestock and others don’t? Again, only very specific animal species can
be kept as livestock. And these are not spread all over the globe (Di-
amond, 1998, p. 157ff.). Why did the technology of agriculture spread
much faster in Eurasia than in America after it had been discovered? It
did so because the Eurasian continent stretches along an east-west line
with roughly similar climate and environmental conditions, which means
that the cultivation of the same crops can spread easily and without
many adjustments along the east-west line (Diamond, 1998, p. 176ff.).
Why are the Australian aborigines not organized in large hierarchical
kingdoms? Because, for the reasons mentioned above, they did not even
get as far as inventing agriculture. How could they possibly have taken
the further steps of civilizational development that are based on agri-
culture (Diamond, 1998, p. 295ff.)? So, the explanation that Diamond
offers for the civilizational development of societies consists in describ-
ing the natural environmental conditions they live in and in how far the
invention and use of certain cultural techniques requires certain environ-
mental conditions to be fulfilled. It should be observed that Diamond
only talks about what is required for certain cultural developments to
take place. Very little is said about how these processes take place and it
is completely left open if they follow a Darwinian evolutionary scheme
or not. The case that gets the closest to an evolutionary description
of the process of the development of a cultural technique is Diamond’s
account of the invention of agriculture. Agriculture comprises several
interlocking work phases (sowing, harvesting, threshing, grinding and
baking), the suitability of which for the purpose of food production can
impossibly have been known to humans before they had agriculture.
Therefore, agriculture cannot simply have been invented but must have
been introduced stepwise in a gradual process. The question is then,
what the intermediate steps between hunting and gathering and fully
fledged agriculture are. Diamond suggests a slow replacement of hunt-
ing and gathering as means of food production starting with “acciden-
tal” grain fields on rubbish dumps, continuing with garden keeping by
hunter-gatherers and, finally, resulting in cultivation (Diamond, 1998, p.
104ff.). Is this then an evolutionary process that Diamond describes? It
could be, but neither Diamond’s description nor the empirical data that
it is based on could really sufficiently support this claim. The processes
could also be one of a linear sequence of inventions building on top of
each other with no selection taking place other than a simple choice of
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preferred technology.
Only where Diamond discusses the role that germs played in the

world-conquest of the Europeans, he employs evolutionary theory. But
here it is solely biological evolution that he refers to. The most lethal
germs originated from livestock. Since Europeans (or Eurasians, for that
matter) had been raising livestock for many centuries before they made
contact with the cultures on other continents, the European population
had had time enough to evolve resistance against the associated diseases,
but not vice versa (Diamond, 1998, ch. 11).

The conclusion to be drawn about Diamond’s ”Guns, Germs and
Steel”is that it provides little evidence for the benefits of an evolutionary
theory of culture. There is no denying that it would surely be possible
to rephrase the whole book in an evolutionary jargon. But what would
be the point of doing so? And to base an empirically well founded
evolutionary explanation on Diamond’s book would require gathering
much more empirical data on the civilizational development processes
taking place than is presented by Diamond.30

In Diamond’s other book that touches on human cultural history
the non-evolutionary character of Diamonds explanations is even more
obvious. Just as if he had read and taken to heart Bryant’s criticism
of the evolutionary theory of culture, he avoids the evolutionary jargon
but employs instead non-evolutionary explanatory figures such as that
of “challenge and response”. Why did the Norse culture in Greenland
cease to exist after a few hundred years while the Inuit continued to live
in the same hostile environment? According to Diamond, who traces
back the downfall of the Greenland Norse in great detail, the Norse and
the Inuit faced the same environmental challenges but the Norse failed to
develop an adequate cultural response to this challenge (Diamond, 2005,
p. 248ff.). In his presentation of this processes Diamond does not make
any use of evolutionary assumptions.31 In order to explain the failure or
success of societies in general, Diamond develops a five tier model that
comprises environmental as well as political factors (Diamond, 2005, p.

30The data that would be needed for such an endeavor may not even be available at all. The elegance of
Diamond’s approach is among other things due to the fact that he makes good use of his data, but, at the
same time, does not overinterpret it. He does not try to answer questions that cannot be answered with
the help of the accessible geographical, biological and archaeological data, and neither does he indulge in
theoretical disputes that could not be decided by the same empirical data.

31An adherent of evolutionary explanations might be inclined to interpret the prevailing of the Inuit
over the Norse as an instance of selection in the evolutionary sense. But then only the terminology but not
the concept of selection from evolutionary theory would be applied because in biology natural selection
is the very factor that shapes all features of an organism. In analogy, one would have to explain how
the many particular features of the Inuit and the Norse culture (technology, diet, social order etc.) have
been shaped by processes of selection. This would be a much more ambitious project and it would most
probably also require to gather much more data about these cultures than Diamond had available.
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10-15), rangeing form climate conditions and and environmental damage
to hostile or friendly neighbours and ultimately the sociatal responses
to these hazards. There is nothing particularly evolutionary about his
model. Also, in his whole book, Diamond strongly emphasizes the role
and importance of human decisions. For him it is primarily a matter of
choice whether human societies fail or succeed. This emphasize is partly
due to Diamond’s political legacy, which is to warn his readers about the
dangers of environmental catastrophes. Therefore, it is understandable
that he presents the cultural processes that lead to the destruction of the
environment not as anonymous evolutionary processes beyond human
design and intervention. Still, his presentation is very convincing as it
stands.

In neither of his two books on human culture has Diamond had much
use for a Darwinian concept of cultural evolution. Obviously, if a biolo-
gist turns to the study of human culture and is not absolutely bent on
applying evolutionary concepts to human culture, he will quite naturally
end up with the same kind of explanations (like, for example, explana-
tions in terms of “challenge and response”) that are used by historians,
archaeologists, social scientists etc. What distinguishes Diamond from
the typical historian or social scientist is the great importance he at-
tributes to the natural environment in shaping human culture. Beyond
that, there is little in his books that betrays the biologist. The little
use Diamond makes of evolutionary concepts underlines the impression
that Bryant’s criticism is not merely an outcome of the usual preju-
dices of a group of scientists (in this case social scientists) against fresh
approaches developed by outsiders but that the use of Darwinian evolu-
tionary concepts for understanding the development of human societies
and cultures is indeed strongly limited. At any rate, Diamond’s books
provide excellent examples for non-evolutionary explanations of cultural
developments.

Despite all this criticism it should not be forgotten that the theory of
cultural evolution certainly also does have its assets (see section 3.3.2).
Therefore, summing the discussion of the evolutionary theory of culture
up, it can be concluded that there is good reason to assume that there
are some evolutionary processes in human history and cultural devel-
opment that can be understood as Darwinian evolutionary processes.
However, this also means that it is only some of the many and varied
types of development processes occurring in human societies that can
reasonably be described in Darwinian evolutionary terms. It is therefore
not to be expected that a Darwinian evolutionary theory of culture will
ever attain the rank of the one great frame paradigm for social sciences
as the theory of evolution does in biology. To call for a unified theory
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of cultural evolution, as Mesoudi, Laland and Whiten do, can thus only
be regarded as a mistake. The imminent danger of a unified theory of
cultural evolution is that it induces us to disregard other and possibly
better alternative explanations for cultural development processes. At
any rate, we must neither assume that all cultural phenomena can be
explained on an evolutionary basis, nor can we assume without further
reason that if we have an evolutionary explanation for a certain cul-
tural phenomenon that it will be the only possible explanation or that
it really tells us everything there is to know about it. This has im-
portant consequences for the way we have to look at the evolutionary
models of altruism discussed in the following chapter. While when ap-
plied to biology these models encompass all possibilities how altruism
can evolve that have hitherto been conceived of, we cannot assume that
these models cover all or even just the most important possibilities of
how altruism evolves in culture. At most, it can be maintained that
the evolutionary models describe mechanisms of the evolution of altru-
ism that – under the reserve of its empirical verification32 – may be at
work in human culture side by side with other non-Darwinian mecha-
nisms that produce altruism. For example, one of the major factors that
promote altruistic or cooperative behavior (in a broad sense) in human
societies are the institutions of law and law enforcement. This factor
is nowhere adequately captured in any of the common models of the
evolution of altruism.33 Of course a Darwinian theory of the evolution
of law and the institutions of law enforcement does not seem completely
inconceivable. But so far no such theory has been produced. Therefore,
the existing evolutionary explanations for altruism cannot claim to offer
a comprehensive answer to the question how altruism evolves in human
societies.

3.4 Theory and models

In the preceding subsections different strata of the Darwinian theory
of evolution have been presented and discussed in some detail. What
remains to be clarified is the place that the models of the evolution of
altruism discussed in the following chapter take within this theoretical
framework.

As has been shown, there are basically three types of Darwinian evo-
lutionary theories. There is the – well known – theory of evolution in bi-

32See chapter 5.
33One would have to look in other places such as institutional economics to find models that come

closest to this.
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ology which can be characterized in contradistinction to the other types
as a theory of genetic evolution of living organisms including humans.
Then there is evolutionary psychology (the successor of sociobiology)
which is a theory of genetic evolution of human nature and behavior
in particular. Because evolutionary psychology relies solely on genetic
evolution, it could be regarded as a branch of the common biological
theory of evolution. But because its claim to explain human behavior
and psychology as a part of the genetically evolved human nature is
highly controversial – much more controversial than the biological the-
ory of evolution is nowadays among scientists – it is advisable to treat it
as a different stratum of evolutionary theory. Finally, there is the the-
ory of cultural evolution which applies Darwinian evolutionary thinking
and evolutionary models to the development of human culture but does
not assume that human culture is determined by the genes.

The models that will be examined in the following chapter are game
theoretic models of evolving strategies. No claim is made about how
these strategies are implemented, e.g. whether they are coded by the
genes of an organism or whether they represent some kind of learned
wisdom of human individuals. Therefore these models should be un-
derstood as models within the theoretical framework of a generalized
theory of evolution. In principle, they can be applied to both genetic
and cultural evolution. The “Darwinian modules” enter into these mod-
els mainly through the replicator dynamics that is used in these models.
Variation or mutation is (except for a very trivial form) not present in
the models presented in the following. Still, they suffice to model typical
selection processes as they occur once a certain “meaningful” mutation
has appeared on the scene and challenges the existing types.

The models themselves remain abstract that is, they do not specify
how reproduction, variation and selection takes place. When applying
the models to a biological context, this does not pose a problem be-
cause what is meant is always reproduction of genes, mutation of genes
(variation) and selection of organisms (and thereby indirectly of genes,
too). But when applying evolutionary models to the social sciences,
these must be specified empirically. Such a specification or explanation
of what reproduction, variation and selection means will to some degree
be context specific as there are different kinds of reproduction, variation
and selection in cultural evolution. An abstract evolutionary model can
– in principle – be applied to social sciences if there exists at least one
context for which the mechanisms of variation, reproduction and selec-
tion can be specified empirically. Whether the application of the model
in this context is meaningful in the sense of providing new insights and
empirically testable hypotheses is yet another question. In the next
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chapter different models for the three basic types of evolutionary altru-
ism will be presented and supplemented by considerations concerning
their interpretation in a cultural context. The question of their empirical
impact will not be considered until the subsequent chapter.
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Chapter 4

Modeling the evolution of altruism

In the previous chapter different variants of Darwinian evolutionary the-
ories were introduced. While the general approach of each of these the-
ories was sketched and discussed in some detail, nothing has so far been
said about how the evolution of altruism in particular is to be explained.
In this chapter the different evolutionary explanations for altruism will
be set out. These explanations will be described with the help of sim-
ulation models. Simulation models are an easy way to examine 1) if a
certain explanation works in principle, i.e. if it is conclusive and does
not rest on self contradictory assumptions and 2) how the explanation
works. It sometimes appears that scientists also believe that by studying
computer simulations of the evolution of altruism, one could learn some-
thing about how and why altruism evolves (Axelrod, 1984). But this
belief is mistaken. By studying computer simulations alone, one cannot
learn anything about how altruism evolves, unless the simulations have
been empirically validated. And this has been achieved for almost none
of the many computer simulations of the evolution of altruism so far.
The choice of computer simulations rather than mathematical models
is motivated by the fact that computer simulations are often more intu-
itive and can very easily be extended. Purely mathematical models in
contrast set much stronger limits to the complexity of what can be mod-
eled. Also, it seems that computer simulations have been much more
popular than purely mathematical models for modeling the evolution of
altruism.

Within the evolutionary paradigm there are basically three different
explanations for the existence of altruism. These explanations are 1) the
theory of reciprocal altruism, 2) the theory of kin selection and, finally,
3) group selection theory. The theory of reciprocal altruism explains
altruism by the assumption that altruism may serve the benefactor him-
self (or herself) if there is some way of ensuring that the benefits are
returned. The theory of kin selection explains altruism by the genetic
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relatedness of the partners of altruistic exchange. A special twist has
been given to this theory by Richard Dawkins who concludes that what
appears as altruism is just the egoism of the genes which related indi-
viduals share (Dawkins, 1976, p. 278ff.). In contrast to this, the theory
of group selection can even explain the existence of genuine altruism.
According to the theory of group selection, altruism may evolve in pop-
ulations that are divided into relatively isolated subpopulations (called
“demes”) because it enhances the fitness of a subpopulation.

In the following three sections these explanations for the evolution
of altruism will be described one by one. The explanation of reciprocal
altruism will be examined in greatest detail. Because the main goal of
this book is to examine how explanations of altruism work (and not
so much to explain altruism itself, which is more of a task for specialist
scientists than for philosophers) the simulation models will be developed
stepwise. At every step it will be examined how this type of modeling
works, i.e. what basic modeling choices are taken, what the model can
demonstrate and what it cannot demonstrate and how the model can
be refined to possibly increase its demonstrative power. This procedure
will be followed in all detail for the models of reciprocal altruism. As the
epistemic conditions for modeling are exactly the same in the case of kin
selection and group selection, these will be discussed only briefly. The
presentation and discussion of the models will in this chapter remain
largely immanent. No empirical considerations enter into the discussion
at this point. These will be reserved for the following chapter. However,
since it is not altogether obvious how the models can be used outside
a genetic contest, some brief indication will be given for each model
concerning how it can possibly be applied to a cultural context.

4.1 Reciprocal altruism

The theory of reciprocal altruism was first proposed by the biologist
R. Trivers (Trivers, 1971). According to Trivers “altruistic” coopera-
tion among animals that are not close relatives could be explained by
reciprocity. Examples of reciprocal cooperation in biology are grooming
among primates but also mutualisms like that of hermit crabs and sea
anemones,1 where the partners of cooperation are not even of the same
species. The core of the reciprocity argument runs as follows: Altru-

1In the case of hermit crabs and sea anemones, however, it is – without precise empirical information
– hard to tell whether it is an instance or reciprocal altruism, which requires that the partners have
the option to cheat, or byproduct mutualism, where no such option exists, or even simply parasitism by
the sea anemone if the benefits for the hermit crab do not outweigh the disadvantage of carrying sea
anemones around.
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ism subsists, because it is conditioned on the return of the investment
by the partner of cooperation. If this condition is fullfilled cooperation
can result in a fitness benefit for both partners of cooperation. This
turns cooperation into an evolutionary advantage, which explains why
reciprocal altruism appears in nature.

The greater part of the modeling on reciprocal altruism centers
around the repeated two person Prisoner’s Dilemma. The paradigm
example of modeling reciprocal altruism is the computer tournament
Robert Axelrod has conducted in order to explain the evolution of coop-
eration (Axelrod, 1984). But there are of course great differences with
regard to the setting and parameters under which simulations of this
type have been carried through. Interestingly, many of these later mod-
els suggest quite different conclusions from those Axelrod drew from his
simulations (Binmore, 1998, p. 313ff.). Generally, scientists are nowa-
days much more careful about drawing sweeping conclusions from their
models than Axelrod was. Some variants of these models will be dis-
cussed further below (see section 4.1.5).

When casting the concept of reciprocal altruism into a model or for-
mal description two types of such models can be distinguished: (1)
Formal descriptions of the concept of reciprocal altruism as such. These
are typically sparse and do not go beyond rendering the very concept
of reciprocal altruism in formal terms. (2) Rich and detailed models of
diverse situations, in which reciprocal altruism can occur. As appears
naturally, the formal descriptions of the first type have been developed
first. Trivers, in his famous article (Trivers, 1971), uses the following
equation to describe the conditions for the evolution of reciprocal altru-
ism:

1

p2
(
∑

bk −
∑

cj) >
1

q2

∑
bm (4.1)

p frequency of the altruistic allele
q frequency of the non altruistic allele
bk an altruistic benefit an altruist receives
bm an altruistic benefit a non altruist receives
cj costs that an altruists takes upon itself

for bestowing an altruistic act
(on either an altruist or a non-altruist)

(Trivers, 1971, p.

37)
The left hand side of the inequation tells us the fitness of an average

altruist, which is calculated by determining the overall benefit of altru-
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ism on the the altruists (
∑

bk is the overall benefit that only the altruists
receive from altruism and

∑
cj is the overall cost the altruists have to

pay) and dividing it by the frequency of the altruist. (Trivers considers
only those types as altruists both of whose alleles are altruistic.) Thus
the fewer altruists are present, the higher is the share each gets from
the overall net benefits on altruists. (This should not let us overlook
the fact that the overall net benefit typically increases with the number
of altruists.) The right hand side of the inequation in turn delivers the
fitness of an average non-altruist.

Now, what the equation tells us is simply that we should expect al-
truism to spread in a population if the fitness of the altruists is higher
than that of the non-altruists and that this in turn depends on the re-
spective fitness benefits and costs. More simply put, altruism will evolve
if

∑
bm is kept relatively small. If it is assumed that this will be the

case when the altruists stop being altruistic in case their altruistic acts
are not being reciprocated (that is, if they find out that they have met a
non-altruist) (Trivers, 1971, p. 37) then it becomes understandable how
the inequation describes the evolution of reciprocal altruism. Strictly
speaking, the inequation as such does not say anything about reciprocal
altruism in particular. It could therefore also be interpreted as a general
inequation of altruism.

Apart from Trivers’ inequation also other basic general models of
altruism or “cooperation” have been suggested. Dugatkin, for example,
outlines a “cooperation game” that consists basically of a game matrix
filled in with variables, which if for the variables parameter values within
a certain range are chosen yields the one or the other of the typical
dilemma games like the Prisoner’s Dilemma, the stag hunt game or
the chicken game (see page 68 for an explanation of these game types)
(Dugatkin, 1997, p. 34ff.). Further alternatives can be found in Boorman
and Levitt’s treatment of the genetics of altruism (Boorman and Levitt,
1980). However, all of these models do hardly more than render the
basic concept of altruism in a formal notion. In order to turn a general
model of altruism such as Trivers’ inequation into a specific model of the
evolution of reciprocal altruism, or, even more specifically, the evolution
of altruism in a certain empirically given or imagined situation, it would
at least be necessary to give an interpretation of how the single terms
of the equation such as

∑
cj or

∑
bm are to be determined. This may

of course depend on specific conditions and assumptions.
Therefore, it should not surprise us that when we turn from the

sparse and very basic models of altruism of the first kind to the rich
and detailed models of the second kind, we find a baroque variety of
different models and approaches that in one way or other claim to de-
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scribe the “evolution of altruism”. It is not in the least the multitude
and diversity of models of the “evolution of altruism” that has called
forth criticism. Especially when computer simulations come into play,
it seems that nothing is easier than setting up a model of reciprocal
altruism. But exactly because it is so simple to produce models, and
because there are so many different models which lead to different –
and often even contradictory – conclusions (Binmore, 1994, p. 198ff.)
(Dugatkin, 1998, p. 42-44), and because hardly any of these models
has been supplemented by empirical research, the impression is hard to
avoid that most of the models of reciprocal altruism are mere “toy mod-
els” (Hammerstein, 2003b, p. 92) that provide more of an obstacle than
an inspiration to the research on altruism. We will come back to this
important criticism later, but first we will try to see how the modeling
of reciprocal altruism with the help of computer simulations works, and
in how far the imminent danger of arbitrary modeling can possibly be
kept in check when constructing such models.

In order to get a grip on reciprocal altruism, the first step will be the
construction of a very simple model of reciprocal altruism which does at
best serve as a sort of “in principle” explanation. The purpose is to dis-
cuss the general features and premises that enter into the explanation of
reciprocal altruism on an evolutionary basis. The second step will be a
fully-fledged computer simulation of reciprocal altruism that would also
allow studying the influence of different parameters (correlation, degen-
eration, noise etc.) on the evolution of altruism in the model. However,
as the model is not based on any empirical data, it would be futile to try
to draw far reaching conclusions from the model. Its purpose is mainly
to demonstrate how unstable such models of reciprocal altruism typi-
cally are, which forshadows a central difficulty of the modeling approach
that will be discussed later in this chapter (see sections 4.1.4 and 4.1.6).

4.1.1 A simple model of reciprocal altruism

There are many different ways to model reciprocal altruism. The most
popular models of reciprocal altruism are game theoretic models. Usu-
ally the game theoretic models are based on the Prisoner’s Dilemma
game. Although other alternatives are sometimes discussed like the so
called “stag hunt”-game (Skyrms, 2004), the Prisoner’s Dilemma does
in a certain sense depict the most crucial cooperation dilemma. In the
most simple case of the symmetric two person Prisoner’s Dilemma there
are two players, each of which can choose either to cooperate or to defect.
(“Defect” is the terminus technicus for “do not cooperate”.) Depending
on the choices of both players each player gains a certain payoff. There
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Player 1
cooperate defect

cooperate 3 / 3 0 / 5
Player 2

defect 5 / 0 1 / 1

Figure 4.1: The Prisoner’s Dilemma

exist four possible combinations of actions by the two players. In the
Prisoner’s Dilemma a player gets the highest payoff if she or he chooses
to defect while the other player cooperates. This payoff is commonly
denoted by the letter T for “temptation to cheat”. If both players coop-
erate, each of them gets the“reward”R for cooperating. If neither player
cooperates, both get a payoff of P for “punishment”. In the Prisoner’s
Dilemma P is smaller than R, but R is yet smaller than T so that the
players have an incentive to cheat even at the risk of being punished.
This holds all the more, because the worst alternative for each player
in the Prisoner’s Dilemma is to cooperate when the other player does
not cooperate (that is, when the other player “defects”). In this case
the cooperating player is left with a “sucker’s payoff” of S, which, in the
Prisoner’s Dilemma game, is even smaller than P .

More schematically the Prisoner’s Dilemma is depicted in table 4.1.
For the purpose of illustration the letters T, R, P, S have been replaced
by the numbers 5, 3, 1, 0. Of course, any other quadruple of numbers
could have been chosen as long as the condition T > R > P > S
holds, which defines the Prisoner’s dilemma in the two person case.
If the chosen parameters do not fullfil this condition, then it is not
a Prisoner’s Dilemma any more, but a different kind of game. For
example, if R > T instead of T > R, the game defined is a stag hunt
game. As has already been said, the stag hunt game is also sometimes
used to model cooperation problems. But in fact the stag hunt game
does at best describe a coordination problem, because in the stag hunt
game any rational player should choose to cooperate as long as he or
she has reason to assume that the other player also cooperates. Thus,
cooperation in the stag hunt game is just a matter of coordination. Yet
another alternative for a cooperation dilemma would be the chicken
game. The chicken game is very similar to the Prisoner’s Dilemma with
the only difference that the worst alternative is that of mutual defection
(S > P ). In the chicken game it would thus be better to be cheated
alone than to cheat mutually.

This is different in the Prisoner’s Dilemma. In the Prisoner’s
Dilemma a rational player will never cooperate, even if the other player
were willing to cooperate. This is easy to see if we look at figure 4.1:
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Assume that the other player does cooperate, then it is best not to co-
operate, because this increases one’s own payoff from 3 to 5. And if the
other player does not cooperate? Then again, it is best not to coop-
erate oneself, because by defecting one still gains a payoff of 1 instead
of being left with 0. Therefore, whatever the other player does, it is
always best not to cooperate in the Prisoner’s Dilemma. This result is
of course not very satisfactory, because both players end up with less
than they could. With the numbers from above, both get a payoff of 1,
although they could both get 3 if only they were able to cooperate. In
the more technical language of game theory this state of affairs can be
described as a consequence of the Prisoner’s Dilemma having only one
Nash equilibrium (a state of affairs where no single player can increase
his or her own payoff by choosing a different course of action) which
is not Pareto-efficient. Pareto efficiency means that no one could be
better off without anybody else getting less. In the Prisoner’s Dilemma
all players would be better off if they did cooperate. Therefore, the
non-cooperation equilibrium is not Pareto-efficient.

There is no way of getting around this unpleasant state of affairs,
which means that without a change of boundary conditions the Pris-
oner’s Dilemma would be a very boring model for the evolution of re-
ciprocal altruism as altruism simply cannot evolve in the “one shot”2

Prisoner’s Dilemma. This changes when moving from the one shot Pris-
oner’s Dilemma to the reiterated Prisoner’s Dilemma. In the reiterated
Prisoner’s Dilemma several rounds of the Prisoner’s Dilemma are played
repeatedly by the same players. The reiterated Prisoner’s Dilemma thus
opens up a whole set of strategic opportunities, because the players can
choose their actions with regard to what the other players did in the
previous rounds. A player could for example choose to cooperate when
the other player has cooperated in the previous round and not to co-
operate otherwise. This strategy will in the following be called Tit for
Tat. It is now easy to see that in the reiterated Prisoner’s Dilemma
playing uncooperatively is not always the best choice. A notoriously
uncooperative player (whose strategy will be named Hawk in the follow-
ing) that meets Tit for Tat will receive a payoff of T (or 5 points in our
example) in the first round and a payoff of P (or 1 point) in all subse-
quent rounds. If the Prisoner’s Dilemma is repeated often enough, the
average payoff of the uncooperative player will be close to P (1 point).
The player would have fared much better by playing cooperatively, in
which case the average payoff would have been R (3 points), which by
the definition of the Prisoner’s Dilemma is higher than P .3 Thus, unlike

2The “one shot Prisoner’s Dilemma” is called thus to emphasize that it is not repeated.
3It should be kept in mind that the goal of the players is to receive as high a payoff as possible and
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the one shot Prisoner’s Dilemma, unconditional non-cooperation is not
always the best strategy in the repeated Prisoner’s Dilemma. This said,
the question naturally arises what is the best strategy in the repeated
Prisoner’s Dilemma. The answer is that there is no single best strat-
egy in the repeated Prisoner’s Dilemma. The reason for this is simple:
Assume a strategy named Grim that cooperates as long as the other
player cooperates but ceases to cooperate for the rest of the game if
the other player fails to reciprocate cooperation even in one single in-
stance. Obviously, against Grim it is (except for the very last round of
the game) best to cooperate. More specifically, against Grim it would
be a very bad idea to fail to cooperate in the first round. Now, assume
a strategy that is a best reply4 to Grim. This strategy cooperates in
the first round. But if this strategy is run against Hawk, it is obviously
not a best reply, because any best reply against Hawk should never co-
operate, not even in the first round. Thus, any strategy that is a best
reply to Grim is not a best reply to Hawk. Therefore, in the reiterated
Prisoner’s Dilemma, there exists no strategy that is a best reply to all
other possible strategies, which means that in the reiterated Prisoner’s
Dilemma there is no best strategy.

How then should a rational player act to maximize the payoff in the
repeated Prisoner’s Dilemma? There is a certain argument, the im-
portance of which is sometimes overrated, to the effect that also in the
repeated Prisoner’s Dilemma rational players will never cooperate. This
is the argument from backwards induction. It runs as follows: What-
ever strategy a player chooses in the repeated Prisoner’s Dilemma if the
player cooperates in the last round the strategy can still be ameliorated
by defecting in the last round. (The last round is a single one-shot
Prisoner’s Dilemma where non-cooperation is always the best strategy.)
The same line of reasoning applies to the opponent so that both players,
if they are rational, will defect in the last round. But if both players
defect in the last round anyway then neither player has an incentive to
cooperate in the last but one round. The same logic then applies to
the round before the last but one round and so on, until the first round
is reached. In the end both players play Hawk all the time. There is
nothing to be said against the logic of this argument, only that it rests
on a very strong assumption that can hardly be called realistic. The
assumption is that both players behave strictly rational and also know

not primarily to win the match, i.e. to receive a higher payoff than the opponent. If it was only about
winning the match then Hawk would be the best strategy, because Hawk either wins or the game ends in
a tie.

4A “best reply” is a strategy that gets as much payoff in a game against some given strategy as is
possible.
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that they both do. If there is only a slight chance that the strategy
of one of the players deviates but a little bit from strict rationality, it
might not pay for the other any more to play Hawk. Moreover computer
simulations show that in an evolutionary scenario it takes millions and
millions of generations, until a population of Tit for Tat players is fi-
nally replaced by Hawk through a process of gradual degeneration in
the manner of a backward inductive process (see Appendix 8.6, where
this is spelled out). Finally, the argument of backward induction fails if
the number of rounds in the reiterated Prisoner’s Dilemma is unknown.
Therefore, if the number of rounds is unknown or if there is any rea-
son to assume that players are not always strictly rational, it remains
impossible to single out one strategy as the best or the only reasonable
strategy in the reiterated Prisoner’s Dilemma.

In the repeated Prisoner’s Dilemma, there is therefore room for co-
operation. But how much room is there for cooperation? Is it better
to be hesitant when cooperating with other players, or should one be
generous and cooperate even if the other player does not always recipro-
cate? Mathematical game theory does not have much to say about these
sorts of questions, except that – according to the folk theorem – there
exist innumerous equilibria. Any combination of payoffs of a repeated
game in the cooperative payoff region that assigns each player at least
the player’s minimax value is arbitrarily close to the outcome of some
Nash equilibrium (Binmore, 1998, p. 293). Without entering into the
mathematical details of the folk theorem, its validity in the case of the
repeated two person Prisoner’s Dilemma can easily be demonstrated by
a few simple considerations: Assume a sequence of moves of the two
players that generates a payoff of at least P for each player and that is
repeated throughout the game. For example, we may assume that player
one plays a sequence of three cooperative moves and one defection in
the fourth move while player two plays a sequence of four cooperative
moves without defecting. If we stick to the payoff values from figure 4.1
above, player one gets an average payoff of 3.5, while player two gets
2.25. Now let us further assume that any deviation from this repeated
sequence of moves by one of the players is punished by the other player
by switching to Grim instantly, that is, by playing non cooperatively for
the rest of the game. In the long run the other player would then only
get a payoff close to P . This will keep the player from deviating from
the equilibrium path. And this is the case, even if the equilibrium path
leads to an inefficient or unjust outcome as in our example. Although
player two gets much less than player one, player two would even be
worse off if he (or she) was trying to change the situation by deviating
from the equilibrium path.
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There could be an objection that if one player chooses to deviate
from the equilibrium path, the other player does not have an incentive
any more to enforce the equilibrium by punishing the deviating player.
(In the technical language of game theory one would say that the equi-
librium is not “subgame perfect”.) If, in the above example, player two
chooses not to accept the defection of player one every fourth round,
but to counter by playing Tit for Tat, player two does not really have
an incentive to punish player one, because by doing so player two would
earn a much lower payoff (close to 1) than by cooperating (close to 3).
However, this argument is only compelling if we think of two players
playing the repeated Prisoner’s Dilemma. In an evolutionary scenario
the two players of the example represent strategy types rather than indi-
vidual players. Each of the strategy types is chosen by a large share of a
population. If a few individual players single-handedly deviate from the
equilibrium path this does not have any noticeable impact on the equi-
librium. Therefore, the conclusion remains valid that the folk theorem
leaves us with a large number of equilibria and no hint which strategy
is generally to be considered a good strategy and which is not.

If there is no single best strategy in the reiterated Prisoner’s Dilemma
and if there exist many equilibria, how are we to find out what kind of
strategy will be evolutionarily successful? The approach pioneered by
Axelrod (Axelrod, 1984) was to simulate the games in the computer and
then just see which strategies are successful and which strategies aren’t.
In the most simple case one picks a number of arbitrarily chosen strate-
gies and lets each strategy play a match against each other strategy. A
match is a repeated Prisoner’s Dilemma of a fixed number of rounds.
How many is unknown to the players so that any end game effect can be
avoided. (Alternatively, one could also let the match stop with a certain
probability after each round.) When the match is finished the average
score each player has earned in a single round is calculated. After ev-
ery player (or strategy, respectively) has played a match against every
other player, the overall average score of each strategy is determined
and the different strategies are ranked according to their score. The
whole procedure somewhat resembles a tournament in sports, with the
important difference that it is the average score that matters and not
how many other players a player beats in the matches. (If it were the
object to beat as many opponents as possible then the strategy Hawk
would always be a sure bet, because Hawk cannot be beaten by any
other strategy.) The result of such a tournament is depicted in figure
4.2. For the tournament a reiterated Prisoner’s Dilemma of 200 rounds
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Ranking Strategy Score
1. Tester 2.2524
2. TitForTat 2.2067
3. Pavlov 2.1544
4. Grim 2.1377
5. Random 2.0137
6. Hawk 1.9024
7. Tranquilizer 1.8625
8. Dove 1.8288
9. Joss 1.6319

Figure 4.2: A tournament of the reiterated Prisoner’s Dilemma

with the parameters T = 5, P = 3, R = 1, S = 0 was carried through.5

Except that a much smaller number of strategies was used for the pur-
pose of illustration the tournament resembles exactly the one described
by Axelrod (Axelrod, 1984).

The winner of the tournament (figure 4.2) is a strategy called Tester.6

The strategy Tester starts off with two defections. If the opponent does
not answer these defections by defecting, Tester classifies the opponent
as an exploitable strategy and defects every second round during the
remainder of the match. Otherwise Tester switches to the fairly reliable
strategy Tit for Tat after two rounds of unconditional cooperation in
order to appease the opponent. The strategic advantages Tester gains
over Tit for Tat can easily be traced in the match logs. If Tester meets
an exploitable strategy like Dove the beginning of the match log looks
like this:

Dove : Tester 1.485 : 4.010

1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
...

The log is to be read as follows: The top line tells which strategies
have played the match and what their respective average score was for

5The strategies that take part in this tournament are described in detail in Appendix
8.1.1. The simulation software for this and the following simulations can be downloaded from
www.eckhartarnold.de/apppages/coopsim.html. The version of the software on this website is most
probably different from the version used for the simulations in this book. Readers who want to
take a closer look on the software version that was used for this book may want to write to eck-

hart_arnold@hotmail.com. I promise to send you a DVD that contains the complete browsable simula-
tion results as well as the software used to produce these results. See Appendix 8.7 for a brief description
of the contents of the DVD.

6This strategy was designed by David Gladstein for Axelrod’s computer tournament (Axelrod, 1984,
p. 39).
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this match. In the line below, each pair of numbers resembles the moves
of both strategies in one round of the reiterated Prisoner’s Dilemma.
“1”means that the player has cooperated, “0”means that the player has
defected. The first of the two numbers in the pair tells the move of the
strategy that appears first in the top line (in this case Dove), the second
number stands for the move of the other strategy (here it is Tester). As
can be seen, Dove cooperates indefatigably, while Tester– after having
noticed the exploitability of Dove after the second round – rips off a
benefit of 5 points every second round by defecting. (Tester could do
even better against Dove by betraying every single round instead of
every second round, but it must be remembered that all strategies must
try to be as universal as possible, and while Tester would indeed be
better off betraying every round against Dove the damage might also be
the greater in cases where the strategy of betrayal employed by Tester
fails.) In comparison the match log of the match Dove against Tit for
Tat looks as follows:

Dove : TitForTat 3.000 : 3.000

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
...

Both strategies cooperate throughout the game. The score Tit for
Tat gains is reasonably good (compared to an average score of the winner
of the tournament of only 2.2617), but it is certainly lower than the 4.1
points, Tester was able to achieve. For a final comparison, let us look
at the log of the match Tester vs. Tit for Tat:

Tester : TitForTat 2.985 : 2.985

0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
...

Tester starts with two defections again, but because Tit for Tat recip-
rocates these defections, it decides for the better and plays cooperatively
for the rest of the game, thereby still achieving almost the maximum
possible score against Tit for Tat. Thus, Tester is smart enough not
to mess with revengeful strategies, but flexible enough to exploit weak-
nesses. It is only against absolutely unforgiving strategies such as Grim
that Tester does not do so well. The success of Tester can to some
degree be understood by looking at the tournament chart and by inter-
preting the match logs. It must, however, be admitted that there is a
great deal of contingency involved in the success of Tester. For, Tester’s
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success crucially depends on the set of strategies that take part in the
tournament, on the choice of payoff parameters and on the absence of
disturbing factors such as noise etc. How to deal with these contin-
gencies will be discussed shortly. Before that there is yet another step
to take in order to find out something about the possible evolutionary
success of a strategy like Tester.

To determine the evolutionary success of a strategy like Tester the
simulation can be extended in such a way that a sequence of tournaments
is played. The average payoff every strategy receives in a tournament
is interpreted as a fitness value which serves as input for the next tour-
nament in the sequence. In contrast to the original tournament it is
not silently assumed any more that there is exactly one player for each
strategy, but that there exists a very large population of players which
is divided among the strategies. Successful strategies receive a larger
share of the player population in the next round than less successful
strategies. (We could imagine that if a strategy proves to be very suc-
cessful in the tournament a certain percentage of the players that have
previously played less succesful strategies will adopt the more sucessful
strategy in the next round. For a biological setting the interpretation
would even be easier as the average payoff could be interpreted as a fit-
ness value that directly transforms into the relative reproduction rate.)
The partitioning of the player population does have an impact on the
outcome of the tournament, because the outcome of a match between
strategies with large population shares does have a greater weight on
the the average payoff of the respective strategies than when the pop-
ulation shares are small. For example, assume that both the strategies
Dove and Hawk are present in the tournament, and assume further that
the population share of Dove is extremely small (because Dove is typi-
cally a low performer, especially when exploitative strategies like Hawk
are present), then even though Hawk performs extremely well against
Dove (5 points average) this will hardly affect the overall performance
of Hawk. This has just been a rough and sketchy description of the
population dynamical process that is assumed in the evolutionary ex-
tension of the simulation. For the mathematical details and technical
realization of the population dynamical process in the simulation see
Appendix 8.2.

The results of the population dynamics of the repeated Prisoner’s
Dilemma with the parameters and strategy set above are shown in fig-
ure 4.3. While the original tournament was clearly won by Tester, the
population dynamic leads to quite a different result after only 50 gener-
ations. As can be seen on the table below, this time Tit for Tat clearly
leads the way. Also, between the other strategies the ranking has shifted



76

Generations

10 20 30 40

P
op

ul
at

io
n

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Dove Grim Hawk Joss Pavlov
Random Tester TitForTat Tranquillizer

Population dynamics of "BasicSimulation"

Generations

10 20 30 40

P
op

ul
at

io
n

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Dove Grim Hawk Joss Pavlov
Random Tester TitForTat Tranquillizer

Population dynamics of "BasicSimulation"

Tit For Tat

Tester

Grim

Pavlov

Figure 4.3: An evolutionary simulation of the reiterated Prisoner’s Dilemma.
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Ranking Strategy Population share
1. TitForTat 0.8606
2. Tester 0.1342
3. Grim 0.0037
4. Dove 0.0015
5. Random 0.0000
6. Pavlov 0.0000
7. Tranquilizer 0.0000
8. Joss 0.0000
9. Hawk 0.0000

Figure 4.4: Ranking in an evolutionary simulation of the reiterated Prisoner’s Dilemma
after 50 generations

significantly. (Note that in this table the population share is rounded
after 4 digits, so that what appears as zero can still be a small popu-
lation share greater than zero.) The phenomenon is easily explained:
Tester’s success in the tournament depends largely on the presence of
exploitable strategies like Dove. As the population share of Dove is re-
duced over time, so is the success of Tester. Interestingly, the strategy
that fares worst is that of unanimous non-cooperation (Hawk). Another
interesting phenomenon is that Dove catches up over time and ends up
on place 4 (of 9) after 50 generations.

4.1.2 Discussion of the simulation

What conclusions can be drawn from the simulation? The model cer-
tainly demonstrates that a strategy that relies on (reciprocal) altruism
(as Tit for Tat does) can be very successful in situations such as the re-
peated Prisoner’s Dilemma. This, however, is hardly more than a trivial
consequence of the folk theorem mentioned earlier: Tit for Tat is just
one of the many equilibria in the repeated Prisoner’s dilemma and obvi-
ously the dynamical system of the simulation was located somewhere in
the basin of attraction of Tit for Tat. But the simulation also exposes
other phenomena that the mathematical description of the dynamical
system would hardly have drawn our attention to. The poor perfor-
mance of Hawk and the comparative success of Dove after just a couple
of generations suggest the conclusions that on the one hand, even in
face of the danger of being exploited, strict egoism7 is not at all a safe

7By strict egoism I mean the attitude of not bestowing any benefit unto another unless at least an
equal return is guaranteed. Other than rational egoism, which is supposed to be free from envy and
simply aims at the maximization of profit no matter how good or bad the others fare, strict egoism is not
compatible with altruism as defined in chapter 2.2
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strategy to play and that on the other hand in a millieu of reciprocal
altruists (e.g. Tit for Tat) even genuine altruism (e.g. Dove) can strive.

It would be tempting to continue in this fashion by drawing further
generalizing conclusions from the simulation, and in fact this has histor-
ically been the naive approach to the employment of computer simula-
tions in the social sciences as well as biology.8 But this modus operandi
is liable to serious objections. First of all, any general conclusion that is
drawn from the simulation has been demonstrated only under the very
special conditions of the simulation. There is no guarantee that, if we
change the values of the parameters or the setup of the simulation but a
little bit, any of the conclusions will still be valid. Secondly, we cannot
know whether the results that are obtained under the highly artificial
conditions of a computer simulation have any empirical impact. Even
if the simulation resembles more or less certain empirical situations –
as does the repeated Prisoner’s Dilemma that can be taken to resemble
repeated interactions of trade partners or political actors – it is by no
means assured that any results of the simulation can be transferred to
the empirical situation in question. The weak relation of more or less
resemblance may not preserve the results of our simulation study, so to
speak. Addressing the former of these problems may lessen the latter
problem, because an increase in generality is also likely to increase the
scope of possible empirical applications, although it certainly cannot
solve it alone. The crucial question of empirical applicability will be
discussed in chapter 6 in greater detail. It is a question to which so far
no fully satisfactory answer has been given. Still, even computer simula-
tions as simple as this one can have some (if only slight) scientific value.
They can help to demonstrate or to create an awareness of interesting
and unexpected phenomena (such as the possible evolutionary success
of reciprocal altruists among a mixed population of altruists and ego-
ists). And even with extremely simple computer simulations theoretical
possibilities can be proven (Schüßler, 1990, p. 91). This is very helpful
to find out whether a certain concept or a set of hypotheses is sound
or suffers from internal contradictions. If it is possible to design a com-
puter simulation in which a certain phenomenon occurs, this suffices to
prove that the occurrence of the phenomenon is theoretically possible.9

But before we can even dare to draw any further conclusions from our
computer simulation regarding the nature of reciprocal altruism as an
empirical phenomenon, we do at least need to take care that the results

8This is mostly true for Axelrod (1984), but some scientists still proceed in this fashion today like
Skyrms (1996, 2004), which is of course legitimate for purely illustrative purposes, but insufficient if
explanations for empirical phenomena are being sought.

9See also chapter 6.1.1 where different possible purposes of computer simulations are discussed.
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of the computer simulation are not merely a contingent artifact of the
choice of certain parameter values. For this purpose a more refined
computer simulation that addresses the problem of generalizability will
be introduced shortly hereafter (see chapter 4.1.4). Before, it will briefly
be considered how the concept of reciprocal altruism can possibly be
applied to cultural evolution.

4.1.3 Reciprocal altruism in cultural evolution

The concept of reciprocal altruism originally stems from biology. Cast
into a game theoretical simulation model it mixes concepts that were
originally developed in a social science, namely economics (game the-
ory), and in biology (replicator dynamics). When arguing that an ab-
stract theoretical model is transferable to a certain scientific subject
area, one has to indicate what the empirical correspondents to the mod-
eled processes and parameters could possibly be. In this case the in-
volved parameters and processes are primarily the payoff parameters of
the Prisoner’s Dilemma game and the replicator dynamical process. If
applied to a biological setting the replicator dynamics do not pose a
problem as it resembles just the simplemost form of modeling genetic
replication. The payoff parameters need a little more consideration.
What is important with regard to the payoff parameters is that because
the input of the replicator dynamics is derived from the payoff param-
eters they must resemble the fitness-relevant payoff that results from
a certain kind of behavior. If we take grooming as one of the popular
standard examples of reciprocal altruism in the animal kingdom then
the payoff we assign to grooming or being groomed must in some way re-
semble the increase (when being groomed) or decrease (when grooming)
of fitness, i.e. the average number of offspring, that an animal derives
from grooming. As we shall see later (chapter 5.1, page 146) this poses
no small challenge for the respective empirical research in biology.

When trying to transfer the insights such models provide to the so-
cial sciences, a reasonable interpretation must be given to the payoff
parameters and the replication process. The game theoretical payoff
parameters are usually understood in terms of some sort of utility that
individuals derive from the interaction in the game. Regarding utility,
economists distinguish between different utility concepts. The two ba-
sic types are ordinal utility and cardinal utility. Ordinal utility means
that the utility values (i.e. payoff values) are understood as representing
only the order of preference between different alternatives and that the
numeral utility values have no further empirical meaning beyond indi-
cating that order. Therefore, if the payoff parameters are understood
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as expressing merely an ordinal utility the Prisoner’s Dilemma with
the payoff parameters T = 5, R = 3, P = 1, S = 0 represents exactly
the same game as the Prisoner’s Dilemma with the payoff parameters
T = 10, R = 9, P = 2, S = 1. This is different when cardinal utility
is assumed. Here the concrete numerical values matter. In the most
literal interpretation of “cardinal utility”, the utility values express just
that: A numeric value for the utility an alternative has for an individ-
ual.10 The concept of cardinal utility is much harder to justify than the
concept of ordinal utility. When one wants to rely merely on ordinal
utility one has to be careful to use only models which are not sensitive
to a change of the numerical payoff values as long as the order of the
values is the same. Vice versa, if models are used that react sensitively
to a change of the numerical values of the payoff parameters then these
models rest on an implicit commitment to the concept of cardinal util-
ity. The simulation model of reciprocal altruism presented above does
indeed react sensitively to a change in payoff parameters (within the
bounds of the repeated Prisoner’s Dilemma),11 which means that the
model implies cardinal utility. Or, to put it in another way: Conclu-
sions from the model can only be drawn in contexts where the concept
of cardinal utility is justifiable.

How can the replicator dynamics the model uses be understood when
the model is meant to describe a process in cultural evolution? As has
been hinted at earlier (page 38) there exist many diverse replication
and selection processes in cultural evolution. One of the most simple
assumptions that can be made in this context is that norms (represented
by strategies in the reiterated Prisoner’s Dilemma) are replicated and
selected, because people tend to imitate the behavior of successful peo-
ple. If it is assumed that this is a stochastic process where the fraction
of people that change from a bad strategy to a good strategy depends
on the differential success of these strategies then we come very close
to the replicator dynamics used in the model. Thus, it is in principle
possible to offer an interpretation of the population dynamical process
that seems plausible in a social science context. However, just as in the
case of the payoff values, there is a silent commitment that goes along

10More common, however, are somewhat lesser conceptions of cardinal utility like the Neumann-
Morgenstern utility function (which is commonly used when it becomes necessary to include some kind
of probability or risk assessment into the utility valuation). According to this concept of cardinal utility,
two utility functions are not only equivalent when they assign exactly the same numerical values to the
same alternatives, but already when the functions can be transformed into each other by some positive
affine transformation. Still, cardinal utility if understood in this way rests on much stronger assumptions
about the empirical content of the assignment of utility values than the concept of ordinal utility.

11To verify this, it suffices to run the evolutionary simulation with the strategies Dove, Grim, Hawk,

Joss, Random, Tat for Tit, Tit for Tat, Tranquilizer and then change the payoff parameter R from 3 to
3.5 . In the first case (R=3) Tit for Tat wins, in the latter case Dove plays best.
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with the assumption that norms (or types of behavior) “reproduce” in
proportion to the success of their adherents. For, this furthermore re-
quires that people can compare their success among each other. It is
thus silently assumed that intersubjective cardinal utility comparisons
can be made. This may not be so problematic in empirical situations
where the payoff is a monetary payoff. But outside strictly economic
contexts the assumption of intersubjective cardinal utility can become
hard to justify.

Summing it up, it is in principle possible to give the parameters and
processes of population dynamical simulation models of the repeated
Prisoner’s Dilemma an interpretation that gives some credence to the
attempt to transfer theoretical insights from the model to empirical phe-
nomena that are studied in the social sciences. However, this attempt
implies certain strong theoretical commitments which, if taken seriously,
limit the probative force of conclusions drawn from the model. On the
other hand, one might reason that the strong assumption of intersubjec-
tive cardinal utility may be acceptable if we confine ourselves to drawing
conclusions that remain valid over a wide range of different parameter
settings. Such an attempt will be made with the following extension of
the simulation model to a series of simulations.

4.1.4 A more refined model of reciprocal altruism

A Simulation series instead of single simulations

There are two different kinds of conditions that limit the generaliz-
ability of the results of computer simulations such as the one pre-
sented before: 1) conditions that define the simulation setup and 2)
the values of the parameters used. In our simulation the values of
the parameters are the payoff parameters of the Prisoner’s Dilemma
(T = 5,R = 3,P = 1,S = 0) and the number of repetitions of the
Prisoner’s Dilemma (which is 200). The presuppositions that enter into
the simulation setup include that the basic game is a two person Pris-
oner’s Dilemma, that the payoff parameters are symmetric and remain
the same in every round, that all strategies start with the same popu-
lation share in the evolutionary simulation, that the average payoff in
the tournament and not the number of won matches is taken to de-
termine a strategy’s fitness. One of the most important prerequisites
that enter into the simulation setup is the set of strategies that play the
tournament. The set of strategies strongly influences the outcome of
the simulation, because whatever strategy is winning the tournament,
it can only be one of the strategies from the set of strategies that takes
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part in the tournament. And it is well possible that the potentially
most successful strategies will never be found out, because they were
not among the player’s strategies in the first place. Also, the success
of a strategy depends highly on the other strategies that are present:
A strategy that is very successful among one set of opponent strategies
may not fare so well if it has to deal with other opponents. And there
are many more, mostly silent assumptions that enter into the simula-
tion setup. It is in fact impossible to enumerate all these assumptions,
because they also include negative assumptions like the fact that noise
or distortions are absent in the simulation or that no new strategies
ever enter the evolutionary process and so on. One can easily think of
further silent assumptions that underlie the simulation setup.

How then, are we to deal with these contingencies? To reduce the
contingencies introduced by the arbitrary choice of parameter values,
the obvious solution would be to let the simulation run several times,
changing the values of the parameters in a controlled way with every
run. But it soon becomes apparent that there are limits to this ap-
proach. If, for example, we were to choose three different values for
the above mentioned five parameters then already 243 (= 35) simula-
tion runs would be needed. This can still be handled, but with more
different parameter values to test and with every new parameter that is
introduced to increase the generalizability of the simulation, this figure
increases very rapidly and the simulation soon becomes unmanageable.
A remedy is to pick only the extreme values from the parameter ranges
and apart from that to pick random parameter values for a fixed number
of simulation runs (“Monte Carlo simulation”). This allows to keep the
number of necessary simulation runs manageable, while at the same time
catching possible exceptional cases which are primarily to be expected
for extreme parameter values.

It is a more difficult matter to reduce the contingencies that concern
the simulation setup. Of course it is impossible to eliminate all such con-
tingencies. As the simulation is to simulate something, the setup must
necessarily be to some degree contingent. When applying simulations
empirically the setup could be chosen to closely model the empirical
situation (which still leaves the problem of which idealizations and ab-
stractions from the situation are to be considered acceptable). But as
this simulation is not designed with any particular empirical situation in
mind, the choice of the basic simulation setup is solely a matter of con-
venience and plausibility, which unavoidably entails a certain degree of
arbitrariness. As has been hinted at earlier, it is just a matter of imag-
ination to find further conditions that define the simulation setup and
which could – with plausible reasons – be changed to produce another
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simulation. Just as in the case of the choice of parameter values it is
necessary for pragmatic reasons to limit the variability of the simulation
setup.

The setup of the simulation series

But how can a variable setup be integrated into the simulation, anyway?
It would be quite laborious to write a separate program for every new
simulation setup. A much easier way is to parametrize the conditions
of the simulation setup. The setup of the simulation series described in
the following is defined by six parameters, each of which can take one
from two up to four different values. These parameters describe (1) the
strategy set, (2) the correlation between players with the same strategy,
(3) the in game noise which switches an intended move of a player into
its opposite with a certain probability, (4) the evolutionary background
noise that is modeled as a random distortion on the fitness values, (5) the
set of payoff parameters of the Prisoner’s Dilemma and (6) a mutation
rate by which a certain percentage of strategies degenerates into one of
several simpler types. In detail these parameters work in the following
way:

1. Strategy Set (varied in the simulation series between either “Au-
tomata” or “TFTs”) : There are two strategy sets in the race, the
set of all Two State Automata (i.e. a strategy representation by de-
terministic automata that can remember exactly one move) and a
set of variants of Tit for Tat, which are called Parametrized Tit for
Tats.

The set of strategies that can be represented by Two State Au-
tomata is described in detail in Appendix 8.1.3. The motivation
behind using the set of Two State Automata as one of the base sets
of the simulation series is that this strategy set does – in a sense
– represent all strategies of a certain complexity.12 It contains all
deterministic strategies that can remember exactly one move. Of
course there is still some arbitrariness involved, because there is
no reason why one should choose memory constraints as criterion
for complexity limits instead of, say, calculation time. Also, it
should be noted that the set of all Two State Automata contains
some rather “unrealistic” strategies, like for example the strategy
“DHDHD” (see Appendix 8.1.3 for an explanation of the string en-
coding of the automata strategies) that punishes cooperation and

12The idea of using the set of Two State Automata as the base set in the reiterated Prisoner’s Dilemma
goes back to Linster (Binmore, 1998, p. 315).
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rewards defection. In the evolutionary race one would expect such
strategies to die out quickly, but even then they can give other
strategies that exploit such characteristics a head start which un-
der “normal” circumstances would seem “unrealistic”.13

The second strategy set is gained by adding the two parameters
good rate and evil rate to modify the behavior of Tit for Tat. The
good rate is a probability with which the Parametrized Tit for Tat
makes a cooperative move when the ordinary Tit for Tat would
not. And, conversely, the evil rate defines a probability with which
the parametrized strategy defects when normally Tit for Tat would
cooperate. If both the good rate and the evil rate are zero then
the parametrized strategy is the same as the ordinary Tit for Tat.
For this simulation series, strategies with all combinations of good
and evil rates from 0% to 100% in steps of 20% are included in
the base strategy set. This strategy set is highly symmetric and,
differently from the case of the Two State Automata, there is a
random element in most of these strategies.

2. Correlation (values selected from: 0%, 10% and 20%): The corre-
lation factor describes the probability by which players are more
likely to meet opponents with the same strategy than opponents
with a different strategy. A correlation of 0% means that the play-
ers are randomly matched, while with a correlation of 100% players
do exclusively play against players of the same strategy. Typically,
cooperative strategies profit from correlation.14

3. Game Noise (values selected from: 0%, 5%, 10%): In order to model
some such thing as possible misunderstandings between players, the
intended move of a player is randomly turned into its opposite with
the probability of the game noise parameter. If game noise is 5%
then there is a five percent chance that a player who cooperates
in one certain round will really defect in the same round instead.
Typically, when game noise is present, strategies that have some
kind of error detection mechanism (like, for example, Generous Tit
for Tat) will do better than strategies that don’t (like the ordinary
Tit for Tat).

4. Evolutionary Noise (values selected from: 0%, 5%, 10%, 15%): A
random distortion of the given percentage will decrease or increase

13Of course none of the simulations of this type is ever realistic. At best they rely on plausible
assumptions. As will be argued in greater detail in chapter 6 this restriction imposes strong limitations
on the potential scientific value of such simulations.

14This very simple way of modeling correlation is taken from Brian Skyrms (Skyrms, 1996).
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the fitness value of each strategy in the population dynamics. It
should be noted that the impact of the evolutionary background
noise modeled in this way is relative to the population share of the
strategies. A strategy that has almost died out can hardly get back
on track just because of the random shocks caused by evolutionary
background noise.

5. Payoff Parameters (values selected from the (T,R,P,S)-tuples:
(5,3,1,0), (3.5,3,1,0), (5.5,3,1,0), (5,3,2,0)): The payoff parameters
define the Prisoner’s Dilemma. In the simulation series discussed
below they are not selected individually, but as a tuple. All tu-
ples fulfill the two conditions for the reiterated Prisoner’s Dilemma:
T > R > P > S and 2R > T + S.

6. Mutation Rate (values selected from: 0%, 1%, 5%): During each
generation of the population dynamical process the given percent-
age of the population of each strategy mutates to a simpler strategy.
In the case of the Two State Automata, an automaton mutates to
Dove if its string representation contains the character “D” three
or more times (that is if the strategy already has a tendency to be
friendly). Otherwise, it degenerates to Hawk.

In the case of the Parametrized Tit for Tat strategies, degener-
ation is modeled by rounding the “good rate” (gr) and the “evil
rate” (er) to 1 or 0. Consequently there are four different “de-
generated” strategies: Dove (gr=1,er=0), Hawk (gr=0,er=1), Tit
for Tat (gr=0,er=0), Inverted (gr=1,er=1), where Inverted is the
“inversion” of Tit for Tat (it rewards defections and punishes coop-
eration).

The choice of the degenerated strategies is, of course, arbitrary. It
is motivated merely by the assumption that degeneration should
somehow result in a simplified version of the original strategy. One
could certainly think of other degeneration schemes or introduce
more varied and more complex types of mutation. The latter how-
ever would most certainly require the introduction of further pa-
rameters which in turn would drastically increase the number of
possible parameter combinations for the simulation series.

Two simulation series (named “big simulation series” and “Monte
Carlo series” respectively) have been run, the results of which will be
discussed in detail in the following. In the “big simulation series” all
of the above described parameters have been varied systematically. As
there are 864 possible combinations of parameters, it contains 864 sin-
gle simulations. In the “Monte Carlo series” the parameters are not
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varied systematically, but chosen randomly within the upper and lower
bounds for simple scalar parameters (correlation, evolutionary noise,
game noise, mutation rate) or randomly from the different values men-
tioned in the list above (strategy set, payoff parameters). The “Monte
Carlo series” also contains 864 simulations, although in this case the
number represents the arbitrary choice to let the “Monte Carlo series”
be as big as the“big simulation series”. Since the“Monte Carlo series” is
not restricted to a given number of combinations it could of course also
be made arbitrarily long. Comparing the results of the “big simulation
series” with that of “Monte Carlo series” will help us to detect artifacts
or contingencies which are due to the choice of the parameter values.

The variety of evolution - A quick look at some of the results of the simulations
of reciprocal altruism

Before analyzing the results of the simulation series systematically, a
quick look at some of the individual simulations of the series may help
to give an impression of what to expect. What should not come as a
surprise at all is that both the outcome of the evolutionary processes
and the courses that the evolutionary processes take are highly diverse.
A typical result is shown on figure 4.5 (simulation no. 580 of the “big
series”), where the system converges after only about 50 generations to
a stable mixed equilibrium with Tit for Tat as the winning strategy. In
the “slip stream” of Tit for Tat several even more cooperative strategies
(good rate > 0% and evil rate = 0%) survive, including even Dove,
which still occupies a noticeable share of the population. In this case the
parameters are very favorable to cooperation, the payoff for successful
cheating T = 3.5 is only slightly higher than the reward for mutual
cooperation R = 3.0. Furthermore a correlation of 10% encourages
cooperation for this particular strategy set.15

That the success of cooperative strategies in repeated games is by no
means a necessity, is demonstrated by the example in figure 4.6 (simu-
lation no. 106 of the “big series”). Here, the completely non cooperative
strategy Hawk finally dominates the whole population. In this case the
payoff parameter P was set to 2 instead of 1 and there is a relatively
high game noise of 10%. That Hawk turns out to be a pure equilibrium
strategy is not just due to the fact that it is an evolutionary stable strat-
egy (that is, a strategy that cannot be invaded by any mutant). For,

15That it is not generally true that correlation strengthens cooperation is demonstrated by the strategy
Signaling Cheater, a strategy that plays a predefined sequence of cooperative and non-cooperative moves
in the beginning as a signal and only cooperates in the following rounds if the opponent has played the
same sequence of signaling moves. Signaling Cheater, although generally a non cooperative strategy,
profits from correlation just like any cooperative strategy.



87

Generations

10 20 30 40

P
op

ul
at

io
n

0.
1

0.
2

0.
3

0.
4

P_TFT 0.00 0.00 (TitForTat) P_TFT 0.00 0.20 P_TFT 0.00 0.40 P_TFT 0.00 0.60
P_TFT 0.00 0.80 P_TFT 0.00 1.00 (Hawk) P_TFT 0.20 0.00 P_TFT 0.20 0.20
P_TFT 0.20 0.40 P_TFT 0.20 0.60 P_TFT 0.20 0.80 P_TFT 0.20 1.00
P_TFT 0.40 0.00 P_TFT 0.40 0.20 P_TFT 0.40 0.40 P_TFT 0.40 0.60
P_TFT 0.40 0.80 P_TFT 0.40 1.00 P_TFT 0.60 0.00 P_TFT 0.60 0.20
P_TFT 0.60 0.40 P_TFT 0.60 0.60 P_TFT 0.60 0.80 P_TFT 0.60 1.00
P_TFT 0.80 0.00 P_TFT 0.80 0.20 P_TFT 0.80 0.40 P_TFT 0.80 0.60
P_TFT 0.80 0.80 P_TFT 0.80 1.00 P_TFT 1.00 0.00 (Dove) P_TFT 1.00 0.20
P_TFT 1.00 0.40 P_TFT 1.00 0.60 P_TFT 1.00 0.80 P_TFT 1.00 1.00 (Inverted)

Population dynamics of "TFTs_C0.100_G0.000_N0.000_P3.5_3.0_1.0_0.0_M1_0_0_0_D0.000"

Generations

10 20 30 40

P
op

ul
at

io
n

0.
1

0.
2

0.
3

0.
4

P_TFT 0.00 0.00 (TitForTat) P_TFT 0.00 0.20 P_TFT 0.00 0.40 P_TFT 0.00 0.60
P_TFT 0.00 0.80 P_TFT 0.00 1.00 (Hawk) P_TFT 0.20 0.00 P_TFT 0.20 0.20
P_TFT 0.20 0.40 P_TFT 0.20 0.60 P_TFT 0.20 0.80 P_TFT 0.20 1.00
P_TFT 0.40 0.00 P_TFT 0.40 0.20 P_TFT 0.40 0.40 P_TFT 0.40 0.60
P_TFT 0.40 0.80 P_TFT 0.40 1.00 P_TFT 0.60 0.00 P_TFT 0.60 0.20
P_TFT 0.60 0.40 P_TFT 0.60 0.60 P_TFT 0.60 0.80 P_TFT 0.60 1.00
P_TFT 0.80 0.00 P_TFT 0.80 0.20 P_TFT 0.80 0.40 P_TFT 0.80 0.60
P_TFT 0.80 0.80 P_TFT 0.80 1.00 P_TFT 1.00 0.00 (Dove) P_TFT 1.00 0.20
P_TFT 1.00 0.40 P_TFT 1.00 0.60 P_TFT 1.00 0.80 P_TFT 1.00 1.00 (Inverted)

Population dynamics of "TFTs_C0.100_G0.000_N0.000_P3.5_3.0_1.0_0.0_M1_0_0_0_D0.000"

P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.20 0.00

P_TFT 0.40 0.00

P_TFT 0.60 0.00

P_TFT 0.80 0.00

P_TFT 1.00 0.00 (Dove)

Figure 4.5: A stable mixed equilibrium with Tit for Tat as the winning strategy and even more cooperative strategies surviving in the
“slip stream” of Tit for Tat. The simulation (no. 580 of the “big series”) uses the payoff parameters T=3.5, R= 3, P=1 and S=0 and a
correlation value of 10%.
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Hawk sets out with the same small population share at the beginning
as all the other strategies. Hawk wins simply because it is strong under
the given conditions.

Both examples show what happens when the system converges, ei-
ther to a mixed equilibrium (figure 4.5) or to a pure strategy equilibrium
(figure 4.6). But the simulations of the series do not only differ with
respect to their possible results. Also, the evolutionary process itself
can differ in various respects. It is not a necessity that the evolutionary
system converges at all. Figure 4.7 (simulation no. 55 of the “big se-
ries”) depicts a situation where the evolutionary system evolves through
expanding cycles. Eventually, it may arrive at a point where one of the
cycling strategies drops out and cannot recover any more.16 As can be
seen, the pattern of these cycles can become quite complex. There are
primarily six strategies involved in the cycles: The automata: DDHDD
(Tweedledee), DDHDH (Tit for Tat), DHHDD, DHHHD, HHHDD, HH-
HHD. The parameters used were a payoff parameter T of 5.5 and an in
game noise of 5%, all other parameters were left at the standard values.
Since with a game noise unequal to zero there is a random element in-
volved in the simulation, the same parameters may produce a different
outcome if the simulation is run again. In this case several passes of the
simulation show that diminishing cycles can occur as well, in which case
the system finally converges on a mixed equilibrium. This in turn sug-
gests that in the surrounding of these parameter values the simulation
becomes unstable. (See chapter 6.1.2 for a discussion of the implications
of limited model stability.)

The evolutionary process can develop even more intricate patterns.
Figure 4.8 is taken from the “Monte Carlo series” (simulation no. 634).
Here the game noise is 2.56%, there is a correlation of 7.93% and a
steady flow of degenerating mutations in the above described manner of
1.19% and finally there is an evolutionary noise of 10%. As can be seen
on the graph, the evolutionary process interchanges between four clearly
marked phases of different and mostly cyclical processes. In phase one
the strategies HHHHH (Hawk) (dark blue line), DDHDH (Tit for Tat)
(medium blue line) and DDDDD (Dove) (pink line) follow each other in
close cycles with an amplitude of roughly 0.6 (population share) and a
length of roughly 30 generations. (This more detailed information can
be read off the simulation log in addition to the graph.) Phase one is
followed by phase two, during which the population is almost completely
held by the five strategies DDHDH (Tit for Tat), DHHDH, HHHDH,

16As described in Appendix 8.2 the theoretical model underlying the simulation does not allow the ex-
tinction of a population. At worst a population becomes infinitely small. But in the computer simulation
the population share of a strategy can still become zero due to the limits of arithmetic precision.
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Figure 4.6: Example of a pure strategy equilibrium. In this case the non-cooperative strategy Hawk takes over the whole population.
In the simulation (no. 106 of the “big series”) a strong game noise of 10% was present. The payoff parameters were set to T=5, R=3,
P=2, S=0.
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Population dynamics of "Automata_C0.000_G0.050_N0.000_P5.5_3.0_1.0_0.0_M1_0_0_0_D0.000"

Figure 4.7: Example of strategies dominating the population in interchanging cycles. The result occured in simulation no. 55 of the
“big series” under a game noise of 5% and the payoff parameters T=5.5, R=3, P=1, S=0.
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DDDDD (Dove) and HHHHH (Hawk). Although it cannot clearly be
discerned, the strategies do not seem to cycle in this phase. The rel-
ative changes in frequency are then mainly due to the 10% artificial
evolutionary background noise in this simulation. Sometimes, though
not always, phase two is followed by the somewhat irregular intermedi-
ate phase three, where HHHHH (Hawk) gets stronger, the amplitudes
rise and strategy DDHDD (Tweedledee) comes into play. When phase
three does not occur, phase two is followed immediately by phase four.
Otherwise, phase three is followed by phase four, which consists of a
short cycle where the population is dominated by the strategy DDHHD
(Tweedledum) directly followed by a longer cycle of HHHHH (Hawk)
with “maximum”amplitude. In contrast to the other phases which con-
sist of an irregular number of cycles, phase four always consists of these
two cycles of DDHHD (Tweedledum) and HHHHH (Hawk) after which
it is “resolved” into phase one. This suggests the conclusion that the
transition from phase four to phase one occurs inevitably while the
other transitions are due to random shocks caused by the evolutionary
background noise.

Altogether these examples give an idea of the great variety of evolu-
tionary developments that are possible starting from the same setting
within a not too wide range of initial conditions. This should be kept in
mind when we now turn to the analysis of the systematic results. For,
the systematic analysis described in the following paragraph relies heav-
ily on aggregated data and is thus apt to level the qualitative differences
between the evolutionary processes of the individual simulations.

A more systematic analysis of the simulation results

With a figure of 864 simulations in the “big series” it would be quite
impractical to analyze each simulation individually. It is therefore un-
avoidable to analyze the simulation results in some automated way.
For this purpose the simulation results are aggregated according to the
following scheme: All results are recorded separately for both strategy
sets (the set of Two State Automata and the set of Parametrized TFTs).
Both the tournament results and the results of the evolutionary simu-
lation of each strategy are recorded. From these a tournament ranking
and an evolutionary ranking is computed for each strategy set. The
tournament ranking is in lexical order, which means that if a certain
strategy has won the tournament more often than some other strategy
during the series then it gets a higher tournament ranking, no matter
how often it gained a second place. The choice of the lexical ordering
is arbitrary. Other ways of ordering the tournament results would also
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Population dynamics of "Automata_C0.079_G0.026_N0.100_P5.0_3.0_1.0_0.0_M1_0_0_0_D0.012"

Figure 4.8: Example of strategies dominating the population in interchanging cycles. The simulation was taken from the “Monte Carlo
series” (simulation Nr. 634). It uses the standard payoff parameters of T=5, R=3, P=1, S=0 with a correlation factor of 0.079301, a
game noise of 0.025585, 0.09998, an evolutionary noise of 0.99980 and degenerative mutations that occur with a proabability of 0.01191.
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have been possible. To determine the evolutionary ranking of a strat-
egy its average final population over the whole simulation series is used.
In cases where the simulation does not reach an equilibrium state the
simulation is stopped after 25,600 generations and the last population
distribution in the 25,600th generation is taken as the final population.
This procedure is somewhat arbitrary, especially in cases of a cyclical
evolutionary processes, but detecting and treating these special cases
separately would not have been feasible due to the complexity of the
required algorithms and the additional computing time. Since breaking
off the simulation after a certain generation and taking the population
share of this generation as reference is like taking a random sample,
the error incurred should diminish if a similar situation (i.e. the same
strategies entering into a cyclical process) appears more often in the
series. And if it does not, the error does affect the aggregated results
only slightly.

Because the primary interest of making this simulation lies in the
two questions 1) whether altruism is apt to evolve under the conditions
of the simulation and 2) what kind of altruism (reciprocal altruism or
genuine altruism) can evolve, the strategies are visualized in the graph-
ical representation of the simulation results with different colors which
indicate their “degree” of altruism. For the sake of simplicity only three
different colors are used: Red, green and blue. The color red is used for
non altruistic or exploitative strategies. Green is the color for altruists
that are more than merely reciprocal altruists. And the color blue is
used for all other strategies, reciprocal altruists as well as other strate-
gies which cannot easily be classified.17 In the case of the Parametrized
TFT strategies, the green color (for genuine altruism) is assigned to all
strategies for which the “good rate” exceeds the “evil rate” by at least
0.5, which means that the forgivingness of the strategy is 50% higher
than its tendency to unnecessary defection. The color red is assigned to
those strategies that have a “good rate” that is smaller than their “evil
rate”. The color blue is assigned to all remaining strategies.

In the case of the Two State Automata a strategy is considered gen-
uinely altruistic and thus marked with the color green if the five char-
acter string encoding of the automaton (see appendix 8.1.3 for an ex-
planation) contains at least four Ds (the character “D” (Dove) being
the marker for cooperative moves). If the automaton contains one or
zero Ds it always gets the color red. When there are three Ds in the

17Experimenting with different color schemes for visualization, I found this to be the most useful one.
One could also mark the “absurd” strategies with a separate color in order to distinguish them from the
reciprocal altruists, but this is not really necessary since these strategies do not play a dominant role
anyway.
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program string of the automaton, it is assigned the color blue if the
second and the fourth character are Ds, which means that the strategy
answers cooperation with cooperation. If this is not the case, three out
of five Ds do not suffice to classify the strategy as “indifferent” and it
therefore gets the color red for being non cooperative. If there are ex-
actly two Ds in the program string then the strategy gets the color blue
only if it is the strategy DDHHH (Grim) and red otherwise. The color
scheme may appear unnecessarily complicated, but it roughly matches
(my) intuition about which strategy can be considered (genuinely) al-
truistic and which cannot. At any rate the color scheme is only meant
to simplify the reading of the charts. It helps immensely if the results
of the different simulation series can be grasped at one glance, but no
conclusions are based on the color of the charts alone.

The overall picture Figure 4.9 shows a graphical representation of
the aggregated results of the “big simulation series” for the set of
Parametrized TFTs. The column on the left hand side shows the ag-
gregated tournament rankings over the whole simulation series. The
strategies appear very nicely ordered with the non cooperative strate-
gies on top, Hawk being the most frequent winner. (As a look at the
detailed charts 4.9 confirms Hawk has in fact won every tournament of
the series!) This should not come as a surprise, because, as has been
mentioned earlier, the strategy set of Parametrized Tit for Tat strate-
gies is highly symmetric. The middle column shows the evolutionary
ranking. The picture here is much more diversified with strategies of
all three types spread over the whole ranking. Interestingly, even some
genuinely altruistic strategies like Dove were able to gain a good rank-
ing. The overall highest final population share was attained by Tit for
Tat. Just how much of the average final population share Tit for Tat
was able to gain can be seen on the third column, where the strategies
are drawn in boxes of sizes proportional to their population share. Over
the whole series Tit for Tat ended up with an average population share
of 39%, followed by Hawk with 28%. The strategy Dove takes the fourth
place with an average population share of 8%. This is a surprising re-
sult. In order to explain it we need to examine some of the individual
simulations, which will be done later. But before, we will continue with
the analysis of the aggregated results and cast a look at the results of
the simulation series for the set of Two State Automata.

Since the set of Two State Automata is a strategy set with quite dif-
ferent characteristics from the set of Parametrized TFTs different results
should be expected. And indeed the tournament ranking is not as neatly
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Results for strategy set:  "TFTs" 

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.20 0.60P_TFT 0.20 0.60
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P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)
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Figure 4.9: The aggregated results of the 432 simulations from the “big simulation series” using the set of Parametrized TFT strategies.
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ordered any more as is the tournament chart of the Parametrized TFTs
(see figure 4.10). While the genuine altruists stay at the bottom just
as well,18 the reciprocal or indifferent strategies are spread out over the
whole ranking. The evolutionary ranking shows a greater similarity to
that of the Parametrized TFTs. Both the reciprocal and the the genuine
altruists have moved up in the ranking as compared to the tournament
results. As on the previous figure (figure 4.9), genuine altruists are still
able to obtain a respectable average population share in the evolution-
ary simulations. The strongest of these is the strategy DDDDD (Dove)
that placed 5th with an average population share of 9%. The winner of
the evolutionary simulation is the strategy Hawk with an average popu-
lation share of 35%. So, even in this very different milieu Hawk appears
to be an extremely strong contender.

Having described the results of both strategy sets individually, what
should concern us now is the features they have in common, because
these are potentially features that can be generalized and at the same
time it is these aspects that require explanation. The following charac-
teristics are remarkable and raise specific questions about the nature of
the evolution of altruism:

1. In both cases altruists gain from the evolutionary setting as com-
pared to the tournament setting. Is this a general trend? How can
it be explained?

2. Within both strategy sets the strategy Hawk is extraordinarily
strong in the evolutionary simulation. Given the assumption that
Hawk can fairly easily be invaded19 by reciprocal strategies, what
are the reasons for the success of Hawk?

3. The most surprising aspect is the considerable success of the strat-
egy Dove. It is sometimes assumed that the only chance to account
for “true” or “genuine” altruism in an evolutionary framework is by
relying on group selection (see chapter 4.3). But group selectionist
mechanisms were not present in this simulation. Some of the sim-
ulations of the series had mutations included, where Dove would
be one of the targets of mutation. But the mutation rates were

18The strategy DDHDD (Tweedledee) is an exception here that cannot be given too much weight,
because it is the least altruistic from the strategies classified as genuine altruists. It is best understood
as a kind of Lesser Tit for Tat that never punishes two times in sequence.

19A small group of Tit for Tat players can easily invade a population of Hawks, because Tit for Tat

plays much better against itself than Hawk and can at the same time not be exploited by Hawk (i.e. it
plays almost as well against Hawk as Hawk plays against itself). On the other hand, because Hawk plays
badly against itself, even a big group of Hawks will hardly be able to spread in a population of Tit for

Tat players.
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Results for strategy set:  "Automata" 
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Figure 4.10: The aggregated results of the 432 simulations from the “big simulation series” using the set of Two State Automata (see
appendix 8.1.3) strategies.



98

typically low (1% and 5%) and genuinely altruistic strategies still
retained some measure of evolutionary success in those simulations
of the series where no mutations occurred. If it was not for this
reason, how could Dove then survive?

The first question is fairly easy to answer. Exploitive strategies re-
quire the presence of other strategies that can be exploited to be really
successful. But then the exploited strategies quickly die out in the evo-
lutionary process so that the exploiters are left without the comparative
advantage they have over the reciprocal strategies in the tournament.
(The question remains, however, how this explanation can be reconciled
with the fact that the (exploitable) genuine altruists do not always die
out as has been shown by the simulation charts in figure 4.9 and 4.10).
To answer the latter two of these questions a more detailed analysis of
the simulation results is required, which will be given in the following.

Reasons for the success of the strategy Hawk In order to explain the suc-
cess of the strategy Hawk we first need to find out what are the deter-
minants of this success. One method to find this out is to keep each
parameter fixed at one of its possible values at a time and to vary only
the other parameters. This yields the aggregated results for the subset
of the simulation series corresponding to this particular parameter value.
If the phenomenon in question (in this case: the success of Hawk) de-
pends on a single parameter only then this should become apparent on
the charts for the subseries of this parameter.20 And indeed the charts
testify that there exists a strong correlation between the existence of
game noise and the success of strategy Hawk. Figures 4.11 and 4.12
depict the situation when the game noise parameter is set to 0%.

The enormous difference that the absence of game noise makes be-
comes immediately apparent from the colored charts. In the case of the
Two State Automata it is the strategy DDHHH (Grim) that leads the
race this time with 38% of the average final population. It is followed by
the strategy DDDDD (Dove) which occupies 23%, a very much larger
share than in the overall statistics. The third and fourth rank are taken
by DDHDH (Tit for Tat) (16%) and HHHHH (Hawk). The latter still
takes a considerable average final population share of 7.5%. The picture
is even clearer for the strategy set of parametrized TFTs: Here Tit for
Tat takes over almost the whole average final population (82%), leaving
only little space for other strategies such as a slightly more friendly ver-
sion of Tit for Tat (“good rate”= 20%) and Dove, both of which take an

20The comprehensive results for each single parameter are listed in appendix 8.3. Here only those
results are picked out for discussion that help to answer the questions raised above (page 96).
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Results for strategy set:  "Automata" 
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Figure 4.11: Absence of game noise strongly increases the success of reciprocal and altruistic strategies. (See figure 4.10 in comparison.)
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average final population share of roughly 7%. The suspicion that it is
the game noise parameter which is responsible for the success of Hawk
in the overall picture, is strengthened even more when we look at the
charts for the subseries with game noise = 5% and game noise = 10%.

Table 4.13 shows a comparison of the average final populations of
the best strategies with and without game noise. With increasing game
noise the success of the most uncooperative strategy Hawk increases
sharply in both cases, from 7.4% (no game noise) over 36.4% (game
noise = 0.05) up to 60% (game noise = 0.1) for the automata strategies
and from 0% (no game noise) over 27.4% (game noise = 0.05) up to
58.1% (game noise = 0.1) in the case of the Parameterized Tit for Tat
strategies. Conversely, the success of reciprocal strategies decreases with
rising game noise. In the case of the two state automata the most
dominant reciprocal strategy is Grim. Grim’s average final population
share amounts to 38.2% when game noise is absent, but is reduced from
10.4% to 3.2% as game noise rises from 5% to 10%. Within the strategy
set of Parameterized TFTs the strategy Tit for Tat features as the most
dominant of the reciprocal strategies. Its performance falls sharply from
82.4% to 19% when the game noise is set to 0.05 and again a little softer
to 14.2% when the game noise is increased to 0.1. Interestingly the
strategy PTFT 0.2, 0 (which is very close to Tit for Tat in so far as it
usually plays Tit for Tat, but forgoes punishment with a probability of
20%) shows the opposite tendency as its average final population share
slightly increases from 6.8% (no game noise) over 8.6% (game noise =
0.05) to 11.5% (game noise = 0.1).

It seems as if some of the population share that Tit for Tat occupies
is shifted towards a somewhat lesser variant of itself as the game noise
increases. This would not be suprising, because Tit for Tat is char-
acterized by a specific weakness in face of game noise: When playing
against itself and being disturbed by noise it may enter into cycles of in-
terchanging cooperation-defection, defection-cooperation moves or – in
rare cases, when two disturbances follow each other and do not cancel
each other out – even into cycles of continued mutual defection. These
cycles can only be broken if another disturbance happens that cancels
the effect of the previous disturbance. An excerpt from the match log of
a noisy tit for tat vs. Tit for Tat match demonstrates this phenomenon:

TitForTat : TitForTat 2.349 : 2.309

1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0
0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1
1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0



101

Results for strategy set:  "Automata" 

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: HHHHDAM: HHHHD

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: DHHHHAM: DHHHH

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: HHDHD (INVERTED)AM: HHDHD (INVERTED)

AM: DHHHDAM: DHHHD

AM: DDHDH (TIT FOR TATAM: DDHDH (TIT FOR TAT

AM: DHHDHAM: DHHDH

AM: HDDHD (TWEETYPIE)AM: HDDHD (TWEETYPIE)

AM: DHDHHAM: DHDHH

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

AM: HHHDHAM: HHHDH

AM: HHHDDAM: HHHDD

AM: HDHDD (SIMPLETON)AM: HDHDD (SIMPLETON)

AM: DHHDDAM: DHHDD

AM: HDHDH (TAT FOR TITAM: HDHDH (TAT FOR TIT

AM: HHDDDAM: HHDDD

AM: DHDHDAM: DHDHD

AM: HHDDHAM: HHDDH

AM: HDDDDAM: HDDDD

AM: DHDDHAM: DHDDH

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: DHDDDAM: DHDDD

AM: HDDDHAM: HDDDH

Tournament Ranking

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: DDHDH (TIT FOR TATAM: DDHDH (TIT FOR TAT

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

AM: HDDHD (TWEETYPIE)AM: HDDHD (TWEETYPIE)

AM: DHHHHAM: DHHHH

AM: DHHDHAM: DHHDH

AM: HHHDHAM: HHHDH

AM: HDHDH (TAT FOR TITAM: HDHDH (TAT FOR TIT

AM: DHDHHAM: DHDHH

AM: HDHDD (SIMPLETON)AM: HDHDD (SIMPLETON)

AM: HHHHDAM: HHHHD

AM: DHHHDAM: DHHHD

AM: DHHDDAM: DHHDD

AM: HHHDDAM: HHHDD

AM: HHDHD (INVERTED)AM: HHDHD (INVERTED)

AM: DHDHDAM: DHDHD

AM: HDDDDAM: HDDDD

AM: HHDDDAM: HHDDD

AM: DHDDDAM: DHDDD

AM: HDDDHAM: HDDDH

AM: HHDDHAM: HHDDH

AM: DHDDHAM: DHDDH

Evolutionary Ranking

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: DDHDH (TIT FOR TATAM: DDHDH (TIT FOR TAT

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

Average Final Population

Figure 4.12: The absence of game noise has the same positive effect on the evolution of cooperation for the strategy set consisting of
the parametrized TFT strategies. (See figure 4.9 in comparison.)
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Strategy Average Final Population Share
overall no game noise 5% noise 10% noise

Automata
Hawk 34.6% 7.4% 36.4% 60.0%
Grim 17.3% 38.2% 10.4% 3.2%
TitForTat 10.2% 15.8% 7.8% 7.1%
Pavlov 10.0% 5.0% 16.5% 8.5%
Dove 9.3% 22.6% 3.7% 1.6%
... ... ... ... ...

Parametrized TitForTats
TitForTat 38.5% 82.4% 19.0% 14.2%
PTFT 0.2,0 9.0% 6.8% 8.6% 11.5%
Dove 8.3% 6.5% 11.8% 6.6%
Hawk 28.5% 0.0% 27.4% 58.1%
... ... ... ... ...

Figure 4.13: The influence of game noise on selected altruistic and non altruistic strategies.

...

In the fifth round of the match a disturbance pushes the players
into a cooperation-defection, defection-cooperation cycle. In the 13th
round another disturbance pushes them into mutual defection but is
luckily canceled by a new disturbance in the following round. The same
happens again in the 16th round, only that this time mutual defections
last for three rounds. The same pattern continues throughout the match
with the players eventually being pushed back to cooperation from non
cooperation or to non cooperation from cooperation. The overall result
of 2.349 : 2.309 is far below the cooperative equilibrium (without noise)
of 3:3. In contrast, a lesser variant of Tit for Tat that forgoes punishment
once in a while can get the cooperative exchange back on track all on
its own. For comparison: Generous Tit for Tat gained a score of 2.632
: 2.620 under the same conditions.

But even if we consider the combined performance of Tit for Tat and
PTFT 0.2,0 the pattern that the reciprocal strategies decrease with in-
creasing game noise remains the same. Given that non-altruistic strate-
gies profit from game noise and that reciprocal strategies lose, one should
expect that genuine altruists are on the losing side as well. This is true
for the automata strategy set, where the average final population share
of Dove falls from 22.6% if no game noise is present to 3.7% and fi-
nally 1.6%. Interestingly, the picture is not so clear cut for the set of
Parametrized TFTs. Here Dove gains 6.5% when game noise is absent.
Strangely, the share of Dove rises to 11.8% when game noise is 0.05 and



103

it goes back to 6.6% for a game noise of 0.1. This phenomenon looks
like an anomaly and it is not quite clear what the reason for it is.

Now that we have seen that the extraordinary success of Hawk is
mostly due to the effect of game noise and that we have described in
some detail just what this effect consists in, the question remains still
open, why it is the strategy Hawk that profits from game noise and not
Dove or some lesser Tit for Tat variant like PTFT 0.2,0 or DDHDD
(Tweedledee)? A possible answer can be found by looking at how Hawk
plays against the strategy Random. Most strategies have some trouble
playing against Random, but Hawk does extremely well. On average
it gains a score of (T + P )/2 (which is 3.0 for the standard parame-
ters) against Random, because random cooperates roughly in 50% of
all moves, which gives Hawk a payoff of T (= 5.0), while for the other
50% of the moves it still receives the punishment P (= 1.0). Compare
this to the performance of Tit for Tat against Random: Since Random
defects for an average 50% of all moves, half of Tit for Tat’s moves are
punishments (defections) and the other half are rewards (cooperative
moves). Now, since Random neither cares what moves the other player
makes nor what the semantics of the other player’s moves are, it an-
swers – on average or in the long run – half of the punishments by Tit
for Tat with defection and half of them with cooperation. The same
holds for the rewards of the Tit for Tat player. Consequently, Tit for
Tat gets an average score of (T +P +R+S)/4 (= 2.25 for the standard
payoff parameters), which is considerably less than what Hawk gains.
That Dove fares even worse hardly needs to be explained. Taking the
reasoning one step further it can even be shown that Hawk is in fact the
single best reply to Random. For, since Random does not at all take into
account the other player’s moves and therefore Random’s future moves
cannot be influenced by them, the reiterated Prisoner’s Dilemma dis-
solves into a number of one shot Prisoner’s Dilemma’s. But for the one
shot Prisoner’s Dilemma there exists a single best reply no matter what
the other player does and that is non cooperation. Therefore, against
Random it is best to play Hawk and the more randomness there is in
the game, the more it pays to play Hawk. This is the likely explanation
for the growing success of Hawk with the increase of game noise.

The evolution of genuine altruism in the slip stream of reciprocal altruism

The second question concerns the considerable success of genuinely al-
truistic strategies like Dove, DDHDD (Tweedledee) and PTFT 0.8,0
(which is 80% Dove and 20% Tit for Tat). The following table lists
the average final population of these strategies over the whole simula-
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Population dynamics of "TFTs_C0.000_G0.000_N0.000_P3.5_3.0_1.0_0.0_M1_0_0_0_D0.000"
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Population dynamics of "TFTs_C0.000_G0.000_N0.000_P3.5_3.0_1.0_0.0_M1_0_0_0_D0.000"
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Figure 4.14: In the slip stream of reciprocal strategies like “Tit for Tat” more genuinely altruistic strategies thrive. (Simulation no. 436
from the “big series” with payoff paramters T=3.5, R=3, P=1, S=0.)
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tion series and over the subseries without degenerative mutations (as
described on page 85):

Strategy whole series no mutations

DDDDD (Dove) 9.3% 1.7%
DDHDD (Tweedledee) 2.9% 6.8%

PTFT 1,0 (Dove) 8.3% 1.5%
PTFT 0.8,0 2.2% 6.5%

Obviously, the success of Dove is to a high degree due to the mu-
tations by which some of the strategies are continuously converted to
Dove. But this factor does not suffice to account for the success of gen-
uinely altruistic strategies. For, even without mutations Dove still ends
up with a noticeable average final population share of 1.7% and 1.5%
respectively. Also, Dove may be in a certain sense the most altruistic of
all strategies but it is not the only genuinely altruistic strategy. For the
sake of classification, all strategies that are considerably more friendly
than Tit for Tat have been classified as genuinely altruistic. By this
standard DDHDD (Tweedledee) and PTFT 0.8,0 are both genuinely
altruistic strategies, because DDHDD (Tweedledee) punishes at most
every second time and PTFT 0.8, 0 answers only 20% of the opponent’s
defections with punishment. Both these strategies, which are not gen-
erated by the sort of mutations that are included in some simulations of
the series, obtain a non-marginal average final population share. How
can the success of these strategies be explained?

One proximate explanation is that genuine altruism can develop in
the “slip stream” of reciprocal altruism. The reciprocal strategies clear
the way and when the exploiting strategies are practically extinct then
genuine altruists thrive in the slip stream of the reciprocal altruists.
This situation can well be observed in figure 4.14. In the beginning
Hawk emerges as the dominant strategy followed by other only slightly
more cooperative strategies like PTFT 0,0.8. It takes almost 30 genera-
tions until Hawk and its spouse are subdued by the reciprocal strategies.
The equilibrium that emerges shows Tit for Tat at the top, followed by
a sequence of continuously more altruistic strategies with PTFT 0.2,0
as the second, then PTFT 0.4,0, PTFT 0.6,0, PTFT 0.8, 0 and Dove on
the 6th rank. The parameters of this simulation are admittedly quite
favorable to cooperation with a “temptation” payoff T=3.5 (instead of
T=5). Still, the tournament winner is Hawk while Dove takes the last
place. It is only through the evolutionary process that reciprocal strate-
gies win over the population and that genuine altruists survive in the
slipstream of the reciprocal altruists.



10
6

Generations

100 200 300

P
op

ul
at

io
n

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

P_TFT 0.00 0.00 (TitForTat) P_TFT 0.00 0.20 P_TFT 0.00 0.40 P_TFT 0.00 0.60
P_TFT 0.00 0.80 P_TFT 0.00 1.00 (Hawk) P_TFT 0.20 0.00 P_TFT 0.20 0.20
P_TFT 0.20 0.40 P_TFT 0.20 0.60 P_TFT 0.20 0.80 P_TFT 0.20 1.00
P_TFT 0.40 0.00 P_TFT 0.40 0.20 P_TFT 0.40 0.40 P_TFT 0.40 0.60
P_TFT 0.40 0.80 P_TFT 0.40 1.00 P_TFT 0.60 0.00 P_TFT 0.60 0.20
P_TFT 0.60 0.40 P_TFT 0.60 0.60 P_TFT 0.60 0.80 P_TFT 0.60 1.00
P_TFT 0.80 0.00 P_TFT 0.80 0.20 P_TFT 0.80 0.40 P_TFT 0.80 0.60
P_TFT 0.80 0.80 P_TFT 0.80 1.00 P_TFT 1.00 0.00 (Dove) P_TFT 1.00 0.20
P_TFT 1.00 0.40 P_TFT 1.00 0.60 P_TFT 1.00 0.80 P_TFT 1.00 1.00 (Inverted)

Population dynamics of "TFTs_C0.100_G0.050_N0.000_P3.5_3.0_1.0_0.0_M1_0_0_0_D0.000"

Generations

100 200 300

P
op

ul
at

io
n

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

P_TFT 0.00 0.00 (TitForTat) P_TFT 0.00 0.20 P_TFT 0.00 0.40 P_TFT 0.00 0.60
P_TFT 0.00 0.80 P_TFT 0.00 1.00 (Hawk) P_TFT 0.20 0.00 P_TFT 0.20 0.20
P_TFT 0.20 0.40 P_TFT 0.20 0.60 P_TFT 0.20 0.80 P_TFT 0.20 1.00
P_TFT 0.40 0.00 P_TFT 0.40 0.20 P_TFT 0.40 0.40 P_TFT 0.40 0.60
P_TFT 0.40 0.80 P_TFT 0.40 1.00 P_TFT 0.60 0.00 P_TFT 0.60 0.20
P_TFT 0.60 0.40 P_TFT 0.60 0.60 P_TFT 0.60 0.80 P_TFT 0.60 1.00
P_TFT 0.80 0.00 P_TFT 0.80 0.20 P_TFT 0.80 0.40 P_TFT 0.80 0.60
P_TFT 0.80 0.80 P_TFT 0.80 1.00 P_TFT 1.00 0.00 (Dove) P_TFT 1.00 0.20
P_TFT 1.00 0.40 P_TFT 1.00 0.60 P_TFT 1.00 0.80 P_TFT 1.00 1.00 (Inverted)
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Figure 4.15: Another example of how genuine altruism may evolve in the “slip stream” of reciprocal altruism: After the reciprocal
strategies have cleared the way the genuine altruists take over the population. (Simulation no. 628 from the “big series” with a
correlation factor of 10%, a game noise of 5% and payoff parameters T=3.5, R=3, P=1, S=0.)
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The metaphor of “slip stream altruism” seems even more appropriate
to describe the results of the simulation depicted in figure 4.15. The
simulation depicted in this figure deviates from the standard parameters
by a correlation of 10%, a game noise of 5% and – like the simulation
in figure 4.14 – a payoff for one sided defection of T = 3.5. Both
the correlation and the relatively low reward for cheating, encourage
cooperation, while a certain game noise may strengthen a generous type
of reciprocity over strict reciprocity. The result is that the genuinely
altruistic strategies become even more successful than the reciprocal
strategies. After 400 generations, PTFT 0.8,0 leads the race with a
population share of 62.5% while PTFT 0.6,0 and PTFT 1,0 (Dove)
follow with 17.9% and 16% respectively. But they succeed only in the
“slip stream” of the more reciprocal strategies PTFT 0.2,0 (dark green
line) and PTFT 0.4,0 (orange line) that have cleared the field from
initially successful exploitative strategies like PTFT 0,1 (Hawk) (pink
line).

The latter result according to which genuinely altruistic strategies
may – under favorable circumstances – even turn out to be more success-
ful than reciprocating strategies in a dilemma setting that is designed to
bring out reciprocal altruism seems so surprising that one might doubt
whether the calculations are correct. In order to understand why this
is indeed possible we can try to isolate the effect in a simpler simula-
tion which is designed to produce only this effect. Figure 4.16 depicts
a simulation that contains only the strategies Dove, Hawk, Tit for Tat
and Tat for Tit. The parameter R (payoff for mutual cooperation) has
been changed from 3 to 4 to demonstrate the effect. (Such parameter
tweaking is admissible, because we only want to demonstrate the pos-
sibility of a certain phenomenon with no claim to its being widespread
or even typical.) Under these circumstances, Dove wins the tournament
and thus enjoys an evolutionary head start right from the beginning.
The following table shows the payoff score with which Dove gains the
tournament as well as the population share and weighted score after 50
generations.

Ranking After 50 generations
Rank Strategy Score Population Share Score
1. Dove 2.9950 0.5718 4.0000
2. TitForTat 2.8738 0.4282 3.9999
3. TatForTit 2.1262 0.0000 3.3604
4. Hawk 2.0050 0.0000 3.2959

How come that Dove wins the tournament and gets even more points
than Tit for Tat. Shouldn’t Tit for Tat be at least as good as Dove?
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After all, it cooperates whenever the opponent does. The answer to this
question becomes obvious when looking at the outcomes of the matches
between the contenders:

Match Result
Dove : TatForTit 3.980 : 4.005
Dove : TitForTat 4.000 : 4.000
TatForTit : TatForTit 1.000 : 1.000
TatForTit : TitForTat 2.500 : 2.500
TitForTat : TitForTat 4.000 : 4.000

As can be seen, Dove plays very well against both Tat for Tit and Tit
for Tat. But Tit for Tat and Tat far Tit do not do so well against each
other. The reason is that Tat for Tit plays the same strategy as Tit for
Tat, only that it starts with a defection. This leads to a sequence of
alternating defection-cooperation, cooperation-defection moves, which
results in a comparatively poor average score of 2.5 for the two recipro-
cal strategies when playing against each other, even though they both
play well with Dove and, being reciprocators, they are both successful
in suppressing Hawk. It should be noted, however, that Tat for Tit does
not play too well against itself either, because it contains no kind of
mechanism to detect its own kind. To describe the phenomenon one
could say that Tit for Tat and Tat for Tit are conflicting reciprocators.
They are both reciprocal altruists, but they are not attuned to each
other. Therefore, they come into conflict. As Dove is not concerned by
this conflict, the presence of conflicting reciprocators allows the genuine
altruist Dove to become the evolutionarily most successful strategy. It
should be observed that because of the presence of (conflicting) recipro-
cators Dove is still protected against an invasion of Hawks. In this sense
the “slip stream” metaphor still captures the situation, although it does
not seem as appropriate a depiction any more as in the previous cases
of successful genuine altruists.

Summing up our considerations, we can now give a plausible answer
to the question as to why genuine altruists gain a noticeable average pop-
ulation share in the simulation series by referring to the phenomenon of
“slip stream altruism”. Actually, there are (at least) two types of “slip
stream altruism”: One type where genuine altruists play the role of a
minor contender in a mixed equilibrium of reciprocal altruists and gen-
uine altruists, and another type where genuine altruists even dominate
the population after reciprocal altruists have successfully extinguished
all exploitative strategies. Under certain conditions (presence of con-
flicting reciprocal strategies) genuine altruists may even enjoy a head
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Figure 4.16: If the reciprocal strategies in the simulation are of conflicting types (like Tit for Tat and Tat for Tit) then “naive” or
genuine altruists like Dove can become the “laughing third” and win the evolutionary race. (This simulation uses the payoff paramters
T=5, R=4, P=1, S=0.)
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start right from the beginning. For this last case, however, the “slip
stream” metaphor may appear a bit overstretched.

Conclusions

The simulation series produced certain “interesting” results regarding
the success of altruistic strategies in the repeated Prisoner’s Dilemma.
We have found that under the conditions of the simulation (a clause
that should never be omitted when discussing the results of computer
simulations) the main contributor to the breakdown of altruism is the
presence of what has been called “in game noise”, which is the sort of
noise that disturbs the matches between individual players (in contrast
to evolutionary noise that distorts the population dynamical process).
Another interesting result is that even though the simulation was con-
structed as a simulation of reciprocal altruism, there exists – under the
conditions of the simulation! – a certain albeit limited opportunity for
genuinely altruistic strategies to survive in the“slip stream”of reciprocal
altruists.

Of course it would be possible to carry on with the analysis of the
generated simulation data and to check for interactions between the dif-
ferent variables etc. (See appendix 8.3 for an overview of the aggregated
results for each single variable.) But then, what would be the point of
performing an extensive analysis of merely computer generated data?
When applying the tool of computer simulations in science or philoso-
phy, there is always the question “Do the simulations prove anything?”
or “What do they prove?”. Computer simulations as such can of course
prove nothing more than the theoretical possibility of the phenomena
they produce. Thus, the simulation described before proves that such
a phenomenon as “slip stream altruism” is theoretically possible. This,
however, says nothing about its empirical impact. We do not know
whether “slip stream altruism” is a widespread phenomenon in reality.
We do not even know whether it exists in reality at all. And finally,
one could even go so far as to doubt whether “slip stream altruism” is
possible in reality (as opposed to merely “theoretically possible”) at all,
for it could still be the case that there exist laws of nature that contra-
dict one or more of the basic assumptions on which the simulation rests.
The latter, however, seems very unlikely, because – save for the rather
artificial setting of the simulation – no unduly implausible assumptions
have been made.

Moreover, since the setting of the simulation is highly artificial and in
no way realistic (just think of the two hundred times repeated Prisoner’s
Dilemma with always exactly the same symmetric payoff), it is virtually
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impossible that this particular model will ever be applied to any empir-
ical situation in a strict sense. The best that can be hoped for is that
for the phenomena the model produces an analogon can be found some-
where in empirical reality. In view of this possibility the model offers at
least some idea of some phenomena the empirical researchers might look
for. But such purely theoretical models can at worst also distract the
attention of researchers from the processes and mechanisms of the evo-
lution of altruism that are relevant in an empirical sense (Hammerstein,
2003a) (Dugatkin, 1997, p. 167).

The same restrictions apply to almost all computer simulations of
reciprocal altruism and also to many of the mathematical models that
have been constructed in the aftermath of Axelrod’s book on the“Evolu-
tion of Cooperation” (Axelrod, 1984). This becomes very obvious when
looking into these simulations and their results. Since their scientific rel-
evance is extremely doubtful, only a brief overview will be given about
some of these simulations in the following.

4.1.5 A quick look at other models and simulations of the same

class

It would hardly be possible to list all the models and computer simula-
tions on the evolution of reciprocal altruism that have been published
over the last twenty or more years.21 And, what is more important,
it would hardly be worth the trouble, because almost none of these
models has ever been applied empirically.22 Moreover, it is not to be
expected that many of these models will ever be applied, because they
typically represent highly artificial settings just as the computer simula-
tion presented before. It seems that the empirical research on reciprocal
altruism is quite detached from this sort of modeling and that when it
develops its own models they are at best remotely inspired by the the-
oretical modeling and simulating that went on during the last twenty
years. We will elaborate this topic a little more later (see chapter 6)
and then try to explain the reasons for the apparent empirical failure
of models of this type. At any rate, the conclusion to be drawn is that
such models do at best represent some kind of theoretical speculation

21An overview on the literature on Axelrod is given by Robert Hoffmann (Hoffmann, 2000). A compact
overview over the most important of these models is found in (Dugatkin, 1997). A broad overview with
some discussion on agent-based simulations in the social sciences in general is offered by Gotts, Pohlhill
and Law (N.M.Gotts et al., 2003).

22Hoffmann maintains of Axelrod’s framework that “ This general framework is applicable to a host of
realistic scenarios both in the social and natural worlds (e.g. Milinski 1987).”(Hoffmann, 2000, section
4.3) However, the only example he mentions (Milinski) turned ultimately out to be a failure of Axelrod’s
simple model. See chapter 5.1.3.
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about the evolution of altruism.
As far as this speculation goes, Dugatkin (Dugatkin, 1997, p. 24ff.)

gives an overview of the most prominent of these speculative models,
which will briefly be reviewed in the following, highlighting some of the
more important points and adding some further sources. According to
Dugatkin a wide range of topics have been covered by theoretical mod-
els. Theoretical research has been carried out on N-person games, one
result among others being that “increasing group size hinders the evo-
lution of cooperation” (Dugatkin, 1997, p. 25). This is at least true if
the only form of punishment is defection in the next round, for, in an
N-person game there is only the chance to either punish none or all
other players, which will in turn induce the “unjustly” punished players
to punish the punisher in the following round. As Boyd and Richerson
demonstrate (Boyd and Richerson, 1992), cooperation can evolve in an
N-person game if punishment is allowed in the form of “retribution”,
that is, specific acts of punishment that do not form a part of the usual
cooperative or non cooperative interactions. However, here the prob-
lem emerges how punishers can avoid being invaded by non punishing
cooperators if – as would only be “realistic” to assume – punishment is
costly.23

Other model research concerns the question how the environment
and population structure influence the evolution of cooperation. There
are results according to which a spatial environment allows for the co-
existence of Tit for Tat and Hawk and others according to which very
generous cooperative strategies can evolve in spatial Prisoner’s Dilem-
mas (Dugatkin, 1997, p. 24). Yet another model shows that spatial
mobility may allow Tit for Tat to invade a population of Hawk players
much easier than without mobility (Ferriere and Michod, 1996). How-
ever, it can also be shown – under the conditions of a certain model –
that spatial effects alone do not suffice to maintain cooperation (Frean
and Abraham, 2001). Kirchkamp (Kirchkamp, 2000) examines a spatial
model which, among other things, shows that cooperation can be sus-
tained even with asynchronous timing, thereby refuting a contradicting
result that Huberman and Glance (Huberman and Glance, 1993) had
obtained under different model assumptions.

Quite a few models center around the stability conditions of Tit
for Tat and related strategies (Dugatkin, 1997). Dugatkin and Wilson
(Dugatkin and Wilson, 1991, p. 24) examine a spatial scenario where
a population of Tit for Tat players can be invaded by “roving” defec-

23Empirical research indicates that people do in fact “altruistically”punish, even if punishment is costly
for themselves. But this still does not answer the question, why they do so. See chapter 5.2.1, where an
example of the respective empirical research is discussed.
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tors. Depending, as usual, on the choice of certain parameter values, the
population either stays clear of Rovers (as Dugatkin and Wilson call the
roving defectors) or moves to a mixed equilibrium or Rover “sweeps to
fixation” (Dugatkin and Wilson, 1991, p. 694ff.). An important neces-
sary precondition for the success of Rover and at the same time a feature
that distinguishes Dugatkin’s and Wilson’s model from almost all other
models of the“evolution of cooperation” is that Rover is allowed to break
off interaction with its partner. One of the few other models that also
allowed the players to break off cooperation is Schüßler’s simulation of
cooperation on anonymous markets (Schüßler, 1990, p. 61ff.). Here each
player is allowed to break off the sequences of iterations whenever he
or she wants. One should expect that this encourages a kind of “hit
and run” tactic, but interestingly – under certain model conditions and
within a certain parameter range – even here reciprocal altruism can
evolve. Since the continued interaction between players is in no way
enforced in Schüssler’s simulation, this seems to contradict one of the
few general conclusions which otherwise remains true for almost all of
the simulations of reciprocal altruism, namely the conclusion that the
evolution of reciprocal altruism depends on the “shadow of the future”,
i.e. the continuation of interaction as necessary precondition of recip-
rocation. But in a certain sense the “shadow of the future” also plays
a role in Schüßler’s simulation: Those strategies that use a “hit and
run” tactic and break off cooperation have to pick their partner from a
pool of free strategies. But, typically, the pool of free strategies consists
largely of cheaters as the non cheaters tend to stay engaged in successful
cooperative relations. In this model the ”shadow of the future” does not
mean that a cheater must fear being punished by a reciprocator in the
future, but that non-cheaters will be rewarded by keeping up a prosper-
ous relationship. (See appendix 8.5 for a simplified version of Schüßler’s
simulation that demonstrates this point.)

Another modification that has grave consequences with regard to the
evolutionary stability of Tit for Tat is the introduction of noise into the
models of the repeated Prisoner’s Dilemma. In the simulation presented
above we found that noise was one of the major sources of the break-
down of cooperation. But as always, this connection depends on the
specific model. In a very different model, Nowak examines “Stochastic
Strategies in the Prisoner’s Dilemma” (Nowak, 1990) with the result
that in an “error prone” world Tit for Tat is not a very good strat-
egy, but rather a more generous version of Tit For Tat is appropriate.
The same author, together with Sigmund also examined the case when
interactions between players in the repeated Prisoner’s Dilemma are al-
ternated instead of taking place simultaneously (Nowak and Sigmund,
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1994). They arrive at the result that the alternating interaction in con-
trast to simultaneous interaction does make a decisive difference. In
the cases which they examine the strategy “win stay, lose shift” (termed
Pavlov in my simulations) is best suited to simultaneous interaction,
while in a situation of alternating interactions a generous version of Tit
For Tat proved to be most appropriate.

Where does this all lead us to? The overview just given of simulations
and – in some cases – mathematical models of the reiterated Prisoner’s
Dilemma did, of course, only present a small selection of the models
and simulations that have been published on that topic. But this selec-
tion of models should suffice to demonstrate that there are innumerable
plausible ways to model reciprocal altruism. And this fact alone raises
questions concerning whether these models can tell us anything about
how reciprocal altruism evolves. It has been mentioned before that it
is very dangerous to draw generalizing conclusions from single simula-
tions with arbitrarily chosen parameters (see chapter 4.1.2), because the
results may be very different for different parameter values. “Massive
simulations”, where one runs a series of simulations over a range of pa-
rameter values, can to some degree provide a remedy to this problem.
They allow us to draw conclusions with some level of generality (see
sections 4.1.4 and 4.1.4). But still, this generality is confined to the
setting of the particular simulation series. Relying on models alone, it
is practically impossible to draw any general conclusions regarding the
evolution of reciprocal altruism beyond this level. As it seems that for
any candidate for such a general law or principle governing the evolution
of reciprocal altruism a simulation can be found (or easily be constructed
if it did not exist already) where this law is not valid any more. For
example, if we believe that it would be a general truth about reciprocal
altruism that continued interaction is a necessary requirement for its
evolution then Schüßler’s simulation (see Appendix 8.5) convinces us
that this is not the case. Or, if we were inclined to follow Nowak’s plau-
sible conclusion (Nowak, 1990) that in a noisy world Generous Tit for
Tat is a very suitable strategy then our simulation series above demon-
strates that this is not generally the case (see chapter 4.1.4).

There are two possible reasons to account for the fact that hardly any
general conclusions can be drawn from purely theoretical simulations24

of reciprocal altruism: First of all, it is well possible that no such general
laws exist. There is no a priori reason why the evolution of reciprocal
altruism should be governed by the same set of general laws in every

24Under a “purely theoretical” simulation I understand a simulation that is not connected to any
particular empirical process it simulates and by comparison with which its empirical validity could be
tested, but one that does at best rest on plausible assumptions about processes of a certain kind.
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instance of reciprocal altruism that exists. It is possible to characterize
the bare concept of reciprocal altruism in a broad and general way
by Trivers’ equation or similar formalisms. And, of course, we can
always presuppose the validity of the laws of evolution and, in the animal
kingdom, of genetics as well. But these alone do not suffice to provide
an explanation for specific occurrences of reciprocal altruism. Such a
specific occurrence of reciprocal altruism would be, for example, the
sort of altruism that shoal fish supposedly adhere to when inspecting a
predator (see chapter 5.1.3). Now, in order to explain this alleged case
of reciprocal altruism, it would be very helpful if we had some laws on an
intermediary level of abstraction (that is, laws that are less abstract then
the laws of evolution or genetics but still general enough to apply not
just to the specific case in question) like a law that says: In situations
of prolonged or repeated interaction (where mutual cooperation would
be beneficial to all partners) those individuals that regularly punish
cheaters but skip punishment once in a while usually gain the highest
average fitness payoff. But it may also be the case that no such laws of
reciprocal altruism on the intermediary level exist and that in order to
construct explanations for specific occurrences we will have to rely on the
laws of evolution and on laws which are specific to the case in question.
The fact that there are hardly25 any general laws on this intermediary
level which are valid across different simulations of reciprocal altruism
strongly suggests that this is indeed the epistemological situation that
we find ourselves in.

But it may also be otherwise, and this is the second possible reason
for why the model research on reciprocal altruism did not yield any in-
termediary laws or any one specific model which could be understood
as the role model of reciprocal altruism: We may not have been able to
find any laws of reciprocal altruism with the help mathematical mod-
eling or computer simulations just because there are so many possible
ways of modeling it. One could conceive of arbitrarily many different
settings for simulations of reciprocal altruism and certainly each single
one of them could be justified by plausible reasons as long as the scien-
tist proves eloquent enough. But this does not necessarily imply that no
such intermediary laws of reciprocal altruism exist, because the range
of possible theoretical models of reciprocal altruism of course by far ex-
ceeds the range of models appropriate for empirical application. And it
may still be possible that all of the empirical occurrences of reciprocal

25I say hardly, because there exist boundary cases of almost trivial laws for which the statement that
no intermediary laws of reciprocal altruism have been confirmed by model research may be disputed. An
example would be that “the shadow of the future matters”. In a very broad sense this might be true
despite the simulations of Schüßler, which challenge this assumption (see Appendix 8.5).
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altruism follow a certain pattern or do at least fall under a manage-
able number of different types which can be described by laws on an
intermediary level of abstraction. But then, the way to find these laws
or patterns will not be by research of purely theoretical models alone
but only by investigating models that are closely connected to empirical
research.

4.1.6 Summary and conclusions about modeling reciprocal al-
truism

Summing it up, what can be said about the results of theoretical simu-
lation models of reciprocal altruism is that they provide us with certain
insights about how reciprocal altruism works and why it can be evolu-
tionarily successful. Most of these insights come close to truisms and
as such they hardly justify the technical effort put into the manifold
simulations of cooperation and reciprocal altruism. Still, they are not
totally devoid of content. And they might be considered to be of some
philosophical importance regarding the question if and how altruism has
a realistic chance of survival in this world. The most important insight
in this respect is that configurations are conceivable under which recip-
rocal altruism can evolve and survive in dilemma situations. (We have
to say that such configurations are conceivable and cannot yet say that
they exist, because we have not touched upon any empirical matters
by now.) What is more, not only the sort of strict reciprocal altruism
that is embodied in reiterated Prisoner’s Dilemma strategies like Tit for
Tat has a chance to thrive in a world that is governed by the principle
of the “survival of the fittest”. Under some configurations among the
many conceivable simulation setups also strategies that are more gener-
ous than Tit for Tat and even genuinely altruistic strategies may thrive,
if only in the slip stream of strictly reciprocal altruists. If Tit for Tat
marks the borderline between egoism and altruism then this means that
there is some chance for real altruism to appear in evolution.

These “results” are admittedly somewhat trivial. But being so they
can teach us an import lesson about the deficiency of pure model re-
search. Of course many more and more detailed conclusions could be
drawn from the individual models, but the range of validity of any of
these conclusions is confined to the respective model, because usually
it is possible to find another model where the same conclusions are not
valid any more. Therefore, the study of models of reciprocal altruism
can hardly teach us anything about how and why altruism evolves. In
order to learn something about the evolution of altruism or cooperation
it would first be necessary to check the empirical validity of these models
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or of the conclusions these models suggest. As we shall see subsequently,
this goal has hardly been achieved so far, mostly because the majority
of the models and simulations presently at hand are so artificial that
they do not easily lend themselves to empirical testing.

The epistemological requirements for “explanatory” models will be
discussed in detail in chapter 6. For the time being the following anal-
ogy might help us to understand the epistemic status of models and
computer simulations of reciprocal altruism and why we cannot expect
to gain much knowledge about the evolution of cooperation from sim-
ulations alone. Computer simulations as well as specific mathematical
models of the evolution of altruism relate to the mathematical back-
ground theories they are based on (such as game theory or the theory of
dynamical systems) as curve sketching relates to calculus. While calcu-
lus is as such of a certain mathematical and therefore scientific interest,
curve sketching is more of an exercise. It gains scientific interest only
when the curves sketched represent functions that are laws of nature
in some scientific context. For example, it might be a nice exercise to
determine the derivative, the extreme values, the zero points etc of some
arbitrarily chosen function like f(x) = (x2−2)/(2x3−5x). But it would
not be of any great scientific interest. Only, if we did the curve sketching
of some such function like F (d) = Gm1m2/d

2 this might indeed be of
scientific interest, because (if we interpret G as the gravitational con-
stant, m1 and m2 as masses of two solid bodies and d as the distance
between those bodies) F (d) determines the gravitational force between
two bodies as a function of its distance. It could be used, for example, to
determine the acceleration of an asteroid approaching earth. Now, while
the second function is about as trivial as the first one, it is – differently
from the first one – of scientific interest, because it relates to something
that happens in nature and it is science’s business to understand what
happens in nature.

With the computer simulations and models of the evolution of coop-
eration this is quite similar. As long as these models do not relate to
any processes in nature, they are nothing more than mere exercises in
computer programming (or mathematical modeling), data visualization
and data analysis. Now, of course, most of the authors publishing such
models and simulations are careful not to do so without adding some
story which seemingly relates them to real world events. For example,
they might tell us that we find Prisoner’s Dilemma situations all around
us all the time and that upon closer inspection many of these Prisoner’s
Dilemma situations turn out to be really repeated Prisoner’s Dilemmas.
Therefore, a model of the repeated Prisoner’s Dilemma will tell us a lot
about what happens around us. But this amounts to nothing more than
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story telling. Only when the models are so closely related to empirical
processes or events that we are able to check which models (from the
many plausible or imaginable models) are appropriate,26 do these mod-
els start to become scientifically relevant. Without that they remain
mere exercises in computer programming, just like curve sketching is an
exercise in calculating.

4.2 Kin selection

From the three fundamental explanations for the evolution of altruism
kin selection is probably the only mechanism that has always been com-
pletely undisputed. And this is quite understandable: Kin selection
basically states that individuals will behave altruistically towards other
individuals depending on how closely related they are. This view fits in
nicely with the received understanding of evolution as a process where
evolutionary success of an organism depends on the successful propa-
gation of the organism’s genes. By supporting a related individual an
animal may further the propagation of its own genes, because up to
some proportion the other individual carries the same genes. Further-
more, the degree of genetic relatedness and thereby the average amount
of shared genes between two individuals can easily be determined with
great exactitude as it depends on the kinship relation (i.e. the relation
of being brother or sister or niece or nephew etc.) and on the type of
inheritance of the respective species, that is, whether the species has a
diploid set of chromosomes as all mammals do or a haplodiploid set of
chromosomes as some insects.

In the following, the concept of kin selection will be rendered more
precise by putting it into simple mathematical terms. Also, it will be de-
scribed how the concept can be understood in biological settings (about
which a few hints have just been given) and whether analogous processes
of kin selection in the realm of cultural evolution are conceivable.

4.2.1 The fundamental inequation of kin selection

The concept of kin selection was originally described by the biologist
William D. Hamilton (Hamilton, 1964). It is also known under the
title “inclusive fitness theory”, because it describes the “all inclusive”
reproduction rate of an organism’s genes. The condition under which

26See chapter 6.1.2 for a detailed account of the criteria which allow to check whether a model is
“appropriate”.
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altruism can evolve through kin selection, can be stated in the form of
a very simple inequation.

C ≤ rB (4.2)

C the cost (in terms of reproduction rate
or number of offspring) for the donator

B the benefit (in terms of reproduction rate) for the recipient
r the degree of genetic relatedness

If the cost for the donator is smaller than the benefit of the recipient
discounted by the degree of genetic relatedness then altruism towards
the relative will increase the overall (“inclusive”) fitness of the donator
that is, the donator’s genes will spread at a higher rate than they would
if the donator was not altruistic. For example, in diploid species27 broth-
ers and sisters are on average related by 50%. Theoretically, it would
therefore pay for an individual to sacrifice itself for the survival of at
least two siblings. An often used example to illustrate the power of kin
selection to generate altruism is that of eusocial insects. Since, due to
the genetics of eusocial insects, sisters are closer related to each other
(75%) than they would be to their offspring (50%) it is, as the story
goes, more advantageous for them to partake in the raising of sisters
than in rearing their own offspring. Although, this would nicely illus-
trate how kin selection works, there are two counter arguments to this
kind of reasoning: First of all, not in all eusocial animals are the cir-
cumstances of genetic relatedness as just circumscribed. Some eusocial
insects live in “states” with several queens, which leads to kinship rela-
tions between sisters and offspring quite different from those described
above. Secondly, it is not important how closely sisters are related to
each other if none of the sisters ever reproduces itself. If, say, a worker
ant or a worker bee is to maximize its inclusive fitness it does not at all
pay if it invests in the rearing of genetically strongly related individuals
(its sisters) if these do not reproduce. Therefore the coefficients of relat-
edness that should be compared are those of the relatedness of a worker
to its potential offspring and the relatedness to those siblings that will
become queens or males. Since the queen sister of a worker is not more
closely related to her offspring than a worker would be to her own, the
worker would in principle be better off rearing its own offspring, un-
less for some further reason inequation 4.2 holds. The case of eusocial
animals is quite a complicated one and will be discussed in connection
with the empirical findings in chapter 5.1.1. Here, the example shall

27Diploid species are species that have two sets of chromosones. All mammals are diploid species.
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only serve to illustrate how the concept of kin selection as described by
equation 4.2 works in principle.

4.2.2 Transferring the concept of kin selection to cultural evo-
lution

So far, kin selection has been described as a mechanism of genetic evo-
lution. In a genetic context genes for altruism towards relatives spread,
because if altruistic benefits are bestowed on a relative then there is a
certain chance (depending on the degree of genetic relatedness) that the
relative carries the same genes for altruism and will transmit them to
its descendants.

It is not implausible to assume that genetic kin selection for altru-
ism has also been at work in the evolutionary history of humans. For
example, it is common practice and also sanctioned by common moral
opinion in virtually all cultures to assume that one has more and higher
obligations towards one’s own family members than to other people.
But already when it comes to friendship which incurs similar duties and
obligations, or when considering the fact that obligations due to family
relations also exist towards non-consanguine relatives, it becomes clear
that the genetically determined kinship altruism is strongly formed by
culture. The latter does of course not necessarily mean that it is formed
by a cultural analogue to kin selection if such an analogue should ex-
ist. Whether such an analogue exists, is the question which shall be
considered now. The question is somewhat more problematic than in
the case of reciprocal altruism, because as far as reciprocal altruism is
concerned, there exists an understanding of reciprocity in many areas
of social life which is very akin to the concept of reciprocal altruism as
it is applied in biology.28 For all three kinds of evolutionary altruism
there exists the problem of giving a sufficiently precise quantitative em-
pirical interpretation for the parameters that appear in the respective
equations or computer models. But in the case of kin selection even a
merely qualitative interpretation poses an additional difficulty, because
it is not quite clear how to interpret relatedness in the cultural context.
Other than in genetic evolution, cultural traits are not necessarily trans-
mitted as whole packages but can be broken up and recombined almost
arbitrarily. So, who is to be considered a relative of an altruist? Is it any
other altruist, or is it only other altruists that share the same (religious,
ethnic, national or other group) affiliation, or is it other people with the

28It may even be the case that the concept of reciprocal altruism is more appropriate in a cultural than
in a biological context, because there exist very few clear cut empirical examples of reciprocal altruism
in biology (see chapter 5.1).
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same affiliation regardless whether they are altruists or not? Probably
any of these possibilities could be considered with some credibility.

Let us first assume that relatedness is to be understood in the sense
that an altruist considers other altruists as kin with no further require-
ments concerning group affiliations. Then an altruist will condition his
or her altruism on the recipient being altruistic as well. The difference to
reciprocal altruism is that the recipient is expected to act altruistically
towards other individuals but not necessarily to return the favor to the
altruistic benefactor. Can altruism spread under this assumption? If
we assume as replication and selection mechanism that people copy the
behavior of successful individuals then it can spread. For, since egoists
will not be recipients of favors, altruists will be more successful. Just
as in the case of reciprocal altruism this does of course also depend on
the narrower circumstances such as the possibility or impossibility of
cheating and cheater detection etc. Because of the similarity to recip-
rocal altruism, the mechanism just sketched is usually discussed under
the title of “indirect reciprocity” or “image scoring”, because altruistic
acts are not directly reciprocated and individuals are treated according
to their image (of being altruists or non-altruists).

Regarding the other case when altruism is conditioned on the group
affiliation of the recipient rather than on the the image of the recipi-
ent, two subcases must be distinguished, one where the group consists
entirely of altruists and one where altruism is not necessarily a group
trait. The latter case is better understood in terms of group selection,
which will be discussed in section 4.3. As to the former case, if altruism
is tied to group affiliation and is at the same time a group trait it can
spread for just the same reasons as have been described above, only that
it furthermore helps to promote other group traits. It should be noted
that if we conceive of “cultural kin selection” in this way, the concept
of a group is a very peculiar one, where group membership depends
entirely on adopting a certain behavior. For most social groups this is
not sufficient. Usually group membership depends on other factors as
well such as being appointed a member for example. In this context it
may not be superfluous to indicate that the concept just sketched of a
mechanism of “cultural kin selection” should not be confused with what
is commonly discussed as “in-group” and “out-group” behavior of social
groups, which is something quite different. The analogy to kin selection
in biology remains somewhat coarse, anyway, because it is difficult to
give a precise interpretation to the term“degree of relatedness” in a con-
text of cultural evolution. This again should warn us that – contrary
to the expections of advocates of the application of an evolutionary
approach to the social sciences (see chapter 3.3) – precise scientific con-
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cepts often lose their rigor and precision when they are transferred to a
different scientific subject area.

Still, an interpretion for the mechanism of kin selection in the realm of
cultural evolution does not seem completely inconceivable. Whether it
has a strong empirical impact (i.e. is applicable to many and important
empirical phenomena of social life and at the same time better suited
to deal with these phenomena than alternative concepts) is a question
that is up to empirical science to decide.

4.3 Group selection

The probably most astonishing mechanism by which the evolution of
altruism can be explained is that of group selection. The concept of
group selection explains the evolution of altruism by the usefulness that
altruistic traits of individuals within a group have for the group as a
whole. On a naive level this explanation appears seductively simple:
Cooperation and altruism even to the point of self-sacrificial behavior
exist, because they serve the most useful purpose of contributing to the
preservation and well-being of the group or species that the individual
belongs to. Nothing seems simpler than that: Some species have de-
veloped altruistic behavioral traits, because these are necessary for the
preservation of the species. If the species hadn’t got this trait, it would
simply die out or, vice versa, since this species has not died out, the ex-
istence of altruistic behavioral traits must be explained as a consequence
of its self preservation.

But there is a problem with this kind of naive reasoning. The mere
fact that a certain trait serves a useful purpose for the group or species
does not tell us what the causes were that made this trait come into
existence or even whether there are sufficient causes for its existence at
all. A functional explanation that relates certain means to a certain
end does not explain by which causes these means have been brought
about. A sufficient explanation of any natural phenomenon can thus
only be a causal explanation. The standard causal explanation in evo-
lutionary theory is the explanation by fitness dependent selection. Un-
fortunately, it is just this mechanism that renders group functionalism
seemingly impossible. For, suppose there was a certain altruistic trait in
a species that enhances group fitness. And suppose that this altruistic
trait reduces individual fitness in comparison to other “egoistic” individ-
uals within the group (otherwise the trait would not be truly altruistic,
would it?). Then, even though the group profits from the existence of
the trait, this very trait will be selected against within the group so
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that after a couple of generations it will most probably have died out.
Moreover, since the altruistic trait is constantly being selected against,
it would not even have the chance to ever invade a population, thus ren-
dering altruism improbable even as a transitory phenomenon if it was
only by group selection that altruism could be brought about.

It is for this reason that group selection has long been regarded among
biologists with a similar suspicion as Larmarckian inheritance. But just
as for Lamarckian inheritance there exists a special case, called the Bald-
win effect, where under certain circumstances an acquired property can
become a genetically inherited property,29 it can be shown that group
selection, i.e. the selection of traits because they are beneficial to groups
even though they may be impedimental to the reproductive success of
the individuals that carry these traits within the group, is indeed pos-
sible. This possibility has recently been described very elegantly by El-
liott Sober and D.S.Wilson (Sober and Wilson, 1998). In the following,
however, I do not intend to reiterate the description of group selection
that Sober and Wilson have given, but I present a computer model
of the evolution of altruism through group selection. Group selection is
the kind of mechanism where the method of computer simulations really
shines. While the mechanism of kin selection is very straightforward and
while the evolution of altruism on the basis of reciprocity is also fairly
intuitive, group selection seems prima facie almost impossible. What
could be said against the line of reasoning above? Doesn’t it clearly
show that group selection is quite impossible? Yet, if we succeed in
constructing a numerical model where group selection produces results
that differ even in the long term significantly from the results in a non
group selection scenario, this suffices to prove that group selection is a
possibility that we have to take into account. In other words, in the case
of group selection, already its theoretical possibility constitutes an im-
portant problem. But this theoretical possibility can be demonstrated
by a computer simulation.

4.3.1 A toy model of group selection

The ingredients needed for our group selection model of the evolution
of altruism are a population that is divided into relatively isolated sub-
populations, which are commonly called “demes”. There must be two

29The reasoning behind the Baldwin effect is this: Learned behaviour creates a “cultural environment”
that favors genetic adaptations that are adjusted to this “cultural environment” (Depew, 2003, p. 6ff.).
One can reason that as a special case acquired properties that increase the fitness of its bearer in the
cultural environment may eventually be replaced by genetic adaptations that“hard code” these properties
if acquiring the property by leraning is costly so that having it inborn increases the relative fitness. The
existence of the Baldwin effect is a much disputed issue, however.
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different selection processes, one between the individuals inside a deme
and one that takes place between the demes themselves. It is also pos-
sible to imagine more than two levels of selection.30 But as our model
is only to demonstrate the principle of group selection, it is advisable
to keep things as simple as possible. The important point is that the
sub-populations (demes) are only relatively isolated, i.e. there will be a
certain amount of exchange of individuals between the demes. As the
fitness of the deme depends on its composition of individual types, the
exchange of individuals between demes will ensure that there is always
a fitness difference between the demes.31

If this sounds a bit too abstract, we can imagine an area in the Savan-
nah that is inhabited by a population of monkeys. The monkeys live in
small packs, each of which occupies a certain territory. We assume that
the monkeys within a pack (or group) compete for the food they reap
from the group’s territory and that this competition has the structure
of a one shot Prisoner’s Dilemma, i.e. the average fitness of all monkeys
within the group will be highest if they share the food without engag-
ing in fights over the food among each other. However, a monkey that
engages into fights with his more peaceful minded group fellows will be
able to obtain more food than it would when sharing food. But as every
fight costs a lot of energy, the average fitness of the whole group will be
less than in the case of mutual cooperation. This means that within the
group the competitive monkeys will probably produce more offspring
than the cooperative monkeys, but at the same time the offspring that
a group produces as a whole will be greater if there are fewer competitive
members in the group. For the sake of simplicity, we will assume that
the size of the territory that a group occupies is always proportional to
the number of its members, that is the ratio of food resources per group
member is the same for all groups. Finally, we assume that from time
to time some monkeys leave their group and join other groups. Now the
question is: Will the group beneficial cooperative type survive?

It should be observed that in this example the cooperative type corre-
sponds to the naive strategy Dove in the repeated Prisoner’s Dilemma
model while the competitive type corresponds to the strategy Hawk.
With only these two strategies, the situation in the repeated Prisoner’s
Dilemma is exactly the same as in the one shot Prisoner’s Dilemma.

30See (Sober and Wilson, 1998) for a discussion of multilevel selection as well as for an alternative way
to model group selection not by a computer simulation but by mathematical equations.

31This is, of course, true only ceteris paribus. If we imagine a non random exchange process that
operates in such a ways as to level the differences in composition between the demes then this will not
be the case. For a random exchange process this could also happen as an extremely unlikely exception.
Finally, the selection process within the demes could be such that it leads to a leveling of the differences
in the inner composition of the demes which the exchange cannot compensate.
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But we will stick to the repeated Prisoner’s Dilemma, because it later
allows us to introduce further strategies. The payoff parameters of the
Prisoner’s Dilemma are the same as in the simulation of reciprocal al-
truism before, that is, T = 5, P = 3, R = 1, S = 0. In order to model
group selection, we assume that the population of Doves and Hawks is
divided into 25 demes, each of which contains both strategies, albeit in
different ratios. The selection process within the demes follows the same
replicator dynamics as in our simulation of reciprocal altruism, taking
the average payoff for each strategy as fitness value. (See appendix 8.2
for the details.) For the selection process between the demes the average
payoff of all strategies within the deme is taken as fitness value. Just
as in the simulations of reciprocal altruism, the population size is repre-
sented by fractions of one, which are to be understood as the share of an
arbitrarily sized whole population that is occupied by the deme. Simi-
larly, the populations within the demes are represented by the fractions
of the population that use the one or the other of the two strategies. To
determine the respective population shares of Hawk’s and Dove’s in the
overall population, it is only necessary to add up the population shares
of a strategy within each deme weighted (multiplied) by the population
share of the deme. The graphs presented in the following always display
the aggregated population shares of each strategy.

The exchange process between the populations of the demes is mod-
eled as a kind of reshaping of the deme composition. Every ten rounds
all demes are dissolved and the whole population is redistributed ran-
domly to 25 new equally sized demes. For a detailed description of the
reshaping algorithm and its implementation see appendix 8.4.

Group selection and genuine altruism

Does group selection make a difference and, if it does, is the group selec-
tion effect only transitory, as the critics of group selection claim? The
results of the computer simulation show that group selection can have
a lasting impact on the evolution of altruism. Figure 4.17 depicts what
happens to a population of Dove’s and Hawk’s under group selection.

In the group selection setting the strategy Dove emerges as the clear
winner with roughly between 80% and 90% of the population playing
Dove. How can it be explained that Dove earns a lasting success even
though – as we know – the population share of Dove within every deme
is constantly decreasing? The reason why the population share of Dove
increases in the overall population is that those demes that contain
many Dove players have a strong fitness advantage over demes where
the fraction of Hawk players is high. Therefore the demes that contain a
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Figure 4.17: In a group selection model even genuine altruism can be a successful strategy. For this simulation of group selection the
population was divided into 25 demes which are reshaped randomly every 10 generations.
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high fraction of Dove players increase their population share at the cost
of demes with a high fraction of Hawk players. With the chosen simu-
lation parameters this increase of the population shares of demes with
a high amount of Dove players outweighs the decrease of the amount of
Dove players within the demes. Therefore, the overall population share
of Dove players increases. This process depends crucially on the fitness
differences between the demes, which in turn is due to the difference of
Dove - Hawk ratios between the demes. Now, since inside all demes the
fraction of Dove players gradually converges to zero (because selection
inside the demes strongly acts against the Dove players), the fitness dif-
ferences between the demes will also gradually decrease over time, thus
diminishing the Dove player’s advantage through interdeme selection.
This is where the exchange of group members between different demes,
which in our simulation is modeled as a reshaping of demes, comes
in: Through the reshaping of demes the fitness differences between the
demes are reestablished. On the graph the reshaping of demes can be
discerned by the sharp edges that occur in every 10th generation. Usu-
ally, before reshaping takes place the aggregated population share of
Dove players decreases and it increases again after the reshaping took
place. The slope of the curve between two reshaping intervals, however,
is always decreasing, which is due to the fact that the fitness differences
between the demes, from which Dove profits, is continually diminishing.

The decisive difference of the reshaping of demes is further empha-
sized by a look at figure 4.18. Here, the same simulation is run without
periodic reshaping of demes. In the beginning Dove profits from the
interdeme competition. But the group selection effect that gives Dove
an advantage over Hawk remains temporary. In the long run the result
is exactly the same as without any group selection.

What the results of the original group selection simulation (figure
4.17) demonstrate is first of all that group selection is possible. While a
numerical simulation that does not represent any specific empirical situ-
ation cannot tell us whether something is the case or not, it can still tell
us something about theoretical possibilities. This simulation demon-
strates that group selection is theoretically possible. A line of purely
theoretical reasoning as it has been presented on page 123 is therefore
not sufficient anymore to reject group selection. Whether the mech-
anism of group selection is of any empirical importance is ultimately
up to empirical science to decide, but it is certainly a mechanism that
deserves seriously to be considered.

With respect to the evolution of altruism, another important result
is that through group selection even the evolution of genuine altruism is
possible. While the other two types of altruism that have been discussed
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Figure 4.18: If the demes are completely isolated, any group selection effect remains transitory. Again, the population was divided into
25 demes in this simulation (with every deme containing at least some members of each species). But this time the demes were never
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in this chapter (reciprocal altruism and altruism through kin selection)
could appear somehow tainted to a moralist observer, because recipro-
cal altruism could be interpreted as merely a deferred type of egoism
and kin selection seems to be just egoism of the gene, group selection
even allows for the evolution of genuine altruism, i.e. a kind of altruism
where the altruist is not compensated for the benefits he or she bestows.
It is true that in the massive simulation of reciprocal altruism (chapter
4.1.4), the evolution of genuine altruism appeared as a marginal though
noticeable phenomenon in the “slip stream” of reciprocal strategies or
as the “laughing third” if badly coordinated reciprocal strategies im-
peded each other. But this was the exception rather than the rule and
at any rate genuine altruism is not evolutionarily or collectively stable
in the repeated Prisoner’s Dilemma. In the group selection simulation
presented here, genuine altruism has a much stronger foothold than in
the simulation of the reiterated Prisoner’s Dilemma. If we interpret the
game underlying the group selection simulation as a one shot Prisoner’s
Dilemma then there are no strategies other than Dove and Hawk. And
since Hawk is – save for a very small probability with which the ran-
domized reshaping process could diminish instead of increase the fitness
differences between the demes – obviously not able to invade a popula-
tion of Doves up to more than roughly 10% or 20%, the strategy Dove
is a stable strategy under the conditions of the simulation.

Group selection as an impediment to the evolution of altruism

The recent discussion about group selection that has been triggered
by Sober’s and Wilson’s “Unto Others” (Sober and Wilson, 1998) has
been mainly centered around how group selection promotes altruism.
This and the fact that models of group selection do – as has just been
demonstrated – indeed reveal some very astonishing results with respect
to altruism may easily lead to the conclusion that group selection mech-
anisms always strengthen altruistic behavior. But just as it has been
demonstrated with a simple computer model that group selection is –
despite the reasonable objections against it – theoretically possible, it
can also be shown with a computer simulation that it is not generally
true that group selection promotes altruism.

In order to disprove the presumption that group selection always
promotes altruism, it fully suffices to draw up a numerical simulation
where under the condition of group selection non altruistic strategies are
successful while altruistic strategies are successful under the absence of
group selection, all other simulation conditions being the same. Figure
4.19 shows the results of a simulation where group selection acts against
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Figure 4.19: Under certain conditions group selection can work against the evolution of altruism. To produce this result the payoff
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the evolution of altruism. In this simulation the strategies Dove, Tit for
Tat, Grim and Signaling Cheater 011 take part. Signaling Cheater is a
strategy that plays a predefined sequence of cooperative and defective
moves in the first n rounds of the repeated Prisoner’s Dilemma. If the
opponent player starts with exactly the same sequence of moves, Sig-
naling Cheater assumes that it has met another Signaling Cheater and
cooperates unconditionally for the remaining rounds of the repeated
game. Otherwise Signaling Cheater defects for the rest of the game.
Thus, Signaling Cheater is a strategy that is designed to cooperate only
with its own kind (that is other Signaling Cheaters that use the same
starting sequence as a signal) and not to cooperate with any other strat-
egy. Signaling Cheater is here understood as a non altruistic strategy
as in general it does not bestow any benefits unto others nor does it re-
ciprocate benefits it receives from others unless the other player is also
a Signaling Cheater. At best it could be understood as representing a
type of very restricted kinship based altruism, but then it is still much
less altruistic than Tit For Tat or even Grim.

In the simulation that is depicted in figure 4.19 the population of
these four strategies is spread over 10 demes that contain from one
up to three strategies. Reshaping takes place every 10 rounds. The
payoff parameter T (= temptation, the payoff for successful cheating)
has been set to 5.9 instead of 5. With these parameters the simulation
sometimes32 exposes the results that are depicted in figure 4.19. Here,
Signaling Cheater emerges as the winner and, as can be observed, every
reshaping of genes, gives Signaling Cheater another boost. This means
that the most uncooperative of the four strategies directly profits from
group selection. If under the same configuration the simulation is run
without group selection, the reciprocal altruists Grim and Tit for Tat
fare much better and even Dove can survive in the slip stream of the
reciprocal strategies.

It should be mentioned, however, that with this type of simulation
it is not very easy to find a configuration, where group selection works
against the evolution of altruism. Even with this simulation the effect
depicted in figure 4.19 is rather untypical and does occur only in about
one third of the simulation runs. Still, this should warn us that the
effect of group selection on the evolution of altruism must not necessarily
consist in promoting altruism or even genuine altruism.

32Whether it actually does, does depend on the random factors in the simulation.
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4.3.2 Extending the model?

The computer model of group selection just described has demonstrated
two important results about group selection: 1) Group selection is pos-
sible and can lead to the evolution of a very strong kind of altruism,
namely genuine altruism, where otherwise altruism would not evolve at
all. 2) At least theoretically there are exceptions to the rule that group
selection typically strengthens altruism. Nonetheless, these results re-
main, so far, purely theoretical and the simulation by which they have
been obtained can at best be called a toy simulation, because it has in-
tentionally been kept extremely simple and it is in no way related to any
empirical “real-world” problem. Nothing would of course be easier than
to develop the simulation further on into a massive simulation, just as it
has been demonstrated before for the simulations of reciprocal altruism.
But what would be the point of such an exercise? While further and
more“massive”simulations can help to obtain a better“feel” for the sim-
ulated mechanisms, it is doubtful whether a massive simulation of group
selection would lead to any new insights other than those that can be
obtained by simple toy simulations. In the case of reciprocal altruism we
have seen that it is almost impossible to obtain any generalizable results
from the simulations, because for any candidate of such a result it seems
that another simulation can be constructed where just this supposedly
general result does not hold (see section 4.1.5). Of course, if this is the
case then it will be equally impossible to derive any general results by
mathematical reasoning, because the counterexamples already exist in
form of simulations.33 But if no or only few general conclusions can be
drawn from the computer simulations alone then this means that the
question which of the results are important can only be determined by
empirical research.

4.3.3 Group selection in cultural evolution

The concept of group selection, the working mechanisms of which have
just been demonstrated by a simple computer simulation, was originally
developed for biological contexts. It remains to indicate how the concept
of group selection can possibly be applied to a cultural context. Just
as in the case of kin selection, different ways are imaginable as to how
group selection could appear in a social context. Here, only one such
scenario will briefly be outlined to show what kind of selection processes
can possibly be interpreted as group selection in a social context: If,

33Therefore, the problem is not – as it is sometimes believed – that the working mechanisms of computer
simulations are often not well enough understood analytically (i.e. mathematically).
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for example, we assume that people tend to choose the social groups
that they want to become members of by the average success of group
members and if we furthermore assume that when entering a new group,
people start by following (or “copying”) the behavioral rules that are
common standard in the group, then group selection can take place
in the following way: Suppose, there are different groups with different
levels of altruism in a society. As the groups with a higher proportion of
altruists will be more successful people will move from the less altruistic
groups to the more altruistic groups, that is, between-group selection
takes place by the movement of people from low performing groups to
high performing groups. At the same time, in-group selection can be
assumed to take place by the less successful group members copying
the behavior of the more successful members. A similar scenario has
indeed been designed in an experiment on economic behavior which will
be discussed in detail later (see chapter 5.2.1).

Similarly as in the case of kin selection, the question remains how
much empirical impact the concept of group selection has in a cultural
context. One factor which group selection models such as the one pre-
sented here do not (yet) take into account ist that alturistic or eogistic
behavior may be conditioned on whether the potential recipients of the
altruistic acts are members of one’s own group or not. This in-group
or out-group behaviour is a most salient feature of group psychology
and has also been confirmed in behavioural experiments (Bernhard et
al., 2006). It stands to reason that group selection pressures strengthen
the difference between in-group altruism and out-group egoism and do
in this way also lead to the evolution of an, albeit qualified form of al-
truism. Attempts to apply the concept of group selection to the social
sciences in a very broad sense have also been made. But so far, none
of these has been wholly convincing.34 It is probably more promosing
to link group selection models to certain recurring modes of human be-
havior than to try to interpret cultural or religious history on the basis
of groups selection.

4.4 Summary and conclusions

In this chapter the three basic explanations for evolutionary altruism
(i.e. altruism that results from some Darwinian evolutionary process

34Wilson’s seriously flawed“Darwin’s Cathedral”(Wilson, 2002) has already been commented on earlier.
In their book on altruism “Unto Others” (Sober and Wilson, 1998) Sober and Wilson exemplify group
selection mainly with biological thought experiments. For the discussion of human altruism in the second
half of their book, they rely on psychology and only vaguely refer to group selection (Sober and Wilson,
1998, p. 296ff., p. 345ff.).
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in contradistinction to altruism that has other causes) have been pre-
sented. Each type of altruism has been described by a simple inequation
or a computer simulation or both. The tool of computer simulations in
particular can serve the following purposes for the investigation of al-
truism:

Merits of computer simulations

1. Computer simulations allow proving theoretical possibilities; for
example the possibility of the evolution of altruism in dilemma
situations (section 4.1.2).

Sometimes, however, the demonstrated theoretical possibilities do
not go beyond mere trivialities that can immediately be derived
from the mathematical background theories. For example, the mere
fact that reciprocal altruism can evolve in the repeated Prisoner’s
Dilemma is a trivial consequence of the folk theorem (see page 71
and 77).

2. Computer simulations allow disproving assumed theoretical neces-
sities, like the assumption that group selection necessarily strength-
ens altruism (section 4.3.1).

3. Because they are often easier to handle and more flexible than
purely mathematical models, computer simulations allow easy in-
vestigation of the most diverse and variegated constellations under
which altruism might possibly evolve. Whether the investigation
of these purely theoretical settings is of much scientific relevance is
then of course a different question.

4. Computer simulations can expose “new” phenomena in the sense
of theoretical possibilities never thought of before (like the phe-
nomenon of “slip stream altruism” described in section 4.1.4). For
this purpose, series of simulations (“massive simulations”) might be
employed to detect such phenomena.

5. Just as mathematical models, computer simulations may help the
theorist to understand his or her own theory better, because they
force the theorist to cast the theory in clear and unambiguous
terms. When formulating a theory as a computer program, possible
misconceptions, contradictions or logical gaps become apparent.
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But apart from these merits also some severe limitations of the use
of computer simulations for understanding evolutionary altruism have
become apparent:

Limitations of computer simulations

1. It is not possible to draw general conclusions about the evolution
of altruism from computer simulations of the evolution of altruism.
Any such simulation respresents just a highly contingent sample
calculation (see section 4.1.6). Conducting series of simulations
can only slightly remedy this limitation, which represents a funda-
mental limitation of computer simulations in general.

2. For almost all general conclusions that computer simulations of the
evolution of altruism suggest, it is easy to draw up another simula-
tion of the evolution of altruism, where the conclusion does not hold
any more (see section 4.1.5). It is therefore hardly possible to take
the general conclusions that specific simulations of the evolution
of altruism suggest as a first step towoards constructing a general
theory of altruism. For, one cannot tell on on which of the diverse
and contradicting conclusions that different computer simulations
suggest the theory should be based.

3. Therefore, it is not possible to obtain any scientifically tenable re-
sults about the evolution of altruism by the analysis of computer
simulations alone!

4. Indulgence into pure model research can lead to fundamental mis-
conceptions about the subject matter. In the worst case, these
misconceptions can take the form of myths that are hard to re-
dress (Examples: The “Tit for Tat bubble” (Binmore, 1998, p.
317), the “skew towards reciprocal altruism in theoretical litera-
ture” (Dugatkin, 1997, p. 167)).

The third of these points, which has been highlighted above, may
sound like a mere triviality, but in fact it is not. If the problem of
understanding the evolution of altruism had been primarily theoretical,
that is, if there was only one reasonable way in which the evolution of
altruism could be conceived and modeled then the analysis of computer
simulations might indeed have yielded substantial results about the evo-
lution of altruism. But, unfortunately, there are innumerable ways how
the evolution of altruism can be modeled. And then the question in-
evitably arises why one should give preference to one model rather than
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to another. The only reasonable answer to this question is that the de-
cision must be taken on empirical grounds. The empirical research on
the evolution of altruism is what we turn our attention to now.
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Chapter 5

Empirical research on the evolution
of altruism

The last chapter closed with the conclusion that substantial scientific
results about the evolution of altruism cannot be obtained by looking
at computer simulations alone. The situation would be different if there
were only one right way to model altruism. But because there are so
many plausible ways to do it only a look at the empirical examples can
tell which one is the right one. In the following we will therefore examine
some of the empirical research on altruism. We will first look at biology
and then at the social sciences. When surveying the research in these
fields, there are two questions that are important for us: First of all, we
do of course want to find out whether, how and why altruism evolves
in nature and among humans. Theoretical models and computer simu-
lations demonstrate how it could evolve. Empirical research, hopefully,
can tell us something about how, why and where it does evolve. The
second question concerns the method and research strategy. Already in
the previous chapter there has been opportunity to raise some doubts
concerning the usefulness of the tool of computer simulations for the
understanding of reciprocal altruism. Now we want to know how these
simulation models live up to the empirical research, that is whether
they are helpful for conducting such research and whether they prove
valuable for the explanation of the results of the empirical research.

A survey of empirical research on the evolution of altruism raises
certain methodological issues by itself, which shall briefly be discussed,
before entering into the discussion of the empirical material. First of all,
there is the question of the selection of the material. As the research on
altruistic behavior is a wide and varied field both in biology and in the
social sciences and as the focus of empirical scientists and the categories
they employ are often not the same as those the theoreticians develop,
a selection of materials is unavoidable. In the following, I have tried to
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choose examples that are most closely linked to the theoretical models
and to the concepts of reciprocal altruism, kin selection and group se-
lection described earlier. This criterion of selection also has advantages
for addressing our second question, the question of the usefulness of
simulations as a method. For, if this method fails in those cases that we
would assume it is best suited to deal with, then we have good reason
to assume that it is a bad method (at least in the way it is applied
today) without worrying that we might have been unfair. Still, it must
be admitted that the following selection of empirical example cases is
quite eclectic. This is unavoidable given the sheer extent of this field
of research, but – as should frankly be admitted – it is also partly due
to the fact that I am neither an expert in biology nor in experimental
game theory.

Another methodological issue when surveying research, concerns the
question as to whether one should give a broad overview covering as
much of the research as possible or whether one should rather pick out
a few examples and discuss them in depth in order to demonstrate how
the respective kind of research works and what degree of credibility can
be attributed to it. Regarding the biological examples, I have tried
to combine both approaches. First, an overview of a larger number of
empirical studies on reciprocal altruism will be given to convey an idea
of where this research stands. Then, one example will be picked out and
discussed in depth to see how reliable the results of this research are and
especially how well the theoretical models do when submitted to the“on-
road test”. For the social sciences I confine myself to the discussion of
a few select examples. The reason for this is that while there exists a
lot of empirical research on cooperation dilemmas of one kind or other,
there are hardly any empirical studies that are closely attuned to the
kind of models that have been discussed before.1 It would be spurious
to present a summary of research on behavioral economics that mostly
falls outside the narrower topic of this book.2 But just as in the case of
biology, one of the examples from the social sciences will be discussed in
depth. For the in depth discussion I have in both cases picked examples
that were by their authors intended as show cases for the application
of reiterated Prisoner’s Dilemma models. Therefore, these examples
should be best suited to assess the possible merits and defects of this

1This is even true for Axelrod’s popular model of reciprocal altruism, which has spurred myriads of
further model studies (Dugatkin, 1997, p. 24ff.), but remained quite infertile for the empirical research.

2A fairly recent overview of the research on altruism in experimental economics can be found in
(Fehr and Fischbacher, 2003). The bulk of this research is concerned with the question how altruism
works among humans. While this has some bearing on which kind of evolutionary explanations are
more plausible than others, only few evolutionary models seem to be have been put to the empirical test
directly.
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type of modeling.

5.1 The empirical discussion in biology

5.1.1 Altruism among animals

As in any other field of science the specialist literature on altruism in
biology comes in two different brands. First of all, there are articles in
different biological journals. Then, there are books on the topic written
by specialists that usually present the results of the research published
in articles in a condensed and simplified form. For a non-specialist it
is advisable to stick to the latter kind of literature, for otherwise there
exists a considerable danger of misunderstanding and of giving too much
weight to unimportant details and too little weight to important ones.
Luckily, there exists a treatment of the subject in book-form by an
author who is strongly committed to a game theoretical approach to
the study of altruism. This treatment is Lee Allan Dugatkin’s already
afore mentioned “Cooperation Among Animals” (Dugatkin, 1997). In
what follows I therefore present mostly examples from Dugatkin’s book.
Unfortunately, the book was issued in 1997 and therefore does not cover
the latest research. For this reason, later on I also discuss an example
of a study that has been published on the topic since.

The empirical research which Dugatkin reviews, cannot always be
sorted neatly into different categories of altruism like reciprocal altru-
ism, kin selection or group selection. The reason for this is that when
scientists set out to research altruistic behavior in certain animal species
they usually are not sure beforehand what kind of altruism is concerned.
And quite often the data they are able to obtain does not allow mak-
ing the distinction afterwards. Often it is not even clear whether the
behavioral trait in question is altruistic at all or merely some kind of
byproduct mutualism.3 In the following, different examples of cooper-
ative and potentially altruistic animal behavior that are described in
Dugatkin’s book will be presented. The main aim is to clarify whether
the theoretical categories for altruistic behavior (reciprocal altruism, kin
selection and group selection) can be identified empirically and to what
degree assumptions about the type of altruism can be ascertained. Also,

3The difference between altruism and byproduct mutualism is that while both entail benefits for some
other individual, it must in the case of altruism at least be possible to cheat, while in the case of byproduct
mutualism cheating is impossible in principle that is, an exchange of benefits still may or may not take
place, but if it takes place cheating is not an option. An example to illustrate this might be two people
warming each other in winter by moving closer together. None can enjoy the warmth of the other without
giving warmth him- or herself, which means that there is no way to cheat.
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it will be asked in how far models such as those presented in the pre-
vious chapter can be validated empirically and whether and in how far
these types of models have been useful to empirical research.

Cooperative behavior as it occurs in nature

Egg Trading An often quoted example of reciprocal altruism in partic-
ular is that of egg trading among hermaphroditic fish. According to
Dugatkin it is best documented for sea bass (Wolfsbarsch) (Dugatkin,
1997, p. 46). Sea bass (as well as many other egg trading fish species)
parcel their eggs into small packages. When mating, one fish starts by
releasing a parcel of its eggs, which typically consists of only a small
fraction of the eggs it has. At the same time the partner releases sperm.
Then they switch roles and regularly alternate the release of eggs subse-
quently. These cycles of alternating egg spawning suggest an interpre-
tation of this process as a repeated game. But is the game a Prisoner’s
Dilemma and do the sea basses use a reciprocal strategy, i.e. would they
retaliate if being cheated? Dugatkin’s answer is that it can loosely be
interpreted as a repeated Prisoner’s Dilemma if the release of one parcel
of eggs by one partner and the following release or failure of release by
the other partner is interpreted as one round of the repeated game and
if it is assumed that producing eggs is more expensive than producing
sperm. Although it is difficult to quantify the costs, the latter assump-
tion is almost certain to be true (Dugatkin, 1997, p. 48). A problem is
that due to the lack of quantitative data (and – as of now – the lack of
measurement techniques to obtain such data), it is impossible to fill in
the payoff matrix of the game other than by rough estimates. But then
it is not even sure whether Tit for Tat is a suitable equilibrium strategy.
Regarding the question whether fish engaged in egg trading do in fact
play Tit for Tat, there exists, according to Dugatkin, some anecdotal
evidence (i.e. non-systematic evidence from incidental observations) for
certain types of fish that they do in fact play some deviant version of Tit
for Tat. It is reported that black hamlets and chalk basses retaliate by
waiting much longer to parcel out eggs if a partner failed to reciprocate
before. But sometimes they omit retaliation, which suggests that they
are really using a Generous Tit for Tat strategy (Dugatkin, 1997, p. 48).

The repeated Prisoner’s Dilemma model of Axelrod and Hamilton
(Axelrod, 1984) which assumes a fixed number of rounds or at least
a fixed termination probability is not the only model that can poten-
tially be applied to the egg trading behavior among fish. Dugatkin also
describes another interpretation of the egg trading behavior by R.C.
Conner that is related to a species of plycheate worms and according
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to which there is no fixed termination probability but each partner de-
cides continuously whether to continue or to break off the interaction.
For Connor this is simply a matter of whether the benefit of staying4

exceeds the benefit of leaving and, given his interpretation is right, he
justly speaks of “pseudo-reciprocity” instead of reciprocity (Dugatkin,
1997, p. 49). However, without more precise quantitative data it is not
possible to decide this question.

Alloparenting Another type of potentially altruistic behavior is that
of alloparenting, which according to Dugatkin means “the dispensing of
‘parental’ behavior to young that are not one’s own”(Dugatkin, 1997, p.
101). “Alloparenting” concerns sexually mature individuals that could
also produce offspring of their own. From an evolutionary point of
view such a behavior demands explanation because animals that want
to spread their genes should primarily be interested in raising their
own children not those of others. Nonetheless alloparenting is quite
widespread and found among various kinds of mammals, birds and fish.
Alloparenting among fish has been studied for Lamprologus brichardi,
a type of perch (Barsch) found in the Lake Tanganyika in East Africa.
For this species it is typical that the young stay at the nest for a while
even after they have grown sexually mature and help cleaning eggs and
maintaining and defending the territory. That this kind of helping ac-
tivity is costly is illustrated by the fact that the young that stay at the
nest have a slower growth in comparison with young that do not stay
at the nest. The benefits that mature young derive from staying and
helping at the nest include relative safety from predators and rearing
kin that is at least closely related even if it is not their own. (Other
suggested benefits were not confirmed or at least not measurable by
experimental research.) This suggests that both byproduct mutualism
(safety from predators) and kin selection are involved in the alloparent-
ing behavior of Lamprologus brichardi. But according to Dugatkin there
is also a reciprocal element present because when the mature young start
to reproduce themselves they are expelled from the nest by their par-
ents.(Dugatkin, 1997, p. 50) The only factor promoting altruism that
could strictly be measured was that of kin selection, which of course is
relatively easy to measure. The assumption that byproduct mutualism
and reciprocal altruism are involved as well can, according to Dugatkin,
be confirmed by observation but it is not possible to actually measure
the payoff parameters of the game matrix and apply any of the game

4Although Dugatkin does not say anything about this in his report of Connor, one should assume here
that what is meant is the expected benefit of staying, as the possible future benefit also varies according
to when the other partner decides to break up the interaction.
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theoretic models, let alone computer simulations in any strict sense.
In other species the alloparenting behavior naturally takes a differ-

ent form. A type of alloparenting common among many mammals is
allonursing by giving milk to unrelated conspecifics. It has been re-
searched in some detail for the evening bat Nycticeius humeralis, where
“approximately 20% of nursing bouts involved females feeding unrelated
pups” (Dugatkin, 1997, p. 109). Among the discussed benefits are the
decrease of weight during foraging bouts following the nursing and the
decrease of chances of infection as a consequence of not storing surplus
milk in the mammary glands. Both of these advantages would fall under
the category of byproduct mutualism (which is according to our defini-
tion of altruism in chapter 2.2 not altruistic). But there could be more
to it. According to Dugatkin, who relates to a study by G.S. Wilkinson,
females are more likely to nurse unrelated female pups than unrelated
male pups (Dugatkin, 1997, p. 109), which may be due to the fact that
the males disperse. If this is true then this means that some degree of
reciprocity is also involved. Another variant of alloparenting which has
been described for Rodriques fruit bats consists in the provision of assis-
tance in the birth process by unrelated females (“midwives”) (Dugatkin,
1997, p. 109). Though it has not been determined how the altruistic
behavior has evolved in this case, it is reasonable to assume that it is
somehow connected with the extremely social nature of the long-lived
individuals of this bat species. Again, if this is true, bat-“midwives”
would at best be described as reciprocal altruists (Dugatkin, 1997, p.
109). Given the social nature of this species, one might – by drawing a
somewhat risky comparison – speculate if these altruistic acts may not
somehow resemble the sort of friendship altruism among humans that
goes beyond the “bookkeeping kind of altruism” that reciprocal altru-
ism is often assumed to be (Silk, 2003). But this is of course just a
speculation.

Staying with the bats, one of the classical examples of animal altru-
ism is that of blood sharing among vampire bats (Dugatkin, 1997, p.
113/114). Empirical research indicates that it is a mixture of both kin
selection and reciprocal altruism. Again, the precise conditions (i.e. pay-
offs) cannot be measured, but several indications make the assumption
highly plausible that reciprocal altruism is involved: 1) A high proba-
bility of future interaction, 2) the relatively cheap cost of providing a
meal in comparison to the benefit of receiving one (the latter can be a
question of life and death), which means that the threshold to offering
an altruistic benefit is low, and 3) the ability of the vampire bats to
recognize one another (Dugatkin, 1997, p. 114). Alloparenting behavior
is also documented for many primate species, though here it typically
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does not include the provision of food by the allomothers and usually
the allomothers are immature animals (Dugatkin, 1997, p. 138) so that
they do not fall under the strict definition of alloparenting any more.

Alarm Signals Yet another type of potentially altruistic behavior that
has attracted the interest of researchers is that of giving alarm calls or
alarm signals. As in many of the other instances of possibly altruistic
behavior the empirical data is often too scarce to decide in any specific
case whether giving an alarm call really constitutes an instance of altru-
istic behavior or not. In willow tits the giving of alarm calls seems to be
related to the place in the dominance hierarchy and thus probably falls
into the category of byproduct mutualism as the benefits derived by the
survival of group members as a consequence of giving a call depend on
the position of the group member. However, reciprocity has also been
suggested in this context (Dugatkin, 1997, p. 86). In other bird species,
downy woodpeckers and black-capped chickadees, alarm calls mainly
serve the purpose of mate protection, which is demonstrated by the fact
that alarm calls are not given in same sexed flocks. Then alarm calls
do not provide an example of altruism but of byproduct mutualism.
Still, byproduct mutualism sometimes is the first step in an evolution-
ary history that may eventually lead to altruism. As Dugatkin imparts,
byproduct mutualism typically evolves in harsh environments. In this
case the “harshness” consists in “the decreased probability of acquiring
new mates” (Dugatkin, 1997, p. 86). In terms of chances of reproduc-
tion it may pay off to risk one’s own survival (by giving an alarm call)
in order to increase the probability of survival of a mate. Regarding
the different explanations for the same type of behavior in willow tits,
chickadees and woodpeckers, it should be borne in mind that it is not
necessarily the case that the same type of behavior has the same evolu-
tionary causes if it occurs in different species.

Another species for which alarm calls have been studied quite ex-
tensively are Belding’s ground squirrels. Here it is quite well assessed
that kinship based altruism is the decisive factor for giving alarm calls.
For, typically alarm calls are given by females, and in this species fe-
males are sedentary and breed near their natal sites, while males leave
their natal sites (Dugatkin, 1997, p. 97/98). The hypothesis is further
strengthened by the observation “that ‘invading’ (non-native) females
gave alarm calls less frequently than native females.” (Dugatkin, 1997,
p. 98). A fairly well known example of alarm calls is that of alarm calls
in vervets provided by Cheney and Seyfarth in their book “How mon-
keys see the world”. Among other things Cheney and Seyfarth found out
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that the vervets’ alarm calls vary depending on whether the approach-
ing predator is a leopard or an eagle or a snake, with a different reaction
elicited by the respective alarm call in each case. With respect to al-
truism the important question is whether the alarm call is really given
with the intention to warn other conspecifics as opposed to the possi-
ble intention to signal to the predating animal that it does not need to
bother because it has been detected (Dugatkin, 1997, p. 136/137.). But
the former is obviously the case as different alarm calls elicit different
escape reactions. As alarm calls are given with a higher probability ei-
ther if offspring is present or if mates are present (in the latter case there
exists again a further dependency on the dominance hierarchy), kinship
and byproduct mutualism provide the most plausible explanations.

That giving alarm signals does not necessarily need to be an instance
of altruistic behavior and not even a form of byproduct mutualism is
illustrated by the stotting behavior that occurs in Thomson’s gazelles
(and also in some other less well studied species), a curious kind of
behavior “wherein individuals take all four legs off the ground simulta-
neously and hold them straight and stiff in the air” (Dugatkin, 1997,
p. 94). From numerous hypotheses that have been put forth to explain
stotting only two could be confirmed according to Dugatkin, namely
that stotting is meant to inform the predator of the health of the stot-
ting animal (which means that the predator will know that the stotting
animal will be difficult to catch and will rather “lock on” some other in-
dividual) and that young animals stott to attract the attention of their
mother in dangerous situations (Dugatkin, 1997, p. 95). In both cases
altruism or cooperation is not involved.

Grooming Most of the examples of cooperative or altruistic behavior
among animals so far have been examples of kin selection or byproduct
mutualism, but in spite of the fact that there is a strong “skew towards
reciprocity in the theoretical literature” (Dugatkin, 1997, p. 167) there
have been very few clearcut cases of reciprocal altruism, let alone of
group selection. One kind of behavior that from its very appearance
seems to fit the conception of reciprocal altruism quite well and is often
mentioned as a kind of role model in this context is that of grooming.
Dugatkin relates several studies about grooming in primates as well as
other mammal species. One non-primate species where grooming has
been studied are impala, an antilope species. It is at the same time one
of the rare examples that really fits the model of a repeated game – at
least on a qualitative level. According to Dugatkin who refers to two
studies from Hart and Hart and Mooring and Hart, impala exchange
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bouts of grooming, each bout consisting of a repeated “upward sweep of
the tongue or the lower incisors along the neck of the partner”(Dugatkin,
1997, p. 91). These exchanges of grooming bouts expose several striking
features which strongly suggest that grooming in impala is an instance
of pure reciprocal altruism: 1) There is an almost perfect match between
bouts of grooming received and bouts delivered; 2) the exchange of bouts
ends after one partner stops allogrooming. This rules out the possibility
of byproduct mutualism, which could otherwise offer an explanation if
it is assumed that ticks provide some extra nutrition for the impala;
3) there is no correlation with the rank in the dominance hierarchy
(Dugatkin, 1997, p. 91-94). All in all, this finally seems to be a clearcut
example for the kind of reciprocal altruism that is described by the
repeated Prisoner’s Dilemma model. However, even in this case the
match between model and empirical reality can be ascertained only on
the basis of qualitative similarity because a quantitative measurement
of the payoff parameters has not been done.

Grooming is also one of the most salient behavioral features of our
closest relatives in the animal world, the primates, and therefore has
caught a lot of attention by researchers. The patterns of grooming ex-
changes among primates are much more complex than among the impala
just described. In primates, grooming can serve many different functions
next to the purpose of removing ectoparasites. Among these are the re-
duction of tension (which could otherwise result in conflicts), coalition
formation, where grooming serves as a means to “bribe” others to be-
come allies, and, more general, grooming as an “exchange currency” to
gain other favors in return. While all these describe possible benefits of
grooming, Dugatkin notices that in most studies very little is said about
the costs of grooming (Dugatkin, 1997, p. 117). But certainly there are
costs. Apart from the time and energy spent, it has been recorded that
the lowered attention of mothers engaged in grooming activities results
in their unattended offspring being significantly more often being ha-
rassed by other animals (Dugatkin, 1997, p. 117/118). There is good
evidence that grooming is to a certain degree reciprocal in chimpanzees,
though the reciprocal nature of grooming is not as clear cut as in the
case of impala. In vervets (Meerkatzen) the relation of grooming and
coalition forming has been studied. Here grooming does increase the
probability of responding to solicitation calls for unrelated animals but
not for related animals (where the probability of responding is high,
anyway). These results are not completely undisputed (Dugatkin, 1997,
p. 120), but if they are true, then it appears to be a case of reciprocal
altruism because kinship can be ruled out and, as there exists an oppor-
tunity for cheating (groomed animals could fail to respond to solicitation
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calls), byproduct mutualism can be ruled out as well. Further kinds of
grooming in exchange for “goods and services” have been documented
in chimpanzees and macaques. In chimpanzees grooming sometimes is
related to food exchange (Dugatkin, 1997, p. 123). In an experiment
conducted by Stammbach, a single subordinate member of a group of
macaques was trained to operate a complex lever mechanism for food
release (from which all group members could eat). While the subor-
dinate “specialist” did not rise in rank, it received significantly more
grooming than before by other group members. The acts of grooming
did, however, not take place in strict connection with acts of operating
the mechanism (Dugatkin, 1997, p. 124). So, if any kind of reciprocity is
involved here, it is not the strict type of “bookkeeping reciprocity” that
the repeated Prisoner’s Dilemma model suggests. Quite a lot of stud-
ies on primates emphasize the factor of kinship in grooming (Dugatkin,
1997, p. 124).

Eusociality The most astonishing example of cooperation in the ani-
mal kingdom is that which is found in bee hives or ant hills, where
a large state of insects operates in what appears to be an extremely
cooperative and coordinated manner. Biologists call these kinds of in-
sects eusocial insects, where eusociality is defined by three criteria: 1)
Reproductive division of labour, 2) communal care for the young and
3) overlapping generations of workers in the colony. Eusociality is not
only found in insect species like bees, wasps, ants, termites but also in
certain vertebrates like naked mole rats and Darmland mole rats. When
one compares the forms of cooperation that take place in eusocial an-
imals with the other instances of cooperative behavior that have been
described in this chapter one cannot help but notice the extraordinary
qualitative difference that eusociality makes for cooperation and altru-
ism. Eusocial animals do not just cooperate with respect to a single
function (like grooming in mammals) but they seem to cooperate in
any possible form and manner. Of the many possible examples of co-
operative behavior among eusocial insects, Dugatkin describes in more
detail the cooperative behavior of honey bees in foraging, hive thermo-
regulation and anti-predator behavior. When foraging, honey bees co-
operate in different ways. They inform each other about the location
of food resources via the famous “waggle dance” and they coordinate
their foraging activity with regard to the level of food supply in the
hive in a complex manner (Dugatkin, 1997, p. 152/153). Hive thermo-
regulation is achieved by the bees behaving in such a way as to keep the
temperature inside the bee hive at an ideal 35 degrees Celsius. As the



149

temperature of the whole hive only marginally depends on the activity
of a single bee, this raises a typical collective goods problem, where one
would expect that the individual bees are encouraged to cheat. But in
fact they do not (Dugatkin, 1997, p. 154/155). Even more admirable is
the self sacrificial behavior of honey bees for the defense of their colony.
Because honey bees die when stinging, this behavior appears to be an
extreme case of altruism to the advantage of the colony.

How is the astonishing variety of forms of cooperative behavior as well
as the intensity that altruistic behavior reaches in eusocial animals to
be explained? The best known explanation is that by inclusive fitness.
It has been found out that eusocial insects are haplodiploid species,
where the males carry only a single (haploid) set of chromosomes while
the females have a double (diploid) set of chromosomes. The female
descendants of the queen all share the same genes from their father and
on average 50% of their mother’s genes. In consequence, the worker
sisters are on average 75% related to each other. Thus cooperation in
eusocial insects is easily explained by kinship, one should think. But
there are problems with applying the inclusive-fitness-theory to eusocial
animals. One problem is that there exist eusocial species where the
queen has multiple matings and others where there are several queens
in one colony (Dugatkin, 1997, p. 144). Therefore, kinship cannot be
the only explanation for eusociality. Dugatkin discusses in this context
a number of alternative hypotheses on eusociality (Dugatkin, 1997, p.
144-149). But rather than entering into the complex debate about these
hypotheses, which for a layman would be difficult to present accurately
anyway, I confine myself to a few general reflections on eusociality as an
example for the evolution of cooperation.

In order to do so, I distinguish between two different questions: 1)
Why do the workers in the colonies not reproduce? Or in other words,
why did centralized reproduction evolve and how is it maintained? 2)
Given that the workers cannot reproduce, why do they cooperate? I
am going to answer the second question first because it seems to be an
almost trivial question. If, for whatever concrete reason, the workers
really cannot reproduce individually, then it follows that the best thing
they can do to spread their genes is to cooperate as well and as com-
pletely as possible with the rest of the colony. For, imagine that due to
a mutation some of the worker ants hatching in an anthill were lazy ants
that did nothing to contribute to the colony. Then although the lazy
ants would greatly profit from letting the others do all the work, they
would not be able transform this advantage into greater reproductive
success within the hive simply because they cannot reproduce them-
selves. At the same time the anthill as a whole would suffer increased
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selection pressure from other anthills without lazy ants. One could say
that the scenario that explains the cooperation within eusocial species is
that of group selection, only that the within-group selection that coun-
teracts the evolution of altruism in group selection models is inhibited.
Therefore, in order to produce altruism, evolution only has to solve the
technical problem of coordinating the behavior of the eusocial insects
as well as possible but evolution does not have to resolve a conflict
of reproductive interests any more, which in non-eusocial species acts
against the emergence of altruism. This explains both the extraordinary
intensity of altruistic behavior (up to self-sacrifice!) as well as the great
variety of cooperative behavior in eusocial species. Strictly speaking,
however, our definition of altruism in chapter 2.2 would preclude calling
the cooperative behavior of eusocial insects altruistic if the “benefits” in
the definition are understood in terms of reproductive fitness. Because
the workers in a colony do not reproduce, no fitness costs are incurred
by them by acting altruistically.

Given that the altruistic behavior of eusocial animals is easily ex-
plained by (uninhibited) group selection, the remaining question is, how
did the workers ever become so altruistic as to stop reproducing indi-
vidually and why do they remain so? It is in answer to this question
that other mechanisms like inclusive fitness or byproduct mutualism
come into play. In mole rats, Dugatkin maintains, it was byproduct
mutualism forwarded by harsh environmental conditions such as suc-
cessive prolonged droughts in the evolutionary history of certain mole
rat species that caused the evolution of eusociality:

... at the evolutionary onset of cooperation in naked mole
rats, when reproductive division of labor was likely minimal,
a “harsh environment” central to byproduct mutualism, rather
than kinship per se, may have been the predominant selective
agent. (Dugatkin, 1997, p. 106)

Differently from typical eusocial insect species, mole rats have a
diploid set of chromosomes, which once more shows that eusociality
does not by necessity depend on the genetics of a haplodiploid set of
chromosomes. Still, it is plausible to assume that the close kinship ties
in haplodiploid species facilitate the evolutionary transition to a repro-
ductive division of labor because the fitness cost of giving up individual
reproduction in favor of centralized reproduction in a colony is much
lower if the relatedness is close. The mechanisms by which the repro-
ductive division of labor is maintained do – as one should expect – also
vary from species to species. For honeybees, for example, a mechanism
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called “worker ’policing’ ” has been described, where the males that
hatch from worker laid eggs5 are killed by other workers. The behavior
is probably best explained by kinship. (If the queen has multiple mat-
ings, workers are more related to their brothers than to their nephews
(Dugatkin, 1997, p. 150).) But Dugatkin also suggests that group selec-
tion may play a role “in that without policing a much greater degree of
within-colony aggression would exist, and this, in turn, could decrease
group productivity” (Dugatkin, 1997, p. 151). Another obvious way to
ensure the monopoly of reproduction is aggression on part of the queen
by which the workers are coerced into their role. This has been reported
for the previously mentioned mole rats (Dugatkin, 1997, p. 106).

If the alleged altruism of eusocial species is easily explained by the
reproductive division of labor, then the cooperation of several queens in
one colony must still be explained by the other mechanisms of the evo-
lution of altruism. And indeed, here we can find some striking cases of
reciprocal altruism and even group selection. One such case is the “so-
cial contract” that is found in paper wasps (polistes fuscatus) (Dugatkin,
1997, p. 157/158). In paper wasps dominant queens tolerate other, sub-
ordinate queens in their nest. Both dominant and subordinate queens
lay queen-destined as well as worker-destined eggs. But subordinate
queens disappear by the time the workers emerge. Cooperation be-
tween dominant and subordinate queens requires that they leave each
other’s eggs unharmed. Experimental research has shown that subor-
dinate queens reacted aggressively to simulated oophagy on queen des-
tined eggs, but not on worker destined eggs, while the dominant queen
did not show such a reaction. This strongly hints to reciprocal altruism
on part of the subordinate queens. The suggested reason why dominant
queens do not react to simulated oophagy at all is that they can still
produce queen-destined eggs after the subordinates are gone, while the
subordinates themselves do not get a second chance. For the dominant
queen it is a different deal, so to speak.

An example of cooperation between colony founding queens that is
probably due to group selection can be found in desert seed harvester
ants (Messor pergandei) (Dugatkin, 1997, p. 159). For some populations
of this species it has been observed that the queens jointly produce
workers when founding a colony. Once the workers have emerged, the
queens fight to the death until only one queen is left. Another feature
of the desert seed harvester ant is that different colonies are engaged in
brood raiding against each other. According to Dugatkin’s account, the

5In honeybees workers lay eggs, but these are unfertilized and only develop into males, whereas the
queen can control which of her eggs are fertilized and thus develop into females and which are not fertilized
and develop into males.
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following holds:

In the case of M. pergandei, the trait of interest is the pro-
duction of workers, which, although selected against within
groups (via the cheater problem), may be selected for as groups
with many cooperators survive brood raiding (i.e. differential
productivity of groups). (Dugatkin, 1997, p. 160)

As the relative isolation of groups is a vital requirement for group se-
lection to operate towards the evolution of cooperation, it is no surprise
that the cooperative behavior only occurs in populations of M. per-
gandei “where environmental factors aggregate starting colonies, which
occur only in the sandy ravine bottoms where soil moisture is avail-
able” (Dugatkin, 1997, p. 160). Other populations of the same species
that live in different habitats do not display cooperative behavior in the
founding phase of a colony, but here queens react aggressively to any
rival right from the beginning (Dugatkin, 1997, p. 160/161). The con-
clusion that cooperation in M. perganei is a result of group selection has
not gone completely undisputed however. As in this case – just as in
any other of the empirical instances of the evolution of cooperation in
biology described so far – no quantitative measurement of payoffs could
be made, it is of course difficult to assess these findings beyond what
can be deduced from the mere phenomenology of this instance of coop-
eration. Still, similar results have also been obtained for another ant
species, Acromymes versicolor (Dugatkin, 1997, p. 161), which bestows
the explanation by group selection in this case with some additional
credibility.

Discussion: Do the computer models of altruism live up to the empirical
research in biology?

The list of examples of cooperative and altruistic behavior among an-
imals that has just been given is, of course, far from being complete.
Still, it shows how far reaching and varied the forms of cooperative
behavior that exist in nature are. But apart from this scientific fact,
which is certainly interesting in its own right, our main concern here is
to find out in how far the kind of modeling of altruism that has been
demonstrated in the previous chapter proves to be helpful for the un-
derstanding of the empirical instances of altruism and, if not, what are
the causes for this failure. In order to tackle these questions we must
distinguish different levels of the application of formal models and in
particular of computer simulations to the empirical problem:
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1. Conceptual Level: On this level the model is merely meant to
demonstrate how a certain mechanism works in principle. For this
purpose it is not necessary that the model is empirically very ade-
quate or that the parameter values used in the model are based on
more than plausible assumptions. Still, the model cannot be arbi-
trary. It must at least give us some indication of how the empirical
phenomenon can be identified as one that falls within the class of
phenomena which the model describes. For example, repeated Pris-
oner’s Dilemma models of reciprocal altruism indicate that there
must be repeated interaction and that the situation should be a
(repeated) dilemma situation, not just one where the participants
profit from their interaction anyway, as in byproduct mutualism.
This alone – as the previous brief survey of empirical examples has
shown – can already be difficult to determine.

2. Application Level: At this level we require that there is a close con-
cordance between the model itself and the empirical phenomenon
or class of phenomena that the model describes (or “models”). The
concordance must be close enough so that we can empirically deter-
mine 1) whether the model applies to the empirical phenomena in
question and 2) whether it describes them correctly. If the model
contains quantitative magnitudes as input or output values then
this implies that we must be able to measure these magnitudes in
some way or other.

We will elaborate on these two categories of models a little more in
chapter 6. Here the distinction is made mainly to preclude a certain
defense strategy that is often used to excuse spurious modeling. This
defense strategy consists in replying, whenever somebody calls into ques-
tion that the model fits empirical reality, that it is just a model and that
from a model, being by definition a strongly simplified representation of
reality, one cannot expect a representation of the modeled empirical sit-
uation that is accurate in every possible respect. However, as not every
model can be a model for anything, there must be a limit up to which
this excuse is acceptable. And this limit certainly depends on what
claim is connected with the model. If the claim is that the model can
actually be applied, the requirements are certainly higher than when it
is just meant to give expression to a certain idea or concept.

Regarding the empirical examples from biology that have been pre-
sented so far, it can safely be concluded that not a single one of the
simulation models of the kind that have been presented in chapter 4
proved to be applicable in a strict sense. In the beginning of his book
on “Cooperation among Animals” (Dugatkin, 1997) Dugatkin lists a
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whole array of such models. But even though he is extremely sympa-
thetic towards this approach, he almost nowhere in his book refers to
any of these models. There is no instance – except one which ultimately
turned out to be a failure (see chapter 5.1.3) – where the empirical re-
search he presents is related or can be related to any of the theoretical
simulation models. The reasons for this are hinted at by Dugatkin him-
self in the last chapter of his book: Save for one exception, Dugatkin
was not able to present a single empirical study where the payoff pa-
rameters, which are crucial for the application of any game theoretical
model, have been or could be measured. The one exception concerns an
experimental study on blue jays, where blue jays could trigger a“cooper-
ate” or a “defect” button (Dugatkin, 1997, p. 80/81) and thereby release
food according to a Prisoner’s Dilemma game matrix or – in a second
experiment – according to a stag hunt game matrix (which is one way
to circumscribe byproduct mutualism in game theoretical terms). The
result was that blue jays never cooperated in the Prisoner’s Dilemma,
even though it was repeated, and always cooperated in the stag hunt
game. The authors of the experiment concluded that no strategies for in-
teraction in the repeated Prisoner’s Dilemma have evolved in blue jays,
which leads them to doubt the “general significance of the Prisoner’s
Dilemma as a model of non-kin cooperation.” (Dugatkin, 1997, quoted
p. 80). Notwithstanding this skeptical conclusion about the Prisoner’s
Dilemma as a proper model for non-kin cooperation, Dugatkin regards
it at least as a serious attempt to address the issue of quantifying the
payoff matrix (Dugatkin, 1997, p. 165). This can surely be granted, but
it is still a long way until a satisfatory mode of quantification will be
reached. For, in order to quantify the payoff matrix we would need to
know the payoff values in terms of reproductive fitness and not merely
in terms of food release, which does most probably not transform pro-
portionally into relative numbers of offspring.

If this was the only example where the empirical research was ap-
proaching the measurement of payoff paramaters and if – as we have
seen in chapter 4 – the computer models of altruism crucially depend
on the values of the payoff parameters then this means that the level
of empirical applicability of these models has not yet been reached – at
least not at the time when Dugatkin compiled his surveying study on
“Cooperation among Animals” (1997).6

But what about the conceptual level? If the computer models are not
(yet) really applicable, do they perhaps help us to form sound concepts
and provide us with categories of analysis? Even on the conceptual

6This still seems to be true today (see the following section).
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level, it has in many cases been difficult to decide which type of altru-
ism is at work in a specific case and whether it is altruism at all and
not merely byproduct mutualism. At the same time, game theoretical
models (though not game theoretical models alone) allow for a relatively
sharp conceptualization of different types of altruism, which is helpful
even if these types do in many instances not appear in a pure form in
nature (grooming among impala being one of the few exceptions). One
could say that on this level they serve a similar function as the “ideal
types” do in the social sciences according to Max Weber: Even though
they contain very strong abstractions they can help to get a better grip
on empirical reality. The heuristic benefits of game theoretical think-
ing for the understanding of altruism become apparent in the case of
grooming among primates. Here, as Dugatkin notices (Dugatkin, 1997,
p. 117), behavioral ecologists have mostly focused on the benefits of
grooming but not often asked the question of the costs of this type of
behavior. This is quite understandable from the point of view of behav-
ioral ecologists because from its very appearance the grooming behavior
does more strongly suggest to ask the question of what it is good for
than the question of its costs (which even might seem quite negligible
at first sight). But from the theoretical perspective it is clear that the
question of why this kind of potentially altruistic behavior evolved is a
question of benefits and costs. Thus, theoretical reflection on models of
altruism, even if they are toy models, may help to direct the empirical
research in a useful manner.

This said, there is of course an important caveat that has to be men-
tioned right away. The benefits just described of modeling on the con-
ceptual level (clarifying and sharpening our concepts, directing empirical
research) only hold for the most elementary and simple models, but not
for complicated models, massive simulations and in general the whole
baroque richesse of theoretical models and simulations that can be de-
rived from any simple model by changing parameters, adding further
“plausible” conditions etc. Judged against the background of the empir-
ical findings that are summarized in Dugatkin’s book (which, after all,
is the book of an author who is very sympathetic towards the modeling
approach), simulations in the fashion of those of which a small sample
has been discussed in chapter 4.1.5 and of which a role model has been
presented in detail in chapter 4.1.4 have turned out to be as good as
completely useless. Neither did they provide us with important insights
on the conceptual level that went beyond what can already be demon-
strated by much simpler toy models, nor was any simulation of this type
empirically applicable in the sense described above.
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Given that the simulation models turned out to be largely useless for
the explanation of the evolution of altruism in nature, the question is,
of course, what are the reasons for this deplorable state of affairs. One
possible explanation could be that most of the empirical research sur-
veyed in Dugatkin’s book was not designed to put any particular models
of altruism or cooperation to the test, but that the behavioral ecologists
conducting such research had other research interests. This might be
especially true for the field research on cooperative behavior as opposed
to the experimental research. Usually, there exists a time lag with which
newly invented concepts and methods pervade a whole science. If this
was true then maybe the only problem was that Dugatkin wrote his
book too early, at a time when only a small part of the empirical re-
search was informed by the latest models of the evolution of altruism?
But then we should expect to find more usage of simulation models in
the empirical research on altruism that has been published since. In
order to check whether this is the case we will briefly examine a more
recent example of the empirical research on altruism in the following
section (section 5.1.2). It will turn out that just as little use could be
made of simulation models as in any of Dugatkin’s examples. In order
to further pinpoint the difficulties that prevent the application of sim-
ulation models, or, more precisely, the brand of simulation models that
has dominated the modeling of the “evolution of altruism” for a long
time, I finally discuss in depth one of the few examples where biologists
set out with Axelrod’s and Hamilton’s concept of reciprocal altruism
but soon became aware of the limits of this theoretical background (see
chapter 5.1.3).

5.1.2 A more recent example: Image scoring cleaner fish

The discussion of Dugatkin’s survey on “Cooperation among Animals”
has shown that there is a wide gap between the modeling of altruism
and cooperation on the one hand and the empirical research on cooper-
ative behavior among animals on the other hand. While the theoretical
models did allow formulating certain concepts of altruism, it was not
possible to relate the simulation models of altruism to the empirical in-
stances of cooperative behavior in any more than a metaphorical sense.
But is this limitation due to systematic difficulties of applying abstract
simulation models or is it, maybe, just an interim problem that can ulti-
mately be overcome by more refined empirical research methods? Since
Dugatkin’s survey dates from 1997 it is reasonable to ask whether the
situation has changed till then. Therefore, we will look at one recent
example of empirical research on altruism in biology. Again, the pur-
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pose of the discussion of this example is primarily epistemological. No
claim is made that the examples discussed in the following, concern very
important or representative types of altruism in nature (although they
fit well into the overview of animal altruism given previously). We want
to find out, how much use is made of theoretical models of altruism in
typical empirical research studies.

The study concerns “Image scoring and cooperation in a cleaner fish
mutualism” (Bshary and Grutter, 2006). Image scoring is variant of
reciprocal altruism, where cooperation depends on whether the part-
ner has been seen to cooperate with others. Image scoring is thus a
type of indirect reciprocity because it is the altruistic act that has been
bestowed unto someone else that is being reciprocated. The rationale
behind indirect reciprocity is that someone who has behaved coopera-
tively towards someone else may also behave cooperatively to oneself.
Another type of indirect reciprocity that does only occur among humans
is reputation based cooperation, where one gains reputation by cooper-
ating with people that have a high reputation. Differently from mere
image scoring, reputation can be passed on by telling about it. Image
scoring only requires that the partner’s behavior is observed in a simi-
lar situation. In contrast to reputation based cooperation the cognitive
requirements for image scoring are therefore only comparatively low.
In fact they may be even lower than the cognitive requirements for the
evolution of altruism in repeated Prisoner’s Dilemma situations because
for image scoring no bookkeeping or partner recognition is required so
that it does not come as a surprise that image scoring behavior can be
found even among relatively “primitive” animals.

In the cleaner fish Labroides dimidiatus (also known as Striped
Cleaner Wrasse, or in German: “Putzerlippfisch”) that Bshary and Grut-
ter experimented with, the clients“invite”the cleaner fish for inspection.
The cleaner fish then usually feed upon the ectoparasites of the client.
But they could also feed on the mucus of the client and there is evi-
dence that the mucus is actually their preferred nourishment. Thus, the
cleaner fish can either cooperate by removing the ectoparasites or cheat
by munching the client’s mucus. The client on the other hand cannot
cheat the cleaners. Due to the asymmetry of the situation, cooperation
could not have been evolved via direct reciprocity. That image scoring
is a potential candidate for the explanation of cleaner fish cooperation
is suggested by field research on cleaner fish according to which: “Client
fish almost always invite a cleaner’s inspection if they witnessed that
the cleaner’s last interaction ended without conflict, invite less if they
do not have such knowledge, and invite the least if the last interaction
ended with conflict.” (Bshary and Grutter, 2006, p. 975).
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In order to test the image scoring hypothesis Bshary and Grutter
conducted two experiments, one on the client behavior and one on the
behavior of the cleaner fish. In the first of these experiments a client
was placed in the middle of an aquarium divided by one-way mirrors
into three basins. In one of the side basins a group of cleaner fish
fed on prawns attached to a model client fish. In the other side basin
a group of cleaners was placed without a model. The result of this
experiment was that the client spent significantly more time near the
group of cleaners that was engaged in cleaning activity. This result
suggests the conclusion that clients prefer cleaners that can be observed
to be cooperative over cleaners with an unknown cooperation level.

The second experiment was more complicated. This time the cleaners
were placed in either an image scoring or a non image scoring scenario.
In both scenarios the client fish was simulated by plates to each of
which two different types of food items, fish flakes and prawn items,
were attached. Labroides dimidiatus prefers prawns to fish flakes just
like it prefers mucus to ectoparasites. The question that the experiment
was intended to answer was whether the cleaner fish would cooperate by
feeding against their preferences in the image scoring scenario. In both
the image scoring and the non image scoring scenario the cleaner fish
could feed from two identical plates. In the image scoring scenario both
plates would be removed immediately after one prawn item was eaten
from one of the plates, while in the non image scoring scenario only
the plate from which the prawn item was eaten was removed. To make
sure that the cooperative or non cooperative behavior did not merely
depend on the sheer amount of nourishment available a third scenario
was tested, where the cleaner fish could feed only on one plate which
was also removed immediately after a prawn item was eaten. The result
was that in the image-scoring scenario the cleaner fish fed significantly
more often against their preference when feeding on the first plate than
when feeding on the second plate or a single plate or when feeding on
the first plate in the non-image-scoring scenario.

The experimental results thus strengthen the assumption that coop-
eration in cleaner fish is due to image scoring. It is noteworthy that
the cleaner fish do not merely react to the presence of another client,
a condition which was fulfilled in the image scoring and the non image
scoring scenario, but to the reaction of the other client that is present.
This means that the cleaner fish do only cooperate if the clients actually
engage in image scoring.

Now the crucial question for our purpose, the assessment of the value
of theoretical models for the empirical research, is whether and to what
level Bshary and Grutter could draw upon theoretical models of the
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evolution of cooperation. Bshary and Grutter do not make more than
passing mention of the mathematical models and computer simulations
on image scoring (Bshary and Grutter, 2006, p. 975). Not to enter
upon a discussion of these models is quite reasonable for them as the
specific features of these models remain completely irrelevant for their
empirical research. It is only the basic concept of indirect reciprocity
that Bshary and Grutter draw upon for their empirical research. The
concept of simple indirect reciprocity requires “image scoring by clients
and an increased level of cooperation by cleaners in the presence of
image-scoring clients” (Bshary and Grutter, 2006, p. 796). Both these
requirements have been tested experimentally by Bshary and Grutter.
Again, we find a concordance of theoretical modeling and empirical
research only on a basic conceptual level.

5.1.3 An in-depth example: Do sticklebacks play the repeated
Prisoner’s Dilemma?

In order to show what difficulties the attempt to apply the models of
reciprocal altruism meets in practice, I discuss in the following an ex-
ample where biologists tried to apply the theory of the “evolution of
cooperation” of Axelrod and Hamilton (Axelrod, 1984) (which is based
on computer simulations that have been a role model to the ones pre-
sented above) to a case of altruistic behavior in nature. The example
concerns a behavioral trait called “predator inspection” that is found in
certain types of shoal fish like sticklebacks. The behavior of “predator
inspection”has among others been examined in two empirical studies by
Manfred Milinski and Milinski and Geoffrey Parker. The earlier of these
two studies (Milinski, 1987) still draws heavily on Axelrod’s and Hamil-
ton’s model of the repeated Prisoner’s Dilemma. The other study that
has been described in a paper that appeared ten years later (Milinski
and Parker, 1997) and employs a totally different theoretical interpre-
tation of the results. As I try to demonstrate in the following, both
studies taken together show that the choice of an appropriate formal
description of reciprocal altruism (or cooperation) raises very difficult
and often by no means unambiguous questions of interpretation and
measurement. Against this background any game theoretical model re-
search that is not closely linked to empirical questions must appear like
a pure “Glasperlenspiel”.7

“Predator inspection” is a behavior that is found (among other

7That this has nothing to do with the usual gap between theory and practice or between theoretical
and empirical research but reflects a specific impasse of the modeling approaches in evolutionary game
theory will have become clear at the end of this section and will be discussed again in chapter 6.
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species) in sticklebacks. Sticklebacks are small fish living in shoals. If a
predator (a pike for example) comes within a certain range of the shoal,
it can be observed that either a single stickleback or a pair of sticklebacks
leaves the shoal and carefully approaches the predator. The sticklebacks
do so in order to inspect the predator, presumably to gain information
about the type, size, location and movement of the predator. Typically,
a pair of sticklebacks gets much closer to the predator than a single
stickleback. If the sticklebacks approach as a pair, it can be observed
that they advance with characteristic jerky movements in such a way
that one stickleback swims a short distance ahead and then “waits” for
the other, who follows in a similar jerky movement (Milinski, 1987, p.
433). This suggests interpreting the sequence of jerky movements as a
repeated Prisoner’s Dilemma, where the sticklebacks play Tit for Tat.
In his earlier paper Milinski tried to confirm this assumption by simu-
lating the partner stickleback with different types of mirrors so that the
mirrored fish either appeared at the same distance from the predator
(simulating a cooperative partner) or a little bit further behind (simu-
lating a non cooperative partner). The result was that the sticklebacks
advanced much closer to the predator when they were accompanied by
a cooperative partner. Milinski interpreted this result as an empirical
confirmation of Axelrod’s and Hamilton’s theory of cooperation. By
and large this seems correct if we ignore for a moment the fact that
the results of Axelrod’s and Hamilton’s simulations were more contin-
gent than was known at that time. But there exists a problem in so
far that Milinski confines himself to assessing that the two inequalities
T > R > P > S and 2R > T + S hold. Now, as the simulation results
above show, the simulation is sensitive to changes in the concrete values
of the payoff parameters, and unfortunately these would be very hard
to measure in the case of the sticklebacks.

After much further experimental research on sticklebacks in the later
paper, Milinski and Parker offer quite a different formal description of
the same behavioral trait of “predator inspection”. There is not much
talk about the repeated Prisoner’s Dilemma any more. While it is still
true that the situation of two sticklebacks approaching a predator can
(at a certain distance range) be interpreted as a Prisoner’s Dilemma,
this assertion alone does not shed much light on the problem. Instead
of meddling with the Prisoner’s Dilemma, Milinski and Parker therefore
examined the possible utility calculus that controls the behavior of the
sticklebacks.8 According to Milinski and Parker, even a single stickle-

8In the following Milinski’s and Parker’s construction will only be described in general terms. For the
mathematical details see Milinski and Parker (1997). A major problem of this construction, which is also
the reason why Milinski and Parker only reach an ambiguous conclusion, is that the fitness benefits of
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back will approach a predator up to the point where the advantages (of
gaining information about the predator) are balanced by the risk of be-
ing eaten (Milinski and Parker, 1997, p. 1241/1242). For the case when
two sticklebacks jointly approach the predator, Milinski and Parker of-
fer two alternative descriptions one that assumes cooperation (Milinski
and Parker, 1997, p. 1242) and another one that does not necessar-
ily presuppose cooperation (Milinski and Parker, 1997, p. 1242-1245).
Milinski and Parker do not ultimately reach a decision which of these
descriptions is the right one. For, even if one does not assume coopera-
tion, two fish will – according to their model description – move closer
to the predator than a single fish. The reason is this: The distance to
the predator can be divided into three zones, the “far zone”, the “match
zone” and the “near zone”. In the “far zone” that is, when the distance
to the predator is still very great, each of the two fish gets an advantage
from moving closer to the predator, even if the other fish stays back. In
the “match zone” (medium distance to the predator) a partner that has
fallen behind will try to catch up with its forerunner, although neither
of the two partners gets an advantage from taking the lead (from which
it follows that both fish can only advance synchronously if one does not
assume at least a minimum of reciprocal altruism). Finally, in the “near
zone” the “best reply” of each fish is to stay back behind the other one.

If there are two different theoretical descriptions of the behavior of a
pair of “inspecting” sticklebacks, one that assumes cooperation between
the sticklebacks and one that does not, then this raises the question
which of these is true or whether the sticklebacks in reality cooperate
or do not cooperate when jointly inspecting a predator. At the time of
writing the second paper Milinski and Parker come to the conclusion
that the current state of research does not allow to decide this question:
“However, it is not yet possible to analyze quantitatively whether pairs
are conforming to the cooperative or non-cooperative ESS [Evolutionary
Stable Strategy, E.A.].” (Milinski and Parker, 1997, p. 1245) How can
this result be reconciled with their earlier study that seemed to con-
firm Axelrod’s and Hamilton’s theory of the “evolution of cooperation”?

inspection can only be guessed. While it is plausible to assume that the benefits decrease with decreasing
distance from the predator, there exist no exact measurement procedures for the benefits. Therefore,
both the type of the function (Milinski and Parker present two alternatives, an exponentially decreasing
and a linearly decreasing function) and its parameter values can only be guessed. – In response to a
criticism that appeared slightly earlier, Dugatkin, who worked theoretically and empirically on the same
topic as Milinski, still defends the notion that predator inspection behavior is best understood as a Tit

for Tat strategy (Dugatkin, 1996). But he misses out the problem that the respective Prisoner’s Dilemma
models are notoriously unstable and he seems to assume that there exist only the two alternatives to
explain the behavior of predator inspection either as the outcome of a reiterated Prisoner’s Dilemma or
as byproduct mutualism. But as the later paper from Milinski and Parker (Milinski and Parker, 1997)
suggests, these are not the only alternatives to conceive of predator inspection (see the main text below).
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The answer is that obviously the earlier conclusions have been drawn
too rashly, probably due to a subtle misconception in the earlier exper-
iment’s setup: An uncooperative fitness maximizing fish would never
have behaved as the uncooperative fish simulated by the mirror did.
Therefore, the reaction of the real fish that stopped at a specific dis-
tance from the predator does not necessarily need to be interpreted as a
“punishment” which is part of a Tit for Tat like strategy. The distance
at which the real fish stopped may just have been its optimal distance
(from a purely “egoistic” point of view) given the presence and distance
of the simulated partner fish.

The result shows how difficult it is, even in a biological context, to
apply simulation models of reciprocal altruism such as those described
above. The repeated Prisoner’s Dilemma does not seem to be an appro-
priate model for the sort of behavior Milinski examined. As has been
shown previously, other examples for reciprocal altruism from biology
meet the same difficulties. The same conclusion is confirmed by other
biologists that work in the field of evolutionary game theory. An expert
in this field, Peter Hammerstein, writes: “Why is there such a discrep-
ancy between theory and facts? A look at the best known examples of
reciprocity shows that simple models of repeated games do not prop-
erly reflect the natural circumstances under which evolution takes place.
Most repeated animal interactions do not even correspond to repeated
games.” (Hammerstein, 2003a, p. 83) In face of the vast multitude of
models of reciprocal altruism and the “evolution of cooperation” this is
a rather sobering conclusion. Yet, it must be taken seriously. And if
it is taken seriously, it strongly confirms the skepticism towards purely
theoretical simulations that has already been expressed earlier. As it
appears, “blind modeling” (that is modeling that is not informed by em-
pirical research but relies only on plausible assumptions alone) is not a
proper research tool that allows us to find anything out about reciprocal
altruism beyond the merest truisms.

Is there really nothing that can be done about it? In a criti-
cal appraisal of the game theoretical computer simulations in biology,
Dugatkin described the situation roughly as follows: In order for the
models to contribute to scientific progress, models and empirical re-
search must be part of a feedback loop that is, theoretical models may
help to direct empirical research but then the insights and results of
the empirical research must be “fed back” into the construction and re-
finement of models (Dugatkin, 1998, p. 54ff.). Obviously, the feedback
loop was not closed, insofar as the bulk of simulations on the evolution
of cooperation did never really take into account the restrictions and
conditions of the empirical research on the subject. The question of
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the relation between empirical research and theoretical modeling will
be elaborated a little more in chapter 6, where a build to order princi-
ple of computer modeling will be proposed, according to which models
that aim to go beyond a merely conceptual level should always be con-
structed around empirically measurable quantities. That the burden of
accommodation is thus laid on the theoreticians finds its justification in
the fact that much stronger restrictions apply when devising measure-
ment procedures (including the restriction that only certain quantities
can be measured at all) than for the design of models which has become
comparatively simple with the advent of computers.
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5.2 Empirical findings in the social sciences

Empirical research on cooperation and altruism in the social sciences
falls roughly into two different categories. One part of the empirical re-
search consists of laboratory experiments, where the predictions of game
theory are tested by letting subjects play different types of cooperation
games. For this type of research subjects are placed in highly styl-
ized and artificial laboratory situations. This allows creating situations
which are somewhat similar to the highly abstract settings presupposed
by mathematical models or computer simulations of cooperation. Al-
though the laboratory experiments are usually not designed to match
a particular model9, they allow for some degree of comparison between
theoretical results and empirical reality. Following as before the pars pro
toto approach, I discuss two selected examples of this type of research
and highlight the epistemological issues involved.

The other and more important part of empirical research on cooper-
ation would be real world examples that potentially expose the patterns
of cooperation predicted by the theory. In spite of the extreme popu-
larity of Axelrod’s book on the “Evolution of Cooperation” (Axelrod,
1984), there exist only relatively few empirical field studies that make
use of the theory of the evolution of cooperation which is based on the
repeated Prisoner’s Dilemma.10 Usually, such studies rather draw a sort
of general inspiration from the ideas related to the repeated Prisoner’s
Dilemma model than relate to any simulation models in particular. But
then – as has already become apparent in the biological case – the
respective computer simulations are not really suitable for empirical ap-
plication. For, it is often close to impossible to measure the relevant
parameters, to exclude interferences of coefficients not captured by the
theory or just to ascertain which kind of game is played in a given sit-
uation. In order to show what difficulties are involved when one tries
to apply the results of computer simulations to real world problems, I
discuss the application of the reiterated Prisoner’s Dilemma model of
the evolution of altruism to the “live and let live” system that evolved
in the First World War among soldiers of opposing armies. This ex-
ample is particularly well suited for demonstrating the epistemological

9They are rather designed with certain research questions in mind, taking into account the pragmatic
restrictions of the laboratory and not always strictly relating to theoretical results.

10For an overview of the literature that relates to Axelrod’s theory see (Axelrod and D’Ambrosio, 1994),
(N.M.Gotts et al., 2003) or (Hoffmann, 2000). It is characteric that the the only empirical application
scenario that the latter quotes is the ultimately failed attempt of Milinski to interpret the predator
inspection behavior of sticklebacks in terms of the repeated Prisoner’s Dilemma (see also chapter 5.1.3).
All three surveys strengthen the impression that the modeling business is mostly self-contained and quite
detached from the empirical research.



165

issues involved in the use of simulation models in the context of empir-
ical research because it has originally been advanced as a showcase to
demonstrate the power of the simulation based approach to the study of
the evolution of altruism (Axelrod, 1984, p. 67-79). The example will
be discussed in depth and it will be demonstrated that far from being
a showcase for the use of simulation models it exposes some severe lim-
itations of this method. The criticism will be elaborated thoroughly in
the final chapter (chapter 6).

5.2.1 Laboratory experiments

The evolution of institutions

Laboratory experiments usually center around simple “standard”
dilemma situations like the Prisoner’s Dilemma or a public goods prob-
lem. One particular question that has been examined experimentally is
that of how punishing institutions can evolve. The evolution of punish-
ing institutions is a riddle because in those situations where a punishing
institution would be needed to solve a dilemma, a new dilemma arises
that precludes the evolution of punishing institutions. One such con-
stellation has been examined experimentally by Gürerk, Irlenbusch and
Rockenbach (Özgür Gürerk et al., 2006). They set up an experiment
where subjects interact anonymously in a public goods dilemma for 30
rounds. Each subject can decide which amount of its income to donate
for the provision of a public good. The return value was such that each
subject profited strongly from the overall contributions, but still had an
incentive to let the others pay the public good and not to contribute
himself or herself. Typically, the provision of public goods degrades in
such a situation after only a few rounds.11 To make matters more in-
teresting, the subjects could choose to join either of two groups, one
group that was provided with a sanctioning institution and one that
was sanctioning free. After each round, subjects could choose to change
groups. The sanctioning institution worked in the following way: In the
group with sanctioning, each participant was allowed to punish or re-
ward other participants within the same group. Both punishment and
rewards cost the punishing or rewarding subject one monetary unit.
Persons punished would lose three monetary units, while persons re-
warded would gain one monetary unit. (Punishments and rewards were
issued in the same round after the contributions were made.) The de-

11It should be remembered that the provision of a public good is an N-person dilemma. In an N-
person dilemma the evolution of reciprocal altruism faces much stronger barriers than in the 2-person
dilemma, though it has indeed been demonstrated that there exists a theoretical possibility for conditional
cooperation to be stable even in an N-person game (Taylor, 1997, p. 82ff.).
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cision to punish or to reward was left entirely at the discretion of the
participants. Since punishment was costly, the provision of punishment
therefore constituted a second level free rider problem.

Although the authors of the experiment were not primarily concerned
with studying evolutionary social processes, their experimental setup
does in fact resemble a kind of group selection scenario with two levels
of selection. On the within-group level selection takes place between a
cooperative and a non cooperative strategy, both of which – as one could
say – compete for players adopting them. At the same time a between
group selection process takes place between the sanctioning and the non
sanctioning group, which compete for group members. (See also chapter
4.3.3.) However, the situation does not exactly reflect the group selec-
tion model presented earlier, insofar as the groups do not merely differ in
the composition but also by the presence or absence of the sanctioning
institution and because – as will be seen – the selection pressure within
the sanctioning group does not counteract the between-group selection
pressure as it is assumed in the theoretically most interesting case of
group selection (see chapter 4.3).

The result of the experiment was that after 30 rounds almost every-
body had joined the group with the sanctioning institution and almost
everybody cooperated almost entirely (i.e. donated almost all of the in-
come to the provision of the public good). About 3/4 of the subjects in
the sanctioning group did exert punishment. (Rewards proved to be far
less effective, since they even had a slightly negative influence on coop-
eration, supposedly, because subjects thus rewarded conclude that they
have given too much.) Interestingly, subjects that changed the group
quickly adopted the behavior common in their new group, both with re-
gard to cooperation and non cooperation and with regard to punishment
and refraining from punishment. The main question that this experi-
ment raises is why punishing behavior did not erode as did cooperation
in the non sanctioning group. Given that punishment is a second order
public good and that it thus raises a free rider problem that is struc-
turally similar to the original social dilemma situation simulated in the
experiment, this appears quite surprising. Several explanations are pos-
sible12: 1) Human beings are just not so rational as the theory of public
goods assumes. Therefore, in some instances (second level problems)
they provide goods, even though they would be better off cheating. But
then, why didn’t a more rational mode of behavior evolve if this would
entail greater revenues? 2) The subjects come from a society where
certain modes of behavior including punishment, revenge etc. have –

12Only some of these are discussed in Gürerk’s, Irlenbusch’s and Rockenbach’s paper.
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for whatever reason – already evolved and are now transferred by them
to the game. 3) There exists a certain amount of conformism. That is,
people imitate other people’s behavior and only deviate if they have a
strong incentive to do so. As the necessity of punishment decreases over
time because people that tried to cheat and were punished have learned
their lesson, conformism suffices to uphold punishing behavior before
it can deteriorate (in the end the payoff disadvantage of punishers is
about 2% compared to non punishing cooperators). In other words, the
costs of punishment become small enough to fall under the conformism
threshold. 4) There is also a possibility that the second level public
goods problem falls into a category where it may even pay for a partici-
pant to provide the good all on his or her own even though nobody else
is willing to share the cost. In order to find out whether the problem
of providing costly punishment falls into this category of public goods
problems, it would be necessary to measure the gain in the provision of
the first level public good that is effected by the successful betterment
of reluctant cooperators.

Having thus briefly discussed the results of a typical study of ex-
perimental economics, the question shall now be considered, how this
can be related to simulation models of the kind that have been pre-
sented previously (chapter 4). There are a few things to say regarding
this question: The setup of the experiment does not precisely fit any of
the simulation models presented earlier, neither does it closely resem-
ble any other particular simulation study that has been published on
the evolution of cooperation. It follows the common pattern of pub-
lic goods problems as they are also expressed in the respective models
that illustrate the theory of public goods. Of course it would be easy
to draw up a computer simulation that more or less resembles the ex-
perimental setup. But what could the goal and possible benefit of such
an endeavor be? As experiments provide prima facie stronger evidence
than any simulation, why would anything need to be demonstrated by a
computer simulation that has already been shown experimentally? One
might reason that computer simulations could be helpful for deciding
between the four possible explanations given for the punishment coop-
eration above. But this would only be the case if the decision between
these alternative explanations were one that did on one point or other
rest on the question of the mere theoretical possibility of any of these
and this is not the case, except perhaps for the last alternative for which,
however, a simple calculation should suffice. In order to decide between
the other three alternative explanations, further experiments or further
measurements would be required, but not more models.

Still, experiments of economic behavior provide a type of empirical
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research where a close fit between model and empirical reality is com-
paratively easy to achieve. If indulging in computer simulations of the
evolution of altruism appears so little rewarding because it is so far
removed from any empirical problem of cooperation or altruism – an
impression that was very much strengthened by the earlier discussion of
the empirical literature on the evolution of altruism in biology – , exper-
imental economics finally offers a basis where simulation models of the
evolution of altruism and empirical research can be linked together in a
more than merely metaphorical and story telling way. One might won-
der why this should work in economics but not in biology. The probable
reason is that for the simulations to be applied in biology it would be
necessary to measure the reproduction relevant fitness payoff of certain
types of behavior, which obviously is a task that is extremely diffi-
cult to accomplish in most cases. The one exceptional example given in
Dugatkin’s comprehensive empirical meta-study (Dugatkin, 1997) where
payoff parameters were actually measured, was an experimental study
about blue jays. And even in this case the measured payoff parameters
did not resemble a payoff in terms of the reproduction rate (see page
154).

Experimental studies such as the one outlined above can potentially
be linked to computer simulations because they take place in an artificial
laboratory setting that is streamlined and simple enough to reproduce
it in a mathematical model of a computer simulation. But at the same
time experimental laboratory studies raise certain epistemological con-
cerns of their own, which are similar to those of computer simulations.
Regarding computer simulations of the evolution of cooperation, there
exists the problem of transferring the results of the computer simula-
tions to empirical situations. As has been demonstrated in the case of
biology (see chapter 5.1) this can be a very difficult problem to solve,
especially if the simulations are not designed to fit empirical problems
but merely express more or less plausible theoretical assumptions. Now,
a similar transfer problem exists for experimental research in economics.
For, how are we to know if the behavior of participants in a laboratory
experiment is the same as the behavior of people in “real” life? Typ-
ically, the laboratory situations are very much simplified compared to
the real life situations they are supposed to resemble. Interfering factors
such as the psychological factors that drive our behavior in small group
interactions are deliberately excluded by putting the participants into
small closed boxes, where they sit in front of a computer screen and
only receive information about the other participant’s choices without
ever getting to see their faces or being able to talk to them. Further-
more in many of the experimental studies the participants are university
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students and not a representative sample of the population. These few
remarks should suffice to indicate that there exists a transfer problem
in the case of experimental economical research as well. It seems that
when the explanatory gap between models and reality is closed by de-
signing experiments which resemble the models, another gap is opened
between experiments and the empirical world outside the experiments.

Trust and cooperation in internet auctions

Can the just mentioned dilemma ever be solved? In fact the dilemma
can be solved in certain special cases. It can be narrowed or closed
if 1) either, we are lucky and find some empirical setting that is in-
deed simple enough to be easily compared to laboratory setups, or 2)
in cases where economic institutions have deliberately been designed to
match a previously tried experimental setup. (For example, in order
to exploit a certain experimentally proven effect.) A very prominent
example that fits these conditions is provided by the economic research
on the behavior of buyers and sellers in internet auctions. Internet
auctions provide by their very nature a simple and streamlined setting
that strongly resembles that of laboratory experiments. Furthermore,
some of the economists that have studied the behavior in internet auc-
tions also work as consultants for internet auction companies like eBay.
Therefore, we can also expect that the concrete procedures of such auc-
tions are to some degree designed according to precepts learned from
economic experiments.

In the following I describe one series of experiments on the behavior
of internet traders that was conducted by Gary E. Bolton, Elena Katok
and Axel Ockenfels (Bolton et al., 2004). The problem that their series
of experiments is centered around is that of why internet traders trust
each other. Described in game theoretical terms an internet auction
is an asymmetric one-shot and non zero-sum game. It is asymmetric
because it is the rule that first the buyer sends the money and upon
receiving the money the seller sends the product to the buyer. This
means that the seller can cheat, but not the buyer. If the buyer enters
upon the interaction, the buyer must therefore trust the seller. The
game is one-shot because typically neither the buyer nor the seller have
met before, nor will they be trading partners after the trade has taken
place. Finally it is a non zero-sum game because both the buyer and the
seller profit from the interaction. If they did not, then either the buyer
would not bother to enter upon the interaction or the seller would not
offer his product. Bolton, Katok and Ockenfels model these conditions
by assuming that both buyer and seller retain a payoff of 35 if no trans-
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Figure 5.1: The original trust game used in the experiments by Bolton, Katok and Ock-
enfels. Source: (Bolton et al., 2004). The percentage values indicate how many subjects
chose which course of action in the experiment.

action takes place. If the transaction takes place, both buyer and seller
receive a payoff of 50. And if the seller cheats that is if the seller takes
the money but does not send the product to the buyer, then the seller
receives a payoff of 70 while the buyer ends up with a zero payoff. (See
figure 5.1.) Except for the asymmetry the situation is thus the same as
in the Prisoner’s Dilemma game. Theoretically, no interaction should
take place. For, if both trading partners were rational egoistic utility
maximizers, then the seller would be sure to cheat if an interaction did
take place and the buyer, anticipating the seller’s cheating, would not
even initiate the interaction (Bolton et al., 2004, p. 188).

Now, everyone knows that people in this world (luckily) are not to-
tally rational egoistic utility maximizers, as classical economic theory
assumes, but that they are also driven by normative concerns such as
fairness considerations. Bolton, Katok and Ockenfels distinguish three
different types of such concerns: Fairness in terms of reciprocity, fairness
in terms of equal distribution and, finally, collective efficiency concerns.
Reciprocity as a fairness concern13 does in this context mean that the
seller might be induced to send the product to the buyer because he or
she feels obliged to do so since the buyer has sent the money. Fairness
in terms of equal distribution means that the seller cooperates because

13This should not be confused with reciprocal altruism in evolutionary models of the repeated Prisoner’s
Dilemma, which does not evolve because of any fairness concern but because it yields the highest payoff
in the long run.
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otherwise the outcome would result in a very uneven distribution of
goods (70 vs. 0 instead of 50 vs. 50). And the seller is driven by effi-
ciency concerns if his reason is that the net result for both players is
higher than when cheating (100 vs. 70). The model as it stands does
not allow distinguishing between these motives. Therefore, Bolton, Ka-
tok and Ockenfels draw up an additional model, where buyer and seller
retain 105 and 35 points if no interaction takes place, both end up with
an equal payoff of 70 if a trade is made and the seller cheats, and where
the buyer earns 120 and the seller 50 points if the seller does not cheat.
(See figure 5.2.) From the perspective of rational choice theory this sec-
ond model is equivalent to the first one: Both trading partners would
be better off if the trade took place and the seller did not cheat than if
no trade took place at all. At the same time, if the trade is initiated by
the buyer, the seller gains most if he cheats, wherefore – anticipating
rationality of the seller – the buyer would be best off not to initiate
the trade at all. However, with regard to fairness concerns, the buyer
would initiate a trade and the seller would cheat if both were driven by
a “fairness as equality” ideal, while the seller would not cheat if driven
by reciprocity or efficiency concerns (Bolton et al., 2004, p. 191).

In an experiment participants were asked to play one of these two
games in either the role of the seller or the role of the buyer (that is
no participant played the game twice). While in the first game (where
participants receive an equal payoff if the seller cooperates) 37% of the
sellers did not cheat, only 7% of the sellers did not cheat in the second
game. Interestingly, even though the buyers should expect to be cheated
in the second game (just as or even more so than in the first game), they
were much more willing to buy in the second game (46%) than in the first
game (27%). These results strongly suggest that distributional fairness
plays a predominant role in this type of interaction, while efficiency and
reciprocity seem to be negligible motives (Bolton et al., 2004, p. 193ff.).

In both games the sellers thus proved to be more trustworthy than
their rational self interest would suggest. However, even in the original
game the degree of trustworthiness (37%) would not be enough to make
the game profitable in monetary terms.14 Taking the question one step
further, Bolton, Katok and Ockenfels proceed to examine how institu-
tional arrangements can influence the development of trust. In the case
of online auctions, the primary institution to allow the development of
trust is the rating mechanism. To examine the effects of such a mech-
anism, Bolton, Katok and Ockenfels do, however, start with a setting
without such a mechanism. In contrast to the previous experiment the

14As can easily be verified, the expected payoff of buying exceeds the payoff of not buying only when
the probability of meeting a trustworthy seller is greater than 70%.
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Figure 5.2: A slightly modified variant of the original trust game. Source: (Bolton et al.,
2004).

participants play the game repeatedly, but with changing partners and
without any information about the previous interactions of the new part-
ner. This setting is called by Bolton, Katok and Ockenfels the Strangers
market (Bolton et al., 2004, p. 196). The results in the Strangers market
are very similar to those in the original experiment (on average 37% of
the buyers were willing to buy, while 39% of the sellers actually shipped
the product). What the average values conceal is that over time (the
participants played the game 30 times) trust collapsed. Obviously, the
participants learned that their trust is not sufficiently rewarded in this
setting. This was to be expected.

To study the effects of institutional arrangements, Bolton, Katok and
Ockenfels contrasted the Strangers market with two further settings, the
Reputation market and the Partners market. In the Reputation mar-
ket, a feedback mechanism was introduced that informed the buyers
about all previous interactions of the seller. This is similar to the feed-
back mechanism in internet auctions such as eBay. Only that in the
real internet auctions the feedback consists in a rating by the buyers
in previous auctions,15 while in the experiment the feedback accurately
informed about the real behavior of the seller in the experiment. In
the Reputation market trust and cooperation did not collapse as in the
Strangers market. Instead, 56% of the buyers were willing to enter into

15As is well known, the ratings by disappointed buyers are not always fair, which in some cases also
leads to lawsuits between buyer and seller.
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a trade and 73% of the sellers did not cheat. Interestingly, the rate of
cooperation of the sellers is very close to the theoretical borderline of
70% where trade becomes profitable in this game (Bolton et al., 2004, p.
198). In the Partners market, which is distinguished from the Reputa-
tion market by the fact that the same partners interact throughout the
whole repeated game, the rates of buyer’s trust and seller’s cooperative-
ness were yet significantly higher than in the Reputation market (83%
and 87%). (Again, this result is unexplainable by normative economic
theory based on the rational actor model (Bolton et al., 2004, p. 199).)

The experimental setup that Bolton, Katok and Ockenfels used is
still in many respects simpler than the real world situation of internet
auctions with a rating system. In internet auctions the seller may not
only cheat by not shipping the paid product but also by shipping a
product of lower quality than advertised, the information propagated
through the rating system may not be completely accurate, both buyers
and sellers can still take resort to the legal system if they are unsatisfied,
which means that cheaters do not only bear the risk of a bad rating
but also that of being sued. Still, the experimental setup comes quite
close to what happens in internet auctions. Although it has not been
done in this particular study, it is well imaginable to compare the data
gathered in this or similar experiments with that gathered from real
internet auctions. This would in principle allow checking whether such
experiments are realistic.

Conclusions

What can we learn from the experimental research in economics for the
explanatory validity of results obtained by computer simulations such
as those presented in chapter 4? It has already been noted (chapter
4.1.6) that computer simulations which are not tied to specific empir-
ical constellations can at best prove theoretical possibilities, which as
such are often not very informative. One way to link computer simu-
lations to empirical constellations would be to create experimental se-
tups which reflect the simplifying modeling assumptions. (Neither of
the previously discussed experiments was of course meant to verify any
computer simulations,16 but given the way these experiments work, one
could use similar experiments that match the setup of certain computer
simulations.) Of course this requires that the computer simulations use

16In fact, it seems that computer simulations do not play a very important role in this branch of research.
In the very issue of “Analyse & Kritik” (1/2004) from which Bolton, Katok and Ockenfels’ paper (Bolton
et al., 2004) was taken and which was as a whole dedicated to the topic of “online cooperation”, not a
single simulation study appeared among the 17 articles of the issue.
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settings that can at least in principle be reproduced experimentally. For
population dynamical simulations of tournaments of the 200 times reit-
erated Prisoner’s Dilemma this might turn out to be a bit impractical.

But when one of the restrictions of the method of employing computer
simulations is that in the first instance they only allow us to demonstrate
theoretical possibilities, then one of the restrictions of the experimental
method is that prima facie it only allows us to demonstrate practical
possibilities and that we still do not know how much impact these prac-
tical possibilities have outside the laboratory or – to put it simply – how
realistic they are. The gap between the demonstration of theoretical or
practical possibilities and empirical reality (outside the lab) can under
favorable circumstances be closed, either because we are lucky enough
to find a constellation in the real world that is simple enough to match
our models, or because we examine social institutions that have been
designed according to precepts gained by model research and laboratory
testing. (Again, these considerations are somewhat tentative and the
previously discussed examples of economical experiments do not suffice
to fully warrant such conclusions but they should suffice to show their
plausibility.)

The question remains, how many of the empirical questions that are
of interest to us in the social sciences are of such a kind that they can
be tackled with the help simulation models in the way hinted at above.

5.2.2 A real world example: Altruism among enemies?

It has just been argued that there is some hope to link simulation models
with empirical reality via laboratory experiments. Usually, however,
when it comes to finding real world evidence for models of the evolution
of altruism in the social sciences, things start to get difficult. Of course
it is easy to think of many situations which more or less resemble a
repeated Prisoner’s Dilemma (or some other game): the power game of
politics for example, or negotiations between opposing political parties
when it comes to decisions that need the full consent of all participants.
But the problem is that this “more or less” resemblance is simply not
enough to explain the situations in question with sparse models such as
those described in chapter 4. Rather than enumerating further examples
where our models might apply (or might not apply, as the case may be),
I am now going to discuss one such example in depth to highlight the
(notorious) difficulties that formal modeling faces in the social sciences
outside the field of economics.

The example to be discussed is a sort of “classic” of the theory of
the evolution of cooperation. It is the “live and let live”-system that
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developed at certain stretches of the front line in the trench war of the
First World War. The “live and let live” system in the First World War
is already discussed in Robert Axelrod’s “Evolution of Cooperation” as
a prime example for his theory of the “evolution of cooperation” (which
is more or less what was here discussed under the heading of “reciprocal
altruism”). Because the phenomenon itself is so surprising, it is one of
the most stunning examples that have been given for the “evolution of
cooperation”in a social science context. Axelrod’s exposition of the“live
and let live” system has led to much subsequent discussion and criticism
most of which centered around the question of whether Axelrod’s inter-
pretation of the situation was correct from a game theoretical point of
view. Was the situation of the soldiers of the opposing forces really a
repeated Prisoner’s Dilemma or some other game or, rather, a collective
action problem? Were the soldiers of the opposite front lines the play-
ers of the reiterated Prisoner’s Dilemma or were the soldiers caught in a
Prisoner’s Dilemma against their own military staff?17 More important
than the problem what kind of game theoretical model can be applied to
the “live and let live” system is the question if Axelrod’s interpretation
of the “live and let live” system in terms of evolutionary game theory
yields any explanatory power, given that it is by and large correct. Or,
to put it more bluntly: Can an explanation in terms of reciprocal al-
truism give us an explanation of the “live and let live” system that goes
beyond what can immediately be inferred from the historical description
of the phenomenon alone?

Axelrod’s interpretation of the “live and let live” system rests on an
extensive historical study of the phenomenon by the sociologist Tony
Ashworth (Ashworth, 1980), a debt that Axelrod does, of course, fully
acknowledge. Tony Ashworth is neither a game theorist, nor does he try
to explain the emergence of the “live and let live” system evolutionarily.
Yet, Ashworth does not only describe what happens but also offers an
explanation why the“live and let live” system could emerge on a certain
front section, how it could be sustained over a considerable period of
time and why it eventually broke down again. The crucial question that
concerns us here is whether a better explanation for this phenomenon
can be given in terms of reciprocal altruism or if at least new light is cast
on some of the aspects of the historical events in the First World War
that Ashworth has described in his book. In order to answer the ques-
tion, the explanation that Ashworth offers in his historical treatment
must be reconstructed first. For, as it is common in historical litera-
ture, description and explanation of the historical events are interwoven

17For a summary of the discussion of Axelrod’s example in the more game theoretically orientated
literature see Schüßler (Schüßler, 1990, p. 33ff.).
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in one and the same narrative in Ashworth’s book.
Let’s first look at the descriptive side and ask the question that all

studies in history begin with: What has happend? In our collective
memory the First World War is commonly remembered as an unusually
brutal and destructive war. It is associated with images of large scale
battles, like the battle of Verdun or the battle at the Somme, during
which tens of thousands of soldiers died within just a few weeks (James,
2003, p. 52). It is much less known that aside from the scenes of the
great battles an astonishing calmness often prevailed over long stretches
of the front line. And this calmness prevailed although the soldiers in the
trenches virtually eyeballed their opponents on the other side. Moreover,
as Ashworth demonstrates in his study, these phases of calmness were
not merely the expression of comparatively less intensive fighting but
the result of a tacit mutual agreement following a kind of “live and let
live” principle. Of course this “live and let live”-system was at no time
officially tolerated by the military doctrine and open fraternizing was
met with severe disciplinary measures.

But what did the “live and let live” system consist of if open arrange-
ments were impossible? Ashworth identifies several forms that the “live
and let live” system could take: The exchange of shells and bullets could
be limited to certain times of the day. The shooting could be directed to
always the same targets, which the enemy soldiers only needed to avoid
getting close to if they wanted to stay alive. Finally, it was possible to
miss the opposing soldiers on purpose when ordered to shoot at them.
This way the soldiers in the trenches could at the same time report the
consumption of ammunition to headquarters and signalize their oppo-
nents that they did not really intend to hurt them. All this was of course
based on mutuality and the conduct could be changed any minute if the
other side did not comply. Ashworth has summarized these aspects of
the “live and let live” system under the short formula of the “rituali-
sation of aggression” (Ashworth, 1980, p. 99ff.). The ritualization of
aggression between the opponents was completed by the emergence of
a proper ethic among the fellow comrades in arms, according to which
“disquieters” or “stirrers” that did not honor the tacit agreement of “live
and let live” were hated and disdained (Ashworth, 1980, p. 135ff.).

This was just a very brief outline of the most important aspects of the
“live and let live” system. In his book Ashworth discusses many more
factors, such as the role of different branches of the armed service and
the line of command. But it would lead too far to discuss all these details
here, although they are by no means unimportant and it is furthermore
by no means unimportant that in the game theoretic analysis all of these
subtleties must almost by necessity be left unconsidered.
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Now that we have seen what the “live and let live” system consists
of, how does Ashworth explain it? Because the “live and let live” system
was widespread one must expect that it has generic causes (in contradis-
tinction to singular historical causes). According to Ashworth’s rough
estimate it occurred during one third of the front tours of an average
division. This also means that it occurred only during one third of the
front tours. If one wants to explain why it occurred, one must also ex-
plain why in most cases it did not occur. In Ashworth’s treatment, the
following preconditions and causes for the “live and let live” system can
be identified:

1. The strategical deadlock. It was virtually impossible to move the
front line for either side.

2. The natural desire of most soldiers to survive the war.

3. The impersonal, “bureaucratic structure of aggression” (Ashworth,
1980, p. 76ff.).

4. Empathy with the soldiers on the other side of the front.

5. The “esprit de corps” that can, however, be both either conductive
or (in the case of elite troops) impedimental to the emergence of
the “live and let live” system.

6. Whether elite troops or non elite troops were fighting on either side.
“Live and let live” was much less frequent where elite troops were
involved.

7. The branch of service. Infantry soldiers had to face a much greater
danger and consequently had a greater interest in “live and let live”
than artillery soldiers.

8. The limited means of the military leadership to suppress “live and
let live”. (Only later did they find an effective way to do so by
organizing raids on the enemy trenches.)

9. Initial causes such as Christmas truces, bad weather periods when
fighting was impossible, coincidental temporary ceasefire due to
similar daily routines on both sides (for example, same meal times).

But why, then, did not the“live and let live”system occur everywhere
and all the time? One could of course think of many plausible answers to
this question. Because the“live and let live”system did not comply with
the objectives and the very purpose of military warfare it is natural to
assume that it was in many cases successfully suppressed by the military
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leadership. But as Ashworth is able to demonstrate from the historical
sources it was for a long time almost impossible for the military leaders
to efficiently suppress what in their eyes must have been a great nuisance
to their military mission. It took them quite a while to find the right
means to break the “live and let live” system. (But when they finally
succeeded in doing so, their success was lasting.) Furthermore, one
might assume that the “live and let live” system was quite error prone
as no explicit agreements with the other side could be made. But the
most decisive factor among the above listed causes for the emergence
or non emergence of the “live and let live” system was – according to
Ashworth’s empirical study – whether the troops involved were elite
troops or “regular” troops.18 Only when non elite troops were facing
each other was there a high chance for the “live and let live” system to
emerge and to be sustained.

The means by which the military leadership finally managed to break
the “live and let live” system was the ordering of raids into the enemy
trenches. Raids could not be faked nor could they be ritualized because
either the enemy had casualties or the soldiers of one’s own side did
not come back. And by stirring up emotions of hatred and revenge the
raids deprived the “live and let live” system of its emotional foundation
in mutual empathy (Ashworth, 1980, p. 176ff.).

So much for Ashworth’s historical description of the“live and let live”
system and his explanation of these suprising historical events. What
can Axelrod’s interpretation on the background of the theory of the
“Evolution of Cooperation” add to this explanation?

First and foremost Axelrod argues that the situation of the soldiers in
the trench warfare can be interpreted as a repeated Prisoner’s Dilemma.
In order to do so, Axelrod needs to show that the options that were avail-
able to the actors in the historical situation correspond to the possible
choices of the players in a repeated two person game and are valued by
the soldiers in such a way that the game is a Prisoner’s Dilemma. That
this is indeed the case is demonstrated by Axelrod quite persuasively:
In the historical situation single sided defection would mean to fight
and meet so little resistance that victory is possible. Clearly, this would
be the preferred alternative on any side of the front. Thus, even with-
out assigning particular preference values, we can safely assume that
T > R, P, S. But if it was not possible to break through the enemy
front line then it was certainly better to “keep quiet” as long as the
opponents were willing to “keep quiet” because such an arrangement

18Among the British troops there was no formal division between elite and non elite, but, as Ashworth
points out, military staff as well as the common soldier new fairly well which troop was elite and which
was not.
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drastically increased the prospects of survival (in Axelrod’s formal no-
tation this means that R > P, S). Furthermore, mutual abstinence from
serious fighting was certainly to be preferred to alternating single sided
fighting if that should be considered a viable option at all. Therefore
R > (T + S)/2 can also be granted. But if the opposing side was not
willing to “keep quiet” by ritualizing aggression in the previously de-
scribed way then it was still better to fight back then to let oneself be
overrun (P > S).

In order to apply the theory of the “evolution of cooperation” to the
situation of the soldiers in the trenches of World War I, some further
points need to be clarified such as whether the “game” played really
was a repeated Prisoner’s dilemma, which requires the identity of the
players over a longer period of time. Even though the soldiers at the
front were periodically exchanged by fresh troops, the predecessors had
to familiarize their successors with the situation at their section of the
front. Therefore the successors could pick up the “game” exactly at the
point where their predecessors had left it. It is a bit less obvious what
the evolutionary transmission mechanism that led to the spreading of
the “live and let live” system consists of. Axelrod hints to the fact that
the system spread over neighboring sections of the front. But, as has
been indicated earlier, one may also assume that the “live and let live”
system started independently in many different sections of the front. It
does not seem to disturb Axelrod that the way the “live and let live”
system was initiated and transmitted bears only very little resemblance
to the population dynamical transmission mechanism in his simulation
model.

Save for this last point it can be granted that Axelrod’s analysis is by
and large convincing. But in how far does Axelrod’s interpretation go
beyond Ashworth’s study as far as its explanatory power is concerned?
If we consider the whole bundle of conditions that Ashworth discusses as
causes of the“live and let live”system (see page 177), it becomes obvious
that only one of these conditions is captured by Axelrod’s game theo-
retical interpretation. This condition for the “live and let live” system
is the strategic situation of the soldiers in the trenches, which Axelrod
describes as a repeated Prisoner’s Dilemma. It is important to real-
ize that by doing so Axelrod captures only one of many causes for the
“live and let live”-system. Therefore, the evolutionary theory of Axelrod
cannot reasonably be regarded as an alternative explanation to the one
which is offered by Tony Ashworth in his historical narrative. At best,
the theory of reciprocal altruism offers a more precise treatment of one
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single component of Ashworth’s explanation.19 Whether this is really
the case, shall occupy us now.

Is Axelrod at least able to provide a more precise understanding of at
least this particular aspect with the help of evolutionary game theory?
In order to find out whether such a claim would be warrented it must be
examined whether the situation of the soldiers in the trenches can re-
ally be described as a repeated Prisoner’s Dilemma. Against Axelrod’s
interpretation the objection has been raised that the front soldiers may
have been primarily interested in their own survival after all and that,
compared to their survival, being victorious in the battle was much less
important to them. Then the soldiers would not really gain any ad-
vantage by single sided defection. (The payoff parameter T would be
lower or equal the payoff parameter R in Axelrod’s notation.) If this
interpretation is followed then the problem the soldiers had to solve was
a mere coordination problem and not a Prisoner’s Dilemma. Indepen-
dently of how the question is to be answered the objection shows that
the assessment of a given situation in terms of game theory is by no
means a trivial and unambiguous task. The difficulties become even
greater when it comes to estimating concrete values for the different
payoff parameters. Axelrod confines himself to establishing the relative
proportions of the payoff parameters that are expressed in the two in-
equalities T > R > P > S and 2R > T + S, although his model is in
fact sensitive to changes in numerical values of the parameters – as has
been demonstrated by the simulations in section 4.1.4.

But there exists an even more serious objection to Axelrod’s inter-
pretation: The described strategical stalemate was (save for the great
battles) more or less the same at all sections of the front line. Nonethe-
less, the longitudinal analysis showed that the “live and let live” system
occurred on average only during roughly one third of the front tours
(Ashworth, 1980, p. 171-175). This empirical fact poses a real problem
for Axelrod’s theory because his theory postulates that in the reiterated
Prisoner’s Dilemma cooperative strategies will usually prevail. However,
as the more extensive series of simulations that has been presented ear-
lier (see section 4.1.4) has shown in accordance with earlier criticisms of
Axelrod’s approach by mathematical game theorists (Binmore, 1998, p.
313ff.), the theoretical foundation for Axelrod’s generalizing claim that
cooperative strategies like Tit for Tat enjoy a high advantage in the
repeated Prisoner’s Dilemma was lacking. As the results of the simu-
lation series suggest, it is not generally true that cooperative strategies

19This is a point that Axelrod seems to be aware of as he mentions that some of the insights of
Ashworth’s study, such as the emergence of an ethics of cooperation, might be used to extend his theory
of the evolution of cooperation.
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are the best strategies in the reiterated Prisoner’s Dilemma. Depend-
ing on the particular circumstances, uncooperative strategies like Hawk
may be much more successful. It might seem tempting to draw the
conclusion that Axelrod’s computer model was too crude after all and
that our more refined simulation series which suggests an only limited
evolutionary success of cooperative strategies is in better accordance
with the empirical findings of Ashworth. Thus, while Axelrod’s theory
in its original form failed it only needed to be refined a little bit on its
technical side to make it succeed.

Unfortunately, the epistemological situation is not as simple as that.
According to Ashworth, the major factor which determined the occur-
rence of the“live and let live”was whether the troops involved were elite
troops or merely regular soldiers. Whenever elite troops were involved,
the “live and let live” system was very unlikely to occur. How can this
factor (elite soldiers or non elite soldiers) be reflected in our model? It
can be done by assuming that for elite troops a different set of payoff
parameters holds because elite soldiers value the viable options (fight
hard or “live and let live”) according to a set of preferences that differs
from that of ordinary soldiers. For example, it is not implausible to
assume that elite soldiers might consider it dishonorable to avoid fight-
ing just to save one’s own life. But while such an assumption might
save our theory it remains doubtful whether much is gained in terms
of explanatory power. For, instead of reverting to simple standard as-
sumptions about the payoff parameters in a given strategical situation,
it would be necessary to conduct an extensive historical inquiry in order
find out how different groups of soldiers may valuate one and the same
situation. (In fact, without such an inquiry we might not even be aware
that there is such an important difference between elite soldiers and non
elite soldiers.) But with the historical inquiry at hand, we would not
need a game theoretical model any more to tell us what happend. Or,
to put it in another way, almost all of the explanatory work would be
done by the theories and historical inquiries needed to determine the
payoff parameters, while the game theoretical model making use of this
work would be little more than a trivial and illustrating addition. Also,
once it is accepted as a fact that it depended on the elite status of the
troops whether they would fight or attempt to engage into “live and let
live”with their enemies, this fact can be explained more simply than by
any game theoretical model by the rather obvious assumption that elite
soldiers are more likely to follow orders involving great danger than or-
dinary soldiers. An assumption that has the additional advantage that
it is – other than assumptions about payoff values – empirically very
easily testable in comparable circumstances.
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The more general lesson to be learned from this is that game theo-
retical models prove to be useful only in situations where we can either
proceed from standard assumptions about the relevant payoff parame-
ters or where reliable measurement procedures for the input parameters
of the models exist. Apart from the fact that it leaves out too many
causally relevant factors, this is the second reason why the theory of the
“evolution of cooperation” fails to explain the sort of cooperation that
emerged between the opposing soldiers in the trench warfare of World
War I. (And with this second reason it is clear that it does not even
provide a partial explanation.)

Following an influential argument from Carl Gustav Hempel
(Hempel, 1965) it might still be objected that even though the game
theoretical model cannot offer more than an ex post explanation, it is
still of scientific value because it affords a general explanation for a
course of historical events and thus increases our understanding of his-
torical processes of a particular kind by subsuming them under general
laws or principles. Unfortunately this is not the case here. For, as we
have seen, the theory of the “evolution of cooperation” provides hardly
an explanation for the emergence of the “live and let live”-system in
World War I at all. It is not well possible to defend a wrong explana-
tion or a theory that is not an explanation at all with the argument that
it affords a generalization. To say this does not mean that historians
and social scientists do not need to or should not be interested in general
theories. But in the social sciences and especially in history, general-
izations that are meaningful and rich in content are typically found on
lower levels of abstraction. One of the standard methods for generat-
ing and testing general theories in history is the comparison of similar
chains of events under different historical circumstances. For example,
it might be interesting to compare the situation in the First World War
with that in other wars and with the aim of deriving a generalized the-
ory of fraternization, which could then in turn be applied to the “live
and let live”-system and other comparable events. But it seems rather
hopeless to seek a general theory for the explanation of the “live and let
live” system that is still meaningful and rich enough in content on the
level of abstraction of the theory of the “evolution of cooperation”.

Summing it up, computer simulations of the “evolution of coopera-
tion”hardly add anything to our understanding of the “live and let live”
system in the trench warfare of the First World War. The emergence (or
the “evolution”, if this term is preferred) of “live and let live” is due to
an intricate network of interlocking causes that cannot accurately be ex-
plained by reference to simulations of the repeated Prisoner’s Dilemma
game. At best there exists a vague metaphorical resemblance between
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the situation of the soldiers in the trenches and the repeated Prisoner’s
Dilemma, but this alone is not sufficient for an explanation and it is
hardly sufficient to justify the technical effort of a computer simulation
in this particular case.

5.3 Conclusions

The previous survey of empirical studies on the evolution of altruism
provided some interesting insights in how and why altruism and coop-
eration can evolve even under unfavorable conditions. Regarding the
epistemological merits of simulation models for the explanation of evo-
lutionary altruism, however, the insights gained from looking at the
empirical research are extremely sobering: First of all, it is an undeni-
able fact that computer simulations on the evolution of altruism have
remained largely useless for empirical research. And this does of course
also mean that computer simulations of the evolution of altruism hardly
provide us with any knowledge about how altruism really evolves. This
seems to be especially true for repeated Prisoner’s Dilemma simulations
of reciprocal altruism because they rely on a setting that plays only a
very marginal role in nature (see page 146 for one of the few exam-
ples where it does). Secondly, the in-depth discussion of two selected
examples where the application of simulation models failed despite the
serious attempts of its supporters precisely showed why the simulation
models failed. In the biological example the model failed because it re-
lies on payoff parameters that could not be measured, while the model
is at the same time sensitive to changes of these parameters. That the
fitness relevant payoff is very hard to measure is a general difficulty
that evolutionary game theory faces in biology, though it does not al-
ways turn out to be as fatal as in this instance.20 In the sociological
example the repeated Prisoner’s Dilemma model failed because from the
many interlocking causes that brought about cooperation between the
enemy front soldiers in World War One, it captured at best one cause
that could be described as“the strategical situation”of the front soldier.
But then it cannot seriously be maintained that cooperation occurred in
the trenches in virtue of the very factors for which it evolves in repeated
Prisoner’s Dilemma simulations. Apart from that, the very same mea-
surement problems and model stability issues that have already been
encountered in the biological example reappear in the sociological ex-
ample as well.

20See (Hammerstein, 1998, p. 9ff.) for some reflections on how to remedy this difficulty by means of
clever interpretation.
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It should not be considered too much of a surprise that the simulation
model fared so badly in the sociological example. After all, formal math-
ematical models can be used in the social sciences only in a few select
areas, most notably economics. The reason is that for many explana-
tions that we give in the social sciences, we have to draw on connections
for which no formal description exists. One may regret this state of af-
fairs, but it certainly does not get any better by ignoring all factors that
cannot be rendered formally. Therefore, in many cases an ordinary his-
toriographical approach may serve the needs of the social scientist much
better than a seemingly more refined simulation based approach. Other
than that, part of the art of applying formal models in a sociological
context certainly consists in picking out the right empirical situations
for which a model based approach might indeed be appropriate. How
this can possibly be achieved has been hinted at when discussing the
internet auction example in section 5.2.1.

All in all, a look into the empirical literature is apt to strengthen
some of the skeptical conclusions about computer simulations on the
evolution of altruism that have been drawn at the end of the previous
chapter (see chapter 4.4), most notably the impression is strengthened
that pure model research conveys a distorted picture of how and why
altruism evolves. If one really wants to understand how and why al-
truism evolves then designing models based on “plausible” assumptions
alone and uninformed by concrete empirical research is certainly not the
way to go. If the simulation based approach to the explanation of the
evolution of altruism has thus been a failure then what remains to be
clarified is just why it had to fail and what a possible remedy could look
like. This is what will occupy us in the next chapter.



Chapter 6

Learning from failure

Ihr Instrumente freilich, spottet mein,
Mit Rad und Kämmen, Walz’ und Bügel.
Ich stand am Tor, ihr solltet Schlüssel sein;
Zwar euer Bart ist kraus, doch hebt ihr nicht die Riegel.

Goethe, Faust I

We have so far been looking at several computer simulations that
sought to help us to explain reciprocal altruism. We have furthermore
looked at a number of empirical example cases that confirmed some of
the general ideas suggested by the outcome of the computer simulations
but which – at the same time – raised very strong doubts concerning
the explanatory power of the computer simulations described. As any
theory is only as good as its confirmation and as we certainly want to
know, how good a theory of reciprocal altruism based on game theoret-
ical computer simulations can be, we need to enter into some general
considerations concerning the epistemology or, if preferred, the theory
of science of computer simulations. The question here is a question of
can, because as we have seen previously when looking at the concrete
examples, it is a fact that so far explanations of reciprocal altruism
based on computer simulations have not been successful.

6.1 Epistemological requirements for computer sim-

ulations

As has to be expected for a comparatively new scientific tool like com-
puter simulations, the field of the epistemology of computer simulations
is not very far developed. The most important epistemological question
concerning any computer simulation is: How do we know that what hap-
pens in the simulation represents what happens in reality? (Of course,
a simulation does not need to represent exactly what happens empiri-
cally, but it should represent what happens empirically well enough, so
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that we can draw conclusions from the simulation with respect to real-
ity. So, how do we know that this is the case?) In the more technically
orientated textbook literature on computer simulations (Gilbert and
Troitzsch, 2005) there is little to find that could answer this question.
This type of literature centers around how to program a simulation,
how to visualize the data and how to debug the program, that is, it tells
us how to proceed once we have decided to use the tool of computer
simulations, but it does tell us little about whence and where computer
simulations are an appropriate tool for investigating a certain scientific
question. And astonishingly little thought is usually dedicated to the
question what requirements a simulation must meet so that we can say
it is a good simulation, i.e. a simulation that fulfills its purpose.1

A philosophical literature on the epistemology of computer simula-
tions that could fill in the gap which is left open by the technical litera-
ture is only beginning to emerge. And often, unfortunately, it amounts
to little more than stocktaking of what goes on the field of computer
simulations, while only the surface is scratched of the epistemological
questions (Hegselmann et al., 1996) concernd. A more recent exam-
ple, where this is different, is Paul Humphreys’ “Extending Ourselves”
(Humphreys, 2004), which discusses at length the impact of computer
simulations on today’s scientific methodology. Regarding agent-based
simulations (which is the broader category under which the simulations
of the evolution of altruism presented earlier fall) Humphreys’ conclu-
sions are somewhat sceptical, as the following quotations may demon-
strate:

One of the more important questions that arise about
agent-based modeling is the degree of understanding which is
produced by the models. [...]

In fact ... because the goal of many agent-based procedures
is to find a set of conditions that is sufficient to reproduce
behavior, rather than to isolate conditions which are necessary
to achieve that result, a misplaced sense of understanding is
always a danger. (Humphreys, 2004, p. 132)

As we have seen, it has been claimed for agent-based mod-
els that one of their primary uses is exploratory, in the sense
that it is of interest to show that simple rules can reproduce
complex behavior. But this cannot be good advice without
imposing extra conditions. [...] Because it is often possible to

1Troitzsch and Gilbert reserve only three pages for topic of “validation” of computer simulations
(Gilbert and Troitzsch, 2005, p. 23-25).
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recapture observed structural patterns by using simple models
that have nothing to do with the underlying reality, any infer-
ence from a successful representation of the observed structure
to the underlying mechanisms is fraught with danger and can
potentially lock us into a model that is, below the level of data,
quite false. (Humphreys, 2004, p. 134)

Actually, as we have seen in the previous chapter (chapter 5), already
on“the level of data” the computer simulations of the evolution of altru-
ism hardly represented the “observed structure”, let alone on the level
of the underlying causal mechanisms. What is important here are the
“extra conditions”, which according to Humphreys must be imposed so
that we do not fall prey to the “misplaced sense of understanding” that
computer simulations all too easily convey. In the following I make a
proposal concerning the conditions which computer simulations ought
to fulfill in order to allow us a real understanding of the simulated phe-
nomena. For this purpose, I first distinguish different types of computer
simulations (section 6.1.1). Then I present and discuss a set of criteria
for the most important of these types, explanatory simulations (section
6.1.2).

6.1.1 Different aims of computer simulations in science

Computer simulations can be employed in science not only for generat-
ing explanations but for various different purposes. In order to distin-
guish different types of computer simulations according to their purpose,
we draw on our earlier distinction between a “conceptual level” and an
“application level” of the employment of computer simulations (see page
152) and develop it by two further distinctions into a more fine-grained
typology of four basic types. The two types that fall under the “con-
ceptual level” are proof-of-possibility simulations and exploratory simu-
lations. For the application level predictive simulations and explanatory
simulations will be distinguished.2

2The broader distinction between what I have termed a “conceptual level” and an “application level”
of simulations is more or less common in the simulation literature, although there is no established
terminology. Kliemt, for example, distinguishes between “thin” and “thick” simulations (Kliemt, 1996, p.
15), where thin simulations correspond more or less to what I have termed the“conceptual level”and thick
simulation to the “application level” in my terminology. Troitzsch and Gilbert speak of simulations that
merely serve the goal of understanding a certain kind of process (Gilbert and Troitzsch, 2005, p. 15ff.) in
the cases that I would describe as the “conceptual level”. Just as Humphreys, I believe that this kind of
“understanding” can be ever so misleading, wherefore I prefer to avoid this terminology. Also the precept
– on which I draw in the recipe section (see section 6.3) – to design “conceptual level” simulations as
simple as possible and “application level” simulations as acurate (i.e. as complex) as necessary is common
knowledge.
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The most basic type, proof-of-possibility simulations, are computer
simulations that are merely used to demonstrate the theoretical possi-
bility of certain assumptions or to disprove the theoretical necessity of
certain commonly held beliefs. An example would be computer simula-
tions of the evolution of altruism through group selection, which show
that group selection can promote the evolution of altruism in the long
run, even if altruism is always selected against within the group (see
chapter 4.3.1). Typically, proof-of-possibility simulations are simple,
small and not necessarily very “realistic” simulations. Such simulations
are quite commonly also referred to as“toy simulations”or“toy models”,
which is not always meant in a pejorative sense.

Instead of proving theoretical possibilities the scientist already had in
mind when constructing a simulation, computer simulations can also be
employed to explore the possible consequences or implications of certain
assumptions or to search for phenomena which can occur under certain
theoretical conditions but which are yet unknown. Simulations that
serve this purpose will be called exploratory simulations. Typically, this
kind of simulation takes the form of large series of simulations, or, as it is
sometimes called, “massive” simulations. (It should be understood that
the adjective “massive” only refers to the technical complexity and does
not say anything about the scientific quality of the simulation or the
credibility of its results.) An example for such a “massive” simulation is
the simulation series on reciprocal altruism presented in chapter 4.1.4.
Just as proof-of-possibility simulations, exploratory simulations are of
theoretical nature and do not need to resemble empirical reality. If there
exists any resemblance at all, then it is typically vague and consists in
the plausibility of the underlying assumptions.

The next class of computer simulations are predictive simulations.
The purpose of predictive simulations is to generate true predictions of
some empirical process. An example might be simulations in meteo-
rology that predict how the weather is going to be in the future. The
assumptions that enter into predictive simulations do not need to be in
any way realistic. As long as the predictions prove to be reliable, it is
permissible to use strongly simplified assumptions about the modeled
process or even assumptions which are known to be false. This shows
that just because a simulation produces successful predictions it does
not necessarily also provide an explanation for the predicted phenomena,
even though successful predictions may be one among several indicators
for a simulation to be explanatorily valid. As an explanation we would
accept a predictive simulation only if the assumptions built into the
simulation are consistent with our background knowledge (consisting of
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the accepted scientific theories) about the modeled process.3

The most desired case, however, would be that of an explanatory sim-
ulation, which is a type of computer simulation that actually allows us
to explain the empirical phenomena that are modeled in the simulation.
From an explanatory simulation we expect that it does capture the real
causes in virtue of which the modeled empirical phenomena happen. In
this sense explanatory simulations are epistemologically stronger than
predictive simulations. But in another sense they are not, because we
do not demand from an explanatory simulation that it generates pre-
dictions. Thus a simulation may be explanatory even if it offers only
ex-post explanations.4 Explanatory simulations therefore do not form a
subclass of predictive simulations.

Because the simulations of the evolution of altruism largely failed to
provide substantial (i.e. not just metaphorical) explanations for the em-
pirical instances of altruism, we will now discuss the criteria that proper
explanatory simulations should meet. This will help us to understand
the reasons for this failure.

6.1.2 Criteria for “explanatory” simulations

In what sense can a computer simulation be explanatory? And what are
the criteria a computer simulation must meet in order to be explanatory?

A computer simulation can be called explanatory if it adequately
models some empirical situation and if the results of the computer simu-
lation (the simulation results) coincide with the outcome of the modeled
empirical process (the empirical results). If this is the case, we can con-
clude that the empirical results have been caused by the very factors (or,
more precisely, by the empirical correspondents of those factors) that

3It has to be admitted that this requirement rests on specific epistemological commitments concerning
the generality of scope of scientific theories. I assume that if a scientific theory is well confirmed then it
tells us something about anything that falls within its scope, even in cases where we have to deal with a
configuration that is too complicated to analyze it in terms of the theory. If, in contrast, one follows Nancy
Cartwrights “Dappled World” (Cartwright, 1999) and assumes that the validity of scientific theories is
always locally restricted to its successful application cases then no conflict between predictive simulations
and background theories can arise, because a successful predictive simulation that rests on assumptions
that break with the background theories would then merely resemble another limit of the scope of these
theories. We would then lose any ground on which we could deny the title of an “explanation” to our
simulation.

4The motivation for allowing ex-post simulations is founded in the fact that many scientific explana-
tions, especially in the social sciences, only work ex-post. For example, there exists a number of good
explanations for the wave of democratization of the former communist states of Eastern Europe in the
late 80s and early to mid 90s of the 20th century. But who could have predicted it? It would be unfair
to demand from explanations that are based on computer simulations to offer more than can be accom-
plished by conventional science in the respective field. My criticism of Axelrod-style simulations in the
context of social sciences (see chapter 5.2.2) does not rest on the charge that they provide mere ex-post
interpretations but that they are far too simplistic.
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have brought about the simulation results in the computer simulation.
To take an example, let us say we have a game theoretic computer

simulation of the repeated Prisoner’s Dilemma where under certain spec-
ified conditions the strategy “Tit for Tat” emerges as the clear winner.
Now, assume further that we know of an empirical situation that closely
resembles the repeated Prisoner’s Dilemma with exactly the same con-
ditions as in our simulations. (Probably, the easiest way to bring this
about would be by conducting a game theoretic experiment, where the
conditions can be closely monitored.) And let us finally assume that
also in the empirical situation the “Tit for Tat” strategy emerges as the
most successful strategy. Then we are entitled to conclude that “Tit for
Tat” was successful in the empirical case, because the situation was a
repeated Prisoner’s Dilemma with such and such boundary conditions
and because – as the computer simulation shows – “Tit for Tat” is a
winning strategy in repeated Prisoner’s Dilemma situations under the
respective conditions.

Now that we have seen how explanations by computer simulations
work in principle, let us ask what are the criteria a computer simulation
must fulfill in order to deserve the title of an explanatory simulation.
The criteria should be such as to allow us to check whether the expla-
nation is valid, that is, whether the coincidence of the results is due to
the congruence of the operating factors (in the empirical situation and
in the computer simulation) or whether it is merely accidental.

As criteria that a computer simulation must meet in order to be an
explanatory model of an empirical process, I propose the following:

1. Adequacy Requirement: All known5 causally relevant factors of the
modeled empirical process must be represented in the computer
simulation.

(This requirement is roughly equivalent to demanding that the the-
oretical assumptions built into the simulations should not break
with or ignore our background knowledge about the modeled pro-
cess, because it is only in virtue of this background knowledge that
we know about the causally relevant factors of the modeled empir-
ical process.)

In the case of predictive simulations this first requirement would
have to be replaced by the requirement of predictive success. A
predictive simulation does not need to model the causes of a process

5The restriction to all known causes was suggested by Claus Beisbart to avoid an epistemic impassé
when simulations are employed as a tool to find out just what the causally relevant factors of a given
empirical process are.
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realistically. But if it does not then at least its predictions must
come true.

2. Robustness or Stability Requirement: The input parameters of the
simulation must be measurable with such accuracy that the simu-
lation results are stable within the range of inaccuracy of measure-
ment.6

3. Descriptive Appropriateness or Non-Triviality Requirement: The
results of the computer simulation should reflect at least some im-
portant features (that is features the explanation of which is de-
sired) of the results of the modeled empirical process. In particular,
the results should not already be deducible without any model or
simulation from the empirical description of the process.

If all of these criteria are met, we can say that there exists a close
fit between model and modeled reality. What I wish to claim is that
only if there is a close fit between model and reality are we entitled
to say that the model explains anything. Even though these criteria
are very straightforward, a little discussion will be helpful for better
understanding.

Regarding the first criterion, it should be obvious that if not all
causally relevant factors are included, then any congruence of simulation
results and empirical results can at best be accidental. Two objections
might be raised at this point: 1) If there really is a congruence of sim-
ulation results and empirical results, should that not allow us to draw
the conclusion that the very factors implemented in the computer sim-
ulation are indeed all factors that are causally relevant? 2) If we use
computer simulations as a research tool to find out what the causes of
a certain empirical phenomenon are, how are we to know beforehand
what the causally relevant factors are, and how are we ever to find it
out, if drawing reverse conclusions from the compliance of the results to
the relevant causes is not allowed?

To these objections the following can be answered: If the simulation
is used to generate empirical predictions and if the predictions come true
then this can indeed be taken as a strong hint to its capturing all relevant
causes of the empirical process in question. With certain reservations
we are then entitled to draw reverse conclusions from the compliance of

6The importance of stability is often emphasized in the simulation literature. Especially so, because
there are certain types of systems (chaotic systems) for which stability cannot be achieved in principle.
Often, however, stability is merely treated as a kind of internal property of simulations (Gilbert and
Troitzsch, 2005, p. 23) and not, as it should be done, as a relational property between simulation and
measurement capabilities which bears consequences for the epistemological strength that can be ascribed
to a simulation.
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the results to the exclusive causal relevance of the incorporated factors
or mechanisms. The reservations concern the problem that even if a
simulation has predictive success it can still have been based on unre-
alistic assumptions. Sometimes the predictive success of a simulation
can even be increased by sacrificing realism. Therefore, in order to find
out whether the factors incorporated in the computer simulation are
indeed the causally relevant factors, we should not rely on predictive
success alone, but we should consult other sources as well, such as our
scientific background knowledge about the process in question. Also, if
we already know (for whatever reason) that a certain factor is causally
relevant for the outcome of the empirical process under investigation
and if this factor is not included in the simulation of this process then
even if the simulation predicts correctly, we are bound to conclude that
it does so only accidentally.

Furthermore, drawing conclusions from the predictive success of a
simulation to its explanatory validity is impermissible in the case of ex-
post predictions. For, if we only try hard enough, we are almost sure to
find some computer simulation and some set of input parameters that
matches a previously fixed set of output data. The task of finding such
a simulation amounts to nothing more than finding any arbitrary algo-
rithm that produces a given pattern. But then we will only accidentally
have hit on the true causes that were responsible for the results of the
empirical process.

Therefore, only if we make sure that at least all factors that are
known to be causally relevant are included in the simulation, we can
take it as an explanation. And usually we cannot assure this by relying
on the conformance of the simulation results and the empirical results
alone without any further considerations. Summarizing, we can say: If
the first criterion is not fulfilled, then the computer simulation does not
explain.

The second criterion is even more straightforward. If the model is
unstable then we will not be able to check whether the simulation model
is adequate. For, if it is not stable within the inevitable inaccuracies of
measurement, this means that the model delivers different results within
the range of inaccuracy of the measured input parameters. But then we
can neither be sure that the model is right, when the model results match
the empirical results, nor that it is wrong, when they don’t (unless the
empirical results are even outside the range of possible simulation results
for the range of inaccuracy of the input parameters). Let’s for example
imagine we had a game theoretic model that tells us whether some actors
will cooperate or not cooperate. Now assume, we had some empirical
process at hand where we know that the actors cooperate and we would
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like to know whether they do so for the very reasons the model suggests
or, in other words, we would like to know whether our model can explain
why they cooperate. If the model is unstable then – due to measurement
inaccuracy – we do not know whether the empirical process falls within
the range of input parameters for which the model predicts cooperation
or not. Then there is no way to tell whether the actors in the empirical
process cooperated because of the reasons the model suggests or, quite
the contrary, in spite of what the model predicts.

A special case of this problem of model stability and measurement
inaccuracies occurs when we can only determine the ordinal relations of
greater and smaller of some empirical quantity but not its cardinal value
(perhaps, because it does not have a cardinal value by its very nature,
which is the case for the quantity of utility in many contexts). In this
case the empirical validation of any simulation that crucially depends on
the cardinal value of the respective input parameters will be impossible.
Briefly put, the morale of the second criterion is: If condition two is not
met, we cannot know whether the computer simulation explains.

In connection with the first criteria the requirement of model stability
(in relation to measurement inaccuracy) gives rise to a kind of dilemma.
In many cases an obvious way to make a model more adequate is by
including further parameters. Unfortunately, the more parameters are
included in the model the harder it becomes to handle. Often, though
not necessarily, a model loses stability by including additional param-
eters. Therefore, in order to assure that the model is adequate (first
criterion), we may have to lower the degree of abstraction by includ-
ing more and more parameters. But then the danger increases that
our model will not be sufficiently stable any more to fulfill the second
criterion.

There exists no general strategy to avoid this dilemma. In many cases
it may not be possible at all. But this should not come as a surprise.
It merely reflects the fact that the powers of computer simulations are
– as one should certainly expect – limited at some point. With the
tool of computer simulations many scientific problems that would be
hard to handle with pure mathematics alone come within the reach of
a formal treatment. Still, many scientific problems remain outside the
realm of what can be described with formal methods, either because of
their complexity or because of the nature of the problem. This remains
especially true for most areas of the social sciences.

The third criterion requires that the output of the computer simu-
lation should reflect the empirical results with all the details that are
regarded as scientifically important and not just – as it sometimes hap-
pens – merely a much sparser substructure of them. For example, we
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may want to use game theoretic models like the Prisoner’s Dilemma to
study the strategic interaction of states in politics. The game theoretic
model will tell us whether the states will cooperate or not, but most
probably it will say nothing about the concrete form of cooperation
(diplomatic contacts, trade agreements, international contracts etc.) or
non cooperation (embargoes, military action, war etc.). Therefore, even
if the model or simulation really was predictively accurate, it does at
best provide us with a partial explanation, because it does not explain
all aspects of the empirical outcome that interest us. In the worst case
its explanatory (or, as the case may be, its predictive) power is almost as
poor as that of a horoscope. The prediction of a horoscope that tomor-
row“something of importance”will happen easily becomes true, because
of its vagueness. Similarly, if a game theoretic simulation predicts that
the parties of a political conflict will stop cooperating at some stage, but
does not tell us whether this implies, say, the outbreak of war or just
the breakup of diplomatic relations then it only offers us comparatively
unimportant information. We could also say that if the simulation re-
sults fail to capture all (or at least the most) important features of the
empirical outcome then the computer simulation “misses the point”.

Summing it up: Only if a computer simulation closely fits the simu-
lated reality – that is if it adequately models the causal factors involved,
if it is stable and if it is descriptively rich enough to “hit the point” –
can it claim to be explanatory.

6.2 Reasons for failure

The establishment of criteria for explanatory simulations allows pin-
pointing the reasons why computer simulations of the evolution of al-
truism failed to explain the evolution of altruism:

1) For hardly any of the empirical instances of altruism a computer
simulation existed which could be called empirically adequate. It is very
difficult to find an empirical study of the evolution of altruism wherein
recourse to a simulation model is taken. In the few instances where this
was the case, it ultimately turned out to be a failure (see page 154 and
chapter 5.1.3). In the sociological examples the difficulties to capture
all causally relevant factors in a computer simulation were even more
obvious (see chapter 5.2.2). In neither biology nor sociology, however,
do the difficulties seem completely insurmountable in principle. If the
right empirical example cases were picked and if the simulation models
were built to fit the respective empirical instances of altruism, they
might one day indeed contribute to the explanation of the evolution of
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altruism.

Presumably, one of the main reasons for the explanatory failure of
computer simulations consists in a misconception about there being
some such thing as an “in principle explanation” by a computer sim-
ulation. Robert Axelrod, one of the pioneers of the method, believed
that by analyzing how and why cooperation evolves in a computer sim-
ulation that is based on sufficiently plausible model assumptions, he
could devise an in principle explanation for the evolution of altruism.
This explanation, he believed, could then be applied to any empirical
instance of cooperation that somehow exposed a pattern of interaction
that resembled his winning strategy Tit for Tat. It should be obvi-
ous by now that the implicit epistemological conception of explanatory
computer simulations behind this belief is severely mistaken. Of course,
most other authors of simulation models are far more modest about the
explanatory claims they derive from their models. Rudolf Schüßler, for
example, admits at one point quite frankly that his simulation models,
which are similar to Axelrod’s, hardly provide any decisive argument
in the debate about sociological normativism to which they are related
(Schüßler, 1990, p. 91).7 But then he leaves the reader with the ques-
tion what his simulations are good for, if they cannot prove any point
at all.

2) Just as the requirement of empirical adequacy, the second require-
ment, stability, was hardly anywhere fulfilled. It should be understood
that stability is a relational property between the model and its empir-
ical application case. Except for the special case of chaotic processes,
stability issues can therefore be resolved either by redesigning the model
so that it reacts less sensitively to changes in parameter values or by
devising more precise measurement procedures. Regarding the latter,
however, it seems that in biology the problem of measuring the payoff
parameters for game theoretical models poses an extremely obstinate
problem (see page 154). In the social sciences this problem can to some
degree be remedied if the payoff is understood in monetary terms. This
is especially true for experimental economics, where the experimenter
simply can pay the participants a certain amount of money depending

7The passage from Schüßler’s book reads: “Game theoretical arguments can usually explain little
empirically, but they can help to correct unfounded judgements, point out possibilities, and reduce fears
of the ever looming decline of values und the stability of modern societies. How much or little that is, is
a question of perspective and aptitude to make do with the art of the possible (Kunst des Möglichen)”.
It seems that for Schüßler game theoretical arguments do more to serve a therapeutical purpose or one of
political propaganda for that matter, than a scientific one. But then it would be more logical to conclude
that game theory may just not be the right tool to tackle the sort of questions that Schüßler deals with
and that one should rather give other methods a try instead of confining oneself to the“art of the possible”
within the narrow limits of game theoretical arguments.
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on the outcome of the games played. However, as far as evolutionary
models are concerned, there would still remain the problem of linking
the monetary payoff to the replicator dynamics.

In some cases a model seems to be appropriate even if the parameters
cannot be measured and just on behalf of the fact that the empirical
process exposes a strong similarity to the modeled process on the phe-
nomenological level. For example, grooming behavior in impala (see
page 146) seems to resemble very closely the kind of interaction that
takes place in the repeated Prisoner’s Dilemma. Yet, because the model
is sensitive to variations of the numerical values of the payoff parame-
ters and because we cannot measure the parameter values, we cannot
strictly check the validity of the model. Therefore, the model can at
best be granted the epistemological status of a good metaphor in such
a case.

The problem of model instability due to the use of immeasurable in-
put parameters in the simulation models suggests that one should first
consider what kinds of parameters can be measured in a given empirical
situation and then try to construct the simulations around the mea-
surable quantities. This principle could be called the build to order
principle, because it means that the models should be build according
to the restrictions and demands of empirical research just as a customer
configurable product should be built according to the order of the cus-
tomer. Of course, there exists a possibility of conflict between this prin-
ciple and the empirical adequacy requirement in the case where certain
factors which are known to be causally relevant depend on quantities
which are not measurable. But then we should also consider that the
underlying theory which makes use of immeasurable (hidden) factors
may not be a very suitable one. (Example: Game theory which relies
on payoff parameters when applied in situations where the concept of
utility appears questionable.)

3) While the first requirement, empirical adequacy, is related to the
input parameters of simulation models, the third criterion, descriptive
appropriateness or non triviality, is related to the output parameters.
In the case of repeated game models of the evolution of altruism the
output is some kind of altruistic or non altruistic strategy. This is just
what the scientist asks for when investigating altruistic behavior so that
it can be granted that at least the third criteria is fulfilled for repeated
game simulations of the evolution of altruism.

There are, of course, borderline cases, where even this might be dis-
puted. In the case of the “live and let live”-system in World War One,
the output of the model certainly does not capture all the nuances of
the strategies that the soldiers employed to keep alive the “live and let
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live”-system. Most notably it does not capture the means of signal-
ing and clandestine communication that the soldiers invented as part
of their strategy. Still, as the information whether the front soldier’s
actions will converge to a cooperative or non cooperative equilibrium is
far from trivial, it is not the non-triviality requirement because of which
the simulation largely fails to explain the “live and let live”-system, but
the fact that it misses many of the causes that were decisive for the
evolution of this system (see chapter 5.2.2).

Summing it up, the reason why the computer simulations of the evo-
lution of altruism failed to explain the evolution of altruism in reality,
can now precisely be stated as the result of the violation of – in almost
all cases – the stability criteria and additionally – in many cases – the
empirical adequacy criteria.

6.3 How to do it better

If the common brand of computer simulations of the evolution of co-
operation or altruism has been largely a failure, the question naturally
arises how such computer simulations can possibly be done better. Turn-
ing from diagnosis to therapy, I am therefore going to to make a few
proposals on what precautions must be taken when devising computer
simulations so that they do not remain mere toys but become useful
and valuable tools of science. For the sake of simplicity, these propos-
als will be cast in the form of four simple recipes, each of which covers
one of the above distinguished types of simulations. Doing so, my aim
is not so much to give technical advice on how to design and program
computer simulations, but to give recommendations that may help to
get the epistemological issues right, so that in the end the computer
simulations really yield some substantial scientific results and do not
remain mere toys.

6.3.1 Recipe 1: Proof-of-possibility simulations

The object of a proof-of-possibility simulation is to demonstrate theo-
retical possibilities. In order to assure that the proof of a theoretical
possibility via a computer simulation is scientifically valuable the fol-
lowing steps should be taken:

1. Does the proof of the theoretical possibility in question really con-
tribute to answering the scientific question by which it was moti-
vated? If not, a computer simulation may not be the tool of choice.
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Often, what is needed to be known in order to decide a certain
question are not theoretical possibilities but real possibilities. But
then the proof of a mere theoretical possibility bears no significance
at all for the original question.

Examples of the violation of this principle:

(a) Rudolf Schüßler demonstrated with the help of a computer sim-
ulation that cooperation can evolve on “anonymous markets”
without norms or enforced repetition of interaction as in the
common reiterated games models (see appendix 8.5). This was
meant as a contribution to the discussion about sociological
normativism, i.e. the position that social order (cooperation)
crucially depends on the norms of the society and the social
bonds between its members. Since sociological normativists
are not at all forced to deny that there exists a theoretical pos-
sibility of cooperation without norms in some arbitrary game
theoretical setting, Schüßler’s demonstration remains without
much relevance for the original question.

(b) Michael Taylor somewhat famously demonstrated the theoreti-
cal possibility of an anarchic political order by game theoretical
reasoning. Since among the many historical precedents of anar-
chy there exists hardly a single one where the state of anarchy
was a state of order, his possibility-proof remains extremely
question-begging (Taylor, 1997).8

(c) Somewhat similar to Taylor, Brian Skyrms employs computer
simulations of the stag-hunt-game allegedly to investigate the
evolution of political order (Skyrms, 2004). Again, as these
abstract game theoretical models bear hardly any resemblance
to any historical instances of the genesis of political order, they
remain very question-begging. In contrast, the just-so-stories of
17th century social contract theorists like Thomas Hobbes draw
their plausibility from the historical and political experiences
they are related to, which makes them far more convincing than
any of the game theoretical models.

2. Can the same results non-trivially be derived from the background
theories, anyway? If yes, there is not really a need to build a com-
puter simulation.

8The only examples that come close to Taylor’s vision concern highly decentralized federal state
systems which, however, are not anarchic in the sense of a more or less equal distribution of power on the
level of individuals (or at least small families) or the non existence of any centers of power whatsoever.
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Of course a computer simulation can in this case still serve as an
illustration. Also, there may be cases, where it is not obvious how
a result could be derived from the theory, so that a computer sim-
ulation may be a faster way to obtain the result.

3. Design the simulation as simple as possible.

As for proof-of-possibility simulations only extremely weak empir-
ical adequacy requirements (“plausibility”) must be fulfilled, the
simulation does not need to be overly complex. It should only
demonstrate the possibility in question in the simplemost way and
not more.

4. Massive simulations should be avoided when only a possibility proof
is needed.

Massive simulations may be useful to search for unknown theo-
retical possibilities (see recipe 2). But to merely demonstrate a
theoretical possibility, running a whole series of simulation is su-
perfluous.

5. Don’t tell stories and avoid jumping to conclusions by drawing em-
pirical analogies.

If a computer simulation proves a certain theoretical possibility,
say, for example, the possibility that Tit for Tat can be evolution-
ary successful in the repeated two person Prisoner’s Dilemma, then
it proves just that, nothing more and nothing less. It should not be
pretended that the computer simulation demonstrates how Pales-
tinians and Israelis can live in peace together or the like. To relate
proven theoretical possibilities to empirical questions in a meaning-
ful way is a matter of careful and cautious interpretation.

6.3.2 Recipe 2: Exploratory simulations

The object of exploratory simulations is to detect new theoretical phe-
nomena or possibilities within a certain artificial setting. The episte-
mological and pragmatic questions involved are very similar to those
involved in proof-of-possibility simulations.

1. Is it to be expected that any theoretical phenomena will be discovered
that are of scientific relevance? If not, simulations might be beside
the point.

This is very much the same point as in the first recipe. The ra-
tionale behind this precept is that one should have some strategic
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goal in mind regarding what shall be achieved with the simulation.
Merely toying with computer simulations is just not sufficient. It
might be objected that playful behavior should have its place in sci-
ence and that some of the most brilliant discoveries of science have
been found by accident. But then, one can hardly base a research
strategy on the hope for accidental discoveries.

2. Use “massive” simulations and “Monte-Carlo” simulations for ex-
ploring.

Unlike the case of merely demonstrating a theoretical possibility,
increased complexity of the simulation may pay in the case of ex-
ploratory simulations. If one has a certain idea in mind what kind of
phenomena could appear, one might also employ systematic search
algorithms instead of random searching (“Monte-Carlo simulation”)
or even evolutionary algorithms to look for the presumed phenom-
ena.

3. If new phenomena have been discovered, try to isolate them and
demonstrate them in a simpler setting.

In order to understand the phenomenon, it needs to be isolated.
For example, the simulation series on reciprocal altruism presented
earlier (chapter 4.1.4) uncovered two “surprising” phenomena: A
strong success of the strategy Hawk, and a more than marginal suc-
cess of the strategy Dove. Both phenomena could then be explained
by isolating them (see pages 98 and 103). In order to demonstate
that Dove can be more successful than Tit For Tat even in the
presence of exploiting strategies, the phenomenon was isolated in a
single simpler proof-of-possibility simulation (see figure 4.16).

4. Don’t tell stories and avoid jumping to conclusions by drawing em-
pirical analogies.

“Massive simulation” or “Monte-Carlo simulation” sound awfully
impressive, but as long as they are not grounded empirically, they
remain completely theoretical and, as has been shown at length
in chapter 5, there is a certain danger that the thereby obtained
results may ultimately turn out to be highly irrelevant for empirical
science.

6.3.3 Recipe 3: Predictive simulations

Predictive simulations are simulations that are meant to predict empir-
ical(!) phenomena of a certain class. Predictive simulations do not need
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to be realistic, as long as the predictions are successful. Because they
are intended for empirical application, building predictive simulations
is a much more demanding process.

1. Clearly determine the empirical process(es) which the simulation is
supposed to simulate and give an empirical specification of the input
and output parameters.

This implies that the input parameters must be measurable (or
at least determinable) quantities and not hidden factors. For ex-
ample, in many empirical situations, the utility payoff assumed in
game theoretical models is a hidden quantity. Often it is not even
clear whether this quantity has a direct empirical counterpart at
all. To avoid stability issues, the simulation should therefore be
constructed around empirically interpretable and measurable input
parameters that is, it should be “built to order” (see above).

2. Assure that the stability and descriptive appropriateness require-
ment are met.

The simulation model must deliver stable results within the mea-
surement inaccuracies of the input parameters (stability) and its
output must be informative within the measurement inaccuracies
of the output parameters.

3. Calibration of the simulation:

In order to calibrate the simulation properly, proceed by the fol-
lowing steps:

(a) Pick an empirical sample case, measure the input parameters,
let the simulation generate a prediction and compare it with
the empirical data.

(b) If the simulation predicted the data correctly, it is calibrated
and the calibration process is finished.

(c) If not, revamp the simulation so that it fits (i.e. correctly pre-
dicts) the sample case. Pick a new sample case and proceed
with step one. Repeat, until the simulation fits a sample case
right away. When revamping, make sure that the simulation
continues to fit all previous sample cases.

Calibration can also take place ex post, as long as there are enough
sample cases and the sample cases are not “used up” before cali-
brating is finished.
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4. Only when a simulation has been calibrated properly, which is tes-
tified by its having made at least one successful prediction, can we
say that it simulates the process.

It is a mistake to assume that merely by revamping and tweaking
a computer simulation until it fits the data of some empirical pro-
cess, we get a simulation of that process. At best what we obtain
is an arbitrary (and probably unnecessary complicated) algorithm
to produce a certain pattern of output data. But if the simula-
tion predicts correctly then it would be a “miracle”, had it not hit
upon some underlying causal structure of the simulated empirical
process.

The requirement of proper calibration may turn out to be frustrat-
ing, because in many cases we may – following the above procedure
– fail to reach a calibrated simulation. But then this just means
that devising a proper computer simulation is a much more de-
manding process than it is often thought to be. Merely fitting a
simulation ex-post on some set of data is simply not enough. Only
a calibrated simulation simulates.

6.3.4 Recipe 4: Explanatory simulations

Differently from purely predictive simulations, we demand from an ex-
planatory simulation that it models the real causes of the simulated
process. While it is desirable that an explanatory simulation should
also be predictive, this is not a requirement. But if it is not predictive,
its empirical adequacy must be secured by other means. To devise a
truly explanatory simulation, I recommend the following steps.

1. Check whether really all causally relevant factors of the simulated
process can be rendered in a formal simulation model. If the sim-
ulation models only a substructure of the process then it must be
assured that this substructure can be causally isolated.

Often it is only a substructure of a more complicated process that
can be rendered in formal terms. For example, the strategic compo-
nent of the diplomatic, economic, or – as the case may be – military
interaction of nation states can in many cases be rendered in game
theoretical terms. However, as the outcome of the respective inter-
action processes is also determined by other factors (psychological,
ideological, cultural factors etc.) that cannot be rendered in for-
mal terms, constructing too elaborate game theoretical models is
probably not worth the effort.
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2. Clearly determine the empirical process(es) which the simulation is
supposed to simulate and give an empirical specification of the input
and output parameters.

Same as above.

3. Assure that the stability and non triviality requirement are met.

Again, same as above.

4. Finally, check whether the simulation results really match the em-
pirical data.

If changes in the simulation are necessary to make it match the
data, the question should be clarified whether these changes are
consistent with the background knowledge (or, respectively, the
known causal factors) about the simulated process.

6.4 Closing Words

The general morale of this chapter can be summarized as follows: Com-
puter simulations are not an end in themselves but a scientific tool the
use of which ought to depend on the scientific purpose. This means
that computer simulations should be designed in view of the purpose
that they are to serve and in such a way that in the end we can check
whether the simulations were an appropriate means to their designated
end. There may be cases where this is impossible to achieve. But then it
is also doubtful whether employing computer simulations in these cases
is worthwhile. The most important purpose that computer simulations
can serve is that of finding scientific explanations for phenomena that
appear in the real world. In order to assess whether computer sim-
ulations will serve the purpose of providing an explanation for some
empirical phenomenon, I have proposed the three criteria of empirical
adequacy, robustness and non-triviality. Having analyzed with the help
of these criteria the reasons why computer simulations of the evolu-
tion of altruism largely fail to provide an explanation for why altruism
evolves in nature and society, it is difficult to avoid the conclusion that
the tool of computer simulations is only of limited use in this context.

However, the value of a scientific tool should not only be judged by
its present usefulness, but also by its future potential. If the epistemo-
logical justification requirements are raised too high, there is a certain
danger of discouraging a new approach with good prospects or rejecting
a promising new scientific tool just because it does not live up to all
expectations in its premature stages. Regarding this aspect, the tool
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of computer simulations may still become useful for the explanation of
phenomena as empirical research progresses and as new experiments and
measurement techniques are developed. But in order to ever become a
useful tool of science it is important to have an idea of the direction into
which the development of computer simulations must go. The wrong
direction would certainly be to continue, as it has been done before,
by basing computer simulations on plausible assumptions or on exist-
ing computer simulations through adding or changing a few parameters.
Such aimless simulating just leads astray from the“real”questions of the
evolution of altruism and gives a false impression of knowledge about
empirical processes that in reality we do not possess. In the fashion that
computer simulations have been used to study the evolution of altruism
until now, they have mostly been more of a toy than a useful scientific
tool.



Chapter 7

Summary and final reflections

The object of this book was to examine a certain type of explanations
for altruism, namely evolutionary explanations of altruism based on
computer simulations of the evolution of altruism. It set out with the
“riddle” of how altruism can evolve and subsist in a world that is sup-
posedly ruled by the “survival of the fittest” in nature and by the laws
of economics and power politics in culture (chapter 2). That various
forms of altruism and cooperation exist both in nature and in human
society is a fact that cannot be denied so that the question is not if
it can exist but why it does exist. One set of possible explanations –
and as far as nature is concerned, the only set of possible explanations
– consists of evolutionary explanations. Darwin’s theory of evolution
is prima facie only a theory of the evolution of species in nature. In
order to transfer it to cultural phenomena, a more abstract, general-
ized theory of evolution must be devised (chapter 3). This generalized
theory of evolution treats any directed development process the course
of which is determined by the three “Darwinian modules” reproduction,
variation and selection as an evolutionary process. The evolution of
species in nature is then just a particular instance of an evolutionary
process that is concerned with the evolution of biological organisms and
which is characterized by the addition of the laws of genetics to the three
“Darwinian modules”that explain the evolution of species. As far as cul-
tural evolution is concerned, there exist different and partly competing
brands of evolutionary theories. One brand of evolutionary theories of
culture (sociobiology, evolutionary psychology) treats the evolution of
culture very much as just another instance of genetic evolution (chapter
3.3.1, page 29ff.). This is not as implausible as it might appear at first
sight. For, given that many of the psychological traits of humans are
inborn, the explanation for their existence can only be one on the basis
of the genetic evolution of humans. That human altruism is to some
extent genetically determined appears highly plausible. Yet, certainly
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not all aspects of human behavior and conduct can be explained on a
genetic basis. This is where genuine theories of cultural evolution come
into play (chapter 3.3.2, page 34ff.). According to these theories, the
evolution of culture constitutes an evolutionary process in its own right
that runs largely independently from the process of genetic evolution
(though there may have been instances of gene-cultural co-evolution in
human history). Altruism, if understood within this framework, does
emerge from evolutionary selection processes quite similar to those that
take place in genetic evolution, only that it is not altruistic genes that
are selected but altruistic social norms. And selection does not take
place by the extinction of “unfit” organisms, but by people choosing to
adhere to norms that they believe or experience to be advantageous.

When examining the theory of cultural evolution it became apparent,
however, that despite the “imperialistic” aspirations of some of its pro-
ponents it is at its present stage hardly able to deliver a comprehensive
framework for the explanation of human culture that could replace all
other rivalling approaches (chapter 3.3.2, page 41ff.). (Unlike biology
where the theory of evolution provides the one and only uncontested the-
oretical framework, there exist many rivalling paradigms that claim to
explain the evolution of culture in the social sciences.) Therefore, while
certainly some instances of culturally evolved altruism can be explained
within the framework of this theory, we should not a priori assume that
all instances of human altruism must be explainable in this way. The
largely unjustified “imperialistic” claims of this approach are particu-
larly regrettable, because they are apt to discredit a fresh approach to
cultural phenomena that could otherwise still prove very fertile in many
respects.

Given that we have decided to look for evolutionary explanations of
altruism, there are theoretical as well as empirical questions that have
to be solved. The theoretical question is how the evolution of altruism
can be conceived within an evolutionary framework. This theoretical
question can be dealt with by formal modeling, of which computer simu-
lations form a special kind. Although the distinction is only introduced
later, both conceptual simulation models (chapter 4.1.1 and 4.3.1) as
well as exploratory models (chapter 4.1.4) of the evolution of altruism
have been presented in this book. The empirical question is, how we
can identify instances of evolutionary altruism in nature.

Already when merely examining the computer simulations and before
looking at the empirical examples, it became apparent that the use of
computer simulations for the understanding of the evolution of altruism
faces certain limitations which strongly limit its value as a research tool.
While it is possible with the help of simulations to get some general
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understanding of how altruism could possibly evolve, it is hardly possible
to move beyond that point, even with much more refined simulations.
There are innumerable plausible ways in which the evolution of altruism
can be cast into a computer simulation and at the same time there
exist hardly any generalizable conclusions from computer simulations
of the evolution of altruism that remain true across all the different
simulation scenarios (chapter 4.1.5 and 4.1.6). But then analyzing the
artificially generated data from computer simulations is certainly not a
feasible way to learn more about the evolution of altruism. The principal
misunderstanding that is involved here can very nicely be illustrated by
an example which Paul Humphreys has given:

... when simulated data rather than real data are fed into
the simulation, the prospects for informing us about the world
are minimal. To take a simple example, consider a simula-
tion of tossing a coin. Here the independence of the tosses
and the equal probabilities of the outcomes are built into the
output of the pseudo-random number generator, and so it
would be pointless to use the such results as a test of whether
the binomial distribution accurately modeled real coin tosses.
(Humphreys, 2004, p. 134/135)

If, thus, the artificially generated data from computer simulations
alone can at best inspire us to generate hypotheses about the evolu-
tion of altruism, we do of course need empirical research to check which
of these are true and which are not (chapter 5). Unfortunately, this
is where the real trouble starts. For, even a brief look at the empir-
ical research on altruism shows that hardly any of the scenarios that
have been examined in the simulation models can be linked to any of
the empirical instances of the evolution of altruism in a more than ex-
tremely superficial way. This is particularly true for the ever so popular
models of the reiterated Prisoner’s Dilemma, for which almost nowhere
there exits an exact counterpart in nature (or society, for that mat-
ter). Now, who is to blame for that? Is it the fault of the empirical
researchers and experimenters who just did not pay enough attention to
devising experiments that match the simulation models, or is the fault
the theoreticians’ who do not take into account the restrictions in terms
of measurability and observability that are inevitably set to empirical
research. In my opinion the fault clearly lies with the theoreticians,
because the restrictions that the experimenters face when, for example,
trying to measure payoff parameters are much harder to overcome than
it is for the computer programmer to redesign a simulation program.
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Therefore, the theoreticians must take the restrictions and conditions of
empirical research into account in order to design models that can be
tested empirically.

(As a side note it can be mentioned that the fact that the investiga-
tion of the evolution of altruism does therefore strongly depend on the
conditions of empirical research in the fields where altruism appears,
has consequences for the division of labor in science. The evolution
of altruism is obviously not the kind of problem that can be inves-
tigated primarily by theoretical reasoning as it can take place in the
philosopher’s armchair. Because it strongly depends on a substantial
background knowledge in the respective empirical sciences and – as the
case may be – on the access to the means for experimentation (even
the relatively simple experiments of behavioral economics are costly in
terms of instruments, i.e. computer networks, and money), the scientific
investigation of the evolution of altruism is not so much a job a typical
academic philosopher can contribute to, but more one for the special
scientists in the respective fields of the social sciences and biology. It is
quite regrettable that analyical philosophy in particular while being so
deliberately forgetful of the philosophical heritage does often only offer
second rate imitations of the special sciences as compensation.)

If the computer simulations of the evolution of altruism have proved
to be a failure in the sense that it has been impossible to validate their
results by empirical research beyond what can at best be called weak
analogies, the question arises what can be learned from this failure or
how it could be done better. It should be clear by now that the problem
does not consist in getting the technical side of computer simulations
right, but that it is about understanding the epistemological conditions.
Traditionally (at least in the branch of simulations of the evolution of
cooperation or altruism), the approach has often been very naive: Start
with a few plausible assumptions about the subject matter, build your
simulation and eventually revamp the simulation so that it produces
some “interesting” results, confirms your envisaged hypothesis or fits
some set of empirical data. But even, if the last step, fitting the simula-
tion to data, is taken (which has not been the case for most models and
simulations of the evolution of cooperation) this may not be sufficient.
As for that matter, before we can earnestly say that a simulation sim-
ulates some given empirical process it must at least have produced one
proper prediction, a requirement that has been incorporated into the
rules for calibrating simulations in the recipe for predictive simulations
(chapter 6.3.3). If a simulation is to explain the process it simulates,
the requirements are even higher: It must be empirically adequate, ro-
bust and non trivial (chapter 6.1.2). If this seems to raise the bar for
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proper computer simulations quite high then it merely reflects of how
poor quality (epistemologically considered) many computer simulations
are. Of course it might be objected that the criteria are too strict. As
to this objection, I can only refer to the reasons laid down in chapter
6.1.2. As such they are open to future debate.



210



Chapter 8

Appendices

8.1 Strategies for the reiterated Prisoner’s Dilemma

In the following subsections all strategies that occur in the reiterated two
person Prisoner’s Dilemma simulations in chapter 4 will be described.
In subsection 8.1.1 all of the strategies that were used in the first simple
model of reciprocal altruism (see chapter 4.1.1) will be described. The
following subsections 8.1.2 and 8.1.3 explain the strategies that were
used in the simulation series of chapter 4.1.4. Finally, subsection 8.1.4
describes the family of Signaling Cheater-strategies plus the strategy
Signaling Cheater, a member of which was used in the group selection
scenario in chapter 4.3.1. The verbal description of the strategies is sup-
plemented by their implementation in the Python programing language.
For the better understanding of the program code, it should be kept in
mind that a return value of one signifies a cooperative move, while a
return value of zero translates into a defective move in the game.

8.1.1 Ordinary strategies

Following is a description of the strategies that were used for the“simple
model” of chapter 4.1.1.

Tit for Tat The strategy Tit for Tat starts with a cooperative move
in the first round. In the subsequent rounds Tit for Tat cooperates if
the other player cooperated in the previous rounds. If the other player
defected in the previous round, Tit for Tat punishes the defector by
defecting itself.

class TitForTat(Strategy):

def firstMove(self):

return 1 # cooperate in the first round

def nextMove(self, myMoves, opMoves):

return opMoves[-1] # reciprocate opponent’s last move
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Grim The strategy Grim starts with a cooperative move and continues
to cooperate unless the other player defects. Once the other player has
failed to reciprocate cooperation Grim defects unanimously throughout
the remainder of the game.

class Grim(Strategy):

def firstMove(self):

self.punish = False

return 1

def nextMove(self, myMoves, opMoves):

if self.punish: return 0

elif opMoves[-1] == 1: return 1

else:

self.punish = True

return 0

Dove The strategy Dove always cooperates, no matter what the other
player does.

class Dove(Strategy):

def firstMove(self):

return 1

def nextMove(self, myMoves, opMoves):

return 1

Hawk The strategy Hawk never cooperates.

class Hawk(Strategy):

def firstMove(self):

return 0

def nextMove(self, myMoves, opMoves):

return 0

Random The strategy Random cooperates or defects at random with a
50% chance.

class Random(Strategy):

def firstMove(self):

return random.randint(0,1)

def nextMove(self, myMoves, opMoves):

return random.randint(0,1)

Tester The strategy Tester starts off with two defections. If the oppo-
nent does not answer these defections with punishment, Tester classifies
the opponent as an exploitable strategy and defects every second round
during the remainder of the match. Otherwise Tester tries to appease
the other player with two cooperative moves in round three and four and
then switches to the fairly reliable strategy Tit for Tat for the remainder
of the reiterated game.

class Tester(Strategy):

def firstMove(self):

self.state = "Test"

return 0

def nextMove(self, myMoves, opMoves):

if self.state == "Test":

self.state = "Evaluate"

return 0

elif self.state == "Evaluate":

if opMoves[-1] == 0:

self.state = "Consolation"
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return 1

else:

self.state = "Dove"

return 0

elif self.state == "Consolation":

self.state = "TitForTat"

return 1

elif self.state == "Dove":

self.state = "Hawk"

return 1

elif self.state == "Hawk":

self.state = "Dove"

return 0

elif self.state == "TitForTat":

return opMoves[-1]

else:

raise AssertionError, \

"Tester: state %s is not a valid state!"%self.state

Pavlov Named after the famous Russian physiologist who discovered
the “conditional reflex”, the strategy Pavlov plays “win stay, lose shift”,
starting with a defection. Other than for example Tit for Tat it will
continue with defecting, if the opponent fails to punish defections.

def invertMove(move):

"""--> inverted move. (0 becomes1 and 1 becomes 0)"""

if move == 0: return 1

else: return 0

class Pavlov(Strategy):

def firstMove(self):

self.condition = 0

return self.condition

def nextMove(self, myMoves, opMoves):

if opMoves[-1] == 0:

self.condition = invertMove(self.condition)

return self.condition

Tranquilizer The strategy Tranquilizer is a refinenement of the strat-
egy “Tit for two tats” which usually cooperates and only punishes the
opponent with a defection if the opponent has defected during the two
previous rounds. But in contrast to “Tit for two tats”, Tranquillizer also
defects unmotivated with a random probability that increases during the
course of the repeated game. (This reflects the consideration that good
relations with the other player become less important the shorter the
shadow of the future is.) The random defection probability is zero in
the beginning and is increased by 1% before each round, up to a limit
of 50%.

class Tranquilizer(Strategy):

def firstMove(self):

self.evilFactor = 0.0

return 1

def nextMove(self, myMoves, opMoves):

if self.evilFactor < 0.5: self.evilFactor += 0.01

if opMoves[-2:] == [0,0]:

return 0

else:

if random.random() < self.evilFactor: return 0

else: return 1
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Joss The strategy Joss basically plays “Tit for tat”, but it defects un-
motivated (i.e. in cases where it does not defect to punish the opponent
for a defection in the previous round) with a random probability of 10%.

class Joss(Strategy):

def firstMove(self):

return 1

def nextMove(self, myMoves, opMoves):

if opMoves[-1] == 0: return 0

else:

if random.random() < 0.1: return 0

else: return 1
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8.1.2 Parameterized Tit for Tat-strategies

The Parameterized Tit for Tat-strategies are derived from Tit for Tat
by adding the two parameters good rate and evil rate to modify the
behavior of Tit for Tat. The good rate is a probability with which the
Parametrized Tit for Tat makes a cooperative move when the ordinary
Tit for Tat would not. And, conversely, the evil rate defines a probability
with which the parametrized strategy defects when normally Tit for Tat
would cooperate. If both the good rate and the evil rate are zero then
the Parametrized Tit for Tat-strategy is the same as the ordinary Tit
for Tat. If the good rate is 1 and the evil rate is 0 then it is the same as
Dove. If, conversely, the evil rate is 1 and the good rate is 0 then then
strategy played is the same as Hawk. If both rates are 0.5 it is the same
as the Random-strategy.

The implementation of the Parameterized Tit for Tat-strategies be-
low takes account of these connections by appending appropriate suffixes
to the name of the strategy in these special cases. The names of the
Paramterized Tit for Tat-strategies consist of the “family name”, which
is “P TFT” followed by the goodrate and the evil rate and possibly by
a suffix to indicate a meaningful speacial case. Thus “P TFT 0.2 0.4” is
the name of the Parameterized Tit for Tat-strategy with a good rate o
f 20% and an evil rate of 40%, while “P TFT 0.5 0.5 (Random)” names
the Parameterized Tit for Tat strategy with both a good- and evil rate
of 50%, which is in effect the Random-strategy.

class ParameterizedTFT(Strategy):

def __repr__(self):

return self.__class__.__name__ + "(" + repr(self.goodrate) + \

", " + repr(self.evilrate) + ")"

def __init__(self, goodrate=0.2, evilrate=0.05):

assert goodrate >= 0.0 and goodrate <= 1.0, "goodrate must be >= 0 and

<= 1!"

assert evilrate >= 0.0 and evilrate <= 1.0, "evilrate must be >= 0 and

<= 1!"

Strategy.__init__(self)

self.randomizing = True

self.goodrate = goodrate

self.evilrate = evilrate

self.name = "P_TFT %1.2f %1.2f" % (self.goodrate,self.evilrate)

if self.goodrate == 1.0 and self.evilrate == 0.0:

self.name += " (Dove)"

elif self.evilrate == 1.0 and self.goodrate == 0.0:

self.name += " (Hawk)"

elif self.goodrate == 0.0 and self.evilrate == 0.0:

self.name += " (TitForTat)"

elif self.goodrate == 0.5 and self.evilrate == 0.5:

self.name += " (Random)"

elif self.goodrate == 1.0 and self.evilrate == 1.0:

self.name += " (Inverted)"

def firstMove(self):

if random.random() < self.evilrate: return 0

else: return 1

def nextMove(self, myMoves, opMoves):

if opMoves[-1] == 0:

if random.random() < self.goodrate: return 1

else: return 0
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else:

if random.random() < self.evilrate: return 0

else: return 1

8.1.3 Two state automata and their implementation

One way of representing strategies in the reiterated Prisoner’s Dilemma
is by using finite automata. An automaton is here understood as a ma-
chine that can take one of several different states. The state of the ma-
chine determines what move a player (whose strategy is represented by
the machine) makes in each round of the reiterated Prisoner’s Dilemma.
Depending on the opponent’s move the machine then changes its state
for the next round. Theoretically, any deterministic strategy in the re-
iterated Prisoner’s Dilemma can be represented by an automaton, if we
only allow the automaton to be complex enough. In this book, only
two state automata are used in order to represent strategies of a limited
complexity. Where more complex strategies are used in the simulations,
the usual algorithmic representation is used instead of automata.

Two state automata are always in one of two different states, which in
the following will be called state D and state H. Each state is defined by
the move the player makes in this state and the transition rules which
tell us to which target state the automaton switches depending on the
opponent’s move. Because there are only two possible moves and exactly
two states, we can by convenience assume that state D is the state in
which the automaton makes a cooperative move and state H is the
state in which the automaton makes a defective move.1 For each state
there are two transition rules, one which tells us into which state the
automaton switches when the opponent has played dove and one which
tells us into which state the automaton switches when the opponent
plays hawk. Finally, we need to decide which state the automaton
starts with. All in all an automaton is thus defined by five different
parameters which can conveniently be represented by a five character
string of Ds and Hs as shown in figure 8.1:

Accordingly, two state automata can be implemented by a simple
table look-up algorithm, as can be seen in the following abbreviated
code snippet:

1This may seem awkward at first, because logically the state itself (which is defined by both the move
and the transition rules) and the move a players makes when in a specific state are quite different things.
How can it then be identified by the move alone? To understand that this is possible, it should be
observed that if both states result in the same move (either cooperative or defective) then the transition
rules do not matter any more, because the automaton always makes the same move anyway. But if the
automaton makes different moves in each state then there exists only one set of transition rules for each
of the two possible moves and the state can perfectly be identified by the respective move alone.
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Figure 8.1: Coding players in the repeated Prisoner’s Dilemma as two state automata.
The example shows the string representation for the automaton that plays Tit for Tat.

class TwoStateAutomaton(Strategy):

def __init__(self, programString="DDHDH"):

Strategy.__init__(self)

self.name = "AM: " + programString

dic = { ’D’:1, ’H’:0 }

self.initialState = dic[programString[0]]

self.state = self.initialState

self.progString = programString

self.prog = [ [dic[programString[4]], dic[programString[3]]], \

[dic[programString[2]], dic[programString[1]]] ]

def firstMove(self):

self.state = self.initialState

return self.state

def nextMove(self, myMoves, opMoves):

self.state = self.prog[self.state][opMoves[-1]]

return self.state

The string representation allows for 32 (25) different encodings, but in
fact there exist only 26 different automata, because the automata that
represent the strategies Dove and Hawk can be encoded in four different
ways (since there are four (22) different codings for the state that is
never reached). By convenience we will pick the string representation
“DDDDD” for the strategy Dove and “HHHHH” for the strategy Hawk.
Table 8.2 shows all possible two state automata. Some of them have
been given names either to indicate which algorithmic strategy they
represent or just fancy names that where partly taken from (Binmore,
1998, p. 296) (who in turn borrowed them from“Alice in Wonderland”).
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1. DDDDD (Dove) 14. HDDDD
2. DDHDD (Tweedledee) 15. HDDDH
3. DDHDH (Tit for Tat) 16. HDDHD (Tweetypie)
4. DDHHD (Tweedledum) 17. HDHDD (Simpleton)
5. DDHHH (Grim) 18. HDHDH
6. DHDDD 19. HDHHD (Pavlov)
7. DHDDH 20. HHDDD
8. DHDHD 21. HHDDH
9. DHDHH 22. HHDHD (Inverted TFT)
10. DHHDD 23. HHHDD
11. DHHDH 24. HHHDH
12. DHHHD 25. HHHHD
13. DHHHH 26. HHHHH

Figure 8.2: List of all possible two state automata. The additional names are mostly
taken from (Binmore, 1998, p. 296).

8.1.4 The family of Signaling Cheater strategies

A Singalling Cheater-strategy is a strategy that plays a predefined se-
quence of cooperative and defective moves in the first n rounds of the
repeated Prisoner’s Dilemma. If the opponent player starts with exactly
the same sequence of moves, Signaling Cheater assumes that it has met
another Signaling Cheater and cooperates unconditionally for the re-
maining rounds of the repeated game. Otherwise Signaling Cheater
defects for the rest of the game. Thus, Signaling Cheater is a strategy
that is designed to cooperate only with its own kind (that is other Sig-
naling Cheaters that use the same starting sequence as a signal) and
not to cooperate with any other strategy. The Python implementation
of Signaling Cheater follows below:

class SignalingCheater(Strategy):

def __repr__(self):

return self.__class__.__name__+"("+repr(self.signal)+")"

def __init__(self, signal=(0,1,1)):

Strategy.__init__(self)

self.signal = signal

for i in self.signal: self.name += str(i)

def firstMove(self):

self.pos = 0

return self.signal[self.pos]

def nextMove(self, myMoves, opMoves):

self.pos += 1

if self.pos < len(self.signal):

return self.signal[self.pos]

else:

if tuple(opMoves[:len(self.signal)]) == self.signal:

return 1

else: return 0
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8.2 Implementation details of the population dynam-

ics

The population dynamical processes at the base of the simulations in
this book are modeled in a very common and straight forward way:
At the center of most simulations is the evolutionary success of certain
strategies in games such as the repeated Prisoner’s Dilemma game. We
assume a population of players where each player plays one of the strate-
gies. (If this seems to abstract, it may help to think of the strategies
as species and of the players as individuals belonging to the one or the
other species, or to think of the strategies as mutually exclusive social
norms and the players as people that chose which norm they adhere
to.) The players that play a certain strategy thus constitute the pop-
ulation share of this strategy. For the sake of simplicity an infinitely
large population of players is assumed. The size of the population share
of a strategy is expressed as a fraction of 1. In the beginning the shares
are usually divided equal among all strategies. The evolutionary pro-
cess is modeled as a sequence of non overlapping generational cycles.
During each generation the fitness of every strategy is determined by
the average score in the tournament, where the score of each match is
weighted with the population share of the opponent. Thus the fitness
is determined by:

Fi =

n∑

k=1

SikPk (8.1)

Fi the Fitness of the i-th strategy
Sik the score of the i-th strategy when playing against the k-th strategy
Pk the population share of k-th strategy
n the total number of strategies in the simulation
i, k indices of the strategies

In the simulation program the calculation of the fitness is performed
by one of the different Fitness functions in module Dynamics.py of
package PopulationDynamics. The simplemost of these is the func-
tion Dynamics._QuickFitness2. If calculates the fitness values of a
population of strategies based on a two player game. The function
_QuickFitness2 is called with the tuple of population shares and the
payoff matrix as parameters. The payoff matrix contains the payoff of
the matches of each strategy against every other strategy. The function
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returns the list of fitness values of the strategies.2

1: def _QuickFitness2(population, payoff):

2: n = population

3: L = len(n)

4: p = []

5: for i in xrange(L):

6: s = 0.0

7: for k in xrange(L):

8: s += payoff[i,k]*n[k]

9: p.append(s)

10: return p

The fitness Fi of equation 8.1 is calculated in the for loop in lines 7
and 8. The outer for loop (lines 5 to 9) calculates the fitness for each
strategy and appends it to the list of fitness values. (The assignment in
line 2 is done just for convenience to avoid to many long variable names
in line 8.)

One of the parameters that is varied in the simulation series’ (see
4.1.4) is the parameter e for the correlation of players of the same strat-
egy. If e is nonzero then players with the same strategy interact more
often than with purely random matching. In order to integrate correla-
tion into the model the original fitness equation (8.1) must be slightly
changed.3

Fi =
n∑

k=1
k 6=i

Sik(1 − e)Pk + Sii(Pi + e(1 − Pi)) (8.2)

Fi the Fitness of the i-th strategy
Sik the score of the i-th strategy when playing against the k-th strategy
Pk the population share of k-th strategy
n the total number of strategies in the simulation
i, k indices of the strategies
e the correlation factor, ranging from 0 to 1

It should be observed that if the correlation e = 0 then equation
(8.2 resolves to the simpler equation (8.1). But if the correlation e = 1
(perfect correlation) then Fi = Sii, which is exactly what we would
expect: When the correlation is perfect, players of one strategy never
interact with players of any other strategy and their fitness depends
entirely on how the strategy scores against itself. The implementation
of the fitness functions that includes correlation looks accordingly:

2This and the following code snipplets are taken from module PopulationDynamics.Dynamics. For
the sake of brevity and better readability the error checking code has been left out here.

3This very simple model of correlation was taken from (Skyrms, 1996, p. 113, note 30).
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1: def _Fitness2(population, payoff, e):

2: n = population

3: L = len(n)

4: p = []

5: for i in xrange(L):

6: s = 0.0

7: for k in xrange(L):

8: if i == k:

9: s += payoff[i,k]*(n[i]+e*(1.0-n[i]))

10: else:

11: s += payoff[i,k]*(n[k]-e*n[k])

12: p.append(s)

13: return p

The population shares of the next generation are then determined
simply by multiplying the population share of each strategy with its
fitness. Since we calculate with population shares and not with absolute
population sizes the fitness values always express relative fitness. (It
makes no difference if strategy A has a fitness of 1 and strategy B has a
fitness of 2 or if A has fitness 50 and B fitness 100.) For convenience, the
population shares are normalized (by dividing them through the sum of
the not normalized population shares) so that they nicely add up to 1:

P g+1
i =

P g
i F g

i∑n
k=1 P g

k F g
k

(8.3)

P g
i the population share of strategy i in generation g

F g
i the fitness of the i-th strategy in generation g

g the number of the current generation
i, k indices of the strategies

The program code that performs these calculations looks as follows:

1: def _QuickReplicator(population, fitness):

2: n = list(population)

3: L = len(population)

4: f = fitness(population)

5: for i in xrange(L): n[i] *= f[i]

6: N = sum(n)

7: for i in xrange(L): n[i] /= N

8: return tuple(n)

The function Dynamics._QuickReplicator of package Population-
Dynamics takes the tuple of population shares and a fitness function as
parameters and returns the tuple of population shares of the next gen-
eration. The fitness function is called in line 4. It is expected to return
a list with the fitness values of the strategies. (As it takes only one pa-
rameter the above fitness function, which takes two parameters, cannot
be called directly from the replicator function, but must be called indi-
rectly through a dynamically created function that includes the payoff
matrix as a constant parameter. There are technical reasons for using
this construction instead of passing through the payoff matrix from the
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caller of the replicator function to the fitness function.) The actual cal-

culation of the next generation’s population shares P g+1
i of equation 8.3

are carried out in lines 5 to 8.
Just as in the case of the fitness equation (8.1) and the related pro-

gram code there exists an extended version of the population equation
(8.3) for the case when the background noise b > 0:

P g+1
i =

P g
i F g

i (1 − bRg
i )∑n

k=1 P g

k F g

k (1 − bRg

k)
(8.4)

P g
i the population share of strategy i in generation g

Fi the fitness of the i-th strategy in generation g
g the number of the current generation
i, k indices of the strategies
b evolutionary background noise 0 ≤ b ≤ 1
Rg

i a random number 0 ≤ Rg
i < 1

The implementation in Python code is likewise:

1: def _Replicator(population, fitness, noise):

2: n = list(population)

3: L = len(population)

4: f = fitness

5: for i in xrange(L): n[i] *= f[i]- random.uniform(0,f[i]*noise)

6: N = sum(n)

7: for i in xrange(L): n[i] /= N

8: return tuple(n)

A few things need to be noted about the model as well as its imple-
mentation. When using infinite populations this is of course an ideal-
ization. It makes it easier to calculate with population shares and, as
the model is purely conceptual and we do not have any particular em-
pirical application of the model in mind, any fixed finite population size
would be arbitrary anyway. However, the use of infinite populations for
modeling processes that take place in finite populations slightly distorts
the evolutionary process in two ways: 1) Even the slightest variations in
fitness lead to variations in population shares. In real life, or in nature
for that matter, it is conceivable that very small fitness differences are
not strong enough to transform into a different number of offspring4

and 2) and more importantly, as long as the fitness value remains above
zero, a species (or strategy respectively) can never die out. Its popula-
tion share could be arbitrarily small, yet there is still a possibility that
it will eventually recover, even though in “real life” it would never be

4It is important here that the fitness and the number of offspring are not the same by definition. For
a short discussion of this point see page 26.
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given a second chance. Of course, both of these distortions can, if neces-
sary, easily be remedied by 1) mapping the fitness onto a discrete set of
numbers before calculating the population shares of the next generation
and 2) defining a threshold population share below which a species (or
strategy in our case) will be eliminated from the population, but it is
important to keep these points in mind.

They way in which the fitness is derived from the payoffs in the (Pris-
oner’s Dilemma) game also introduces certain peculiarities. Because the
weighted average payoff is used as fitness value, negative payoffs are im-
permissible. This may seem awkward given that negative payoffs are
usually perfectly legitimate in game theory and might even be given a
reasonable interpretation, for example, to indicate a loss of money in an
economical context. But if we think of fitness in an evolutionary context,
it makes perfectly good sense to exclude negative payoffs, because the
reproduction rate cannot conceivably fall below zero. A reproduction
rate of zero already means – depending on the context – the extinction
of a species, the vanishing of a gene or the disappearance of a social
norm. What worse could happen in evolution than extinction?

The simulation models described in sections 4.1.1 and 4.1.4 do even
make it impossible that the fitness value will be exactly zero, because
even though some strategies may be left with a payoff of zero in the
repeated Prisoner’s Dilemma match against another strategy (as, for
example, Dove against Hawk) the average payoff of a strategy in the
tournament can never be zero, because no strategy gets a zero payoff
in the match against itself. This simplifies calculations greatly, because
no provisions for the special case of a zero fitness need to be made.
Otherwise, care would have to be taken to avoid divisions by zero and
the like.
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8.3 Comprehensive results of the simualtion series

The following tables and figures list all of aggregated data of the simu-
lation series described in chapter 4.1.4. First (section 8.3.1) the overall
results of the big series are given, both as tables and then in a graphical
form. The stratgey set of Two State Automata (section 8.1.3 above)
and the set of Parameterized Tit for Tats (section 8.1.2) are always
considered separately. In the tables the the average final population
shares of the evolutionary simulations is displayed. (The simulations
in the series were stopped either when no changes in the composition
of the population occured any more or when the 25,600th generation
had been reached.) The strategies are always ranked after their average
final population share in the whole series. The graphical representation
depicts in three columns the tournament ranking (in lexical order that
is, if a strategy has been the the winner of the tournament two times
over the whole series it is always better than a strategy that has won
the tournament only once, no matter how often it was placed second),
the evolutionary ranking (by the average final population share) and
a more illustrative representation of the evolutionary ranking. On the
graphical representation, the strategies are represented by colored bars,
which represent their degree of altruism. A green color means that the
strategy is fully (e.g. Dove) or to some degree (e.g. Tweedledee) gen-
uinely altruistic. A blue color means that it is either reciprocal (e.g. Tit
for Tat, Grim) or cannot be classified (e.g. Inverted). Red means that
the strategy is a cheater or (primarily) non altruistic (e.g. Hawk). (See
page 93 for detailed description of the color scheme and its motivation.)

In order to determine the influence of single parameters on the simu-
lation, the aggregated results for every parameter held constant at each
of its values (see page 83) was calculated as well. This helps to find
out about the influence of single parameters on the simulation, though
possible joint effects of several parameters still remain opaque. For each
parameter and strategy set, a table is presented that shows how the av-
erage final population share of each strategy changes for different values
of the parameter. There is also a graphical representation of the tour-
nament rankings and evolutionary outcomes for each parameter value
and strategy set.
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8.3.1 “Big series” overall results

Average Final Population Share
Strategy overall results
AM: HHHHH (HAWK) 34.61 %
AM: DDHHH (GRIM) 17.28 %
AM: DDHDH (TIT FOR TAT) 10.22 %
AM: HDHHD (PAVLOV) 10.01 %
AM: DDDDD (DOVE) 9.27 %
AM: DDHHD (TWEEDLEDUM) 7.12 %
AM: DDHDD (TWEEDLEDEE) 2.91 %
AM: HDHDH (TAT FOR TIT) 1.73 %
AM: DHHHH 1.56 %
AM: DHHDH 1.39 %
AM: HDHDD (SIMPLETON) 1.28 %
AM: HHHDH 1.09 %
AM: HHHHD 0.52 %
AM: DHHDD 0.39 %
AM: HHHDD 0.36 %
AM: DHHHD 0.13 %
AM: DHDHH 0.10 %
AM: HDDHD (TWEETYPIE) 0.00 %
AM: HHDHD (INVERTED) 0.00 %
AM: DHDHD 0.00 %
AM: HDDDD 0.00 %
AM: HHDDD 0.00 %
AM: DHDDD 0.00 %
AM: HDDDH 0.00 %
AM: HHDDH 0.00 %
AM: DHDDH 0.00 %
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Average Final Population Share
Strategy overall results
P TFT 0.00 0.00 (TitForTat) 38.54 %
P TFT 0.00 1.00 (Hawk) 28.50 %
P TFT 0.20 0.00 8.98 %
P TFT 1.00 0.00 (Dove) 8.30 %
P TFT 0.40 0.00 8.27 %
P TFT 0.80 0.00 2.16 %
P TFT 1.00 1.00 (Inverted) 1.55 %
P TFT 0.00 0.80 1.06 %
P TFT 0.20 0.40 0.93 %
P TFT 0.60 0.00 0.51 %
P TFT 0.40 0.20 0.46 %
P TFT 0.60 1.00 0.38 %
P TFT 0.40 0.40 0.23 %
P TFT 0.60 0.20 0.12 %
P TFT 0.80 1.00 0.01 %
P TFT 0.40 1.00 0.00 %
P TFT 0.20 1.00 0.00 %
P TFT 0.00 0.60 0.00 %
P TFT 0.80 0.20 0.00 %
P TFT 1.00 0.20 0.00 %
P TFT 0.80 0.40 0.00 %
P TFT 0.20 0.20 0.00 %
P TFT 0.60 0.40 0.00 %
P TFT 1.00 0.40 0.00 %
P TFT 0.00 0.40 0.00 %
P TFT 0.80 0.60 0.00 %
P TFT 1.00 0.60 0.00 %
P TFT 0.00 0.20 0.00 %
P TFT 0.60 0.60 0.00 %
P TFT 0.40 0.60 0.00 %
P TFT 0.20 0.60 0.00 %
P TFT 0.80 0.80 0.00 %
P TFT 0.20 0.80 0.00 %
P TFT 0.60 0.80 0.00 %
P TFT 0.40 0.80 0.00 %
P TFT 1.00 0.80 0.00 %
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Results for strategy set:  "Automata" 

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DHHHHAM: DHHHH

AM: HHHHDAM: HHHHD

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: DHDHHAM: DHDHH

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: DHHHDAM: DHHHD

AM: HHDHD (INVERTED)AM: HHDHD (INVERTED)

AM: HHHDHAM: HHHDH

AM: DHHDHAM: DHHDH

AM: DDHDH (TIT FOR TAT)AM: DDHDH (TIT FOR TAT)

AM: HDDHD (TWEETYPIE)AM: HDDHD (TWEETYPIE)

AM: HDHDH (TAT FOR TIT)AM: HDHDH (TAT FOR TIT)

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

AM: DHDHDAM: DHDHD

AM: HHHDDAM: HHHDD

AM: DHHDDAM: DHHDD

AM: HDHDD (SIMPLETON)AM: HDHDD (SIMPLETON)

AM: HHDDHAM: HHDDH

AM: DHDDHAM: DHDDH

AM: HHDDDAM: HHDDD

AM: HDDDDAM: HDDDD

AM: DHDDDAM: DHDDD

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: HDDDHAM: HDDDH

Tournament Ranking

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: DDHDH (TIT FOR TAT)AM: DDHDH (TIT FOR TAT)

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

AM: HDHDH (TAT FOR TIT)AM: HDHDH (TAT FOR TIT)

AM: DHHHHAM: DHHHH

AM: DHHDHAM: DHHDH

AM: HDHDD (SIMPLETON)AM: HDHDD (SIMPLETON)

AM: HHHDHAM: HHHDH

AM: HHHHDAM: HHHHD

AM: DHHDDAM: DHHDD

AM: HHHDDAM: HHHDD

AM: DHHHDAM: DHHHD

AM: DHDHHAM: DHDHH

AM: HDDHD (TWEETYPIE)AM: HDDHD (TWEETYPIE)

AM: HHDHD (INVERTED)AM: HHDHD (INVERTED)

AM: DHDHDAM: DHDHD

AM: HDDDDAM: HDDDD

AM: HHDDDAM: HHDDD

AM: DHDDDAM: DHDDD

AM: HDDDHAM: HDDDH

AM: HHDDHAM: HHDDH

AM: DHDDHAM: DHDDH

Evolutionary Ranking

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: DDHDH (TIT FOR TAT)AM: DDHDH (TIT FOR TAT)

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

Average Final Population

Figure 8.3: The aggregated results of all simulations of the “big series” using Automata strategies.
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Results for strategy set:  "TFTs" 

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.80P_TFT 1.00 0.80

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

Tournament Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 1.00 0.80P_TFT 1.00 0.80

Evolutionary Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

P_TFT 0.40 0.00P_TFT 0.40 0.00

Average Final Population

Figure 8.4: The aggregated results of all simulations of the “big series” using Parameterized Tit for Tat strategies.
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8.3.2 The influence of correlation

The correlation factor describes the probability by which players are
more likely to meet opponents with the same strategy than opponents
with a different strategy. A correlation of 0% means that the players
are randomly matched, while with a correlation of 100% players do
exclusively play against players of the same strategy.

Automata

Average Final Population Share
Strategy overall c = 0.0 c = 0.1 c = 0.2
AM: HHHHH (HAWK) 34.61 % 44.30 % 33.71 % 25.81 %
AM: DDHHH (GRIM) 17.28 % 21.73 % 16.27 % 13.85 %
AM: DDHDH (TIT FOR TAT) 10.22 % 9.51 % 13.47 % 7.69 %
AM: HDHHD (PAVLOV) 10.01 % 2.08 % 4.83 % 23.11 %
AM: DDDDD (DOVE) 9.27 % 8.04 % 11.29 % 8.48 %
AM: DDHHD (TWEEDLEDUM) 7.12 % 2.58 % 4.95 % 13.82 %
AM: DDHDD (TWEEDLEDEE) 2.91 % 2.70 % 4.40 % 1.63 %
AM: HDHDH (TAT FOR TIT) 1.73 % 0.00 % 1.88 % 3.32 %
AM: DHHHH 1.56 % 4.69 % 0.00 % 0.00 %
AM: DHHDH 1.39 % 0.53 % 2.62 % 1.02 %
AM: HDHDD (SIMPLETON) 1.28 % 0.62 % 2.57 % 0.66 %
AM: HHHDH 1.09 % 0.56 % 2.11 % 0.61 %
AM: HHHHD 0.52 % 0.78 % 0.79 % 0.00 %
AM: DHHDD 0.39 % 0.86 % 0.32 % 0.00 %
AM: HHHDD 0.36 % 0.70 % 0.39 % 0.00 %
AM: DHHHD 0.13 % 0.00 % 0.40 % 0.00 %
AM: DHDHH 0.10 % 0.29 % 0.00 % 0.00 %
AM: HDDHD (TWEETYPIE) 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDHD (INVERTED) 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDHD 0.00 % 0.00 % 0.00 % 0.00 %
AM: HDDDD 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDDD 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDDD 0.00 % 0.00 % 0.00 % 0.00 %
AM: HDDDH 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDDH 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDDH 0.00 % 0.00 % 0.00 % 0.00 %
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Results for strategy set:  "Automata" 

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DHHHHAM: DHHHH

AM: HHHHDAM: HHHHD

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: DHDHHAM: DHDHH

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: DHHHDAM: DHHHD

AM: HHDHD (INVERTED)AM: HHDHD (INVERTED)

AM: HHHDHAM: HHHDH

AM: DHHDHAM: DHHDH

AM: DDHDH (TIT FOR TAT)AM: DDHDH (TIT FOR TAT)

AM: HDDHD (TWEETYPIE)AM: HDDHD (TWEETYPIE)

AM: HDHDH (TAT FOR TIT)AM: HDHDH (TAT FOR TIT)

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

AM: DHDHDAM: DHDHD

AM: HHHDDAM: HHHDD

AM: DHHDDAM: DHHDD

AM: HDHDD (SIMPLETON)AM: HDHDD (SIMPLETON)

AM: HHDDHAM: HHDDH

AM: DHDDHAM: DHDDH

AM: HHDDDAM: HHDDD

AM: HDDDDAM: HDDDD

AM: DHDDDAM: DHDDD

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: HDDDHAM: HDDDH

Tournament Ranking

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: DDHDH (TIT FOR TAT)AM: DDHDH (TIT FOR TAT)

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: DHHHHAM: DHHHH

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: DHHDDAM: DHHDD

AM: HHHHDAM: HHHHD

AM: HHHDDAM: HHHDD

AM: HDHDD (SIMPLETON)AM: HDHDD (SIMPLETON)

AM: HHHDHAM: HHHDH

AM: DHHDHAM: DHHDH

AM: DHDHHAM: DHDHH

AM: DHHHDAM: DHHHD

AM: HDHDH (TAT FOR TIT)AM: HDHDH (TAT FOR TIT)

AM: HDDHD (TWEETYPIE)AM: HDDHD (TWEETYPIE)

AM: HHDHD (INVERTED)AM: HHDHD (INVERTED)

AM: DHDHDAM: DHDHD

AM: HHDDHAM: HHDDH

AM: HDDDDAM: HDDDD

AM: HDDDHAM: HDDDH

AM: DHDDHAM: DHDDH

AM: HHDDDAM: HHDDD

AM: DHDDDAM: DHDDD

Evolutionary Ranking

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: DDHDH (TIT FOR TAT)AM: DDHDH (TIT FOR TAT)

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: DHHHHAM: DHHHH
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Figure 8.5: The aggregated results of those simulations of the “big series” for which the correlation value was 0%.
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Results for strategy set:  "Automata" 
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Figure 8.6: The aggregated results of those simulations of the “big series” for which the correlation value was 10%.
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Results for strategy set:  "Automata" 
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Figure 8.7: The aggregated results of those simulations of the “big series” for which the correlation value was 20%.
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Parameterized Tit for Tats

Average Final Population Share
Strategy overall c = 0.0 c = 0.1 c = 0.2
P TFT 0.00 0.00 (TitForTat) 38.54 % 32.71 % 42.20 % 40.72 %
P TFT 0.00 1.00 (Hawk) 28.50 % 54.45 % 25.76 % 5.29 %
P TFT 0.20 0.00 8.98 % 0.87 % 6.84 % 19.22 %
P TFT 1.00 0.00 (Dove) 8.30 % 1.27 % 7.15 % 16.49 %
P TFT 0.40 0.00 8.27 % 4.14 % 9.60 % 11.06 %
P TFT 0.80 0.00 2.16 % 0.70 % 2.11 % 3.68 %
P TFT 1.00 1.00 (Inverted) 1.55 % 1.24 % 1.54 % 1.88 %
P TFT 0.00 0.80 1.06 % 1.80 % 1.37 % 0.00 %
P TFT 0.20 0.40 0.93 % 2.78 % 0.00 % 0.00 %
P TFT 0.60 0.00 0.51 % 0.05 % 0.78 % 0.70 %
P TFT 0.40 0.20 0.46 % 0.00 % 1.39 % 0.00 %
P TFT 0.60 1.00 0.38 % 0.00 % 0.37 % 0.78 %
P TFT 0.40 0.40 0.23 % 0.00 % 0.69 % 0.00 %
P TFT 0.60 0.20 0.12 % 0.00 % 0.19 % 0.17 %
P TFT 0.80 1.00 0.01 % 0.00 % 0.02 % 0.01 %
P TFT 0.40 1.00 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 1.00 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.20 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.20 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.40 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.20 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.40 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.40 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.40 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.20 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.40 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.80 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.80 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.80 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.40 0.80 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.80 0.00 % 0.00 % 0.00 % 0.00 %
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Results for strategy set:  "TFTs" 
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Figure 8.8: The aggregated results of those simulations of the “big series” for which the correlation value was 0%.
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Results for strategy set:  "TFTs" 
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Figure 8.9: The aggregated results of those simulations of the “big series” for which the correlation value was 10%.
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Results for strategy set:  "TFTs" 
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Figure 8.10: The aggregated results of those simulations of the “big series” for which the correlation value was 20%.
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8.3.3 The influence of game noise

The game noise parameter specifies a probability with which the in-
tended move of a player is randomly turned into its opposite.

Automata

Average Final Population Share
Strategy overall g = 0.0 g = 0.05 g = 0.1
AM: HHHHH (HAWK) 34.61 % 7.45 % 36.38 % 59.99 %
AM: DDHHH (GRIM) 17.28 % 38.23 % 10.42 % 3.19 %
AM: DDHDH (TIT FOR TAT) 10.22 % 15.82 % 7.78 % 7.07 %
AM: HDHHD (PAVLOV) 10.01 % 5.03 % 16.48 % 8.51 %
AM: DDDDD (DOVE) 9.27 % 22.58 % 3.67 % 1.56 %
AM: DDHHD (TWEEDLEDUM) 7.12 % 7.08 % 9.13 % 5.14 %
AM: DDHDD (TWEEDLEDEE) 2.91 % 3.81 % 4.66 % 0.26 %
AM: HDHDH (TAT FOR TIT) 1.73 % 0.00 % 2.57 % 2.64 %
AM: DHHHH 1.56 % 0.00 % 0.74 % 3.95 %
AM: DHHDH 1.39 % 0.00 % 1.72 % 2.45 %
AM: HDHDD (SIMPLETON) 1.28 % 0.00 % 0.93 % 2.92 %
AM: HHHDH 1.09 % 0.00 % 2.02 % 1.26 %
AM: HHHHD 0.52 % 0.00 % 1.46 % 0.12 %
AM: DHHDD 0.39 % 0.00 % 1.01 % 0.17 %
AM: HHHDD 0.36 % 0.00 % 0.86 % 0.23 %
AM: DHHHD 0.13 % 0.00 % 0.16 % 0.24 %
AM: DHDHH 0.10 % 0.00 % 0.00 % 0.29 %
AM: HDDHD (TWEETYPIE) 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDHD (INVERTED) 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDHD 0.00 % 0.00 % 0.00 % 0.00 %
AM: HDDDD 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDDD 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDDD 0.00 % 0.00 % 0.00 % 0.00 %
AM: HDDDH 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDDH 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDDH 0.00 % 0.00 % 0.00 % 0.00 %
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Results for strategy set:  "Automata" 
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Figure 8.11: The aggregated results of those simulations of the “big series” for which the game noise was 0%.



239

Results for strategy set:  "Automata" 
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Figure 8.12: The aggregated results of those simulations of the “big series” for which the game noise was 5%.
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Results for strategy set:  "Automata" 
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Figure 8.13: The aggregated results of those simulations of the “big series” for which the game noise was 10%.
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Parameterized Tit for Tats

Average Final Population Share
Strategy overall g = 0.0 g = 0.05 g = 0.1
P TFT 0.00 0.00 (TitForTat) 38.54 % 82.41 % 18.98 % 14.24 %
P TFT 0.00 1.00 (Hawk) 28.50 % 0.00 % 27.39 % 58.11 %
P TFT 0.20 0.00 8.98 % 6.84 % 8.60 % 11.48 %
P TFT 1.00 0.00 (Dove) 8.30 % 6.56 % 11.80 % 6.56 %
P TFT 0.40 0.00 8.27 % 2.60 % 18.94 % 3.25 %
P TFT 0.80 0.00 2.16 % 0.93 % 4.17 % 1.39 %
P TFT 1.00 1.00 (Inverted) 1.55 % 0.00 % 3.00 % 1.66 %
P TFT 0.00 0.80 1.06 % 0.00 % 3.17 % 0.00 %
P TFT 0.20 0.40 0.93 % 0.00 % 2.78 % 0.00 %
P TFT 0.60 0.00 0.51 % 0.65 % 0.00 % 0.87 %
P TFT 0.40 0.20 0.46 % 0.00 % 0.00 % 1.39 %
P TFT 0.60 1.00 0.38 % 0.00 % 0.13 % 1.02 %
P TFT 0.40 0.40 0.23 % 0.00 % 0.69 % 0.00 %
P TFT 0.60 0.20 0.12 % 0.00 % 0.36 % 0.00 %
P TFT 0.80 1.00 0.01 % 0.00 % 0.00 % 0.03 %
P TFT 0.40 1.00 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 1.00 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.20 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.20 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.40 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.20 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.40 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.40 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.40 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.20 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.40 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.80 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.80 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.80 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.40 0.80 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.80 0.00 % 0.00 % 0.00 % 0.00 %
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Results for strategy set:  "TFTs" 
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Figure 8.14: The aggregated results of those simulations of the “big series” for which the game noise was 0%.
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Results for strategy set:  "TFTs" 
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Figure 8.15: The aggregated results of those simulations of the “big series” for which the game noise was 5%.
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Results for strategy set:  "TFTs" 
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Figure 8.16: The aggregated results of those simulations of the “big series” for which the game noise was 10%.
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8.3.4 The influence of evolutionary noise

Evolutionary noise is here understood as a random distortion of a cer-
tain percentage that will decrease or increase the fitness value of each
strategy in the population dynamics.

Automata

Average Final Population Share

Strategy overall n = 0.0 n = 0.05 n = 0.1 n = 0.15

AM: HHHHH (HAWK) 34.61 % 32.80 % 33.92 % 35.58 % 36.13 %
AM: DDHHH (GRIM) 17.28 % 20.28 % 16.40 % 16.29 % 16.16 %
AM: DDHDH (TIT FOR TAT) 10.22 % 9.69 % 10.59 % 9.77 % 10.84 %
AM: HDHHD (PAVLOV) 10.01 % 10.84 % 10.56 % 9.01 % 9.61 %
AM: DDDDD (DOVE) 9.27 % 9.19 % 9.98 % 9.85 % 8.07 %
AM: DDHHD (TWEEDLEDUM) 7.12 % 6.45 % 6.22 % 10.10 % 5.69 %
AM: DDHDD (TWEEDLEDEE) 2.91 % 2.70 % 3.61 % 2.45 % 2.89 %
AM: HDHDH (TAT FOR TIT) 1.73 % 1.25 % 1.14 % 1.56 % 3.00 %
AM: DHHHH 1.56 % 1.47 % 2.10 % 1.08 % 1.61 %
AM: DHHDH 1.39 % 1.34 % 1.24 % 1.26 % 1.72 %
AM: HDHDD (SIMPLETON) 1.28 % 1.30 % 1.37 % 1.00 % 1.46 %
AM: HHHDH 1.09 % 1.37 % 0.93 % 0.69 % 1.39 %
AM: HHHHD 0.52 % 0.07 % 0.99 % 0.05 % 0.99 %
AM: DHHDD 0.39 % 0.57 % 0.32 % 0.44 % 0.24 %
AM: HHHDD 0.36 % 0.41 % 0.25 % 0.63 % 0.17 %
AM: DHHHD 0.13 % 0.20 % 0.13 % 0.18 % 0.02 %
AM: DHDHH 0.10 % 0.06 % 0.24 % 0.07 % 0.01 %
AM: HDDHD (TWEETYPIE) 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDHD (INVERTED) 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDHD 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: HDDDD 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDDD 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDDD 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: HDDDH 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDDH 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDDH 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
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Results for strategy set:  "Automata" 
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Figure 8.17: The aggregated results of those simulations of the “big series” for which the evolutionary noise was 0%.
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Results for strategy set:  "Automata" 
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Figure 8.18: The aggregated results of those simulations of the “big series” for which the evolutionary noise was 5%.
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Results for strategy set:  "Automata" 
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Figure 8.19: The aggregated results of those simulations of the “big series” for which the evolutionary noise was 10%.
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Results for strategy set:  "Automata" 
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AM: HHHDDAM: HHHDD

AM: DHHDDAM: DHHDD

AM: HDHDD (SIMPLETON)AM: HDHDD (SIMPLETON)

AM: HHDDHAM: HHDDH

AM: DHDDHAM: DHDDH

AM: HHDDDAM: HHDDD

AM: HDDDDAM: HDDDD

AM: DHDDDAM: DHDDD

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: HDDDHAM: HDDDH

Tournament Ranking

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: DDHDH (TIT FOR TAT)AM: DDHDH (TIT FOR TAT)

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: HDHDH (TAT FOR TIT)AM: HDHDH (TAT FOR TIT)

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

AM: DHHDHAM: DHHDH

AM: DHHHHAM: DHHHH

AM: HDHDD (SIMPLETON)AM: HDHDD (SIMPLETON)

AM: HHHDHAM: HHHDH

AM: HHHHDAM: HHHHD

AM: DHHDDAM: DHHDD

AM: HHHDDAM: HHHDD

AM: DHHHDAM: DHHHD

AM: DHDHHAM: DHDHH

AM: HHDDHAM: HHDDH

AM: HDDDHAM: HDDDH

AM: DHDDHAM: DHDDH

AM: HDDHD (TWEETYPIE)AM: HDDHD (TWEETYPIE)

AM: HDDDDAM: HDDDD

AM: DHDHDAM: DHDHD

AM: HHDDDAM: HHDDD

AM: DHDDDAM: DHDDD

AM: HHDHD (INVERTED)AM: HHDHD (INVERTED)

Evolutionary Ranking

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: DDHDH (TIT FOR TAT)AM: DDHDH (TIT FOR TAT)

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: HDHDH (TAT FOR TIT)AM: HDHDH (TAT FOR TIT)

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

Average Final Population

Figure 8.20: The aggregated results of those simulations of the “big series” for which the evolutionary noise was 15%.
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Parameterized Tit for Tats

Average Final Population Share

Strategy overall n = 0.0 n = 0.05 n = 0.1 n = 0.15

P TFT 0.00 0.00 (TitForTat) 38.54 % 41.98 % 38.40 % 35.63 % 38.17 %
P TFT 0.00 1.00 (Hawk) 28.50 % 26.85 % 28.63 % 29.38 % 29.14 %
P TFT 0.20 0.00 8.98 % 9.04 % 10.12 % 7.12 % 9.62 %
P TFT 1.00 0.00 (Dove) 8.30 % 6.09 % 7.59 % 11.21 % 8.31 %
P TFT 0.40 0.00 8.27 % 8.30 % 7.71 % 7.79 % 9.26 %
P TFT 0.80 0.00 2.16 % 1.94 % 1.96 % 2.78 % 1.97 %
P TFT 1.00 1.00 (Inverted) 1.55 % 1.82 % 1.57 % 2.17 % 0.66 %
P TFT 0.00 0.80 1.06 % 1.02 % 1.03 % 1.27 % 0.91 %
P TFT 0.20 0.40 0.93 % 0.93 % 0.93 % 0.93 % 0.93 %
P TFT 0.60 0.00 0.51 % 0.41 % 0.67 % 0.28 % 0.68 %
P TFT 0.40 0.20 0.46 % 0.00 % 0.93 % 0.93 % 0.00 %
P TFT 0.60 1.00 0.38 % 0.48 % 0.26 % 0.42 % 0.37 %
P TFT 0.40 0.40 0.23 % 0.93 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.20 0.12 % 0.19 % 0.21 % 0.08 % 0.00 %
P TFT 0.80 1.00 0.01 % 0.02 % 0.01 % 0.01 % 0.00 %
P TFT 0.40 1.00 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 1.00 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.60 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.20 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.20 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.40 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.20 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.40 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.40 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.40 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.60 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.60 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.20 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.60 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.40 0.60 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.60 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.80 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.80 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.80 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.40 0.80 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.80 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
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Results for strategy set:  "TFTs" 

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.80P_TFT 1.00 0.80

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

Tournament Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 1.00 0.80P_TFT 1.00 0.80

Evolutionary Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

Average Final Population

Figure 8.21: The aggregated results of those simulations of the “big series” for which the evolutionary noise was 0%.
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Results for strategy set:  "TFTs" 
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P_TFT 0.60 1.00P_TFT 0.60 1.00
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P_TFT 0.40 0.80P_TFT 0.40 0.80
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P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.80P_TFT 1.00 0.80

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

Tournament Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 1.00 0.80P_TFT 1.00 0.80

Evolutionary Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

Average Final Population

Figure 8.22: The aggregated results of those simulations of the “big series” for which the evolutionary noise was 5%.
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Results for strategy set:  "TFTs" 

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)
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P_TFT 0.80 1.00P_TFT 0.80 1.00
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P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.80P_TFT 1.00 0.80

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

Tournament Ranking
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P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 1.00 0.80P_TFT 1.00 0.80

Evolutionary Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.80 0.00P_TFT 0.80 0.00

Average Final Population

Figure 8.23: The aggregated results of those simulations of the “big series” for which the evolutionary noise was 10%.
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Results for strategy set:  "TFTs" 
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P_TFT 0.20 0.60P_TFT 0.20 0.60
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P_TFT 0.20 0.40P_TFT 0.20 0.40
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Figure 8.24: The aggregated results of those simulations of the “big series” for which the evolutionary noise was 15%.
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8.3.5 The influence of degenerative mutations

The mutation rate is a probability with which after each generation
of the population dynamical process, the population of each strategy
mutates into a simpler strategy. See page 85 for a more comprehensive
description.

Automata

Average Final Population Share
Strategy overall m = 0.0 m = 0.01 m = 0.05
AM: HHHHH (HAWK) 34.61 % 10.70 % 34.95 % 58.17 %
AM: DDHHH (GRIM) 17.28 % 27.46 % 13.95 % 10.43 %
AM: DDHDH (TIT FOR TAT) 10.22 % 14.70 % 9.70 % 6.27 %
AM: HDHHD (PAVLOV) 10.01 % 13.19 % 11.58 % 5.24 %
AM: DDDDD (DOVE) 9.27 % 1.67 % 13.58 % 12.57 %
AM: DDHHD (TWEEDLEDUM) 7.12 % 17.49 % 3.20 % 0.65 %
AM: DDHDD (TWEEDLEDEE) 2.91 % 6.84 % 1.30 % 0.60 %
AM: HDHDH (TAT FOR TIT) 1.73 % 0.69 % 3.99 % 0.52 %
AM: DHHHH 1.56 % 2.31 % 2.39 % 0.00 %
AM: DHHDH 1.39 % 0.44 % 1.67 % 2.06 %
AM: HDHDD (SIMPLETON) 1.28 % 1.38 % 1.36 % 1.10 %
AM: HHHDH 1.09 % 0.56 % 0.52 % 2.21 %
AM: HHHHD 0.52 % 1.41 % 0.17 % 0.00 %
AM: DHHDD 0.39 % 0.35 % 0.72 % 0.11 %
AM: HHHDD 0.36 % 0.29 % 0.75 % 0.06 %
AM: DHHHD 0.13 % 0.23 % 0.18 % 0.00 %
AM: DHDHH 0.10 % 0.29 % 0.00 % 0.00 %
AM: HDDHD (TWEETYPIE) 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDHD (INVERTED) 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDHD 0.00 % 0.00 % 0.00 % 0.00 %
AM: HDDDD 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDDD 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDDD 0.00 % 0.00 % 0.00 % 0.00 %
AM: HDDDH 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDDH 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDDH 0.00 % 0.00 % 0.00 % 0.00 %
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Results for strategy set:  "Automata" 
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Figure 8.25: The aggregated results of those simulations of the “big series” for which degenerative mutations were turned off.
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Results for strategy set:  "Automata" 
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Figure 8.26: The aggregated results of those simulations of the “big series” for which 1% of the strategies degenerated in every new
generation either to Dove or to Hawk (depending on whether the strategy was more cooperative or more defective before).
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Results for strategy set:  "Automata" 
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Figure 8.27: The aggregated results of those simulations of the “big series” for which 5% of the strategies degenerated in every new
generation either to Dove or to Hawk (depending on whether the strategy was more cooperative or more defective before).
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Parameterized Tit for Tats

Average Final Population Share
Strategy overall m = 0.0 m = 0.01 m = 0.05
P TFT 0.00 0.00 (TitForTat) 38.54 % 22.22 % 39.67 % 53.74 %
P TFT 0.00 1.00 (Hawk) 28.50 % 28.08 % 31.25 % 26.17 %
P TFT 0.20 0.00 8.98 % 18.79 % 5.84 % 2.30 %
P TFT 1.00 0.00 (Dove) 8.30 % 1.48 % 10.84 % 12.59 %
P TFT 0.40 0.00 8.27 % 13.93 % 9.95 % 0.92 %
P TFT 0.80 0.00 2.16 % 6.48 % 0.00 % 0.00 %
P TFT 1.00 1.00 (Inverted) 1.55 % 0.00 % 1.20 % 3.46 %
P TFT 0.00 0.80 1.06 % 3.17 % 0.00 % 0.00 %
P TFT 0.20 0.40 0.93 % 2.78 % 0.00 % 0.00 %
P TFT 0.60 0.00 0.51 % 0.98 % 0.54 % 0.00 %
P TFT 0.40 0.20 0.46 % 1.39 % 0.00 % 0.00 %
P TFT 0.60 1.00 0.38 % 0.00 % 0.33 % 0.82 %
P TFT 0.40 0.40 0.23 % 0.69 % 0.00 % 0.00 %
P TFT 0.60 0.20 0.12 % 0.00 % 0.36 % 0.00 %
P TFT 0.80 1.00 0.01 % 0.00 % 0.03 % 0.00 %
P TFT 0.40 1.00 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 1.00 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.20 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.20 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.40 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.20 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.40 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.40 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.40 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.20 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.40 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.60 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.80 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.80 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.80 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.40 0.80 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.80 0.00 % 0.00 % 0.00 % 0.00 %
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Results for strategy set:  "TFTs" 
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Figure 8.28: The aggregated results of those simulations of the “big series” for which degenerative mutations were turned off.
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Results for strategy set:  "TFTs" 

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.80P_TFT 1.00 0.80

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

Tournament Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 1.00 0.80P_TFT 1.00 0.80

Evolutionary Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.20 0.00P_TFT 0.20 0.00

Average Final Population

Figure 8.29: The aggregated results of those simulations of the “big series” for which 1% of the strategies degenerated in every new
generation either to Dove or to Hawk (depending on whether the strategy was more cooperative or more defective before).
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Results for strategy set:  "TFTs" 
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Figure 8.30: The aggregated results of those simulations of the “big series” for which 5% of the strategies degenerated in every new
generation either to Dove or to Hawk (depending on whether the strategy was more cooperative or more defective before).
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8.3.6 The influence of different payoffs

The payoff parameters define the payoff each player gets depending on
the choice of the player’s own move and the opponent’s move. See
chapter 4.1.1 for an explanation of the Prisoner’s Dilemma game.

Automata

Average Final Population Share

Strategy overall T = 3.5 T = 5 T = 5.5 P = 2

AM: HHHHH (HAWK) 34.61 % 32.00 % 27.27 % 23.77 % 55.39 %
AM: DDHHH (GRIM) 17.28 % 7.00 % 20.33 % 15.23 % 26.56 %
AM: DDHDH (TIT FOR TAT) 10.22 % 3.90 % 15.63 % 12.90 % 8.47 %
AM: HDHHD (PAVLOV) 10.01 % 32.15 % 1.07 % 6.81 % 0.00 %
AM: DDDDD (DOVE) 9.27 % 11.78 % 11.73 % 9.76 % 3.81 %
AM: DDHHD (TWEEDLEDUM) 7.12 % 7.35 % 13.12 % 5.95 % 2.04 %
AM: DDHDD (TWEEDLEDEE) 2.91 % 2.22 % 1.90 % 7.23 % 0.30 %
AM: HDHDH (TAT FOR TIT) 1.73 % 0.00 % 3.52 % 0.00 % 3.42 %
AM: DHHHH 1.56 % 3.41 % 0.00 % 2.85 % 0.00 %
AM: DHHDH 1.39 % 0.00 % 2.29 % 3.27 % 0.00 %
AM: HDHDD (SIMPLETON) 1.28 % 0.00 % 0.36 % 4.77 % 0.00 %
AM: HHHDH 1.09 % 0.00 % 2.03 % 2.34 % 0.00 %
AM: HHHHD 0.52 % 0.00 % 0.09 % 2.01 % 0.00 %
AM: DHHDD 0.39 % 0.00 % 0.41 % 1.16 % 0.00 %
AM: HHHDD 0.36 % 0.00 % 0.24 % 1.22 % 0.00 %
AM: DHHHD 0.13 % 0.00 % 0.00 % 0.54 % 0.00 %
AM: DHDHH 0.10 % 0.19 % 0.00 % 0.20 % 0.00 %
AM: HDDHD (TWEETYPIE) 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDHD (INVERTED) 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDHD 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: HDDDD 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDDD 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDDD 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: HDDDH 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: HHDDH 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
AM: DHDDH 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
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Results for strategy set:  "Automata" 
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Figure 8.31: The aggregated results of the simulations of the “big series” with the payoff parameters T=3.5, R=3, P=1, S=0.
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Results for strategy set:  "Automata" 
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Figure 8.32: The aggregated results of the simulations of the “big series” with the payoff parameters T=5, R=3, P=1, S=0.
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Results for strategy set:  "Automata" 
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Average Final Population

Figure 8.33: The aggregated results of the simulations of the “big series” with the payoff parameters T=5.5, R=3, P=1, S=0.
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Results for strategy set:  "Automata" 
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AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: HDHDH (TAT FOR TIT)AM: HDHDH (TAT FOR TIT)

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)
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AM: DHHHHAM: DHHHH
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AM: HHHDDAM: HHHDD
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AM: DDHDH (TIT FOR TAT)AM: DDHDH (TIT FOR TAT)
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Average Final Population

Figure 8.34: The aggregated results of the simulations of the “big series” with the payoff parameters T=5, R=3, P=2, S=0.
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Parameterized Tit for Tats

Average Final Population Share

Strategy overall T = 3.5 T = 5 T = 5.5 P = 2

P TFT 0.00 0.00 (TitForTat) 38.54 % 19.03 % 44.75 % 47.91 % 42.49 %
P TFT 0.00 1.00 (Hawk) 28.50 % 35.19 % 18.52 % 16.37 % 43.92 %
P TFT 0.20 0.00 8.98 % 6.30 % 7.13 % 14.25 % 8.23 %
P TFT 1.00 0.00 (Dove) 8.30 % 27.86 % 3.28 % 1.64 % 0.43 %
P TFT 0.40 0.00 8.27 % 2.16 % 22.38 % 8.29 % 0.23 %
P TFT 0.80 0.00 2.16 % 8.64 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 1.00 (Inverted) 1.55 % 0.00 % 2.68 % 3.10 % 0.44 %
P TFT 0.00 0.80 1.06 % 0.00 % 0.00 % 0.00 % 4.23 %
P TFT 0.20 0.40 0.93 % 0.00 % 0.00 % 3.70 % 0.00 %
P TFT 0.60 0.00 0.51 % 0.82 % 1.00 % 0.19 % 0.03 %
P TFT 0.40 0.20 0.46 % 0.00 % 0.00 % 1.85 % 0.00 %
P TFT 0.60 1.00 0.38 % 0.00 % 0.27 % 1.26 % 0.00 %
P TFT 0.40 0.40 0.23 % 0.00 % 0.00 % 0.93 % 0.00 %
P TFT 0.60 0.20 0.12 % 0.00 % 0.00 % 0.48 % 0.00 %
P TFT 0.80 1.00 0.01 % 0.00 % 0.00 % 0.04 % 0.00 %
P TFT 0.40 1.00 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 1.00 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.60 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.20 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.20 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.40 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.20 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.40 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.40 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.40 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.60 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.60 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.00 0.20 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.60 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.40 0.60 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.60 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.80 0.80 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.20 0.80 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.60 0.80 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 0.40 0.80 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
P TFT 1.00 0.80 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
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Results for strategy set:  "TFTs" 

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)
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P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)
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P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

Tournament Ranking
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P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)
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P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.80 0.60P_TFT 0.80 0.60
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P_TFT 0.80 0.80P_TFT 0.80 0.80
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P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.40 0.80P_TFT 0.40 0.80
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Evolutionary Ranking
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P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)
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Average Final Population

Figure 8.35: The aggregated results of the simulations of the “big series” with the payoff parameters T=3.5, R=3, P=1, S=0.
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Results for strategy set:  "TFTs" 

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)
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P_TFT 0.40 1.00P_TFT 0.40 1.00
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P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.20 0.60P_TFT 0.20 0.60
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P_TFT 1.00 0.20P_TFT 1.00 0.20
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P_TFT 0.80 0.80P_TFT 0.80 0.80
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P_TFT 0.80 1.00P_TFT 0.80 1.00
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Figure 8.36: The aggregated results of the simulations of the “big series” with the payoff parameters T=5, R=3, P=1, S=0.
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Results for strategy set:  "TFTs" 
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P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.80P_TFT 1.00 0.80

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

Tournament Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 1.00 0.80P_TFT 1.00 0.80

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.00 0.20P_TFT 0.00 0.20

Evolutionary Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

Average Final Population

Figure 8.37: The aggregated results of the simulations of the “big series” with the payoff parameters T=5.5, R=3, P=1, S=0.
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Results for strategy set:  "TFTs" 

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.80P_TFT 1.00 0.80

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

Tournament Ranking

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 1.00 0.80P_TFT 1.00 0.80

Evolutionary Ranking

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.00 0.80P_TFT 0.00 0.80

Average Final Population

Figure 8.38: The aggregated results of the simulations of the “big series” with the payoff parameters T=5, R=3, P=2, S=0.
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8.3.7 “Monte Carlo series” results

Average Final Population Share
Strategy overall results
AM: HHHHH (HAWK) 45.56 %
AM: DDHHD (TWEEDLEDUM) 9.29 %
AM: DDHDH (TIT FOR TAT) 8.43 %
AM: DDDDD (DOVE) 7.80 %
AM: HDHHD (PAVLOV) 6.83 %
AM: DDHHH (GRIM) 5.61 %
AM: HHHDH 2.82 %
AM: DDHDD (TWEEDLEDEE) 2.70 %
AM: HDHDH (TAT FOR TIT) 2.60 %
AM: DHHDH 2.57 %
AM: HDHDD (SIMPLETON) 2.42 %
AM: DHHHH 0.84 %
AM: DHHDD 0.76 %
AM: HHHDD 0.61 %
AM: HHHHD 0.56 %
AM: DHHHD 0.49 %
AM: HHDHD (INVERTED) 0.07 %
AM: HDDHD (TWEETYPIE) 0.02 %
AM: DHDHH 0.00 %
AM: HHDDH 0.00 %
AM: DHDDH 0.00 %
AM: HDDDH 0.00 %
AM: HDDDD 0.00 %
AM: DHDDD 0.00 %
AM: HHDDD 0.00 %
AM: DHDHD 0.00 %
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Average Final Population Share
Strategy overall results
P TFT 0.00 1.00 (Hawk) 25.06 %
P TFT 0.00 0.00 (TitForTat) 24.59 %
P TFT 1.00 0.00 (Dove) 22.29 %
P TFT 0.20 0.00 14.01 %
P TFT 0.40 0.00 9.94 %
P TFT 1.00 1.00 (Inverted) 2.60 %
P TFT 0.80 1.00 0.52 %
P TFT 0.60 0.00 0.51 %
P TFT 0.60 1.00 0.32 %
P TFT 0.60 0.20 0.05 %
P TFT 0.40 1.00 0.04 %
P TFT 0.60 0.40 0.03 %
P TFT 0.80 0.00 0.02 %
P TFT 1.00 0.60 0.01 %
P TFT 0.80 0.80 0.01 %
P TFT 1.00 0.80 0.01 %
P TFT 0.80 0.40 0.00 %
P TFT 0.20 1.00 0.00 %
P TFT 1.00 0.40 0.00 %
P TFT 0.00 0.80 0.00 %
P TFT 0.80 0.20 0.00 %
P TFT 0.00 0.60 0.00 %
P TFT 0.00 0.40 0.00 %
P TFT 0.00 0.20 0.00 %
P TFT 0.20 0.20 0.00 %
P TFT 0.40 0.60 0.00 %
P TFT 0.20 0.40 0.00 %
P TFT 0.40 0.20 0.00 %
P TFT 0.20 0.60 0.00 %
P TFT 0.20 0.80 0.00 %
P TFT 0.80 0.60 0.00 %
P TFT 0.60 0.60 0.00 %
P TFT 0.40 0.40 0.00 %
P TFT 1.00 0.20 0.00 %
P TFT 0.60 0.80 0.00 %
P TFT 0.40 0.80 0.00 %
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Results for strategy set:  "Automata" 

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: DHHHHAM: DHHHH

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: HHHHDAM: HHHHD

AM: DHDHHAM: DHDHH

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: DHHHDAM: DHHHD

AM: HHDHD (INVERTED)AM: HHDHD (INVERTED)

AM: HHHDHAM: HHHDH

AM: DHHDHAM: DHHDH

AM: DDHDH (TIT FOR TAT)AM: DDHDH (TIT FOR TAT)

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

AM: HDHDH (TAT FOR TIT)AM: HDHDH (TAT FOR TIT)

AM: HDHDD (SIMPLETON)AM: HDHDD (SIMPLETON)

AM: HHHDDAM: HHHDD

AM: DHHDDAM: DHHDD

AM: DHDHDAM: DHDHD

AM: HDDHD (TWEETYPIE)AM: HDDHD (TWEETYPIE)

AM: HHDDHAM: HHDDH

AM: DHDDHAM: DHDDH

AM: HHDDDAM: HHDDD

AM: DHDDDAM: DHDDD

AM: HDDDDAM: HDDDD

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: HDDDHAM: HDDDH

Tournament Ranking

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: DDHDH (TIT FOR TAT)AM: DDHDH (TIT FOR TAT)

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: HHHDHAM: HHHDH

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

AM: HDHDH (TAT FOR TIT)AM: HDHDH (TAT FOR TIT)

AM: DHHDHAM: DHHDH

AM: HDHDD (SIMPLETON)AM: HDHDD (SIMPLETON)

AM: DHHHHAM: DHHHH

AM: DHHDDAM: DHHDD

AM: HHHDDAM: HHHDD

AM: HHHHDAM: HHHHD

AM: DHHHDAM: DHHHD

AM: HHDHD (INVERTED)AM: HHDHD (INVERTED)

AM: HDDHD (TWEETYPIE)AM: HDDHD (TWEETYPIE)

AM: DHDHHAM: DHDHH

AM: HHDDHAM: HHDDH

AM: DHDDHAM: DHDDH

AM: HDDDHAM: HDDDH

AM: HDDDDAM: HDDDD

AM: DHDDDAM: DHDDD

AM: HHDDDAM: HHDDD

AM: DHDHDAM: DHDHD

Evolutionary Ranking

AM: HHHHH (HAWK)AM: HHHHH (HAWK)

AM: DDHHD (TWEEDLEDUM)AM: DDHHD (TWEEDLEDUM)

AM: DDHDH (TIT FOR TAT)AM: DDHDH (TIT FOR TAT)

AM: DDDDD (DOVE)AM: DDDDD (DOVE)

AM: HDHHD (PAVLOV)AM: HDHHD (PAVLOV)

AM: DDHHH (GRIM)AM: DDHHH (GRIM)

AM: HHHDHAM: HHHDH

AM: DDHDD (TWEEDLEDEE)AM: DDHDD (TWEEDLEDEE)

Average Final Population

Figure 8.39: The aggregated results of all simulations of the “Monte Carlo series” using Automata strategies.
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Results for strategy set:  "TFTs" 

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.80P_TFT 1.00 0.80

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

Tournament Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

P_TFT 0.40 0.00P_TFT 0.40 0.00

P_TFT 0.80 0.00P_TFT 0.80 0.00

P_TFT 1.00 1.00 (Inverted)P_TFT 1.00 1.00 (Inverted)

P_TFT 0.00 0.80P_TFT 0.00 0.80

P_TFT 0.20 0.40P_TFT 0.20 0.40

P_TFT 0.60 0.00P_TFT 0.60 0.00

P_TFT 0.40 0.20P_TFT 0.40 0.20

P_TFT 0.60 1.00P_TFT 0.60 1.00

P_TFT 0.40 0.40P_TFT 0.40 0.40

P_TFT 0.60 0.20P_TFT 0.60 0.20

P_TFT 0.80 1.00P_TFT 0.80 1.00

P_TFT 0.40 1.00P_TFT 0.40 1.00

P_TFT 0.20 1.00P_TFT 0.20 1.00

P_TFT 0.00 0.60P_TFT 0.00 0.60

P_TFT 0.80 0.20P_TFT 0.80 0.20

P_TFT 1.00 0.20P_TFT 1.00 0.20

P_TFT 0.80 0.40P_TFT 0.80 0.40

P_TFT 0.20 0.20P_TFT 0.20 0.20

P_TFT 0.60 0.40P_TFT 0.60 0.40

P_TFT 1.00 0.40P_TFT 1.00 0.40

P_TFT 0.00 0.40P_TFT 0.00 0.40

P_TFT 0.80 0.60P_TFT 0.80 0.60

P_TFT 1.00 0.60P_TFT 1.00 0.60

P_TFT 0.00 0.20P_TFT 0.00 0.20

P_TFT 0.60 0.60P_TFT 0.60 0.60

P_TFT 0.40 0.60P_TFT 0.40 0.60

P_TFT 0.20 0.60P_TFT 0.20 0.60

P_TFT 0.80 0.80P_TFT 0.80 0.80

P_TFT 0.20 0.80P_TFT 0.20 0.80

P_TFT 0.60 0.80P_TFT 0.60 0.80

P_TFT 0.40 0.80P_TFT 0.40 0.80

P_TFT 1.00 0.80P_TFT 1.00 0.80

Evolutionary Ranking

P_TFT 0.00 0.00 (TitForTat)P_TFT 0.00 0.00 (TitForTat)

P_TFT 0.00 1.00 (Hawk)P_TFT 0.00 1.00 (Hawk)

P_TFT 0.20 0.00P_TFT 0.20 0.00

P_TFT 1.00 0.00 (Dove)P_TFT 1.00 0.00 (Dove)

P_TFT 0.40 0.00P_TFT 0.40 0.00

Average Final Population

Figure 8.40: The aggregated results of all simulations of the “Monte Carlo series” using Parameterized Tit for Tat strategies.
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8.4 Implementation details of the group selection

model

A Computer model can be specified by describing its data structures
and the algorithms that operate upon these data structures. In the fol-
lowing, the data structures and algorithms of the group selection model
from chapter 4.3.1 are first described in general terms. Following is the
Python implementation of this model.

The model of group selection is an extension of the model of recip-
rocal altruism. It rests on a simple type of replicator dynamics, where
generational cycles are assumed to be discrete and non overlapping. The
replicating entities are a fixed number species, each of which occupies
a certain share of an assumed whole population of infinite (or rather
undetermined) size. Replication leads to changes in the relative popu-
lation shares that the species occupy, but never – save for the limits of
arithmetic precision of the computer – does a species die out and never
do new species emerge.

In group selection processes two kinds of entities are involved: groups
of individuals and groups of groups. Therefore, it is just natural to
define two types of objects in our computer model, one for groups of
individuals and another one for groups of groups. The objects that
describe groups of individuals will be called deme objects, the objects
that describe groups of groups (of individuals) are termed super demes.

Each deme object contains an ordered list of species that are present
in the deme and a distribution vector (of the dimension of the number
of species) of population shares. What these species are, is, for the time
being, completely left open. The most important property of a deme
is that inside the deme replication takes place. Therefore, a replication
function is associated with every deme object. The replication algorithm
is very simple: The population share of each strategy is multiplied with
its fitness value (which must always be some real number greater than
zero). (See appendix 8.2 for the details.)

The fitness values themselves are determined by another function of
the deme object, the fitness function. The fitness function is located
in the deme object rather than in any object describing the species,
because the fitness of a species may depend on the other species present
as well as their relative sizes. Fitness is thus not a local property of
a species alone. The algorithm that determines the fitness values does
of course depend on the kind of species that make up the deme. As
this has been left open, the concrete definition of the fitness function
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is also left open for the time being.5 Only when using the deme object
in a concrete simulation, we will, for example, assume that the species
are strategies in a repeated Prisoner’s Dilemma, and define the fitness
function accordingly.

While the deme object models a population of species, the super deme
object6 models a population of demes. The super deme object can be
thought of as a deme object itself, only with extended properties. Just
as the deme object, the super deme object contains a list of species and a
vector of population shares. Only this time the species are deme objects
(which with respect to the super deme may be called“sub demes”). The
deme objects occupy shares of a global population. Just as the ordinary
deme objects, the super deme object has a fitness and a replication
function. The replication algorithm is the same as that of an ordinary
deme only that before replication takes place in the super deme the
replicated population in the sub demes is determined. The order of
calculation is important since the relative fitness of a sub deme with
respect to the other sub demes may depend on the distribution of species
inside the sub deme. The most distinguishing feature of a super deme
is that its sub demes may be reshaped. Therefore a reshaping function
is associated with the super deme object. The reshaping algorithm7

proceeds in two steps:

1. Aggregate the population of all sub demes.

2. Distribute the population randomly to a new set sub demes.

As has been mentioned earlier, the choice of this algorithm represents
an arbitrary modeling decision. The aggregation of demes in the first
step is done by multiplying the population share of the species within
the sub demes with the population share of the respective sub demes
within the super deme and then adding up the populations of the same
species. The distribution of the aggregated population to new sub demes
is a little more difficult, because we want to make sure that the deme
structure (defined by the number and the sizes of the newly created

5In the terminology of object orientated programming a function without an implementation is called
an“abstract method”and objects that contain abstract methods are called“abstract objects”accordingly.
The Deme class is therefore an abstract class. It cannot be instanced itself. In order to use it another class
must be derived from the Deme class that implements the abstract methods. The class PDDeme in the
program listing in appendix 8.4.3 is a derived class of class Deme that implements the method _fitness.
(For technical reasons the fitness function is split into the two methods fitness and _fitness and only
the latter is an abstract method.)

6For the implementation details see class SuperDeme in Appendix 8.4.2
7See the reshapemethod of the SuperDeme class in Appendix 8.4.2 for the implementation details. The

full algorithm is spread over three functions, however. In addition to the reshape method of SuperDeme
class these are the methods merged and spawn of class Deme.
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demes) is more or less the same as before. The distribution algorithm8

proceeds in three steps:

1. Create a new set of sub demes with the same structure. (The
structure of the set of sub demes is defined by the number of sub
demes and the minimum and maximum number of species each
deme may contain.)

2. For each sub deme, determine which species will be present in the
sub deme.

3. Distribute the population share of each species in the aggregated
population randomly over the demes where the species appears.

Each of these steps needs a little explanation: In the first step, two
assumptions enter into our algorithm: 1) the deme structure is not
fixed, but may change every time the super deme is reshaped 2) The
deme structure is expressed by the three parameters number of demes,
minimum number of species per deme, maximum number of species per
deme. (The actual numbers of species per deme is a random number
within the bounds of the latter two values.) Both of these assump-
tions do again represent (arbitrary) modeling decisions. As to the first
assumption, both the model and the algorithm would of course be sim-
pler, if we used the same fixed deme structure every time the super deme
is reshaped. But then the flexibility and therefore also the generality of
the model would be much more limited. Instead of using the three pa-
rameters mentioned above, we could also use a different parametrization
of the deme structure. For example, we could define the deme structure
by the average number of demes and the average size of a deme and then
pick random numbers in the normal distribution of these parameters for
the actual number of demes and the actual sizes the demes. It is just a
matter of choice to do it the one way or the other.

In the second step of the algorithm, some care must be taken to make
sure that every species is represented in at least one deme. Therefore, all
species are assigned one after another to the first few demes and only
after all species have been assigned the remaining demes draw their
species at random from the set of species. Constructing the algorithm
for the assignment of species to demes this way does mean that the
assignment is not fully randomized, but this restriction can be accepted
for the sake of simplicity.

8For the implementation see method spawn of class Deme in Appendix 8.4.1. Out of reasons of
technical convenience this algorithm is located in class Deme instead of class SuperDeme.
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The last step of the algorithm hardly needs an explanation any more.
It should be observed that by randomly distributing the population
shares of each species, it is assured that the newly distributed population
matches the previously aggregated population.

One question that is still open is how the fitness function of the super
deme object (the function that determines the fitness values of all sub
demes of the super deme) is to be defined. This again depends on the
selection mechanism one desires to model. Without a particular empir-
ical application of the model in mind any choice of a fitness function is
arbitrary. However, instead of leaving the function open as in the case
of the deme object, an arbitrary “standard” algorithm for the fitness
function is proposed with the caveat that when actually applying the
model this algorithm should be replaced by an algorithm that reflects
the particular group selection mechanism of the application case of the
model.

The proposed “standard” algorithm for “group” fitness is very simple:
We assume that the fitness of a deme with respect to the other demes
is the sum of the products of the fitnesses of the species within the
deme with their respective population shares. (Mathematically this is
expressed as the matrix multiplication of the fitness vector with the
vector of population shares.) This means that the fitness of the deme is
assumed to be the average fitness of its members.

Now, this algorithm for determining group fitness may look suspi-
ciously like committing a similar mistake as the one Price’s equation
has been accused of (Okasha, 2005, p. 713): If the the fitness value of
the species inside the demes is used again to determine the fitness of
the demes themselves, does that not mean that the species’ fitness is
counted twice while it should only be counted once? The answer is that
it is legitimate to use the fitness value of the species twice, if the fitness
of the species has an independent causal effect on group selection.

For the sake of illustration one may think of the following scenario,
where a group selection model might be applied: Imagine that the
groups (or “demes”) are insurance companies competing on a common
market for customers with whom they want to place insurance con-
tracts. Now, think of the individual agents inside the companies and
assume that the better an agent performs the more new customers will
be assigned to him by the management. Then there is also competition
between the insurance agents inside the company. One could plausibly
assume that the competition between the agents of a company is of the
nature of a Prisoner’s Dilemma: All agents have an incentive to out com-
pete their colleagues, but if there is too little cooperation between the
agents, they will all perform very badly which in turn means that their
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company will perform badly on the insurance market. Obviously, how
well the agents play the Prisoner’s Dilemma has an independent causal
influence on both their standing inside the company and the success
of the company on the market. Our “standard” group fitness algorithm
then just expresses that the higher the average success of the companies’
agents is in the Prisoner’s Dilemma game that is played inside the com-
pany the greater is the company’s success on the market.9 Thus, this
little story shows that our choice of a “standard” algorithm for group
selection is by no means unsound, although no claim is made about the
empirical adequacy of this particular algorithm in any realistic scenario.

8.4.1 Listing 1: The deme class

class Deme(object):

"""Represents a deme, i.e. a (sub-)population that is defined

by the species in the deme as well as their distribution.

Deme populations are not usually normalized. They need to be

normalized explicitly by call to the ’normalize’ method.

(A species can be any object that can be identified by str(species).

Species are always identified by str(species) and never by references,

i.e. two different objects returning the same name for str(obj) are

considered one and the same species. When merging (see method merged) one

of these objects may be dropped arbitrarily. Or to put it another way:

If the species change their characteristics, i.e. if they evolve, they

should change their names two. For genetic species the genome should

therefore always be encoded in the name of the species.)

Attributes (read only!):

name - name of the deme

species - list of species

distribution - distribution of the strategies

fitnessCache - cache for the fitness values

"""

def __str__(self):

return self.name

def __setattr__(self, name, value):

"""If the distribution value change the fitnessChache is cleared."""

if name == "distribution":

object.__setattr__(self, "fitnessCache", None)

object.__setattr__(self, name, value)

def __init__(self, species, distribution = None, name=""):

"""Initializes the Deme with the list of species, the distribution

vector and a name (if desired). The list of species is always

deep-copied into the meme to allow for independet evolution of the

species. However, species with the same name in different demes may

be merged back, when demes are merged.

"""

assert len(species) > 0, "Too few species (%i)!"%len(species)

assert distribution == None or len(species) == len(distribution), \

"Species list and distribution array are of unequal size!"

self.fitnessCache = None

if distribution != None: self.__distribution = asarray(distribution)

else: self.__distribution = UniformDistribution(len(species))

if name: self.name = name

else: self.name = GenericIdentifier()

self.species = copy.deepcopy(species)

9Strictly speaking, there are no individual agents represented in our model. But one might think of
the species as strategies in the Prisoner’s Dilemma. Their population shares then represent the relative
numbers of agents adopting a certain strategy.
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def getDistribution(self):

return self.__distribution

def setDistribution(self, d):

self.__distribution = d

self.fitnessCache = None

distribution = property(getDistribution, setDistribution)

def new(self, species, distribution = None, name=""):

"""Create a deme object of the same type."""

return self.__class__(species, distribution, name)

def container(self, demes, distribution, name=""):

"""Create a super deme that is a suitable container for

demes of the type of this deme."""

return SuperDeme(demes, distribution, name)

def merged(self, *others):

"""Returns a copy of the deme that is merged with a sequence of

other demes. The order of species in the merged deme is arbitrary!"""

species_dict = {}; share_dict = {}

for deme in (self,)+others:

for i in xrange(len(deme.species)):

species = deme.species[i]

name = str(species)

if species_dict.has_key(name):

share_dict[name] += deme.distribution[i]

else:

species_dict[name] = species

share_dict[name] = deme.distribution[i]

species = species_dict.values()

dist = array([share_dict[s.name] for s in species])

return self.new(species, dist)

def __add__(self, other):

"""Returns a copy of the deme that is merged with another"""

return self.merged(other)

def __mul__(self, faktor):

"""Returns a deme where all population shares are multiplied

with ’faktor’"""

ndist = self.distribution * faktor

return self.new(self.species, ndist)

def normalized(self):

"""Returns a normalized (population shares add up to 1.0)

copy of the deme."""

return self.new(self.species, norm(self.distribution))

def normalize(self):

"""Normalizes the population share in place."""

self.distribution = norm(self.distribution)

def _fitness(self):

"""Determines the fitness values for the species of the

deme."""

raise NotImplementedError

def fitness(self):

"""Returns the fitnesses of the species (as Numeric.array)."""

if self.fitnessCache == None: self.fitnessCache = self._fitness()

return self.fitnessCache

def replicate(self):

"""Updates the distribution to the next generation."""

self.distribution = norm(self.distribution * self.fitness())

def aggregate(self, weighted = True):

"""Returns a new deme where all species of all subdemes are

recursively aggregated. If ’weighted’ is false the

distribution (relative size) of the demes will not be taken

into account. If there are no subdemes, ’self’ is returned.
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Warning: If a new deme is created, the order of the species

in this new deme arbitrary!"""

return self

def spawn(self, N, minSize, maxSize):

"""Returns a super deme of N demes with sizes varying between

’minSize’ and ’maxSize’ and populations randomly picked from

this deme."""

pool = self.distribution #.copy() # don’t need a copy!

sizes = [random.randint(minSize, maxSize) for i in xrange(N)]

assert sum(sizes) >= len(pool), "Too few or too small demes to spawn!"

rng = range(len(pool))

sg = [[] for i in rng]; l = 0

for count in xrange(N):

s = sizes[count]

if l < len(pool):

g = range(l, min(l+s, len(pool)))

g.extend(random.sample(rng, max(0,l+s-len(pool))))

l += s

else: g = random.sample(rng, s)

for st in g: sg[st].append(count)

species = [[] for i in xrange(N)]

distribution = [[] for i in xrange(N)]

for i in xrange(len(sg)):

chunks = list(RandomDistribution(len(sg[i])) * pool[i])

for g in sg[i]:

species[g].append(self.species[i])

distribution[g].append(chunks.pop())

demes = []

for i in xrange(N): demes.append(self.new(species[i], distribution[i]))

#assert almostEqual(sum([sum(d.distribution) for d in demes]), 1.0), \

# "self test failed %f"%sum([sum(d.distribution) for d in demes])

distribution = norm(array([sum(d.distribution) for d in demes]))

for d in demes: d.normalize()

return self.container(demes, distribution)

def ranking(self):

"""-> list of (rank, species name, population share) tuples."""

l = zip(self.distribution,[str(s) for s in self.species])

l.sort(); l.reverse()

ranking = [(r+1, l[r][1], l[r][0]) for r in xrange(len(l))]

return ranking

8.4.2 Listing 2: The super deme class

class SuperDeme(Deme):

"""A Deme that contains other demes as species.

In order to determine the fitness of the (Sub-)Demes the

simplemost model of a group selection process is implemented:

The fitness of the (Sub-)Demes is the dot product of the vector of

the fitness values of the species with the vector of population

shares. As this is not generally true, but depends on the concrete

group selection mechanism to be modeled, method ’_fitness’ should

usually be overloaded with a method implementing the right fitness

algorithm.

"""

def _fitness(self):

return array([matrixmultiply(d.fitness(), d.distribution) \

for d in self.species])

def replicate(self):

for d in self.species:

if isinstance(d, Deme): d.replicate()

Deme.replicate(self)

def aggregate(self, weighted = True):

l = []

for i in xrange(len(self.species)):

d = self.species[i]
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if isinstance(d, SuperDeme): d = d.aggregate(weighted)

if weighted:

l.append(d * self.distribution[i])

else:

l.append(d)

d = l[0].merged(*l[1:])

d.normalize()

return d

def reshaped(self, N=-1, minSize=-1, maxSize=-1):

"""Returns a superdeme with the same population but a

reshaped deme structure."""

pool = self.aggregate(weighted = True); n = len(pool.species)

if N <= 0: N = len(self.species)

if minSize <= 0: minSize = max(1, N/7)

if maxSize <= 0: maxSize = min(l, max(2, N/4))

superdeme = pool.spawn(N, minSize, maxSize)

return superdeme

def reshape(self, N=-1, minSize=-1, maxSize=-1):

"""Reshape the deme structure of this deme."""

sd = self.reshaped(N, minSize, maxSize)

self.species = sd.species

self.distribution = sd.distribution

8.4.3 Listing 3: A deme class for Prisoner’s Dilemma players

The Prisoner’s Dilemma class relies on another module that defines
classes and functions for Prisoner’s Dilemma matches and tournaments,
similar to those in Axelrod (1984). The module is not listed here.
(It can be downloaded as a part of another simulation package under
http://www.eckhartarnold.de/apppages/coopsim.html)

PD_PAYOFF = array([[[1.0, 1.0], [3.5, 0.0]],\

[[0.0, 3.5], [3.0, 3.0]]])

def check_instances(lst, cls):

"""-> True if all objects in the list are instances of class ’cls’.

"""

for obj in lst:

if not isinstance(obj, cls): return False

return True

class PDDeme(Deme):

"""A Deme where the species represent strategies in the reiterated

two person Prisoner’s Dilemma.

Attributes:

payoff - the payoff matrix of the deme (due to lazy

creation payoff is ’None’ until _fitness is

called for the first time.

"""

def __init__(self, strategies, distribution=None, name=""):

assert check_instances(strategies, Strategy),\

"All species must be Prisoner’s Dilemma strategies!"

Deme.__init__(self, strategies, distribution, name)

self.payoff = None

def _fitness(self):

if self.payoff == None:

self.payoff = PD.GenPayoffMatrix(self.species, payoffs=PD_PAYOFF)

return matrixmultiply(self.payoff, self.distribution)
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8.5 Cooperation on anonymous markets: A simpli-

fied version of Schüßler’s model

One of the crucial requirements of the evolution of reciprocal altruism
in most of the theoretical models of this type of altruism (see chapter
4.1.5) is the (enforced) reiteration of the game. If players could cheat
and then stop the interaction with the cheated opponent there would be
no way the opponent could punish the cheating player by reciprocating
the defection. The obvious conclusion seems to be that the evolution of
reciprocal altruism is not possible any more, if the requirement of re-
peated interaction is relaxed or dropped altogether. However, Schüßler
was able to construct a simulation where the requirement of repeated
interaction is dropped and still reciprocal altruism does evolve (within
a certain range of parameter values) (Schüßler, 1990, p. 61ff.). The
following describes a simplified variant of Schüßler’s simulation, just
complicated enough to bring out the point:

We assume a population of players of two strategy types CONCO and
ALL D. CONCO players cooperate, ALL D players defect. All players
are engaged in a pairwise Prisoner’s Dilemma which is repeated for a
certain number of rounds. The sequence of iterations can be broken off
at any time by one of two possible causes: Either by one player break-
ing off the interaction at will or by a chance event. If the interaction is
broken off (for whatever reason) the players have to choose a new part-
ner from “pool” of free players to start a new sequence of interactions
beginning with the nest round. (The “pool” of free players is the set of
players, whose interaction has been broken off after the last round.) The
CONCO players never break off the interaction by themselves, while the
ALL D players voluntarily break off the interaction right after the first
round, which means that if they have hit upon a CONCO player they
run off the revenue of one round of successful cheating in order to find
a new victim. After the number of rounds has run out, the population
shares of each strategy are updated, taking the average payoff for the
players of each strategy as the fitness value for the strategy. (The fitness
determines how the shares of the strategy change; see page 221 for a
description of the updating process.) The details of the model and its
implementation can be grasped from the listing below.

As can be seen in figure 8.41, for certain parameter values, the system
evolves into a polymorphic equilibrium with a strong majority of altru-
ists. As usual, if the parameter values are changed the phenomenon may
disappear. For example, if the chance for a random breakup of inter-
action is increased from 5% to 20%, then altruism will disappear. Still
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the simulation proves the logical possibility of the evolution of altruism,
even if there is no continued interaction. How much impact or scientific
importance the proof of this logical possibility has, is – as with most
computer simulations in this field – another question. Schüßler sees his
computer simulations as a contribution to the discussion about sociolog-
ical normativism. Sociological normativism, of which the classical expo-
nents are Emile Durkheim and Ferdinand Tönnies with his distinction
of “Gesellschaft” (society) and “Gemeinschaft” (community) and which
has had a recent revival in communitarism, asserts that strong group
ties and social norms are a necessary prerequisite for social order. Now,
Schüßler’s simulations do in some sense show that it is conceivable that
order may evolve even without the assumption of binding social norms.
However, he is very cautious not to attribute any decisive role to his sim-
ulations in this dispute (Schüßler, 1990, p. 91f.) – thereby displaying a
prudent modesty and intellectual honesty that unfortunately does not
seem too common in the simulation business. And he was right not to do
so, because the claim of sociological normativists that social norms and
social ties are necessary to keep up social order and individual welfare
hardly rests on any assumptions about “logical possibilities” but on the-
oretical considerations as well as empirical evidence. The normativist
position that social order requires norms is quite compatible with the
logical possibility that some type of order (or cooperation) can evolve
without norms, for what they deny is only the empirical possibility of
order without norms, not the logical possibility. A computer simulation
can have any impact on the normativist hypotheses only if it adequately
models some empirical process, which brings us to the question of the
empirical validation of simulations that is discussed in chapter 6.
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Figure 8.41: As this simulation following Schüßler (Schüßler, 1990) shows, cooperation may even evolve an “anonymous markets”.
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8.5.1 Listing: Beispiel Schuessler 1.py

import Graph, Gfx

from Compatibility import *

GfxDriver = GetDriver()

# Definition of the Game

T, R, P, S = 6,4,2,1 # payoff parameters for the Prisoner’s Dilemma

forced_exit = 0.05 # Chance that cooperation is terminated

# by external factors

initial_distribution = (0.5, 0.5)

rounds = 200

generations = 50

def OneGeneration(distribution, rounds):

"""Calculate one generation of the reiterated PD-simulation

with exit option. ’distribution’ is a 2-tuple that contains

the population shares of CONO and ALL_D player’s. ’rounds’

is the number of rounds that are played until the strategy

distribution is updated through replicator dynamics. The

return value is a 2-tuple of the average score for each

strategy.

"""

account = [0.0, 0.0]

cc = distribution[0]**2 / 2

dd = distribution[1]**2 / 2

cd = distribution[0] * distribution[1]

for i in xrange(rounds):

account[0] += (2*cc*R + cd*S) / distribution[0]

account[1] += (2*dd*P + cd*T) / distribution[1]

poolC = cc * forced_exit * 2 + cd

poolD = dd * 2 + cd

pool = poolC + poolD

cc += poolC**2 / (2 * pool) - cc*forced_exit

dd = poolD**2 / (2 * pool)

cd = poolC * poolD / pool

account[0] /= rounds

account[1] /= rounds

return tuple(account)

def PopulationDynamics(population, fitness):

"""Determines the distribution of species in the next generation."""

n = list(population)

L = len(population)

f = fitness(population)

for i in xrange(L): n[i] *= f[i]

N = sum(n)

if N == 0.0: return population

for i in xrange(L): n[i] /= N

return tuple(n)

def Schuessler():

"""A simulation of the repeated PD with exit option.

"""

# Open a window for graphics output.

gfx = GfxDriver.Window(title = "Repeated PD with exit option")

# Generate a dynamics function from the payoff table.

# dynFunc = Dynamics.GenDynamicsFunction(payoff_table, e=0.0,noise=0.0)
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# Set the graph for plotting the plotting dynamics.

graph = Graph.Cartesian(gfx, 0., 0., float(generations), 1.,

"Repeated Prisoner’s Dilemma with exit option",

"generations", "population share")

graph.addPen("CONCO", Gfx.Pen(color = Gfx.GREEN, lineWidth = Gfx.MEDIUM))

graph.addPen("ALL_D", Gfx.Pen(color = Gfx.RED, lineWidth = Gfx.MEDIUM))

# Calculate the population dynamics and plot the graph.

population = initial_distribution

graph.addValue("CONCO", 0, population[0])

graph.addValue("ALL_D", 0, population[1])

fitness = lambda p: OneGeneration(p, rounds)

for g in range(1, generations+1):

population = PopulationDynamics(population, fitness)

graph.addValue("CONCO", g, population[0])

graph.addValue("ALL_D", g, population[1])

if g % (generations/10) == 0: gfx.refresh()

# To save the graphics in eps uncomment the following line

graph.dumpPostscript("schuessler1.eps")

# Wait until the user closes the window.

gfx.waitUntilClosed()

if __name__ == "__main__":

print __doc__

Schuessler()
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8.6 Backward induction as an evolutionary process

According to the argument of backward induction, there exits one ra-
tional solution to the repeated Prisoner’s Dilemma, if the number of
rounds is fixed and known to the players. And this solution is never
to cooperate right from the first round. The argument goes as follows:
Assume both players play some arbitrary strategy. Then, unless they do
not already do so, either player can get a higher payoff in the last round
if he or she does not cooperate in the last round. But if both players
do not cooperate in the last round for sure, then the same applies for
the second but last round, and so on. Therefore the players will not
cooperate during any round of the repeated game.

While the argument is mathematically sound, there exist two objec-
tions with regards to its potential empirical impact: First of all, this sort
of argument only applies, if full rationality is assumed on both sides. If
either of the players is not fully rational then the other might be better
off with cooperating for during least some rounds. Assume, for exam-
ple, that one of the players plays Tit for Tat without any deviations. To
be sure, this is a bit irrational, because the player will then cooperate
in the last round if the other player cooperated in the second but last
round even though by cheating in the last round the Tit for Tat player
would be better off. But, given this tiny bit if irrationality, the opponent
would certainly do better not to cheat throughout the game right from
the first round.

Still, the opponent would do best, if he or she played Tit for Tat with
the deviation of cheating in the last round. In an evolutionary setting
this would entail that all Tit for Tat players would in the long run be
outcompeted by players that cheated only in the last round. But once
the Tit for Tat players have given way to the End Game Cheaters, as
we may call them, the End Game Cheaters are in danger of being su-
perseded by another type of End Game Cheater that starts cheating in
the second last round, just like the argument from backward induction
suggests. (This comes as no surprise, because under standard conditions
evolutionary systems typically converge to the rational equilibrium so-
lution.)

The second objection arises from the fact that it may take the evo-
lutionary process extremely long to reach this point, so long that it
is much more likely that the process will change its directions due to
some other influence or disturbance than that it will reach the equilib-
rium where all players play Hawk all the time. That the argument from
backward induction may indeed be liable to this objection can easily be
demonstrated by a few tentative simulations.
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Figure 8.42: End game cheating as an evolutionary process: It takes more than 100,000 generations until it pays to cheat in the last
ten rounds of a 200 round reiterated Prisoner’s Dilemma.
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Figure 8.42 shows a simulation where a number of end game cheaters
subsequently supersede each other until finally the end game cheater
that starts the earliest to cheat has taken over the whole simulation.
As can clearly be seen, cheating in the last ten rounds of the repeated
Prisoner’s Dilemma starts to pay only after the population has firmly
been taken over by cheaters that cheat during the last nine rounds. The
same is true for the “nine rounds cheaters” with respect to the “eight
rounds cheaters” and so on. There are no short cuts. At the same time,
if we only allow for 1% of game noise the whole process stops at a much
earlier point as can be seen on figure 8.43.

The obvious conclusion to be drawn is this: Even though the argu-
ment of backwards induction is true as a mathematical argument, its
practical impact remains doubtful.
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Figure 8.43: End game cheating is already stopped short when there is a slight amount of game noise (1%).
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8.7 The simulation software and the full simulation

results on DVD.

Both the software for the computer simulations, the results of which
are described in chapter 4, and the simulation results for simula-
tion series described in chapter 4.1.4 can be obtained on DVD for
free by writing an E-Mail to eckhart_arnold@hotmail.com. Newer
versions of the simulation software can also be downloaded from
www.eckhartarnold.de/apppages/coopsim.html. On the DVD, the
simulation software is found in the subdirectory “Software/CoopSim”.
This directory contains an application for simulations of the repeated
Prisoner’s Dilemma with a graphical user interface (CoopSim.py), with
which simulations like in chapter 4.1.1 can be conducted, and two
command line programs (Series.py) and (GroupSelection_test.py),
which run the simulations series in chapter 4.1.4 and the group selection
simulations in chapter 4.3 respectively. All simulations programs make
use of the same core logic, which is concentrated in the Python-modules
Simulation.py, GroupSelection.py and Strategies.py. The results
of the simulation series are found in the several subdirectories (one for
each series) of directors “Results” on the DVD.

8.7.1 The simulation programs

The application CoopSim.py, when started by a double click or by in-
voking “python CoopSim.py” from the command line, opens up an ap-
plication window. Via the menu Simulation -> New Simulation...
a new simulation can be configured in a dialog window. Upon click-
ing the “OK” button of the dialog window, the simulation is run and
the simulation results are displayed in the main window. CoopSim.py
comes with a complete documentation, which is browsable by selecting
Help... from the Help menu. The graphical user interface was added
to the simulation, because I wanted to use it with my students in class.
Also, a graphical user interface greatly increases the ease of experiment-
ing with the simulation in comparison with editing configuration files.

The simulation series from chapter 4.1.4 can be run by calling“python
Series.py” from the command line after changing to the directory of
CoopSim. The program runs five simulation series and stores the de-
tailed results of each single simulation of each series as well as the ag-
gregated data (see chapter 4.1.4 for an explanation) in a newly created
directory Simulations in the user’s home directory. Running all series
can take several days and the data produced requires several gigabytes of
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hard disk space. If the program is interrupted by the user and restarted
then it starts at the point where it was stopped. In order to restart the
whole series over again, the subdirectories of directory Simulations
must either be deleted or moved manually to another location.

The group selection simulations can be run by invoking “python
GroupSelection_test.py” from the command line (after changing to
directory “CoopSim” of course). In sequence seven simulations will
be run and the results displayed in a window, from where they can
be saved by right-clicking into the window and selecting a file name.
If one or more simulations from this sequence should be suppressed,
it suffices to comment out the respective lines at the end of file
GroupSelection_test.py.

8.7.2 Browsing the results of the simulation series

Browsing the results of the simulation series from chapter 4.1.4 is easy.
For each simulation series, there exists a subdirectory in the directory
“Results” on the accompanying DVD. Not all of these series were de-
scribed in chapter 4.1.4, because some of them served merely exper-
imental purposes. Yet, for the sake of completeness, they have been
included on the DVD, too. The most important series is the “BigSeries”
in the subdirectory with the same name. In order to browse it, the
file “index frames.html” should be opened with a browser (not the file
“index.html”!). The browser window is then divided into two halves.
In the upper window, different parameter values can be selected and in
the lower half the simulation results for the selected parameters are dis-
played in detail. This includes the tournament result, all of the match
results and the results of the evolutionary simulation which are displayed
in different steps from 50 up to maximally 25600 generations. The aggre-
gated results of the simulation cannot be browsed via the “index.html”
or “index frames.html” files. They are instead found in the subdirecto-
ries the name of which starts with “Statistics”. The aggregated results
for the whole series are found in the “Statistics” subdirectory without
a suffix. The suffixes of the other “Statistics”-directories indicate which
parameter was kept fixed when gathering the aggregated data (this was
used in chapter 4.1.4).

The other subdirectories for the the other simulation series contain
similar subdirectories for the aggregated data. Unfortunately, the other
results of the other series cannot be browsed so comfortably. Here, the
results can only be accessed via the “index.html” file, which basically is
a long list of all simulations in the respective series.
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Wissen Ethik 16 / 3 (2005), p. 372–374

[Ashworth 1980] Ashworth, Tony: Trench Warfare 1914-1918. The
Live and Let Live System. MacMillan Press Ltd., 1980

[Axelrod 1984] Axelrod, Robert: Die Evolution der Kooperation.
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Rockenbach, Bettina: The Competitive Advantage of Sanctioning
Insitutions. in: Science 312 (2006), p. 108–111

[Hamilton 1964] Hamilton, W.D.: The Genetical Evolution of Social
Behaviour. II. in: Journal of Theoretical Biology 7 (1964), p. 17–52

[Hammerstein 1998] Hammerstein, Peter: What is Evolutionary
Game Theory? in: Dugatkin, Lee A. (Ed.) ; Reeve, Hudson K.
(Ed.): Game Theory & Animal Behaviour. Oxford / New York :
Oxford University Press, 1998, Chap. 1, p. 3–15



301

[Hammerstein 2003a] Hammerstein, Peter (Ed.): Genetic and Cul-
tural Evolution. Cambridge, Massachusetts / London, England : MIT
Press in cooperation with Dahlem University Press, 2003

[Hammerstein 2003b] Hammerstein, Peter: Why Is Reciprocity
So Rare in Social Animals? A Protestant Appeal. in: Hammer-

stein, Peter (Ed.): Genetic and Cultural Evolution. Cambridge,
Massachusetts / London, England : MIT Press in cooperation with
Dahlem University Press, 2003, Chap. 5, p. 83–94

[Heath 2005] Heath, Joseph: Methodological Individualism.
in: Zalta, Edward N. (Ed.): The Stanford Encyclopedia of
Philosophy. The Metaphysics Research Lab; Center for the
Study of Language and Information Stanford University, 2005. –
URL http://plato.stanford.edu/archives/spr2005/entries/-
methodological-individualism/

[Hegel 1998] Hegel, Georg Wilhelm F.: Philosophie von Platon bis
Nietzsche. in: Hansen, Frank P. (Ed.): Enzyklopädie der philosophis-
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