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Abstract

Informational theories of semantic content have been recently gaining
prominence in the debate on the notion of mental representation. In this
paper we examine new-wave informational theories which have a special
focus on cognitive science. In particular, we argue that these theories face
four important di�culties: they do not fully solve the problem of error,
fall prey to the wrong distality attribution problem, have serious di�cul-
ties accounting for ambiguous and redundant representations and fail to
deliver a metasemantic theory of representation. Furthermore, we argue
that these di�culties derive from their exclusive reliance on the notion
of information, so we suggest that pure informational accounts should be
complemented with (or perhaps substituted by) functional approaches.

1 Introduction

Representations are puzzling entities. More than �fty years after the cognitive
revolution and at a time in which representations are widely attributed in cogni-
tive science, fundamental questions about their nature still remain unanswered.
For one thing, it is not obvious what makes it the case that certain states are
representations and some are not. For another, we lack a satisfactory account of
what determines representational content. Now, given that cognitive scientist
systematically attribute representations, it is not unreasonable to suppose that
they might be implicitly assuming a set of intuitive conditions that are su�-
cient or even necessary for a state to qualify as a representation. Following this
intuition, recently some philosophers and psychologists have tried to unravel
this intuitive methodology and develop it into a full-blown naturalistic theory
of representation. Since the notion of information plays an essential role, we
will call them `Scienti�cally Guided Informational Theories' (`SGIT', for short).

In this essay we would like to critically assess SGIT. In a nutshell, we will
argue that, even if some SGIT might capture central assumptions in current sci-
enti�c practice, they fail to satisfactorily explain the nature of representations
and representational content. More precisely, the four objections we will de-
velop is that SGIT do not account for some cases of error, fall prey to the wrong
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distality attribution problem, have serious di�culties accounting for ambiguous
and redundant representations and fail to deliver a metasemantic theory of rep-
resentation. Hence, although these accounts might faithfully embody (at least
some of) the intuitive strategies employed in neuroscience in order to attribute
representations, we will argue that they fail as theories of representation.

2 Representation and Information

Informational theories have a long history. One of the �rst and better known
informational theories was Dretske's (1981a), who tried to analyze semantic con-
tent by appealing to informational content and de�ned informational content in
terms of probability relations. More precisely, according to his approach a state
R carries information about another state S i� given certain background condi-
tions P (S | R) = 1, but P (S) < 1 given background conditions alone. While the
idea of explaining semantic properties in terms of information was revolution-
ary and very in�uential, there were at least two deep problems with Dretske's
proposal that caused a continuous loss of support for informational accounts.
First of all, in the natural world it is extremely di�cult (if not impossible) to
�nd two di�erent states such that the existence of one of them makes the other
certain (even if certain background conditions are assumed). Secondly, it was
incompatible with the fact that representational states can misrepresent. On
Dretske's approach, a brain state can represent a state of a�airs only if both
obtain, so a typical case of misrepresentation (which usually involves an exist-
ing state representing a non-existing one) is rendered impossible.1 These and
other di�culties led most people to think that a purely informational theory of
content was unworkable.

Recently, however, informational theories are reviving. To avoid these prob-
lems, SGIT de�ne and use the notion of information in di�erent ways. The
common thread is the rejection of the requirement that P (S | R) = 1, which
was the origin of the two main objections to Dretske's approach. Instead, many
of them rely on the comparison between probabilities. According to SGIT what
is relevant is not how much a signal raises the probability of another state, but
whether it raises the probability of another state more than any other repre-
sentation does. In other words, these views focus on the distinctive statistical
dependence between a representation and its referent.

Eliasmith (2000, 2005b, 2005a, 2013), for instance, has defended an infor-
mational theory based on this intuition. According to him:

The set of events relevant to determining the content of neural re-
sponses is the causally related set that has the highest statistical de-
pendence with the neural states under all stimulus conditions (Elia-
smith, 2000, p. 34).

1Of course, Dretske (1981a) was well aware of these problems, and he tried to solve them
by distinguishing a learning period (in which misrepresentation is impossible) from a post-
learning period. Unfortunately, it is widely agreed that this proposal still faces daunting
problems. For one thing, it seems that the same di�culties reappear at the learning period.
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Eliasmith puts forward two conditions for a state R to represent S: R represents
S i� there is a causal link and a statistical dependence relation between R and
S.2 But how does Eliasmith interpret the notion of `statistical dependence'?
He claims that �a statistical dependence between two events means that the
occurrence of one event changes (either increasing or decreasing) the probability
of the occurrence of the other event� (Eliasmith, 2000, p. 69). There is a high
statistical dependence between two states when the occurrence of one of them
increases or decreases the probability of the other. Thus, in the context of
cognitive science, Eliasmith holds that content is �xed by the positive statistical
dependence of stimuli on responses and also by the statistical dependence of
responses on stimuli (i.e. P (R | S) and P (S | R)). That is what he calls taking
the `observer' and the `animal's perspective', respectively (Eliasmith, 2005b). A
state represents3 the entity with which it has a higher statistical dependency.

A precise summary and elegant formulation of this idea has also been de-
fended by Usher (2001). Usher, who explicitly bases his approach on Shannon's
notion of mutual information, proposes that R represents S i� (1) the mutual
information that R carries about S is greater that the information R carries
about any other entity and (2) the mutual information that S carries about R
is greater than the information S carries about any other representation. More
formally:

Info Ri represents Si i� for all j 6= i

1. P (Ri | Si) > P (Ri | Sj)

2. P (Si | Ri) > P (Si | Rj)
4

These two conditions are supposed to capture the two dimensions that are rel-
evant for content determination: the backward and forward probabilities (cor-
responding to what Eliasmith calls `observer' and `animal perspectives'). The
�rst condition claims that among all the entities that increase the probability
of Ri occurring, Si is the one that increases this probability most. So, for ex-
ample, although the activation of certain neural population, which we can call
`DOG', can be triggered, under some circumstances, by dogs, wolfs, fat cats,

2Note, however, that the element that is doing the real work in �xing content is the
statistical dependence relation; the causal element is mainly introduced in order to avoid
certain counterexamples, such as cases involving two mental states with a common cause
(Eliasmith, 2000, p. 59).

3A terminological note: in this essay, we call `representational content' what Eliasmith
calls `referent' (he distinguishes `referent' from `content' understood in a di�erent sense).

4The connection with Shannon's measure of information becomes clear once it is noted
that 1 and 2 are simpli�cations of the following inequalities (Usher, 2001, p. 321):

(a) MI(Ri;Si) = log
P (Ri|Si)
P (Ri)

> log
P (Ri|Sj)

P (Ri)
= MI(Ri;Sj)

(b) MI(Ri;Si) = log
P (Si|Ri)
P (Si)

> log
P (Si|Rj)

P (Si)
= MI(Rj ;Si)

As Usher notes (p.320), since the logarithm is a monotonic function, and we only make use
of ordinal relations, we can rely on exp(MI) that provides the same expression but without
the logarithm. As in 1 and 2 in INFO.
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etc., DOG represents dogs partly because among all the stimuli eliciting DOG,
dogs are the entities that better predict tokens of DOG. In what follows, we
will sometimes express this idea by saying that DOG 'tracks' dogs better. The
second requirement does not compare stimuli but representational states. The
idea is that Ri represents Si only if Ri is the representational state that most
increases the probability of Si being the case. Here the probability that matters
is the backward probability, i.e. conditionalized on representational states. For
instance, suppose that there is a neural population that is sensible to all kinds
of mammals (call it `MAMMAL'). Even if MAMMAL is sometimes triggered by
dogs, the second condition determines that DOG, but not MAMMAL, repre-
sents dogs, because it is more probable that there is a dog if DOG is instantiated
than if MAMMAL is tokened: P (Dog | DOG) > P (Dog | MAMMAL). In-
deed, this inequality holds even if no other stimulus is as e�cient in triggering
MAMMAL as dogs are in the individual's environment.

Both Eliasmith's and Usher's proposals try to naturalize representations by
appealing to high statistical dependency relations between representations and
representata. A slightly di�erent approach is suggested by Rupert (1999). Al-
though he also analyzes representations in terms of probability relations between
entities, he only considers forward probabilities (i.e. conditionalized on entities
rather than on states) and he restricts his account to representations of nat-
ural kinds. On this account, representational content exclusively depends on
whether members of S are more e�cient in their causing R5 than are members
of any other kind. His account can be e�ectively considered a version of SGIT,
in which condition 1 of SGIT is necessary and su�cient for a state to represent
another state, once Si and Sj are restricted to states involving natural kinds.

SGIT have certain features that make them worth considering in detail.
For one thing, they seem to solve the two most pressing problems of Dretske's
approach, namely the problem of misrepresentation and its empirical implau-
sibility. First, since they reject Dretske's suggestion that the likelihood of the
referent given the representation has to be one, these theories make it possible
for a state to represent S when S is not the case. Representational relations are
grounded on statistical dependencies between entities, so in a given occasion a
representational state might be caused by an entity that is not in its extension
(see below). Secondly, SGIT are also far more realistic than previous proposals
in this tradition. Indeed, as they insistingly point out, these accounts might
actually capture the way neuroscientists reason (Usher, 2001, p. 320).6 For
instance, following Hubel and Wiesel's (1959) pioneering methodology, many
neuroscientists identify the referent of a neuronal structure in early vision with

5Rupert does not formulate his approach in terms of representational states, but as applying
to 'terms in a language of thought'. Nonetheless, since the exact nature of the entity that
does the representing is irrelevant for our discussion, we describe all accounts as talking about
states.

6The fact that Info might capture the implicit assumptions made by neuroscientists in
establishing hypotheses about representational relations does not mean that SGIT are purely
descriptive theories. Eliasmith (2005b), for example, has criticized neuroscientists for exces-
sively relying on what he calls `the observer's perspective' (i.e. P (R | S)) and forgetting about
the `animal's perspective' (i.e. P (S | R)).
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the stimulus that is more likely to elicit a stronger response. Along the same
lines, an additional virtue of these approaches is that they provide a precise
method for discovering the content of neural events. They make very determi-
nate predictions about the content of representational states, which might be
extremely valuable in scienti�c projects (Eliasmith, 2000, p. 71; Skyrms, 2010a).
And they also attempt to explain and vindicate the nature of representations
attributed by cognitive scientists.

For these and other reasons, in recent years there has been a growing body of
interest on informational theories (Skyrms, 2010b; Birch, 2014) and its relation
to cognitive science (e.g. Piccinini and Scarantino, 2010; Stegmann, 2013; 2015).
In what follows, however, we would like to argue that these theories fall prey
to important di�culties. These objections suggest that the tools employed by
SGIT are probably inadequate for analyzing representational states. If these
arguments are on the right track, the prospects of SGIT would need to be
seriously revised.

3 Problems for SGIT

We will present four objections against SGIT: they su�er from the problem of
error, deliver proximal contents, do not allow for states with disjunctive contents
or multiple states with the same content, and fail to provide a metasemantic
account of representation. Our �rst goal is to argue that new informational
theories face these di�culties. Secondly, we will show that the problem is rooted
in some aspect of the notion of information. That result would strongly suggest
that informational theories need to be supplemented with (or perhaps, replaced
by) a theory with a di�erent set of tools.

3.1 Error

Let us begin with the �rst di�culty of classical informational theories that SGIT
were designed to solve: the problem of error. In this section we will argue that
SGIT fail to fully address the problem of error that caused the dismissal of
previous approaches in this tradition.

First of all, it is important to note that SGIT can indeed account for some
error (so it provides a signi�cant improvement over Dretske's approach). To
accommodate some cases of misrepresentation, an account only needs to be
compatible with the following two conditions: (1) R represents S and (2) ¬S.
This is clearly possible on SGIT. Indeed, any approach that requires a con-
ditional probability below 1 automatically leaves room for some cases of error
(Kreamer, 2013). For instance, a theory according to which R represented S only
if P (R | S) ≥ 0.8, would certainly allow for some cases of misrepresentation.

However, whereas SGIT can actually account for occasional error and even
for some forms of common misrepresentation (Usher, 2001, p. 331, for instance,
presents one such case), there are plausible cases of frequent misrepresentation
that cannot be accommodated. More precisely, we will argue that they cannot
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account for some cases in which misrepresentation is more frequent that accurate
representation.

Let us try to spell out this idea in detail and illustrate it with some ex-
amples.7 Recall that, according to the �rst condition of Info, Ri's represen-
tional content is partly determined by the state Si that Ri tracks the best,
i.e. for any other state Sj , P (Ri | Si) > P (Ri | Sj). To challenge this
claim, we need to �nd some examples in which Ri represents Si and, non-
theless, P (Ri | Si) < P (Ri | Sj). Consider the case of mimicry; the drone�y
Eristalis tenax, for example, is a Batesian mimic of the honeybee Apis mellif-
era: the former is a defenseless insect that has copied the appearance of honey
bee (including its �ight � Golding et al. 2001) to avoid being preyed upon.
If the tokening of the predator's brain state Ri depends upon the appearance
of the prey, and the drone�y mimics su�ciently well the appearance of the
dangerous bee, we can assume that P (Ri | bee) = P (Ri | dronefly). Indeed,
this might lead to a case in which P (Ri | bee) < P (Ri | dronefly) for the
following reason: the �tness of the mimicked organism decreases when mim-
ics expand (because when only few bee-looking animals are actually bees, it
might pay predators to risk and prey them anyway � see Ceccarelli and Crozier,
2007); thus, bees could actually evolve in the direction of looking �less bee-like�,
and as a result P (Ri | bee) < P (Ri | dronefly). This is a particular case of
P (Ri | Si) < P (Ri | Sj), which should be troubling for Info, since it seems that
predators represent bees, although this representation tracks drone�ies better.

Now, there is a similar scenario to shows that info is incompatible with some
cases of systematic misrepresentation. Formally, systematic misrepresentation
occurs when R represents S, S 6= S∗ and, nonetheless, P (S | Ri) < P (S∗ | Ri).
In principle, this situation is fully compatible with the two conditions stated
in Info. Nevertheless, the problem pointed out in the previous paragraph sug-
gests that there are some cases of misrepresentation that cannot be accommo-
dated. For instance, suppose that both bees and drone�ies cause the predator's
brain state in roughly a similar proportion of cases, i.e. P (Ri | bee) = P (Ri |
dronefly). Let us say that P (Ri | bee) = P (Ri | dronefly) = 0.6. This is
a forward conditional probability (i.e. conditionalized on states), whereas the
problem of systematic misrepresentation involves backward conditional proba-
bilities (i.e.conditionalized on representations). According to Bayes' theorem,
to get that value we need to consider the marginal probabilities. Thus, suppose
we know the marginal probabilities of bees and dronelies, and imagine that
the latter are slightly more common than the former, e.g. P (bee) = 0.4 and
P (dronefly) = 0.6. In that case, P (bee | Ri) < P (dronefly | Ri).

8 In other
words, this is a situation in which Ri intuitively represents bees, but most of the

7We would like to thank an anonymous reviewer for pressing us on this issue.
8According to Bayes' rule, P (Si | Ri) =

P (Ri|Si)(Si)
P (Ri)

. Thus, to derive P (bee | Ri) and

P (dronefly | Ri) we need to know P (Ri). Fortunately, as Usher remarks (see foonote 4), in
the present context this value is not required, because we are only interested in comparing
P (bee | Ri) and P (dronefly | Ri), and in both cases the numerator is the same, namely
P (Ri). Thus, the fact that P (Ri | bee)P (bee) < P (Ri | dronefly)P (dronefly) is enough for
showing that P (bee | Ri) < P (dronefly | Ri).
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time it is tokened when there is a drone�y (and, obviously, bee 6= dronefly) so
it is a systematic misrepresentation. However, since condition 1 is not satis�ed,
it is a case Info cannot accommodate.

Indeed, as we see it, the di�culty is not just that in certain scenarios, such
as the one depicted above, Info delivers the wrong results. The problem is
that representational content heavily depends on the marginal probabilities of
states, and that seems to base content on the wrong kind of considerations. In
general, Ri can only represent Si consistent with false positives outnumbering
true positives if P (Si) > ¬P (Si). Basing content on comparisons between
marginal probabilities seems inadequate; it as if you could change the content
of the frog's mental state by simply killing some bees.

As a response, one might bite the bullet and defend that predators do rep-
resent the presence of drone�ies. Rupert (1999, p. 336), for instance, at some
point seems to suggest this strategy. He discusses a similar example in which
females of certain species token a mental state to decide with whom to mate
and claims that if this mental state has a higher correlation with a male of a
di�erent species, that might be what they in fact represent. Nonetheless, there
are powerful reasons for resisting this move. In Rupert's example, the female's
behavior (and, indeed the very existence of the representational mechanism)
would be hard to explain unless it is assumed that it represents conspeci�c
males. Similarly, in mimicry, unless R means bee (or dangerous animal or the
like), the explanation of the organism's mental states and behavior would re-
main mysterious. Why do predators fail to prey on an insect when Ri is tokened
if it means drone�y and these insects are harmless food? It seems that the only
way to make sense of the whole process is by supposing that the brain state
means something like bee (or the like).9

Alternatively, one could try to resist this objection by claiming that preda-
tors represent neither bees nor drone�ies, but whatever appearance property
they share (something like bee-looking thing). This reply, however, only might
seem plausible if one thinks of predators without sophisticated cognitive capac-
ities. but suppose that predators are human beings. Certainly we can think
of bees, not only of bee-looking things (otherwise, this whole section would be
unintelligible to you). However, it is entirely possible that most of the time we
apply the concept BEE to drone�ies and that around us drone�ies are more
common than bees. In any case, the suggestion that representational states ac-
tually track proximal states rather than distal ones points at a serious objection
to Info that will be discussed in the next section.

Consequently, SGIT have problems accommodating some cases of frequent
misrepresentation. Although occasional mistakes and some forms of regular
misrepresentations are allowed, others are rendered impossible. Given that one
of their primary motivations for SGIT was to fully account for error, this is
a signi�cant result. Furthermore, we argued that SGIT seem to base content

9As a reviewer suggested, at least one should grant the conceptual possibility of predators
representing bees even if they frequently mistake drone�ies for bees and the former outnum-
ber the latter. Depending on one's metaphysical assumptions, the mere fact that this is
conceptually possible might be enough for raising a problem for Info.
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attribution on the wrong kind of considerations. The root of the problem is
not hard to identify: SGIT fail to leave room for this kind of mistakes due to
their reliance on statistical dependencies. Thus, the problem derives from their
central assumption.10

3.2 Distality

The second di�culty we will discuss is the wrong distality attribution problem

and the best way to motivate it is to present a slightly di�erent problem that
SGIT do not have: the indeterminacy problem. A theory su�ers from the inde-
terminacy problem when it underdetermines content attribution, that is, when
there are just too many entities that could be represented according to it. Sup-
pose, for instance, a naive informational account, according to which a mental
state R represents S i� the presence of the state increases the probability of S.
Since activity in our photoreceptor cells raises the probability of certain pho-
tons striking the retina, but also the probability of it being sunny, of the subject
being awake, of shops being open and many others, the content of R would be
highly indeterminate. So the indeterminacy problem seems to jeopardize this
naive informational theory. In that respect, Info fares much better than the
naive approach, because it picks up the single state that has a greatest statistical
dependence with the representational state. Unfortunately, this solution to the
problem of indeterminacy has two striking unwelcome consequences: the wrong
distality attribution problem, which will be developed here, and the problem of
ambiguous representations, which will be presented in the next section.

Consider the Fusiform Face Area (FFA), which is usually thought to repre-
sent faces (Kanwisher et al. 1997; Desimone, 1991). Suppose we discover that
a certain neural network R in the FFA selectively �res with signi�cant intensity
when there is a face and also that, given that R is active, the entity that is
more likely to be present is a face. One might think these observations su�ce
for establishing the fact that the brain state represents face according to SGIT.
Unfortunately, it is unclear that SGIT can deliver this result. Consider, for in-
stance, the set of neuronal structures in the thalamus that are active whenever
there is a face in front of the subject. If R has the highest statistical depen-
dence with faces, it will also normally have a higher statistical dependence with
these neuronal states in early vision. Thus, SGIT would entail that this activ-
ity in FFA represents neuronal activation in another part of the brain. This is
of course an extremely counterintuitive result. Indeed, even if there was some
principled way of excluding other brain states from being represented, other
inadequate contents such as face-looking thing could probably not be avoided.

More generally, a theory su�ers from the wrong distality attribution problem
when it systematically delivers content at the wrong level of distality.11 Since

10It has been argued that teleological theories are also incompatible with some forms of
systematic misrepresentation (Mendelovici, 2013; 2016). For a response, see [author1].

11Some employ the label 'distality problem' to refer to this di�culty, but this expression
is also frequently used for version of the indeterminacy problem (e.g. Neander, 2017, ch.9;
Schulte 2018). To avoid any sort of misunderstanding, we call this objection the 'wrong
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mental states will normally have a higher statistical dependence with most prox-
imal stimuli, SGIT would tend to deliver contents that are too proximal. This
result is at odds with our intuitions and seems to be in tension with the claims
made by cognitive scientists (see [author1and2, year]).

Of course, supporters of SGIT can insist that, if a representational state
actually means face, it will surely have higher statistical dependence with faces
than with face-looking things. However, this is a doubtful assumption. First,
for the reasons provided in the previous section, it is not obvious that a rep-
resentation of faces needs to correlate better with faces than with non-faces.
Secondly, since we usually identify faces by detecting face-looking things, it is
not unreasonable to suppose that the correlation with proximal stimuli is at
least as good as the correlation with distal stimuli. Similarly, given that we
identify face-looking things by detecting certain features, the correlation with
the latter will be stronger. And so on. This reasoning can be iterated until the
most proximal state that actually triggers the brain state (which in many cases
will be another mental state) holds. Consequently, SGIT clearly su�er from the
wrong distality attribution problem.

Finally, one might think that the wrong distality attribution problem is less
troubling for Rupert's account, since he restricts his approach to representa-
tions of natural kinds. This is doubtful. His proposal still faces a daunting
dilemma, whose horns depend on whether the set of candidate properties that
give rise to the wrong distality attribution problem qualify as natural kinds or
not. If, for instance, light photons or certain kind of neuronal states in early
vision count as natural kinds, the problem remains in all its force.12 If they
do not qualify as natural kinds, then the approach clearly excludes too much:
these entities are sometimes represented by cognitive states, so ruling them out
by de�nition is clearly inadequate. A di�erent answer to this problem is brie�y
sketched by Eliasmith. He suggests an additional requirement: the referent can-
not �fall under the computational description�, that is, there must not be any
internal computational description relating the referent with the mental state
such that it could account for the statistical dependence (Eliasmith, 2005a, p.
1047; Eliasmith, 2000 p. 59-60). However, this proposal is still unsatisfactory.
First of all, many think that computations are de�ned over representations.
For this reason, to know whether two causally related brain states are compu-
tationally related, one should know whether they are representations and how
their content is related. Yet this is precisely what this condition is supposed
to establish. Secondly, this approach is also too exclusive and too inclusive at

distality attribution problem'.
As a reviewer pointed out, one might question whether in all cases the problem we present

concerns more distal vs. less distal features (consider, for instance, the contrast between faces
and face-looking things). We adopted this terminology here because it is very usual in the
literature and in many cases there is clearly a contrast in distality (e.g. faces vs. neuronal
patterns). Nonetheless, the name is not important; the key point is that the theory delivers
the wrong content, but not in virtue of it being indeterminate.

12Actually Rupert (1999, p. 340) accepts a extremely liberal approach to natural kinds,
according to which �natural kinds are any kinds that successful non-intentional science �nds
theoretically interesting and useful�. Thus, he probably faces the �rst horn of the dilemma.
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the same time. One the hand, it still includes too much because the problem is
not only caused by neuronal states, but also by external entities (e.g. photons,
object-looking things, etc...). On the other, it excludes too much because some
neuronal states indeed represent other states of the brain or the body (Damasio
(2010); Rosenthal (2005); Prinz (2004)). For a more detailed discussion, see (see
[author1and2, year]).

How could one attempt to solve this problem? We think progress could be
made by appealing to some other notions such as function. In a nutshell, the
idea is that although a given mental state M has a higher statistical correlation
with a proximal feature F, it might still be its function to represent something
more distal. Taking this path, however, would have signi�cant consequences:
if mental states have a higher statistical dependence with their most proximal
cause while their function and content concerns a distal feature, it is not obvious
that the notion of information is actually playing any important role in a theory
of representation. In other words, if the mental states tend to have a stronger
correlation with their proximal causes, but tend to have distal contents, then it
is unclear whether the former can be used to provide an account of the latter.
Of course, much more should be said to make this thought fully compelling; one
would need to spell out in detail this notion of function and show how it can
deliver the right level of distality. Nonetheless, we think that supporters of SGIT
should seriously consider the possibility that the wrong distality attribution
problem might show that the notion of higher statistical dependence is actually
an inappropriate tool for a theory of content.

3.3 Multiple Representations and Contents

We saw that the fact that SGIT restrict representational content to the sin-

gle entity that has a higher statistical dependence with a mental state helps
them reduce the indeterminacy faced by the naive informational approach, but
it gives rise to the wrong distality attribution problem. In this section we would
like to highlight a second negative consequence. It is a platitude that, in many
cases, the relation between representations and their contents is not one-to-one,
but many-to-one or one-to-many. As a matter of fact some representations have
multiple referents and the same referent is sometimes represented by di�erent
states. However, SGIT render these facts impossible by de�nition. By requiring
content to be determined by the single entity that has a higher statistical de-
pendence, SGIT have di�culties in accounting for representations with multiple
contents and contents shared by multiple representations. This problem derives
from each of the two conditions included in info.

An example from our visual system might help illustrate the problem. Con-
sider the case of metamerism. The human eye contains only three types of cone
cells, which are responsible for color vision. Each of these these types of cell
respond to the cumulative energy from a broad range of wavelengths. Now, as
it happens, di�erent combinations of light across all wavelengths can produce
an equivalent receptor response. Consequently,�on the assumption that col-
ors are surface re�ectances�there are colors (called `metamers') that despite
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having di�erent spectral power distributions produce the very same neural net-
work activation in the visual cortex. Call `C1' and `C2' two such metamers.
Consider the neural network, Ri, in the visual cortex that satis�es condition 2
of info: P (C1 | Ri) > P (C1 | Rj) for every Rj 6= Ri. Thus, Ri is the net-
work that most strongly increments the probability of C1. Imagine also that
P (Ri | C1) > P (Ri | C2). Condition 1 is also satis�ed, and so, according to
the theory, Ri represents C1. However, intuitively, the content of Ri is rather
C1 ∨ C2. The theory cannot provide this result, at least as there is a slight dif-
ference in probabilities between C1 and C2. Under these conditions, organisms
cannot represent C2 , even if C2 were in fact the most common color after C1

in the environment.
If SGIT face di�culties with representations with a disjunctive content, an

analogous problem arises in the context of multiple representations with the
same content. In particular, according to condition 2 of Info, R represents a
stimulus S only if there is no other state Rj , such that P (Si | Rj) > P (Si | Ri).
That means that only one representation can have S as its content. Thus,
according to these theories by de�nition two representations cannot have the
same referent, yet we do have di�erent representations with a common reference.
A striking example is provided by redundant processing. Redundancy is the
duplication of critical functions with the purpose of increasing the reliability
of the system. For example, if vision is lost in one eye we do not become
blind (although depth perception is impaired) and often the same information
is presented to both eyes. Redundancy is an important �eld of study in cognitive
science. There is strong evidence, for instance, that redundant presentation of
information across modalities recruits attention and enhances learning (what
is called the `intersensory redundancy hypothesis' [IRH]: Bahrick et al. 2002;
Bahrick and Lickliter 2000; Bahrick et al. 2004). As Bremer and colleagues
(2012, p. 955) suggest:

According to the intersensory redundancy hypothesis, optimum
conditions for deriving bene�t from provision of multisensory infor-
mation would be those in which both visual and auditory information
provide congruent information about an object's trajectory. Under
such conditions, visual and auditory information would specify the
object's trajectory redundantly, and so could be expected to enhance
perception of trajectory continuity as the object passed behind an
occluder.

Whatever the merits are of the Intersensory Redundancy Hypothesis, it is a
coherent theory whose truth or falsity should be assessed empirically. However,
SGIT seem to be incompatible with its truth. To take a particular example,
consider two di�erent networks representing the object's trajectory, one in the
visual cortex, Vt, and one in the auditory cortex, At. According to the Inter-
sensory Redundancy Hypothesis, this redundancy enhances perception of the
trajectory when the object passes behind an occluder. In certain cases of max-
imal congruence, Vt and At provide the same information and both represent
the same trajectory, T . The problem is now straightforward: if, on the one
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hand, P (T | Vt) > P (T | At), then At does not represent T , and if, on the other
hand P (T | Vt) < P (T | At), then Vt does not represent T . What SGIT cannot
accept is that both neural networks represent the trajectory of the object.

Anticipating a similar problem, Rupert (1999, p. 349-350) suggested the
following amendment in the theory:

R has a truly disjunctive extension when the following conditions,
(a), (b), and (c), are met: (a) two or more natural kinds have equal
or roughly equal success rates relative to t; (b) no other natural
kind has a success rate substantially higher than those kinds whose
success rates are equal or roughly equal relative to t; and (c) the
gap between the group of success rates at the top and those farther
down is substantial.

Generalizing this idea, the suggestion is to qualify condition 1 of info and
accept that the required probability need not be strictly higher; it su�ces if
P (Ri | Si) ≥ P (Ri | Sj). In this way, SGIT could account for some ambiguous
representations. A similar modi�cation of condition 2 (i.e. P (Si | R) ≥ P (Si |
Rj) ) could leave room for multiple representations with the same content.

Does this suggestion provide a convincing way out to the problem? It is
unclear that this additional clause can give the right results. For one thing,
there are surely many cases of ambiguous or redundant representations in which
the probabilities of di�erent stimuli or representations are unequal. For another,
equal probabilities does not ensure coreference, precisely because of the existence
of regular misrepresentations. In Rupert's formulation, the e�ciency of the
entities that relate to di�erent meanings in an ambiguous representation has
to be equal or roughly equal, i.e. R refers to two di�erent entities i� a subject
regularly and consistently applies R to Si and Sj and this fact contrasts with how
often Si and Sj cause other representations. Yet this suggestion does not take
the possibility of recurrent misrepresentation seriously enough. In particular,
there is nothing in this approach that could distinguish ambiguous concepts
from systematic mistakes. Taking the example discussed earlier, consider the
predator's representations of bees: the predator might systematically confuse
drone�ies for bees and that does not mean that its representation is ambiguous;
it just means that it is wrong roughly half of the time. Unfortunately, an
exclusive reliance on statistical dependencies renders it unable to make this
distinction. Thus trying to leave room for multiple contents and redundancy by
simply relaxing the conditions for representing, does not ensure that the right
disjunctive contents are predicted.

As a result, SGIT are probably unable to account for genuine cases of ambi-
guity and redundancy. Again, other notions like functional role or teleofunction
(Millikan, 2000) might contribute to solving this problem. But statistical de-
pendence does not seem to be the right tool for the task at hand.
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3.4 Metasemantics

The last problem of SGIT is that they do not even address the most press-
ing question for a theory of representation, namely, what makes certain states
representational. Let us elaborate.

Generally, the discussion on naturalistic theories of content has failed to
make explicit an important distinction between two di�erent goals. First of all,
a theory of representation must explain why a state R represents S1 rather than
a di�erent state S2. For instance, one might attempt to explain why certain
neuronal activity in the striate cortex indicates the presence of a vertical line
rather than a circle. Secondly, a satisfactory theory also has to provide an
account of why R represents something at all. According to this second way
of addressing the problem, the goal is not to explain why neuronal activity is
supposed to detect vertical lines rather than something else, but why this state
is a representation at all. Let us call the �rst kind of theory `semantic' and the
second one `metasemantic' [author1].

Now, that distinction is important because solving the problem of intention-
ality requires providing a semantic and a metasemantic theory. If we want a
theory to fully explain why certain states are representational and how their
content is determined, we need to provide both kinds of theories. Merely ex-
plaining why a certain state represents lines rather circles does not completely
dispel the mystery posed by representational phenomena, since there is still a
fundamental question that remains unanswered: why does this state represent
something at all? Unless this issue is addressed, we will lack a solution the
problem of intentionality. The following comparison might be illuminating: the
problem of consciousness cannot be completely solved by merely providing a
theory of why a subject experiences blue rather than red (e.g. by mentioning
the fact that di�erent parts of the brain are active or that they represent a
di�erent content). On top of that and more importantly (Kriegel, 2009), we
need to answer the question of what makes it a conscious state. We abstract
from the particular ways having di�erent experiences feel and concentrate on
the problem of what makes it the case that having a conscious experience feels
any way at all. Likewise, the problem of intentionality concerns the very nature
of representational states. Providing a semantic theory is of course a step in the
right direction, but it leaves unresolved a major question.

With this distinction in mind, it should be obvious why informational the-
ories do not provide a metasemantic theory of representation. Even if they
correctly identi�ed the conditions that should be satis�ed for a representational
state R to refer to S1 rather than to S2, they do not put forward any criterion
for determining when a certain state is indeed a representation. Informational
theories o�er semantic theories, but fail to deliver metasemantic ones.

Of course, it could be replied that the fact that there is an aspect of the
project that these theories have not yet addressed does not mean that they
could not do it. Future work might �ll this gap without abandoning a purely
informational framework. Unfortunately, the problem seems to go much deeper
than that: not only have informational theories actually failed to provide a
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metasemantic account, but the informational tools they employ seem to be
inadequate for carrying it out. The reason is well-known: informational relations
are ubiquitous. Any state that is subject to be in a causal chain�that is, any
state that is not outside the causal order�carries information about its possible
causes and e�ects (among other things). However, we do not want to maintain
that representations are ubiquitous. Thus, the concept of statistical dependence
is not �ne-grained enough for distinguishing what is a representation from what
is not. Carrying information, like the properties having a certain weight or
being an object are just too coarse-grained for the task at hand. What at �rst
glance might look like an oversight actually constitutes an important gap in the
theory.

Certainly, we do not want to deny that there are metasemantic theories
compatible with informational accounts. Again, one could add functional roles,
teleofunctions or other tools in order to de�ne what representations actually
are. But, in any case, these hybrid theories would provide a solution to the
metasemantic problem only if they go beyond the notion of information. Con-
sequently, purely informational theories (such as SGIT) are unlikely to provide
a fully convincing account of representational phenomena.

4 Conclusion

Summing up, in this paper we have shown that Scienti�cally Guided Informa-
tional Theories (SGIT) face four important problems. Furthermore, we have
argued that the reasons they fail to overcome these di�culties are deep: be-
cause of their exclusive reliance on information, they simply lack the resources
for providing satisfactory solutions. Thus, new-wave informational theories are
unlikely to succeed in the project of providing a theory of representation in the
context of cognitive science.

Nonetheless, it is worth stressing that the arguments suggested here are not
intended to show that the notion of information is useless. Cognitive scientists
heavily rely on informational measures and the intuition that this notion cap-
tures something important about cognition is a powerful one. Our arguments
are not intended to suggest that the notion of information should be eliminated,
but rather that the connection between information and representation needs to
be reassessed. In particular, attributions of representations in scienti�c practices
might not just rely on statistical dependence (at least not always, as some of the
examples we have presented show). Furthermore, other notions such as 'func-
tion' might need to be added to address the previous worries. Consequently,
additional considerations have to be made explicit and placed on the table for
a proper assessment. Whether this should lead to a revision of our current
scienti�c methodology is an important question we leave for future research.
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