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i. Abstract 
 
The philosophy of mind is traditionally concerned with the study of mental processes, 

language, the representation of knowledge and the relation of the mind shares with the 

body; computational complexity theory is related to the classification of computationally 

solvable problems (be it via execution time, storage requirements, etc...). While there 

are well-established links between computer science in general \& the philosophy of 

mind, many possible solutions to traditional problems in the philosophy of mind have 

not yet been analyzed from the more specific lens of computational complexity theory. 

In his paper "Why Philosophers Should Care about Computational Complexity", Scott 

Aaronson argues that many conventional theories of epistemology & mind implicitly 

make the presupposition of omniscience (by supposing that knowing base facts means a 

knower necessarily understands derivative facts) - he proposes that computational 

complexity theory could explain why this is not the case. In this paper, I argue for a 

theory of mental representation & epistemology compatible with Aaronson's 

observations on complexity theory, overcoming that presupposition of omniscience. 

 

 

 

 

 



 

ii. Introduction 
 
The problem of logical omniscience arises fundamentally from treating epistemic logic 

(the logic explaining the acquisition & knowledge of beliefs) as a branch of modal logic 

(the branch of logic dealing with formalizing systems of possible truths). When the 

deliberation of belief is treated as a model problem, the problem of how exactly people 

can make inferences over such large systems of logic arises – how can one go through 

many thousands of propositions every time that is required? (“The Problem of Logical 

Omniscience”).  

 

Indeed, the modal theory of belief implies that this speedy deliberation must also occur 

in other domains unrelated to constructing beliefs – this theory implies that any 

propositional knowledge rooted in a logical system implies that the knower would know 

every possible statement under that system. So, if a knower were to learn the Peano 

axioms, they would also possess knowledge of the solution to the Poincaré conjecture.  

This is an obviously problematic model of human knowledge: there is no trivial 

automatic deduction of inferences within larger logical systems, so what are avenues 

that can be taken to resolve this inconsistency? 

 



The traditional solution to the problem of logical omniscience (as it is called, as this 

state would imply all people become “logically omniscient”) is one of acknowledging the 

idea of “implicit knowledge” – which is knowledge that does not necessarily need to be 

acquired but is innately present in everyone (or specific groups, depending on the logical 

framework in question). Thus, the problem is solved as follows: of certain frameworks, 

people have implicit knowledge & can deduce conclusions within them quickly & 

effectively. There is also a parallelism with respect to the logical frameworks themselves: 

sometimes they contain implicit knowledge which must be deduced only with reference 

to other systems and is thus acquired by those means. The example of mathematics, 

however, comes back to haunt this solution – people do seem to have innate knowledge 

of certain branches of mathematics (arithmetic being the most prominent example), and 

mathematics is self-contained, meaning that there is no implicit knowledge that can be 

uncovered through juxtaposition with other frameworks, and the only implicit 

knowledge is that that the propositions contained within mathematics can imply. This 

solution breaks down in these situations. 

 

Scott Aaronson, professor of computer science at UT Austin, was one of the first 

academic scholars within computer science to note the same thing as I have here – in his 

paper “Why Philosophers Should Care About Computational Complexity”, he notes that 

the problem of logical omniscience is one that could be solved through the application of 

concepts from computational complexity theory. As a huge topic, summarizing it 



concisely is difficult, but fundamentally, computational complexity theory is the study 

of how many steps and how much space (among many other quantitative indicators of 

use) certain computations take. It studies these relations in a precise & mathematical 

manner and is the standard way for computer scientists to analyze the effectiveness & 

performance of algorithms (Aaronson 10). 

 

For example, let us say there is a function which computes the square of a number. One 

operation is required to square a number – either the square operation is applied 

directly, or it is multiplied by itself (and one could say the square operation is an 

abbreviation of the latter, but in some computer systems it is possible that they serve a 

similar function). If we were to try to measure the time complexity of this function (the 

amount of steps it takes to execute), we would say it takes 1 step. Squaring 56 numbers, 

on the other hand, takes 56 of these “steps”. By mapping steps to operations that a 

computer performs, it is possible to assess the differences between different types of 

algorithms – choosing the correct one to perform the correct tasks.  

 

Computational complexity theory can also be used to calculate the amount of space that 

certain algorithms use up in the address space, with reference to fixed memory 

constraints present on computer systems. It can be used to understand even natural 

processes: by mapping the stages of evolution onto computational steps, it is possible to 

estimate how much computational power simulations of the phenomenon would require. 



Given this flexible & interdisciplinary application, it is surprising that before Aaronson, 

no one thought to apply computational complexity theory to the study of philosophy, 

and especially the problem of logical omniscience. 

iii. Complexity Classes & discussion of a possible solution 
 
A complexity-theoretic solution to the problem of logical omniscience could take the 

following form given the computational complexity of deducing certain conclusions (for 

example, the Poincaré conjecture, or the fastest route through Kathmandu’s subway 

system), it is impossible that an “instantaneous knowledge” could arise within a person 

about their nature – thus, rendering the problem solved. This avoids having to draw the 

tenuous distinction between implicit & explicit knowledge that has been the approach in 

modal logic.  

 

There are, however, some issues with this solution to the problem: for one, the mind 

does not perceive the complexity of tasks in necessarily the same way that computers 

would. For example, the proof to Fermat’s Last Theorem took centuries to discover and 

it took an odd association made by Andrew Wiles within the field of elliptic curves to 

arrive at it, but the proof itself would be rather simple. Given that the basic rules of 

mathematics can be arranged logically in a formal & straightforward manner to arrive 

at it, to a computer, finding Fermat’s Last Theorem would theoretically be a rather 

simple task if the statements could be phrased that way (because of non-computability, 



I doubt this is an actual example, but there are probably other instances, like the 

Pythagorean theorem). This is the fundamental observation that a computer’s method 

of classifying complexity is not the same as a human being. The second issue that it is 

unknown whether human minds operate as computers. It will be argued that this is 

irrelevant to constructing a complexity-theoretic solution to the problem. 

 
 
Computational complexity classes are grouped together by aggregating the number of 

steps that certain operations take even when scaled up, most commonly in the form of 

finding functions which fit their models. For example, a function which calculates the 

nth term of a quadratic sequence might involve squaring a number, then adding its 

product with the number 5, and then adding the constant 7. Another function might 

deal with a sequence that has more terms, but because in both cases the number of 

operations does not grow with the size of the input, they belong to the complexity class 

𝑂(1) (which means that they take a multiple of 1 step to complete). 

 

Contrast this to a function which operates on lists. Since the lengths of lists vary 

considerably from one another, a function which adds a number to every member of a 

list or multiplies it by a constant might be considerably complex for some lists and 

certainly less complex for others. In this case, the number of steps the function takes 

depends on the number of members in the list, and the relation is one of direct 

proportionality – which is called 𝑂(𝑛). Other types of growth (and decrease, though this 



is unlikely) relations are also possible – the point is that precise categorizations of the 

number of steps operations take are possible in the first place.  

This is not so simple when dealing with the case of human reasoning. In human 

reasoning, it is often not possible to track the number of steps a certain deduction took 

to make because they are not made in the same procedural manner as they are for 

computers. For example, returning to Andrew Wiles’ example, it took him years to 

reach his insights about elliptic curves – and this clearly required a lot of mental 

deliberation. Obviously, it did not take long for reviewers to read through them & 

understand the logic by which he employed them, but it did take him time. A 

computational representation of his proof does not allow for an accurate representation 

of his labor.  

 

A part of this problem comes from the fact that the inner workings of individual minds 

are often obscure – as much as we are conscious, many judgements of ours are made 

preconsciously and outside of our explicit deliberation. These clearly involve our basic 

biological cognitive faculties, but it does not seem necessary for them to invoke our 

conscious cognitive faculties because they have concurrent operations with our bodies. 

One way around this through the lens of complexity theory is formulate new complexity 

classes: ones specifically fit to explain the limits of human cognition by imposing 

complexity limits through understanding the average biological limitations that people 

face. 



Consider the work in standardizing batteries for intelligence tests, for example. The task 

of an intelligence test designer is to formulate a battery of tests which assesses human 

cognitive ability as broadly as possible and reduces them to basic skills. Often, these 

basic skills are put on percentile scales to understand how measurements of them are 

interpreted statistically – and this percentile understanding could be used to calculate 

an “upper limit” for the inferences that a person is able to make within their long-term 

and short-term memories, and thus classify their thoughts into a “complexity class” 

relative to the rest of the sample on which the test is normed. 

 

While this is not a direct analogy to assessing the computational complexity of a given 

idea or train of thought with reference to human limitations directly, it does manage to 

accomplish one task – quantify the degree to which a person may be able to reason. 

Once this is done, assessments can be made of whether it may be out of reach for a 

person to perform certain tasks. For example, a child could not prove the Poincaré 

conjecture, because their ideal state of logical omniscience is limited by biological 

cognitive factors, and this is represented by a numerical value based on cognitive 

abilities. 

 

Instruments assessing cognitive abilities have obvious flaws, and it is not intended to 

promote them blindly as tools to do this with. Rather, what is being prompted is an 

approach which breaks down cognitive abilities in understanding logical propositions to 



assess a given individual’s likelihood of being able to make certain deductions which 

employ skills associated with that – and through calculating “complexity classes” on this 

basis, the basic logic behind Aaronson’s solution is preserved. 

 

This also eliminates the problem of having to deliberate on whether or not 

computational reasoning maps directly onto human reasoning: insofar as an appropriate 

model is developed to make the quantitative classification of cognitive abilities, the 

inaccessibility of the mind simply means that the fact of why the brain performs with 

complexity is considered outside of the scope of this brand of philosophy: the job of the 

philosopher here is simply to resolve the epistemological conundrum that arrives from 

having to consider the problem of logical omniscience. 

iv. Conclusion  
 

Scott Aaronson’s proposition to use aspects of computational complexity theory to solve 

the problem of logical omniscience has considerable promise – it provides a neat solution 

to the problem of how exactly deductions are created and allows for flexible ambiguity 

in committing to a computationalist theory of mind. Empirical concerns remain about 

the efficacy of how cognitive ability assessments of adequate quality could be designed 

to assess them accurately enough to allow for the consideration of complicated problems 

– the understanding of “cognition” here is limited to the logical type. 
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