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Abstract

This paper is intended as a critical examination of the question
of when and under what conditions the use of computer simulations
is beneficial to scientific explanations. This objective is pursued in
two steps: First, I try to establish clear criteria that simulations must
meet in order to be explanatory. Basically, a simulation has explana-
tory power only if it includes all causally relevant factors of a given
empirical configuration and if the simulation delivers stable results
within the measurement inaccuracies of the input parameters.

In the second step, I examine a few examples of Axelrod-style
simulations as they have been used to understand the evolution of
cooperation (Axelrod, Schiifiler). These simulations do not meet the
criteria for explanatory validity and it can be shown, as I believe,
that they lead us astray from the scientific problems they have been
addressed to solve.
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1 Introduction

Computer simulations have become a popular tool in various branches of sci-
ence, including even the social sciences. The reasons are easy to understand:
Computer simulations provide a simple and yet powerful tool to explore the
implications of theoretical assumptions. They are cheaper than experiments
and often easier to construct and to handle than mathematical models. At
the same time they confine the realm of what can be modeled only to what
can be described algorithmically, which gives them a very broad scope. With
this tool at hand it should be possible to bring into the reach of exact treat-
ment even such questions that have traditionally seemed to defy the use of
formal methods.

However, upon closer inspection it becomes apparent that computer sim-
ulations do not always deliver what they promise. Often they remain in the
state of purely theoretical “toy simulations” and never get to the ground of
empirical testability. In the following, I will first try to put forward a few
straightforward criteria for proper explanatory computer simulations. After
that I will analyze some examples of computer simulations that fail to meet
these criteria and I will try to point out the consequences this failure has.

Much of what will be discussed in the following concerns the limits of
formal modeling in general and not just computer simulations. Yet it seems
that the question is more urgent in the case of computer simulations. For,
in the case of the relatively new technique of computer simulations the sen-
sitivity of the scientific community for the need of empirical justification or,
more general, the feel for what are good practises and what are bad practises
when employing this new tool has not yet grown quite mature. I have a faint
hope that the following discussion of the limits of computer simulations will
help to develop this sort of sensitivity, even if in some places it may turn out

to be wrong or overly critical.



2 Different aims of computer simulations in
science

Computer simulations can be employed in science not only for generating
explanations but for various different purposes. They can, for example, be
used to merely express certain theoretical assumptions or concepts. In this
sense they provide a sometimes weaker and sometimes stronger but usually
simpler and more flexible alternative to mathematical modeling. Or they
can be used to prove the “logical possibility” of certain general assumptions
such as the assumption that cooperation is possible among egoists. Or they
can be used to explore the possible consequences or implications of certain
assumptions. All of these previously mentioned uses of computer simulations
can be subsumed under the general title of exploratory simulations or, as
these are sometimes also called, speculative simulations. 1t is the distinctive
mark of this type of simulations that the simulations do not need to resemble
empirical reality. If there exists any resemblance at all then it is typically
vague and consists in the plausibility of the assumptions.

Another — potentially more important — class of computer simulations are
predictive simulations. The purpose of predictive simulations is to generate
accurate predictions for some empirical process. An example might be sim-
ulations in meteorology that predict how the wheather is going to be in the
future. The assumptions that enter into predictive simulations do not need
to be in any way realistic. As long as the predictions prove to be reliable,
it is permissible to use strongly simplified assumptions about the modeled
process or even assumptions which are known to be false. This shows that
just because a simulation produces successful predictions it does not neces-
sarily also provide an explanation for the predicted phenomena, even though
successful predictions may be one among several indicators for a simulation
to be explanatorily valid.

The most desired case, however, would be that of an explanatory simula-
tion that is a type of computer simulation that actually allows us to explain
the empirical phenomena that are modeled in the simulation. It is this class

of simulations that I am concerned with in this paper.



3 Criteria for explanatory simulations

But in what sense can a computer simulation be explanatory? And what are
the criteria a computer simulation must meet in order to be explanatory?

A computer simulation can be called explanatory if it adequately mod-
els some empirical situation and if the results of the computer simulation
(the simulation results) coincide with the outcome of the modeled empirical
process (the empirical results). If this is the case, we can conclude that the
empirical results have been caused by the very factors (or, more precisely, by
the empirical correspondents of those factors) that have brought about the
simulation results in the computer simulation.

To take an example, let us say we have a game theoretic computer simu-
lation of the repeated prisoner’s dilemma where under certain specified con-
ditions the strategy Tit For Tat emerges as the clear winner. Now, assume
further that we know of an empirical situation that closely resembles the
repeated prisoner’s dilemma with exactly the same conditions as in our sim-
ulations. And let us finally assume that also in the empirical situation the
Tit For Tat strategy emerges as the most successful strategy. Then we are
entitled to conclude that Tt For Tat was successful in the empirical case,
because the situation was a repeated prisoner’s dilemma with such and such
boundary conditions and because — as the computer simulation shows — T't
For Tat is a winning strategy in repeated prisoner’s dilemma situations under
the respective conditions.

Now that we have seen how explanations by computer simulations work
in principle, let us ask what are the criteria a computer simulation must
fullfill in order to deserve the title of an explanatory simulation. The criteria
should be such as to allow us to check whether the explanation is valid that
is whether the coincidence of the results is due to the congruence of the
operating factors (in the empirical situation and in the computer simulation)
or whether it is merely accidental.

As criteria that a computer simulation must meet in order to be an ex-

planatory model of an empirical process, I propose the following:



1. Adequacy Requirement: All (or at least all known') causally relevant
factors of the modeled empirical process must be represented in the

computer simulation.

2. Robustness or Stability Requirement. The input parameters of the sim-
ulation must be measurable with such accuracy that the simulation

results are consistent within the range of inaccuracy of measurement.

3. Descriptive Appropriateness or Non-Triviality Requirement: The re-
sults of the computer simulation must reflect all or at least some im-
portant features (that is features the explanation of which is desired)

of the results of the modeled empirical process.

If all of these criteria are met, we can say that there exists a close fit
between model and modeled reality. The claim I wish to hold is that only if
there is a close fit between model and reality we are entitled to say that the
model explains anything. Even though these criteria are very straightforward,
a little discussion will be helpful for a better understanding.

Regarding the first criterion, it should be obvious that if not all causally
relevant factors are included then any congruence of simulation results and
empirical results can at best be accidental. Two objections might be raised
at this point: 1) If there really is a congruence of simulation results and
empirical results should that not allow us to draw the conclusion that the
very factors implemented in the computer simulation are indeed all factors
that are causally relevant? 2) If we use computer simulations as a research
tool to find out what causes a certain empirical phenomenon, how are we to
know beforehand what the causally relevant factors are, and how are we ever
to find out, if drawing reverse conclusions from the compliance of the results
to the relevant causes is not allowed?

To these objections the following can be answered: If the simulation is
used to generate empirical predictions and if the predictions come true then

this can indeed be taken as a hint to its capturing all relevant causes of

'The restriction to all known causes was suggested by Claus Beisbart to avoid an
epistemic impassé when simulations are employed as a tool to find out just what the
causally relevant factors of a given empirical process are.



the empirical process in question. With certain reservations we are then
entitled to draw reverse conclusions from the compliance of the results to the
exclusive causal relevance of the incorporated factors or mechanisms. The
reservations concern the problem that even if a simulation has predictive
success it can still have been based on unrealistic assumptions. Sometimes
the predictive success of a simulation can even be increased by sacrificing
realism. Therefore, in order to find out whether the factors incorporated in
the computer simulation are the causally relevant factors we should not rely
on predictive success alone, but we should consult other sources as well, such
as our scientific background knowledge about the process in question. Also,
if we already know (for whatever reason) that a certain factor is causally
relevant for the outcome of the empirical process under investigation and if
this factor is not included in the simulation of this process then even if the
simulation predicts correctly, it cannot be said that it explains correctly.

Furthermore, drawing conclusions from the predictive success of a sim-
ulation to its explanatory validity is impermissible in the case of ex-post
predictions. For, if we only try long enough, we are almost sure to find some
computer simulation and some set of input parameters that match a previ-
ously fixed set of output data. The task of finding such a simulation amounts
to nothing more than finding any arbitrary algorithm that produces a given
pattern. But then we will only accidently have hit on the true causes that
were responsible for the results in the empirical process.

Therefore, only if we make sure that at least all factors that are known
to be causally relevant are included in the simulation, we can take it as an
explanation. And usually we cannot assure this by relying on the confor-
mance of the simulation results and the empirical results alone without any
further considerations. Summarizing we can say: If the first criterion is not
fullfilled, then the computer simulation does not explain.

The second criterion is even more straightforward. If the model is un-
stable, then we will not be able to check whether the simulation model is
adequate. For, if it is not stable within the inevitable inaccuracies of mea-
surement, this means that the model delivers different results within the

range of inaccuracy of the measured input parameters. But then we can



neither be sure that the model is right, when the model results match the
empirical results, nor that it is wrong, when they don’t (unless the empirical
results fall even outside the range of possible simulation results for the range
of inaccuracy of the input parameters). Let’s for example imagine we had a
game theoretic model that tells us whether some actors will cooperate or not
cooperate. Now assume, we had some empirical process at hand where we
know that the actors cooperate and we would like to know whether they do
so for the very reasons the model suggests or, in other words, we would like
to know whether our model can explain why they cooperate. If the model is
unstable then — due to measurement inaccuracy — we do not know whether
the empirical process falls within the range of input parameters for which the
model predicts cooperation or not. Then there is no way to tell whether the
actors in the empirical process cooperated, because of the reasons the model
suggests or, quite the contrary, inspite of what the model predicts.

A special case of this problem of model instability and measurement inac-
curacies occurs when we can only determine the ordinal relations of greater
than and smaller than of some empirical quantity but not its cardinal value
(perhaps, because it does not have a cardinal value by its very nature such
as the quantity of utility in economics?). In this case the empirical valida-
tion of any simulation that crucially depends on the cardinal values of the
respective input parameters will be impossible. Briefly put, the morale of
the second criterion is: If condition two is not met, we cannot know whether
the computer simulation explains.

In connection with the first criteria the requirement of model stability (in
relation to measurement inaccuracy) gives rise to a kind of dilemma. In many
cases an obvious way to make a model more adequate is by including further
parameters. Unfortunately, the more parameters are included in the model
the harder it becomes to handle. Often, though not necessarily, a model
looses stability by including additional parameters. Therefore, in order to
assure that the model is adequate (first criterion), we may have to lower the

degree of abstraction by including more and more parameters. But then the

2This is a well known restriction that affects a large part of the modeling done in
economics.



danger increases that our model loses stability (second criterion).

There exists no general strategy to avoid this dilemma. In many cases
it may not be possible at all. But this should not come as a surprise. It
merely reflects the fact that the powers of computer simulations are — as one
should certainly expect — at some point limited. With the tool of computer
simulations many scientific problems that would be hard to handle with pure
mathematics alone get within the reach of formal treatment. Still, many
scientific problems remain outside the realm of what can be described with
formal methods, either because of their complexity or because of the nature
of the problem. This remains especially true for many areas of the social
sciences.

The third criteria requires that the output of the computer simulation
should reflect the empirical results with all the details that are regarded as
scientifically important and not just — as it sometimes happens — merely a
much sparser substructure of them. For example, we may want to use game
theoretic models like the prisoner’s dilemma to study the strategic interac-
tion of states in politics. The game theoretic model will tell us whether the
states will cooperate or not, but most probably it will say nothing about the
concrete form of cooperation (diplomatic contacts, trade agreements, inter-
national contracts etc.) or non cooperation (embargos, military action, war
etc.). Therefore, even if the model or simulation really was predictively ac-
curate, it does at best provide us with a partial explanation, because it does
not explain all aspects of the empirical outcome that interest us. In the worst
case it’s explanatory or, as the case may be, it’s predictive power is almost
as poor as that of a horoscope. The prediction of a horoscope that tomorrow
“something of importance” will happen easily becomes true, because of its
vagueness. Similarly, if a game theoretic simulation predicts that the parties
of a political conflict will stop cooperating at some stage but does not tell us
whether this implies, say, the outbreak of war or just the breakup of diplo-
matic relations then it only offers us comparatively unimportant information.
We could also say that if the simulation results fail to capture any important
features of the empirical outcome then the computer simulation “misses the

point”.



Summing it up: Only if a computer simulation closely fits the simulated
reality — that is if it adequately models the causal factors involved, if it is
stable and if it is descriptively rich enough to “hit the point” — it can claim

to be explanatory.

4 Examples of Failure: Axelrod style simula-
tions of the “evolution of cooperation”

In what follows I will to discuss a few examples of computer simulations
that were designed by its authors to explain certain empirical phenomena
but ultimately fail to do so. What I want to show is that these failures
result from the violation of one or more the three criteria for explanatory
simulations explained before.

The examples that I have chosen to discuss are computer simulations of
the “evolution of cooperation” as they have become popular after the pub-
lication of Robert Axelrod’s famous book with the same title. Admittedly,
these examples are examples of bad simulations. But this makes them good
examples. Because the failures are just the more obvious in these examples

they help us understand what to avoid.

4.1 Typical features of Axelrod style simulations

Robert Axelrod’s book on “The Evolution of Cooperation” Axelrod (1984)
is a surprising phenomenon for two reasons: First of all, because of the ex-
traordinary success it had as far as its impact on the scientific community
is concerned. It spawned virtually myriads of subsequent studies on the re-
peated prisoner’s dilemma (the model Axelrod used) and the “evolution of
cooperation” that went more or less along the same lines and employed similar
methods as Axelrod. An annotated biography from ten years after the first
publication of “The Evolution of Cooperation” (Axelrod und D’Ambrosio,
1994) lists more than 200 articles that directly relate to Axelrod’s study.?

3A brief overview of some of the models and simulations of the repeated prisoner’s
dilemma can also be found in Dugatkin’s book “Cooperation among Animals” (Dugatkin,
1997, p. 24ft.)



But Axelrod’s approach is also surprising for a second reason: The almost
complete uselessness his and his follower’s computer simulations of the reit-
erated prisoner’s dilemma proved to have for the empirical research in the
field.

How did Axelrod arrive at his results about cooperation and why did
it prove so difficult to support them empirically? In order to find out, if
and how cooperation can emerge among egoistic agents, Axelrod started off
with a game theoretical model of a certain type of cooperation dilemma, the
well known prisoner’s dilemma. Since the one shot prisoner’s dilemma does
not offer many strategic opportunities (no rational player will ever cooper-
ate in the one shot prisoner’s dilemma, and any (non-rational) player who
does fares worse than if he or she did not), Axelrod built a simulation based
on the repeated prisoner’s dilemma. He conducted his famous computer
tournaments of the repeated two player prisoner’s dilemma with strategies
that he had got from many different participants. On top of the computer
tournament he built an “evolutionary simulation” simulating a population
dynamical process among these strategies by using the payoffs they gained
in the tournament to calculate their fitness values.* Already at this point
we may notice that the setup of Axelrod’s simulation does not resemble any
empirical situation whatsoever. The prisoner’s dilemma itself provides a con-
cise abstract description of the essential features of many dilemma situations
that occur in reality, but nowhere in this world do we find an arrangement
that really corresponds to Axelrod’s computer tournament that is based on
it. How are we then to draw conclusions from the computer tournament with
respect to empirical cooperation dilemmas?

The way Axelrod proceeded was to examine the simulation results and
to draw generalizing conclusions from them. This is how Axelrod arrived
at such conclusions like: The strategy Tit For Tat is generally a very good
strategy in the repeated prisoner’s dilemma, a strategy should be friendly in

the sense that it should not start to defect, a strategy should punish defection

4The details are not important here. There exist many descriptions of Axelrod’s proce-
dure the best of which is probably still Axelrod’s own book Axelrod (1984). Simulations
of the repeated prisoner’s dilemma similar to Axelrod’s computer tournament can easily
be found on the web. For example: www.eckhartarnold.de/apppages/coopsim.html
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but not be too unforgiving, the evolution of cooperation depends crucially
on the continuation of interaction and the like (Axelrod, 1984, ch. 2,3).
Unfortunately, subsequent research® showed that none of these conclusions
was generally true. It suffices to change the simulation setup but a little bit
and it pays to be a cheater, or to be unforgiving (Binmore, 1994, p. 194ff.).
And, of course, Tit For Tat does not always win the race. The general
finding that cooperative strategies can be successful in the repeated prisoner’s
dilemma as such is just a trivial consequence of the game theoretical folk
theorem (Binmore, 1998, p. 313ff.). And all other generalizing conclusions
Axelrod drew simply were not warranted.

Nonetheless, Axelrod’s pioneering work triggered off a multitude of similar
computer simulations of the prisoner’s dilemma or other games. Few of
their authors dared to draw such sweeping conclusions as Axelrod did. Still,
regarding the design and the kind of reasoning they rely on, many of these
simulations follow the pattern that was set by Axelrod’s role model. In order
to classify this type of simulation, we may speak of Axelrod style simulations.

Generally speaking, Azelrod style simulations are computer simulations

that share the following typical features:

1. They are constructed from a set of plausible assumptions or on top
of a common mathematical model. In many cases they are derived
from existing Axelrod style simulations by adding new parameters or
changing other boundary conditions. The concrete shape of the model
remains largely arbitrary and at the discretion of the scientist who
builds it.

2. They are not related to any particular empirical situation. (And most
certainly there exists no close fit to empirical reality in the sense ex-

plained before.) Thus they remain a primarily theoretical endeavor.

3. If any conclusions are drawn from the simulation, they are usually

drawn by means of inductive generalizations from the simulation re-

®See (Binmore, 1994), (Binmore, 1998) or (Schiifller, 1990) for a discussion of some of
the subsequent research.
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sults. The simulation is thus used to establish very general points or

rules of thumb about its subject matter.

4.2 How Axelrod style simulations work

Let us look in more detail at a typical exponent of this tradition of simu-
lation based research to see how Axelrod-style simulations work in practice.
An in many respects good example for this tradition is provided by Rudolf
Schiifller’s “Kooperation unter Egoisten” (Schiifller, 1990). Schiifller called
into question Axelrod’s assumption that continued interaction is a necessary
precondition for the evolution of cooperation. Quite the contrary to Axel-
rod’s thesis, Schiifller wanted to show that cooperation can even emerge on
“anonymous markets”. In order to do so he set up is own Axelrod-style sim-
ulation where agents are free to break up the cycles of interaction whenever
they want. This encourages a kind of hit and run tactic where agents do not
cooperate in the last round of the interaction on their behalf and take away
the benefit of single-sided non-cooperation without being punished. With
the help of his computer simulation Schiifiler could demonstrate that even
in this case cooperative strategies could — under certain specific simulation
conditions — outcompete the cheaters (Schiiller, 1990, p. 78ff.). The reason
for this astonishing phenomenon is quite easy to understand: When the in-
teraction is broken up, the previous partners of interaction are forced to pick
their new partner from the pool of free players. As the cooperative players
tend to be bound in partnerships by other cooperative players, the pool is
made up mainly of cheaters. Therefore a cheater has only a small chance to
find a new partner that can be exploited.

As can be seen, Schiifiler started off with some arbitrary and at best plau-
sible assumptions about an “anonymous market” that are in no way related
to any specific empirical situation (points one and two in the above list of
features of Axelrod-style simulations). But Schiiller also had a deeper moti-
vation for his simulation experiments, which brings us to the third point: the
general conclusions that are derived from the simulation results. With his

simulation that showed that cooperation could even emerge on “anonymous
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markets” Schiifiler wanted to provide arguments against sociological norma-
tivism. Sociological normativism is by Schiifiler understood as the thesis
that social order cannot be upheld without social cohesion and the appeal to
common norms. The classical proponents of sociological normativism are —
among others — Ferdinand T6nnies with his distinction of “Gesellschaft” (so-
ciety) and “Gemeinschaft” (community) and Emile Durkheim, who greatly
emphasized the importance of social bonds. Schiifller’s simulation is linked
with the problem of sociological normativism in so far as it proves the “log-
ical possibility” (Schiiller) of norm conformant behavior (if cooperation is
taken as normatively desired in this case) even under the absence of author-
ity or other previously fixed coordination mechanisms such as social cohesion.
But does the proof of this “logical possibility” really establish a strong point
against sociological normativism? This is not at all the case. The fact that
something is logically possible does not even remotely imply that it is possible
in reality. When sociological normativists speak for the importance of social
bonds they usually do not mean to assert that it is by logical necessity that
the social order requires some level of cohesion to function properly. Rather,
they draw on the social character of human nature. Therefore, in order to
refute them, one has to show why their conception of human nature is wrong
or that the empirical support for their claims is inconclusive and could be
interpreted otherwise. Claims about mere logical possibilities as they ap-
pear in the highly stylized and artificial setting of agent based simulations
are notoriously weak arguments in sociological discussions. Not the least so
because it would most probably be easy to draw up Axelrod-style computer
simulations where under different but equally plausible boundary conditions
cooperation is bound to break down when social ties are weakend.

To do Schiifiler justice it must be mentioned that he is fully aware of the
just mentioned explanatory limits of his computer simulations and that he
discusses them frankly and with great intellectual honesty (Schiifiler, 1990,
p. 91f.). It is only that doing so he makes the reader wonder why he filled
a whole book with computer simulations that demonstrate so little. The
same questions could be asked for many of the simulations that have been

done on the topic of the “evolution of cooperation”. Most authors were,
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like Schiifiler, more careful than Axelrod in drawing sweeping conclusions
from their computer simulations. But if no conclusions can be drawn from
them, the question inevitably arises what these computer simulations are
good for after all. It is this question that has become crucial in the case of
Axelrod style simulations. In order to answer it, let us see how Axelrod style
simulations fare when it is attempted to employ them in the context of an

explanation of some real world phenomenon.

4.3 The explanatory irrelevance of Axelrod style sim-
ulations in social sciences

The probably most dramatic example for Axelrod’s theory of the “evolution
of cooperation” is given in his chapter on the trench war on the western front
in the First World War (Axelrod, 1984, ch. 4). During the long phases
when no great battle took place, a rather surprising phenomenon occurred
on many parts of the front in this war: Hostilities lost in intensity and the
number of casualties was reduced to a surprisingly small figure given the
fact that the soldiers virtually eyeballed their opponents on the other side.
The phenomenon has been examined in great detail by the sociologist Tony
Ashworth Ashworth (1980), who found out that it was due to a kind of “live
and let live” system that emerged on many (roughly one third) of the quieter
parts of the front line: The soldiers hoped that if they weren’t taking too
hard on their enemies then the enemies would exercise the same diffidence
on them. Thus, contrary to standing military orders, a kind of cooperation
between the opposing front soldiers emerged on the basis of an unspoken “live
and let live” agreement. Axelrod draws heavily on the description of Tony
Ashworth as a source and he fully acknowledges Ashworth’s achievements.
Doing so he treats the “live and let live” system in the trench war as a kind
of Tut For Tuat strategy and thus regards it as an excellent confirmation case
for his own theory. But would his theory really be able to explain the “live
and let live” system? In order to find this out, let us see, whether Axelrod’s
computer simulations can add anything to the explanation of the “live and

let live” system that goes beyond the explanation that is already given in
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Ashworth’s historical narrative. To do so we first have to briefly reconstruct
the explanation that is given by Ashworth and then check whether there exist
aspects of the phenomenon that Axelrod can explain better.

Ashworth, in his historical treatment, identifies the following causes for

the “live and let live” system:

1. The strategic deadlock. It was virtually impossible to move the front-

line for either side.
2. The natural desire of most soldiers to survive the war.

3. The unpersonal, “bureaucratic structure of aggression” (Ashworth,
1980, p. 76ft.).

4. Empathy with the soldiers on the other side of the front line.

5. Whether elite troops or non elite troops were fighting on either side.
“Live and let live” was much less frequent where elite troops were in-

volved. (According to Ashworth this was the most decisive factor of

all.)

6. The “esprit de corps” that can, however, become either conductive or,
in the case of elite troops, impedimental to the emergence of the “live

and let live” system.

7. The branch of service. Infantry soldiers had to face a much greater
danger and consequently had a greater interest in “live and let live”

than artillery soldiers.

8. The limited means of the military leadership to suppress “live and let
live”. (Only later they found an effective way to do so by organizing

raids on the enemy trenches.)

9. Initial causes such as Christmas truces, bad wheather periods when
fighting was impossible, coincidental temporary ceasefire due to similar

daily routines on both sides (mealtimes).
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In order to apply his theory of the “evolution of cooperation” to the trench
war, Axelrod first examines how the various combinations of the two alter-
natives of fighting wholeheartedly or fighting lackluster on either side should
be estimated in terms of the assumable preference of the soldieres to sur-
vive. Doing so he comes to the conclusion that the soldiers are in some kind
or prisoner’s dilemma, because fighting lackluster on both sides (“live and
let live”) they certainly enjoy a higher chance of survival than when both
sides fought wholeheartedly, although they would surely prefer to overrun
the enemy if they only had a chance to do so. By furthermore interpreting
the historical description of Ashworth, Axelrod goes then on to show that
the prisoner’s dilemma the soldiers were caught in, was indeed a repeated
prisoner’s dilemma. Since — according to his computer simulations — Tit For
Tat emerges as the most successful strategy in evolutionary simulations of
the repeated prisoner’s dilemma, Axelrod thus arrives at his explanation of
the “live and let live” system as a kind of evolved Tit For Tat strategy (Ax-
elrod, 1984, ch. 4). He is aware of the fact that there is more to Ashworth’s
rich description than can be captured in his model. For example, Axelrod
notices the evolution of an “ethics” of cooperation (due to point 6 above, the
“esprit de coprs”) side by side with the evolution of cooperation in the trench
war. But he treats this as just another phenomenon brought about by the
repeated prisoner’s dilemma, not so much as another cause.

When trying to assess whether Axelrod’s theory of the “evolution of co-
operation” does a good job in explaining the “live and let live” system, we
have to ask how many of the causes identified by Ashworth Axelrod’s theory
captures and how well it captures them. At first sight it would seem that
Axelrod’s computer model hardly captures any of these causes. If at all then
only the first cause, the strategic deadlock situation the soldiers were caught
in, could roughly be interpreted as a repeated prisoner’s dilemma. But then,
this is only one in a long list of causes, which means that Axelrod’s model
is far from fullfilling the adequacy requirement. I presuppose here that Ash-
worth has given in his book sufficient reasons to assume that all of the above
listed factors do indeed play a causal role in bringing about the “live and

let live” system. (In this respect Ashworth’s book seems to me to be a very
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solid piece of historical research, although I do not have the space here to
justify my high esteem.) Axelrod could not be blamed for leaving out fac-
tors that do not really play a causal role, but a model is too be blamed if it
leaves out factors we already know to be causally relevant by our background
knowledge about the process in question (adequacy requirement). And the
background knowledge presupposed by Axelrod is to be found in Ashworth’s
treatment. It would be a strong distortion of the historical situation if we
were to maintain nonetheless that the soldiers cooperated in the “live and let
live” type fashion, mainly because they were caught in a repeated prisoner’s
dilemma situation and because — as computer simulations demonstrate — “tit
for tat” often is a good strategy in such situations.

However, if the model helps to give us a deeper or more precise under-
standing of one of the different factors that contributed to the “live and let
live”-system, Axelrod’s model would still have some explanatory value, if only
as a partial explanation. Also, we could still try to link some of the other
causes to Axelrod’s model by assuming that they determine the preferences
of the soldiers and thereby affect the payoff parameters of the repeated pris-
oner’s dilemma that — according to Axelrod’s interpretation — the soldiers
play with their enemies. For example, it is plausible to assume that the sta-
tus of the troop (elite troop or non elite troop) had a bearance on how the
soldiers valuated the situation they were in. While a non elite soldier would
prefer to be a coward and live, an elite soldier might prefer to fight and risk
death. Consequently, elite soldiers might not even face a prisoner’s dilemma.
Quite in harmony with Axelrod’s model, which suggests that cooperation is
the rule and non cooperation the exception, this could help to explain why
“live and let live” appeared only in one third of all cases.

But this still does not really rescue the Axelrod’s simulation as a partial
explanation of the “live and let live”-system. For, the way Axelrod proceeded
when determining the payoff parameters was to asses by plausible reasoning
the ordinal relations between the different alternatives for soldiers according
to their assumed preferences. Unfortunately this is not enough, because

the outcome of Axelrod’s simulation is sensitive to the cardinal values of
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the payoff parameters.® This violates the stability requirement. Therefore
we cannot really know whether the soldiers followed the “live and let live”
strategy because of what Axelrod’s model suggests.

More generally, the difficulty of applying Axelrod style simulations to
political or historical science results from the problem that the values of
the required input parameters cannot be found ready made in the historical
records. They must be reconstructed through a complicated and error-prone
interpretation process. It is therefore hard to see, how the stability require-
ment can be fullfilled at all for simulations that are not extremely robust
against deviations of the input parameters right from the beginning. As we
shall see later, a similar problem applies for the application of Axelrod-style
simulations in biology. Only that there we have more reason to hope that it
can be overcome by simulations that are more closely knit to the measurable
quantities of the empirical processes.

What then are we left with? Since Axelrod’s simulation as applied to the
“live and let live” system of the First World War violates both the adequacy
requirement and the stability requirement, it cannot claim to be explanatory.
At best it delivers us an alternative metaphorical description for the strate-
gic situation the soldiers found themselves in in terms of game theoretical
concepts. Offering no more than that it has hardly anything to add to the
detailed explanations Ashworth offers within his historical narrative.

The example shows how difficult it is to make any good use of Axelrod
style simulations in the social sciences. Partly, this has to do with typical
difficulties that all formal approaches face in the social sciences outside eco-
nomics. There are two main reasons for the limited success of formal methods
in social sciences: First of all, social processes do often result from an intri-
cate set of interwoven causes (see the example above), for only some of which
we have a formal description ready at hand. But if we cannot single out the

causes that can be described formally then any accuracy that is gained by

6To verify this, try Axelrod’s evolutionary simulation with the strategies Dove, Grim,
Hawk, Joss, Random, Tat For Tit, Tit For Tat, Tranquillizer and then change the
payoff parameter R from 3 to 3.5 . In the first case (R=3) Tit For Tat wins, in
the latter case Dowe plays best. (The simulation software can be downloaded from:
www.eckhartarnold.de/apppages/coopsim.html)
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the formal description inevitably gets lost when we reintegrate the formally
described causes with the other causes in a comprehensive explanation. The
second reason is that measurement is difficult in social sciences and that only
few quantities can be measured with accuracy. (In the above example, how
would one measure the empathy the soldiers felt for the likes of them on the
other side of the fontline?) It is also true for computer simulations that our
formal modeling is just as good as our measurement capabilities. However,
part of the reason why Axelrod style simulations fare so badly is due to the

fact that it is just a very incautious type of modeling.

4.4 Do Axelrod style simulations do any better in bi-
ology?

The sceptical conclusion about Axelrod-style simulations the last section
closes with becomes even more pronounced when we look at examples from
biology, a field where the obstacles against formal modeling are much smaller
than in social sciences. Not being a biologist myself, it would of course be
difficult for me to estimate the usefulness of Axelrod style simulations for
the explanation of cooperative behavior in biology. Luckily, there exists a
comprehensive survey by the biologist Lee Allen Dugatkin on “Cooperation
among Animals” (Dugatkin, 1997) that pays some particular attention to
the manifold of game theoretical models and computer simulations that have
come up in the aftermath of Axelrod’s “Evolution of Cooperation”. In the
beginning of his book Dugatkin lists various game theoretic computer simu-
lations and their results (Dugatkin, 1997, p. 24ff.), which — being the results
of computer simulations alone — are purely theoretical of course. The major
part of his book consists of a survey of the empirical research on the various
instances of cooperative behavior that can be found in the animal kingdom.
Interestingly, there exists not a single instance of cooperative behavior in the
animal kingdom to which any of these computer simulations could be applied
in a strict sense.

This is not to say that biologists did not try to do so. The attempt
has been made, for example, to apply Robert Axelrod’s and William D.
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Hamilton’s theory of the evolution of cooperation to the behavior of predator
inspection that is found among various types of shoal fishes. In an early paper
by Manfred Milinski on the topic (Milinski, 1987), Milinski tries to find out —
with the help of an inventive experimental setup — whether pairs of inspecting
fishes play Tit for Tat like Axelrod and Hamilton had postulated it for the
repeated prisoner’s dilemma. In order to do so Milinski also assesses (or
rather estimates) the payoff parameters of Axelrod’s model as applied to this
particular case. Like Axelrod in the case of the “live and let live” system in the
trench war of the First World War, he confines himself to an assessment of the
ordinal relations between the payoff parameters, which, as we have seen, is
unfortunately not sufficient, since the simulation is sensitive to the cardinal
values of the payoff parameters. In later studies on the topic of predator
inspection the attempt to explain this type of behavior with Axelrod’s theory
of the “evolution of cooperation” seems to have been completely dropped. In
a paper that appeared ten years after the first study, Milinski and Parker,
even leave the question open, whether pairwise predator inspection is an
instance of cooperative behavior at all (Milinski und Parker, 1997).” A major
methodological problem is that — despite some very ingenious experiments —
it is extremely difficult to measure or to estimate reliably both the risk a fish
runs when inspecting a predator and the fitness relevant payoff a fish receives
from inspecting. (The former has to some degree been achieved by Milinski
and Parker, but the latter remains an open riddle).

As Dugatkin summarizes the situation in the concluding chapter of his
book, there exists, with one exception, no case of cooperative animal behavior
where the payoff parameters required as input for the game theoretical com-
puter models could be measured. Therefore, it is no surprise that none of the
many Axelrod style simulations of the evolution of cooperation could be ap-
plied strictly to any of the empirical instances of cooperation in biology. And
it is very doubtful whether this type of simulations (which remains remote

from concrete empirical research and rests purely on “plausible” assumptions)

"For a summary of the heated debate that took place about the Tit For Tat strategy
in biology in the meantime see Dugatkin’s book on animal cooperation (Dugatkin, 1997,
p. 67-70).
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is of any use for biologists at all. Another leading exponent of the game the-
oretic approach in biology puts it the following way: “Why is there such a
discrepancy between theory and facts? A look at the best known examples
of reciprocity shows that simple models of repeated games do not properly
reflect the natural circumstances under which evolution takes place. Most
repeated animal interactions do not even correspond to repeated games.”
(Hammerstein, 2003, p. 83) And after a long discussion of problems that the
study of cooperative behavior of animals faces the same expert concludes:
“Most certainly, if we invested the same amount of energy in the resolution
of all problems raised in this discourse, as we do in publishing of toy models
with limited applicability, we would be further along in our understanding of
cooperation.” (Hammerstein, 2003, p. 92)

One might object that maybe some of the models can be further devel-
oped so that they actually fit some of the empirical examples of reciprocity.
And there would indeed be some truth in this objection: It does not matter
whether one starts constructing a model with a certain empirical application
case in mind and builds it around measurable quantities (bottom up approach)
or whether one starts with arbitrary plausible assumptions and only later on
tries to adjust the model to specific empirical situations (top down approach).
But one way or the other our models and the empirical processes they are
meant to explain should be brought together. For, just because we have
a model that shows us that for this or that reason cooperation evolves or
breaks down, we cannot conclude in any empirical case of the evolution or
breakdown of cooperation that it did so by virtue of the very same causes for
which it did in the model. It could also have been the effect of quite different
causes. Unless there is a “close fit” between model and reality we will never
know.

The downside of computer simulations that do not achieve a “close fit”
between model and reality is not only that they do not work, but that they
tend to give us a wrong picture of the subject matter at hand. The “skew
towards reciprocity in theoretical literature” on altruism (Dugatkin, 1997, p.
167f.) is most probably also due to the fact that the simulation business

lost contact to the empirical research in this field. Instead of seeking to
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achieve a “close fit” between model and reality, the tradition of Axelrod-
style modeling of the “evolution of cooperation” largely proceeded a different
course. Computer simulation followed after computer simulation, each of
them changing the basic configuration in some way or other or trying the
addition of new and different parameters. But most of these simulations
never got to the ground of empirical testability. This way, however, computer

simulations only lead us away from the real scientific problems.

5 Conclusion

Quite a few lessons can be learned from the previous examples of failures of
Axelrod style computer models. Some of them are truisms, but as they are
often neglected they are important nontheless.

First of all, if our models are to be explanatory then the establishment of a
close fit between model and reality is at least as important as the construction
of the model itself. The biological examples such as Milinski’s and Parker’s
studies on predator inspection suggest that establishing this fit may even be
much harder and more time consuming than constructing the model itself.

Secondly, when there is no close fit between model and reality then
the model has hardly more epistemological strength than a mere metaphor.
Therefore, one must be very careful when drawing conclusions from them.
Computer generated metaphors are no better than ordinary metaphors. At
best one can regard these conclusions drawn from them as mere hypotheses
that still require an independent empirical confirmation. Without this em-
pirical confirmation explanations based on computer simulations amount to
nothing more than model based story telling. Such computer simulations are
in a way comparable to non falsifyiable theories, because there is no way to
test whether they simulate correctly the empirical process they are meant to
simulate.

Finally, we should be aware of the fact that although the ease and power
of formal modeling has been greatly increased with the advent of the com-
puter, there still remain scientific areas where the advantages of formal mod-

eling are doubtful or where it is not possible at all. Computer simulations
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are just one scientific tool among others. It is helpful in some situations
but useless in others. Where computer simulations cannot not go beyond a
merely metaphorical resemblance of empirical reality their use is probably

not worthwhile.
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