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Abstract

While Thomas Kuhn’s theory of scientific revolutions does not
specifically deal with validation, the validation of simulations can be
related in various ways to Kuhn’s theory: 1) Computer simulations
are sometimes depicted as located between experiments and theoreti-
cal reasoning, thus potentially blurring the line between theory and
empirical research. Does this require a new kind of research logic that
is different from the classical paradigm which clearly distinguishes
between theory and empirical observation? I argue that this is not
the case. 2) Another typical feature of computer simulations is their
being “motley” (Winsberg, 2003) with respect to the various premises
that enter into simulations. A possible consequence is that in case of
failure it can become difficult to tell which of the premises is to blame.
Could this issue be understood as fostering Kuhn’s mild relativism
with respect to theory choice? I argue that there is no need to worry
about relativism with respect to computer simulations, in particular.
3) The field of social simulations, in particular, still lacks a common
understanding concerning the requirements of empirical validation
of simulations. Does this mean that social simulations are still in a
pre-scientific state in the sense of Kuhn? My conclusion is that despite
ongoing efforts to promote quality standards in this field, lack of proper
validation is still a problem of many published simulation studies and
that, at least large parts of social simulations must be considered as
pre-scientific.
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1 Introduction

Thomas Kuhn (1976) famously introduced the term paradigm to characterize

the set of background beliefs and attitudes shared by all scientists of a

particular discipline. According to Kuhn these beliefs and attitudes are

mostly centered around exemplars of good scientific practice as presented in

the textbook literature, but classical texts, specific methodological convictions

or even ontological commitments can also become important for defining a

paradigm. Furthermore, paradigms comprise shared convictions as well as

unspoken assumptions of the group of researchers (Kuhn, 1976, postscript).

An important function of paradigms is that they both define and limit

what counts as relevant question and legitimate problem within a scientific

discipline.

Kuhn’s concept of a paradigm is closely connected with his view of how

science develops. According to Kuhn phases of normal science where science

progresses within the confinements of a ruling paradigm are followed by

scientific revolutions which, in a process of creative destruction, lead to a

paradigm-shift. Scientific revolutions are triggered by the accumulation of
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problems that are unsolvable within the ruling paradigm (so called anomalies).

With an increasing number of anomalies scientists grow unsatisfied with the

current paradigm and start to look for alternatives – a state of affairs that

Kuhn (1976, ch. 7/8) describes as the crisis of the ruling paradigm. Then,

a paradigm-shift can occur that consists in a thoroughgoing conceptual

reorganization of a scientific discipline or, as the case may be, the genesis

of a new sub-discipline. Unless there is a crisis, the search for alternative

paradigms is usually suppressed by the scientific community.

This theory could be relevant for computer simulations and their validation.

Because computer simulations are sometimes characterized as a revolutionary

new tool that blurs the distinction between model and experiment, the

question can be asked if this tool brings about or requires new paradigms

of validation. Under validation I understand a process which allows to test

whether the results of a scientific procedure adequately capture that part

of reality which they are meant to explain or to enable us to understand.

It is widely accepted that for theories or theoretical models, the process of

validation consists in the empirical testing of their consequences by experiment

or observation, which in this context is also often described as verification or

falsification or, more generally, as confirmation.1 The question then is, if the

same still holds for computer simulations, that is, if computer simulations

also require some form of empirical validation before they can be assumed to

inform us about reality.

For the purpose of this paper, I understand empirical validation in a

somewhat wider sense that does not require strict falsification, but merely

any form of matching theoretical assumptions with empirical findings. In this

sense, a historian checking an interpretation against the historical sources

can also be said to validate that interpretation. However, I assume that

proper validation always includes an empirical component and I therefore

use the terms “validation” and “empirical validation” interchangeably in the

1In the realm of computer simulations the term verification is, somewhat confusingly,
reserved for checking wether the simulation software is free from programming errors (so
called “bugs”) and whether it is faithful to the mathematical model or theory on which it
is based. The term validation is used for the empirical testing of the simulation’s results.
See also Chapter 4 (Murray-Smith, 2019) in this volume.
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following.

In the following, I first summarize Kuhn’s philosophy of science (Sec. 2).

Then I list some of the dramatic changes that computer simulations have

brought about in science and – in order to forestall possible misunderstandings

– explain why these changes are not scientific revolutions in the sense of Kuhn

(Sec. 3). In the main part of this chapter (Sec. 4), I then examine the validation

of simulations from a Kuhnian perspective. Relating to the discussion about

the relation between computer simulations and experiments I argue that

computer simulations can clearly be distinguished from real experiments

and, therefore, do not require a new paradigm of validation. In principle,

validating simulations is just like validating theory. I continue by examining

whether computer simulations aggravate the problem of theory choice that is

associated with the so called “Duhem-Quine-thesis” (S. G. Harding, 1976),

which I deny. Finally, I examine some of the issues that the validation of

social simulations and in particular agent-based-models raises from the point

of view of Kuhn’s philosophy of science. For the lack of commonly accepted

standards of validation, it seems unclear whether this field has already reached

a state of “normal science” with established paradigms of validation. Because

the practices of validation vary greatly in this field, a general conclusion is

not possible, however. I therefore confine myself to discussing the issue with

respect to selected examples.

2 Kuhn’s philosophy of science

A crucial aspect of Kuhn’s concept of scientific revolutions is the alleged in-

commensurability of paradigms (Kuhn, 1976, ch. 12, postscript 5.) (Sismondo,

2010, ch. 2) (Bird, 2013, sec. 4.3f.). Incommensurability means that theories

rooted in different paradigms cannot easily be compared with respect to their

scientific merits, because of

1. methodological incommensurability, which means that the criteria of

evaluation depend on and change with the paradigm,
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2. the theory-ladenness of observation, due to which an assessment based

on empirical evidence may not be able to resolve the dispute,

3. semantic incommensurability, which means that the differences of the

respective conceptual reference frameworks and taxonomies may ren-

der the translation between the nomenclatures of different paradigms

difficult and error-prone.

Kuhn did not go as far as the proponents of the strong programme

of sociology of science who maintain that the resolution of interparadigm-

disputes is primarily, if not exclusively, determined by social factors such as

group allegiance and power-structures (Bird, 2013, sec. 6.3). However, he

did deny that the choice between different theories is guided by a scientific

meta-method such as systematic falsification or by any other particular set

of rules. In this respect one can describe Kuhn’s stance as a mild relativism.

Kuhn’s relativism is restricted by his belief that a common ground for theory

choice can still be found in such general characteristics as empirical accuracy,

consistency, breadth of scope, simplicity or parsimony, fruitfulness for future

research (Kuhn, 1977, ch. 13). And he furthermore holds that the comparison

and mutual evaluation of paradigms is possible on the pragmatic basis of

their problem-solving capacity.

Although Kuhn regarded scientific revolutions and the paradigm shifts they

bring about as scientifically perfectly legitimate processes, that is processes

that are primarily driven by a scientific motivation and not just by social

power, he nonetheless found that in almost any paradigm change some things

get lost – if only that certain questions will not be considered worthwhile any

more. An example is the question how physical bodies influence each other

over a distance, which cannot be answered by Newton’s theory of Gravity

and therefore simply was not asked any more, although, before Newton it was

considered important (Kuhn, 1976, ch. 12). The phenomenon that accepted

questions, problems and even solutions can become orphaned after a paradigm

shift has subsequently been called Kuhn loss (Bird, 2013, sec. 2).

Also, even though Kuhn allowed for paradigm-shifts to make sense sci-

entifically, this does not always need to be the case, but one should expect
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that sometimes paradigm-shifts are primarily due to social factors. Not in

the least because of the popularity of Kuhn’s theory of scientific revolutions,

it has become seductive for scientists to stage a paradigm shift to promote

their scientific agenda. In order to distinguish illegitimate paradigm-shifs

terminologically, the derogatory term scientific imperialism can be used,

which has been coined to describe the take-over of a branch of science by

a single paradigm (Dupré, 1994) by unfair means. Following Kuhn’s line

of thought the problem solving capacity could be a criterion by which to

qualify a paradigm shift as either legitimate or imperialistic. Because of the

incommensurability issues described before, an objective judgment about this

can, of course, be difficult.

A contemporary of Kuhn that is often mentioned in the same breath,

is Paul Feyerabend, who is (in-)famous for the slogan “anything goes”. In

popular folklore this is sometimes understood as meaning that Feyerabend

advocated that in science any method is as good as any other. However, what

Feyerabend actually demonstrated in his book “Against Method: Outline

of an Anarchist Theory of Knowledge” (Feyerabend, 1975/1983) and other

works was that even from the most humble historical beginnings, a serious

scientific theory or school of thought can still emerge. Feyerabend’s work

gains its thrust from the fact that he can show that some of the game changers

in the history of science such as, for example, Galileo’s theory of motion,

violated accepted scientific standards of their time (Feyerabend, 1975/1983,

ch. 9). Just as Kuhn he denies that the historical development of science is or

can be guided by methodological or epistemological rules. Similar to Kuhn,

Feyerabend’s philosophy has a certain relativistic flair, which Feyerabend

other than Kuhn was ready to accept (Preston, 2016, sec. 5).

Nonetheless, despite of what the subtitle of his major work suggests,

Feyerabend’s analyses do not warrant a strong relativism. Almost all of

Feyerabend’s examples concern theories that – later in their historical devel-

opment – would be considered as scientific even by conventional standards.

Thus, what we can learn from Feyerabend is a certain tolerance against the

methodological chaos of new scientific approaches in their infant stages. This

can be important, for example, when evaluating social simulations, which
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according to some authors suffer from a lack of proper empirical validation

(Heath, Hill, and Ciarallo, 2009). The question is then not so much whether

these simulations adhere to a particular scientific standard but rather whether

the respective scientific community learns from its failure to do so and will

be able to develop appropriate methodological standards in the future.

Another point that deserves clarification, because it is – at least in the

philosophical discussion – almost habitually mentioned in context with Kuhn,

is the Duhem-Quine-thesis (S. G. Harding, 1976). The Duhem-Quine-thesis

draws on the fact that if the logical consequence of a whole system of premises

turns out to be false then it is still unclear which one or more of the premises

are false.2 This means that if a theory is empirically disconfirmed, we do not

(yet) know which part of the theory is wrong. The Duhem-Quine-thesis can

be seen as supporting a certain degree of arbitrariness, if not relativism in

theory choice. And it corresponds well to Kuhn’s view that the way scientists

cope with anomalies is not strictly guided by methodological rules. It may be

a matter of creative choice. As we shall see later, this choice is in practice

much less arbitrary than it may appear in the formal logical representation

of a theory as a system of propositions.

Despite all reservations, Kuhn’s picture of the history of science is still one

of linear development, where normal science and revolutionary phases follow

each other in time. For Kuhn the prolonged co-existence of several competing

paradigms was the mark of a pre-scientific stage where much intellectual

energy is wasted in disputes between rivaling schools of thought. Recent

research, however, has emphasized that the co-existence of different paradigms

within one and the same science is much too common to be dismissed as

pre-scientific (Kornmesser, 2014; Schurz, 2014). This is particularly true of the

social sciences, where hardly ever one paradigm can claim to solve all puzzles

so successfully that it is able to gather the entire scientific community under

its flag. That Kuhn may have underestimated the amount of co-existence of

paradigms in science does not invalidate his analyses, though. The concepts of

normal science and scientific revolutions can still be employed as ideal-types

to characterize the scientific proceedings within an established paradigm on

2See also chapter 39 (Lenhard, 2019) in this volume.
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the one hand and the discourse between different co-existing paradigms on

the other hand.

3 A revolution, but not a Kuhnian revolu-

tion: Computer simulations in science

Kuhn’s theory of scientific revolutions is so popular that his concept of a

paradigm has by now become part of the common vocabulary. Inevitably,

it is often used in a sense that is different from what Kuhn had in mind.

It may therefore help to make clear what is not a revolution or paradigm

change in Kuhn’s sense. A most salient example in this context is that of the

introduction of computer simulations to science, because it can with some

justification be said that computer simulations have revolutionized many

areas of science. these really Kuhnian revolutions?

Computer simulations can roughly be defined as the imitation of a natural

process (or, in the case of social simulations, a social process) by a computer

program (Hartmann, 1996). Undoubtedly, computer simulations have brought

about considerable changes in scientific practice and theoretical outlook. Here

are but some examples:

• In engineering, simulations have been used before long to simulate the

properties of machinery and processes. A large class of simulations is

based on the method of finite elements which has as far reaching applica-

tions as structural engineering, car crash tests and even cardiovascular

simulations (Carusi, Rodriguez, and Burrage, 2013).

• In chemistry simulations are employed in order to simulate chemical

processes on a quantum-mechanical bases, some of which are even

outside the reach of direct experimentation (Kästner and Arnold, 2013).

• In climate science the simulations are used to simulate the possible

future development of the world climate. Naturally, experimentation

with the world climate is not possible. By the same token, unfortunately,

these simulations cannot be validated directly.
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• The theory of non-linear dynamical systems (“chaos theory”) can even

be said to owe much of its origin to computational methods (Gleick,

2011). At any rate its development has certainly been propelled by the

use of computers, though it might not necessarily have been computer

simulations in the narrower sense of imitations of a natural process in

the computer.

• In social science there exists a now already long standing tradition of

simulating social processes. However, the social simulations community

still struggles for the acceptance within the broader social sciences

community (Squazzoni and Casnici, 2013).

Some of these examples certainly warrant the characterization as “revolu-

tionary”. Are they revolutionary in a Kuhnian sense, though? And would it

be reasonable to call simulation-based science in general a new paradigm of

science?

For one thing, the way Kuhn used the term paradigm, paradigms are

always tied to specific scientific disciplines. Even though we are not tied to

Kuhn’s definition and the term paradigm has indeed been used more liberally

by other authors since its original introduction, it would appear a bit vague

to speak of a paradigm of computer simulations, because it is not at all clear

what would be the content of this paradigm.

Even more importantly, Kuhn reserves the concept of scientific revolutions

for changes that are caused by a crisis of the conceptual framework of a

scientific discipline and that lead to a reconstruction of the conceptual system

that is incommensurable with the previous reference framework. Not any

dramatic change in science is a revolution in the Kuhnian sense. A prominent

example for a dramatic change that is not a Kuhnian revolution is the

discovery of the structure of the DNA-molecule by Watson and Crick. While

this discovery was a door-opener for molecular genetics, it neither required

nor effected a conceptual reconstruction and there was no question of it being

incommensurable with the previously held views on hereditary biology. Quite

the contrary, it fit in nicely with the existing body of knowledge. The discovery

of the DNA was normal science at its best, not a Kuhnian revolution.
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Similarly, the introduction of computer simulations into a particular branch

of science alone is not a Kuhnian revolution, no matter how dramatic the

changes in scientific practice and the extension of our knowledge through

computer simulations might be. Only, if the use of computer simulations leads

to a revision of established fundamental concepts, it is a Kuhnian revolution.

A possible candidate from the list above might be chaos theory, in so far as it

has modified the received picture of causality.

4 Validation of Simulations from a Kuhnian

perspective

Can Kuhn’s concept of paradigm illuminate the validation of computer

simulations? And, if so, how? In the following, I am going to state several

questions that can be raised in this context and then try to give answers to

these questions based on the current discussion on computer simulations in the

philosophy of science. The questions that in my opinion deserve consideration

are:

1. Notwithstanding the question (discussed earlier) to what extent com-

puter simulations have prompted paradigm shifts in science, another

question is, whether computer simulations have lead to, or require

new paradigms in the logic of scientific discovery. Classical research

logic assumes a clear distinction between theoretical research based on

deductive inference and empirical research based on experiment and

(potentially theory-laden) observation.3 Most importantly, there is a

hierarchy between the theoretical and empirical realm. Theoretical

3Because theory-ladenness of observation is an often misunderstood topic, two remarks
are in order: 1) Theory-ladeness of observation as such does not blur the distinction
between theory and observation. At worst we have a distinction between pure theory
(without any observational component) and theory-laden observation. 2) Theory-ladeness
of observation does not lead to a vicious circle when confirming theories by empirical
observation. This is true, as long as the observations are not laden with the particular
theories for the confirmation of which they are used. – There are areas in science where
no sharp distinction between theoretical reasoning and reporting of observations is made.
However, as far as computer simulations are concerned, it is clear that because Turing
Machines do not make observations, a computer program is always a theoretical entity
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assumptions are confirmed or disconfirmed by empirical tests – not the

other way round. Computer simulations are sometimes depicted as

being located somewhere between empirical and theoretical research,

and – as the common metaphor of “computer experiments” suggests4 –

blurring the lines between the two (Morrison, 2009).

2. In a similar vein, computer simulations often rely on a rich mixture

of assumptions and technicalities that are drawn from diverse sources.

In the philosophical literature on simulations this has been described

as their being “motley”(Winsberg, 2015) and not simply falling from

theory. This can raise worries concerning the prospects of empirical

validation of computer simulations. In particular, the question can be

asked if the sort of problems associated with the Duhem-Quine-thesis

increase with computer simulations: You may know that your simulation

contains many abstractions, simplifications and presumptions, but you

cannot be sure which of these are potentially dangerous.

3. Finally, some thoughts shall be given to the validation of simulations

in the social sciences. Because the social sciences are multi-paradigm-

sciences the validation of simulations raises specific problems in this

area. Given that it is still not common practice to validate simulations,

one can even ask whether the field of social simulations has already

emerged from a pre-scientific state.

4.1 Do computer simulations require a new paradigm

of validation?

While Kuhn’s theory of scientific revolutions is mainly concerned with the

supersession of scientific theories, his concept of paradigms can also be

applied to other aspects of scientific practice. For example, it might be

- notwithstanding the fact that a computer program may represent an empirical setting
or make use of empirical data. In the latter respect it can be compared with a physical
theory that may in fact represent empirical reality as well as contain natural constants (i.e.
empirical data).

4See also chapter 37 (Beisbart, 2019) in this volume.

12



applied to changes in the logic of scientific research. The question whether

computer simulations bring about (or require) a new kind of research logic

is particularly salient, because it has been argued recently that computer

simulations somehow blur the line between models and experiments (Winsberg,

2009). But if this means that computer simulations are – just like experiments

– somehow empirical, the question naturally arises whether the validation of

computer simulations can still be understood along the lines of what has

earlier been described as classical research logic. Or, if a new paradigm of

validation is necessary to assess whether a simulation adequately captures its

target system or not?

Before the recent discussion about the relation of simulations and ex-

periments, this question seemed to be rather trivial and its answer obvious:

Computers are calculating machines and computer simulations are nothing

but programmed mathematical models that run on the computer. Therefore,

computer simulations can just like models produce no other than purely

inferential knowledge, that is, knowledge that follows deductively from the

premises built into the simulation. In particular, computer simulations cannot

produce genuine empirical knowledge like experiments or observations can.

It is true that computer simulations can produce new knowledge, because

they yield logical consequences of the built-in premises that were not formerly

known to us (Imbert, 2017, sec. 1.3.4). It is also true that computer sim-

ulations can – like any model – produce knowledge about empirical reality,

because the premises built into them have empirical content and so have their

logical consequences. But this is far cry from the empirical knowledge that

experiments or observations yield and which – because it is of empirical origin

– is genuine. But then computer simulations have just the same epistemic

status as theories and models and therefore follow the same research logic and

require just the same kind of validation. Now, in order to validate a model or

a theory it must be tested empirically, and so must computer simulations.

What I have just described is more or less the picture of computer sim-

ulations that was pertaining in the general literature on simulations up to

the beginning of the millennium. It had by that time been fleshed out with

two distinctions that make the difference between computer simulations and
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Experiments︷ ︸︸ ︷
computer simulation analog simulation real experiment

materiality of object semantic material

relation to target representation (formal similarity) representative

︸ ︷︷ ︸
Simulations

Figure 1: Conceptual relation of simulations and experiments (Arnold, 2013b)

empirical research procedures extraordinarily clear: Firstly, by the distinction

of the modus operandi. Is it a formal procedure (computer simulation) or a

material process (experiment)? Secondly, by the distinction of their relation

to the target system. Accordingly, this relation could be characterized as

one of formal similarity (Guala, 2002) with the object of the simulation

being a representation (Morgan, 2003) of the target system or, in the case of

experiments, one of material similarity with the object of experimentation

being a representative of the target system.

In recent years, however, there has been a persistent discussion among

philosophers of science during the course of which the distinction between

simulations and experiments has been seriously called into question. Most

notably, some authors have claimed that it is impossible to make a sharp

distinction between simulations and experiments – at least as far their epis-

temic reach or inferential power is concerned. (Winsberg, 2009; Parker, 2009;

Morrison, 2009; Winsberg, 2015). Others have advocated the weaker claim

that while there is a distinction between the two categories, the transition

between them is smooth and that there are borderline cases for which it is

difficult to determine into which category they fall (Morgan, 2003).

Now, if this were true, then the generally accepted research logic of

empirical science, which relies on the ability to distinguish clearly between

empirical observation and theoretical reasoning would find itself in a serious

crisis and we would have to expect and, in fact, need to hope for new paradigms

of research logic and, in particular, for the validation of computer simulations

to emerge.
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However, the case for the non-discriminability of simulations and exper-

iments rests almost entirely on conceptual confusions and an ambiguous

use of the term “experiment”. The examples with which supporters of the

non-disicriminabilty thesis demonstrate their claim concern almost exclusively

atypical kinds of experiments, where the object of experimentation is not

really a representative of the target system. For example, Winsberg (2009,

p. 590), discusses “tanks of fluid to learn about astrophysical gas-jets” as

an instance of an experiment. But this is an atypical experiment, because

the tanks of fluid are not representatives of the target system (astrophysical

gas-jets). This kind of experiment is indeed in no better position to produce

genuine empirical knowledge about the target system than any computer

model. But the fact that there are such atypical experiments does not con-

tradict the fact that there exist real experiments that can produce genuine

empirical knowledge about their target system and that this is a feature that

distinguishes real experiments from models.

The conceptual confusion that exists in the philosophical discussion about

the relation of simulations and experiments can easily be clarified by the

schema on figure 1, which depicts the overlap in the use of the words “sim-

ulation” and “experiment”. The kind of experiments that Winsberg and

other authors advocating the non-discriminability between simulations and

experiments discuss over and over again, has been termed “analog simulation”

in the schema. As all experiments do, “analog simulations” operate on a

material object, but this object does not have a material similarity to its

target system and therefore is only a representation, but not a representative

of its target system. The latter is required for an experiment to produce

genuine empirical knowledge about its target system.

That simulations are not experiments – save for the ambiguity and overlap

in the use of words – becomes furthermore clear if we consider the kind

of experiments that give rise to anomalies and which in retrospect are de-

clared crucial experiments that decide the choice between conflicting theories.

Because the laws of the scientific theories are programmed into computer

simulations, they cannot be used to test these very theories. If it really

was as difficult to distinguish between simulations and experiments as some
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philosophers of science believe, then it should – at least in principle – be

possible to substitute experiments with simulations in any context.

However, if we draw the demarcation-line between analog simulations and

real experiments and not, as the authors advocating the non-discriminability-

thesis implicitly do, between computer simulations and analog simulations,

then we are able to distinguish clearly those scientific procedures that can

generate genuine empirical knowledge about their target system from those

that cannot. Simulations and, in particular, computer simulations belong

to the latter category and therefore have – with respect to validation – the

same epistemic status as theories and models. They need to be validated

empirically, but they cannot provide empirical validation.5

Summing it up, computer simulations do not break the received paradigm

of research logic of empirical science. Therefore, a new paradigm of validation

specifically for simulations is not needed.

4.2 Validation of simulations and the Duhem-Quine-

thesis

Another point frequently emphasized in the philosophy of simulation literature

is that computer simulations can become highly complex. This is also one

of the major differences between computer simulations and thought exper-

iments, to which they are otherwise quite similar. At least in the natural

sciences computer simulations can often be based on comprehensive and well

tested theories, such as quantum mechanics, general relativity, Newton’s of

gravitation or – in engineering – the method of finite elements. But even in

the natural sciences simulations cannot always be based on a single theory,

but they sometimes rely on different theories from different origins. Climate

simulations are a well-known example for this. And even where simulations

are based on a single theory, they usually also draw on various sorts of approx-

5In simulation-science the term empirical is sometimes used to distinguish simulation
and numerical methods from mathematical analysis. (Phelps (2016) is an example of this.)
But this is just a different use of words and should not be confused with “empirical” in
the sense of being observation-based as the word is understood in the context of empirical
science.
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imations, local models and computational techniques. None of these can be

derived from theory, so that they need independent credentials. This situation

has been described in the philosophy of simulation literature as their being

motley and partly autonomous (Winsberg, 2003). This description echos a

recent trend in the philosophy of science which emphasizes the importance

and relative independence of models from theory (Morgan and Morrison, 1999;

Cartwright and Press, 1983).

So, if simulations are knit together from many independent set pieces

of theories, models, approximations, algorithmic optimizations etc., then

the Duhem-Quine-thesis could point out a potential problem. A possible

reading of the thesis assumes that if validation fails (for example, because

an empirical prediction was made that turned out to be wrong), then one

cannot know which part of the chain of theoretical reasoning failed that leads

to the empirical prediction. In the case of computer simulations this means

that one does not know whether the theory on which the simulation is based,

the simplifications that may have been made in the course of modeling or,

finally, the program code has failed.

By the same token, if this reading of Duhem-Quine is accurate, simulation

scientists would – for better or worse – enjoy a great freedom of choice

concerning where to make adjustments if a simulation fails, i.e. if it leads

to unexpected, obviously false or no results at all. Some philosophers have

even argued that scientists sometimes deliberately employ assumptions that

are known to be false to make their simulations work. Among these are

artificial viscosity (Winsberg, 2015, sec. 8), or – another often cited example

– “Arakawa’s trick” (Lenhard, 2007). Arakawa based a general circulation

model of the world climate on physically false assumptions to make it work,

which by the scientific community was accepted as a technical trick of trade.

However, this reading of Duhem-Quine paints a somewhat unrealistic

picture of scientific practice, because in case of failure there usually exist

further contextual cues where the error causing the failure has most likely

occurred. While in the abstract formal representation of theories that is

sometimes used to explain Duhem-Quine, the premises are represented as

propositions with no further information, scientists usually have good reasons
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to consider the failure of some premises as more likely than others. In science

and engineering, the premises are usually ordered in a hierarchy that starts

with the fundamental physical, chemical or biological theories, ranges over

various steps of system description and approximation down to the computer

algorithms and, ultimately, the programm code. If a simulation fails one

would start to examine the premises in backward order. And this is only

reasonable, because prima facie, it is more likely that your own program

code contains a bug than, say, that the theory of quantum mechanics is false

or that some of the tried and tested approximation-techniques are wrong.

Though, of course, this is not completely out of the question, too.6 It should

be understood that the credibility of the various premises occurring in this

hierarchy does not follow their generality, but depends on their respective

track record of successful applications in the past. It can safely be assumed

that this situation is typical for normal science.7

It must be conceded, though, that during a scientific revolution or within

cross-paradigm-discourse, there might be no hierarchy of premises to rely on,

because some of the premises higher up in the hierarchy, like the fundamental

theories, are not generally accepted any more. In this situation, there might,

as Kuhn suggested, only be vague meta-principles left to rely on and we

must face the possibility of not being able to resolve all conflicts of scientific

opinion.

What about the conscious falsifications like artificial viscosity and

“Arakawa’s trick” that – according to some philosophers of science – are

introduced by simulations scientists in order to make their simulations work?

This reading has not gone unchallenged, and it has been called in to question

whether the artificial viscosity that Winsberg mentions is more than just an-

6See Kästner and Arnold (2013, sec. 3.4) for a case-study containing a detailed
description of this hierarchy of premises.

7But see Lenhard (2019) in chapter 39 in this book, who paints a very different picture.
I cannot resolve the differences here. In part they are due to Lenhard using examples where
“ ’due to interactivity, modularity does not break down a complex system into separately
manageable pieces.’ ” To me it seems that as far as software design goes, it is always
possible – and in fact good practice – to design the system in such a way that each unit
can be tested separately. As far as validation goes, I admit that this may not work as
easily because of restrictions concerning the availability of empirical data.
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other harmless approximation (Peschard, 2011) or whether “Arakawa’s trick”

not merely compensates for errors made at another place, which would make

it an example of a simulation the success of which is badly understood rather

than one that is very representative of simulation-based science (Beisbart,

2011, 333f.). It seems that these philosophically certainly interesting examples

concern exceptions rather than what is the rule in the scientific practice with

simulations. For the time being that is to say, because it is well imaginable

that in the future development of science these tricks become more common.

Summing it up, with respect to the Duhem-Quine-thesis there are neither

additional challenges nor additional chances for the validation of simulations.

Under normal science-conditions it does not play a role at all. Other than

that it merely reflects the greater methodological imponderabilities during a

revolutionary phase or in an inter-paradigm context.

4.3 Validation of social simulations

Most of the discussion so far and all of the examples were centered around

science and engineering. Therefore, in the following I am going to briefly

discuss questions concerning the validation of simulations that are more

specific for the social sciences.

4.3.1 Where social simulations differ

In the context of validation of social simulations two features of the social

sciences become relevant that distinguish them from most natural sciences:

Firstly, the social sciences are multi-paradigm-sciences. It is the normal state

of these sciences that there exist multiple more or less mutually incommen-

surable paradigms at the same time. This multi-paradigm-character is well

described in the textbook by Moses and Knutsen (2012). For Kuhn such

a state of affairs was a sign of a pre-scientific phase. But given that the

social sciences are – within inevitable confinements – nonetheless able to

produce convincing explanations at least for some social phenomena, the

qualification as pre-scientific seems inadequate. Also, if considered in isolation,

most of these paradigms expose typical features of normal science, like a
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textbook-literature, role models and exemplars etc.

Deviating from Kuhn, I therefore suggest, that the qualification as pre-

scientific should be reserved to those sciences or branches of a science that –

given their state of development – have not yet been able at all to produce

results that can be validated or confirmed by some reasonable procedure.

The qualification as pre-scientific is in so far justified as without a common

understanding and practice of validation one can never be sure whether the

results are indeed reliable.

Secondly, the social sciences include qualitative paradigms, including

paradigms that rely on hermeneutical methods. It is safe to assume that

these can neither be completely ignored nor always be resolved to quantitative

or otherwise formal methods and paradigms.8 As computer simulations are

quantitative, the decision to use computer simulations is also a decision for a

quantitative paradigm.

Here, I understand the term “quantitative” in a wide sense, including

anything that is described in a formal language. This can be formal logic,

mathematics, or a programming language. This wide sense of using the term

“quantitative” is motivated by the fact all formal descriptions share the same

epistemic risks of either losing important information, because the expressive

power of formal languages is limited in comparison to natural language, or

adding arbitrary assumptions in form of modeling decisions. A simulation

model forces its author to provide detailed mechanics of all processes that are

included in the model, because otherwise the model would not run. However,

if the mechanics are not known, this amounts to theoretical speculation. A

purely verbal description, in contrast, allows its author to remain silent or at

least adequately vague about underlying mechanics the details of which are

not known. On the other hand, because of their strict specification, formal

models cannot as easily be misunderstood as verbal descriptions. And they

8There are scientists who deny even this and who also believe that without formal
models no explanation of any sort is possible in history or social science. I am a bit at loss
for giving proper references for this point of view, because I have mostly been confronted
with it either in discussions with scientists or by anonymous referees of journals of analytic
philosophy. The published source I know of that comes closest to this stance is the keynote
“Why model?” by Joshua Epstein (2008), which I have discussed in Arnold (2014).
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enforce logical consistency.

Both of these features affect the validation of social simulations. Because,

when trying to validate a simulation study, say, on the evolution of cooperation,

it might become necessary to compare its findings with those of biological field

research or, depending on the envisaged application cases, those of cultural

history. Thus, different scientific disciplines with different paradigms might be

affected. And, it might become necessary to translate between a qualitative

descriptive language used in empirical research and the formal languages used

in simulation research.

One possible objection when discussing social simulations in the connection

with Kuhn, is that it is not a scientific discipline, but a field that runs across

several disciplines. However, since this field is shaped by shared attitudes,

well-known exemplars (Axelrod, 1984; Axtell et al., 2002; Epstein and Axtell,

1996; Schelling, 1971) and an emerging textbook-literature (Railsback and

Grimm, 2012; Gilbert and Troitzsch, 2005), looking at it from a Kuhnian

perspective does not seem too far-fetched.

4.3.2 Are social simulations still in a pre-scientific stage?

One of the most surprising features to the outside observer of the field of

social simulations in general is the widespread absence of empirical validation,

sometimes combined with a certain unwillingness to see this as a problem.

In a meta-study on agent-based-modeling (ABM), which is one very

important sub-discipline of social simulations, Heath, Hill, and Ciarallo

(2009) find that the models in 65% of surveyed articles have not properly

been validated, which they consider “a practice that is not acceptable in

other sciences and should no longer be acceptable in ABM practice and

in publications associated with ABM” (4.11). While some of these not-

validated simulations can serve a purpose as thought experiments that capture

some relevant connection in an idealized and simplified form (Reutlinger,

Hangleiter, and Hartmann, 2017), many of them are merely follow-ups to

existing simulations and bear little relevance of their own. The practice

of publishing simulations without empirical validation and seemingly little
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(additional) theoretical relevance is so widespread that it has been termed the

YAAWN-Syndrome where YAAWN stands for ”Yet Another Agent-Based

Model ... Whatever ... Nevermind” (O’Sullivan et al., 2016). The fact that

such a term has been coined is an indication that the ABM-community is

growing weary of unvalidated or otherwise uninteresting simulations. Thus,

the situation may change in the future. For the time being, lack of validation

is still a problem.

To be sure, agent-based-modeling is a broad field. On the one hand side

there are very theoretical simulations that set out from abstract concepts but

without any particular application case in mind. And on the other hand side

there exist simulations that are right from the start related to a particular

empirical setting. The latter kind of simulations is typically found in corporate

or political consulting. I am going to look at the theoretical simulations first

and then consider the more applied kinds of simulations later.

Naturally, unvalidated simulations are much more prevalent among the

theoretical simulations, where the lack of empirical validation is sometimes

not even perceived as a problem. This may be illustrated by a quotation

from an interview with a philosopher who has produced models of opinion

dynamics (Hegselmann and Krause, 2002) that have frequently been cited in

other modelling-studies but that have not been empirically validated:

None of the models has so far been confirmed in psychological

experiments. Should one really be completely indifferent about

that? Rainer Hegselmann becomes almost a bit embarrassed by

the question. “You know: In the back of my head is the idea that

a certain sort of laboratory experiments does not help us along at

all.” (Grötker, 2005, p. 2)

But if laboratory experiments do not help us along, how can models that

have never been confirmed empirically either by laboratory experiments or by

field research help us along? This lack of interest in empirical research is all

the more surprising as opinion dynamics concern a field with an abundance of

empirical research. Naively, one should assume that scientists have a natural

interest in finding out whether the hypotheses, models and theories they
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produce reflect empirical reality. That this is obviously not always the case,

confirms Kuhn’s view that the criteria by which scientific research is judged

are also set by the paradigm that guides the thinking of the researchers and

that there is no such thing as a “natural” scientific method independent of

paradigms. However, even Kuhn’s mild relativism would rule out science

without any form of empirical validation as unrewarding.

The lack of empirical concern within the field of social simulations can

furthermore be attributed to another working mechanism of paradigms that

Kuhn identified, namely, the role of exemplars. As mentioned earlier, according

to Kuhn scientific practice is not guided by the abstract rules of a logic of

scientific discovery. Instead, scientists follow role models or exemplars of good

scientific practice.

Some very influential role models in the field of social simulations concern

simulations that have never successfully been validated. The just mentioned

opinion-dynamics simulation by Hegselmann and Krause is one example for

this kind of role model. But the arguably most famous unvalidated model

that serves as an exemplar in Kuhn’s sense is Robert Axelrod’s “Evolution of

Cooperation” (Axelrod, 1984). Despite the fact that the reiterated Prisoner’s

Dilemma simulations that Axelrod used as a model for the evolution of

cooperation had turned out to be a complete empirical failure by the mid 1990s

(Dugatkin, 1997) and despite the devastating criticism Axelrod’s approach

had received from theoretical game theory (Binmore, 1994; Binmore, 1998),

it continues to be passed down as a role model of social simulations until

this day. In a journal article from 2010 in the prestigious Science-journal,

where a similar research design as Axelrod’s was employed, it is mentioned

as a role model that has been “widely credited with invigorating the field”

(Rendell et al., 2010, 2008f.). And one can easily find recent studies (Phelps,

2016) that naively pick up Axelrod’s study as if no discussions concerning its

robustness, its empirical validity or its theoretical scope had ever taken place

in the meantime. If simulation-research-designs without proper validation

such as Axelrod’s continue to be treated as exemplars, it is no surprise that

many social simulations lack proper validation.

Now, there are two caveats: Firstly, in some cases unvalidated simula-
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tions can serve a useful scientific function, among other things as thought-

experiments. Of a thought experiment one usually does not require empirical

validation. Thus, if Axelrod’s evolution of cooperation or Hegselmann’s and

Krause’s opinion dynamics could be considered thought experiments their

status as role models in connection with their lack of empirical validation

could not be taken as an indication that social simulations still remain in a

pre-scientific stage. However, the way that both these simulations functioned

as role models was not by their (potential) use as thought experiments, but

as a research programme. Indeed, it would be hard to justify the literally

dozens if not hundreds of follow-up simulations to Hegselmann-Krause or

Axelrod as thought experiments without invalidating the category of a thought

experiment as a useful scientific procedure. But it has to be kept in mind

that not any kind of unvalidated simulation is an indication of pre-scientific

fiddling about.

Secondly, and more importantly, not all simulation traditions have, of

course, remained as disconnected from empirical research as Axelrod’s Evo-

lution of Cooperation and Hegselmann’s and Krause’s opinion dynamics

simulations. One example is the Garbage-Can-Model (GCM) by Cohen,

March, and Olsen (1972) which describes decision making inside organizations

with a four component model, taking “problems”, “solutions”, “participants”

and “opportunities” into account. This model is highly stylized and, because

of this, would be difficult to validate directly. Nevertheless, it is frequently

referred to in studies on organizational decision making, including empirical

studies.

But why, one may ask, could the connection to empirical research, or

more generally, other kinds of research on organizational decision making be

established in this case while it failed in the aforementioned cases? There are

several possible reasons:

• Modeling organizational decision making is a much more restricted topic

than, say, modeling evolution of cooperation in general. This makes it

easier to find the right abstraction level for modeling. While biologists

complained about simulations of the evolution of cooperation that “Most
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repeated animal interactions do not even correspond to repeated games”

(Hammerstein, 2003, p. 83), researchers from organizational science

have no such difficulties in relating to the Garbage Can Model in their

case studies (Fardal and Sørnes, 2008; Delgoshaei and Fatahi, 2013).

• Within organization theory working with stylized descriptions is gen-

erally accepted. Thus, the target that the simulation-model had to

match was an already highly stylized verbal description. (Nonetheless,

the simulation model did not represent the verbal description faithfully

(Fioretti and Lomi, 2008, p. 1.4).) It is much easier to cast a stylized

verbal description convincingly into a simulation-model than, say, a

thick historical narrative as in one of Axelrod’s suggested application

cases (Northcott and Alexandrova, 2015; Arnold, 2008).9

• For the study of organizational decision making the Garbage Can Model

seems to serve as a kind of vantage point. It helps to analyze and

communicate organizational decision making problems by relating a

particular decision making situation to the model – even if the model is

only used as a conceptual reference framework and the actual simulation

results are ignored.10 Because of its popularity the Garbage-Can-Model

could even be considered an exemplar in Kuhn’s sense. To serve as a

vantage point, a model does not need to be empirically validated or even

testable. It stands to reason, though, that it still needs to be “realistic

enough” in some weaker sense to serve this purpose.

• While for the latter purpose (vantage point) a stylized verbal description

could suffice, simulation models have the advantage that they can be run.

9I am indebted to Julian Newman for pointing out to me the excellent paper by Northcott
and Alexandrova (2015) on the Prisoner’s Dilemma. It contains the so far best analysis why
Alexrod’s reinterpretation in terms of the Prisoner’s Dilemma of truces in WWI ultimately
fails. And because the author’s have obviously not been aware of my own research on the
topic, I consider it as an independent confirmation of my own critical conclusions regarding
Axelrod’s chapter on WWI (Arnold, 2008, ch. 5.2.2).

10This seems to be the standard case for applying the GCM in organizational science.
See Fardal and Sørnes (2008) and Delgoshaei and Fatahi (2013) for example. It will be
interesting to see whether the more refined simulation models of the GCM that have been
published more recently (Fioretti and Lomi, 2008) will bring about an increased use of
simulation models in applied studies referring to the GCM or not.

25



This allows to generate hypotheses about the simulated process which

can help to establish the basic plausibility of the model, if the simulation

itself and its results are plausible in view of the prior knowledge about

the simulated process.11 In the case of the GCM the model establishes

the connection between a certain structure of the decision making

process and certain characteristics of the outcome, like how efficiently

problems will be solved. In a verbal description this connection can be

maintained, but not be demonstrated. A simulation can show that such

a connection exists, even if only within the model.

In view of the possible functions of communication and hypotheses-

generation, one can argue that models like the Garbage Can Model can

be useful in the context of empirical research even without being empirically

validated themselves. Still, the question remains what characteristics a model

of this kind must have to be considered useful or suitable, or how one can

tell a good model from a bad model. There seems to exist an intuitive un-

derstanding within the scientific communities habitually using these models,

but it is hard to find any explicit criteria. This strengthens the impression

that a paradigm of validation is not yet in place, at least not for the more

theoretical simulations.

What about applied simulations, though? Agend-based-models are, among

other things, used to give advice about particular policy measures, like

introducing a new pension plan (A. Harding, Keegan, and Kelly, 2010) or

determining the best procedures for research funding (Ahrweiler and Gilbert,

2015). Obviously, validation is of considerable importance if simulations

are used for political consulting. So, how do scientists who apply social

simulations get around the restriction that the simulation results often cannot

directly be compared with measurable empirical data? In particular, how can

simulations be validated that are meant to evaluate the possible consequences

of policy measures that might never be implemented?

11This is precisely where Axelrod’s simulations was lacking, because a) his tournament of
reiterated Prisoner’s Dilemmas is too far removed from the phenomenology of either animal
or human interaction to be prima facie plausible, and b) his results were - unbeknownst to
him - highly volatile with respect to the simulation setup and thus also lack plausibility.
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In their discussion of the validation of the SKIN-model, which simulates

knowledge dynamics in innovation networks, Ahrweiler and Gilbert (2015,

section 1.1.2) do not even assume that there exist objective observations

independent of a concrete research goal or question.12 At least for the sake

of the argument they even accept the view that the observation of a social

process is a construct of this process or “what you observe as the real world”

(Ahrweiler and Gilbert, 2015, section 1.2), just like the simulation of the same

process is another construct of this process. However, since the authority over

what is observed as the real world lies with the “user community” (Ahrweiler

and Gilbert, 2015, section 1.3), the output of a simulation can meaningfully

be compared with the observations.

Since the construction of the simulation as described by Ahrweiler and

Gilbert (2015, section 2.4) is a process in which the user community is

deeply involved, it is tempting to raise the question how unbiased this kind

of validation really is. After all, an administration assigning the task of

examining the potential for enhancement of their administrative procedures

to a team of simulation scientists might be more interested in the vindication of

certain administrative procedures than in their unbiased assessment. However,

the “user community view” as described by Ahrweiler and Gilbert (2015)

depicts only the outline of the construction and validation process of applied

agent-based-models. A more detailed analysis of the validation of applied

agent-based-models as provided by A. Harding, Keegan, and Kelly (2010)

reveals that there exists a whole array of validation procedures which, if

executed properly, limits the risk of producing biased or arbitrary results.

For the Australian Population and Policy Simulation Model A. Harding,

Keegan, and Kelly (2010) report, among other measures: i) the calibration and

benchmarking of the simulation with available cross-sectional and longitudinal

data, ii) the comparison of the simulation model’s projection with that of

other models, iii) the modular structure and separate evaluation of each

module, iv) the examination, if both the individual agent’s simulated life

12They discuss this unter the heading of “theory-ladenness of observations”, though their
examples suggest that the issue at stake is rather different interpretations of observations
or a focus on different observations depending on the research questions than different
observations due to a different theoretical background.

27



histories and the summary statistics yield reasonable results. The impact of

proposed policy measures as revealed by the simulation can by its very nature

not beforehand be compared with empirical data. However, one can contend

that in the context of policy advise a simulation is sufficiently validated, if it

leads to policy decisions that are better grounded than they would be without

running a simulation model.

Where does this leave us? Are social simulations still in a pre-scientific

stage with respect to their validation? On the one hand there is a widespread

lack of proper validation and the impression that the increasing number

of published agent-based models does not necessarily pay off in terms of

further deepening our understanding of the simulated processes. While other

quality issues of agent-based models, such as their reproducibility and mutual

comparability, have been addressed in recent years,13 there is still no common

understanding concerning how agent-based models should be validated. So far,

the textbooks on agent-based simulations have little to say about validation.

With the central issue of validation still being unresolved, the field of social

simulations does yet seem to have matured into a normal science in the

sense of Kuhn. The situation can positively be a described as a phase of

humble beginnings in the sense of the interpretation of Feyerabend’s anarchic

epistemology that was given earlier.

On the other hand, scientists that apply agent-based-models to particular

empirical processes typically invest considerable time and effort into the

validation of their simulations and employ a diverse set of validation procedures

to ensure the credibility of their simulations. So, we might indeed be witnessing

a paradigm of validation of applied agent-based-models in the making. It

is, so far, only in the making, because the various validation procedures and

criteria used by the practitioners do not yet seem to have been consolidated

to a degree where they become textbook knowledge.

13A most notable initiative in this respect has been the introduction of the ODD Protocol
for the standardized description of agent-based-models (Railsback and Grimm, 2012).
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5 Summary and Conclusions

Putting it all together, we arrive at fairly conservative conclusions: Kuhn’s

theory of scientific revolutions and his concept of a paradigm does not have any

particular consequences for the validation of simulations. At least it does not

have consequences that are any different from those it has for the validation

of theories or non-simulation models. And neither do computer simulations

require us to reconsider Kuhn’s theory or related topics like the Duhem-Quine-

thesis. This result is somewhat unspectacular, but it may be clarifying. With

regard to the discussion about the novelty of computer simulations it means

that, whatever the novelty may be, neither the introduction of computer

simulations nor their validation is or requires a Kuhnian revolution.

The co-existence of multiple paradigms in the social sciences is a challenge

for Kuhn’s theory in its original form. But, again, the validation of simulations

does not raise any specific problems in this context. Presently, many social

simulations suffer from the fact that for the lack of proper validation they

are quite uninformative about their target system. Although, there are also

examples where social simulations do contribute to the understanding of the

target system, the field as a whole does not yet seem to have become normal

science in the sense of Kuhn. This is most notably due to the fact that – as

of now – there exists no commonly shared understanding of the validation

requirements of social simulations.
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