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I 

Philosophers of language have drawn on metamathematical results in varied 
ways. Extensionalist philosophers have been particularly impressed with two, 

not unrelated, facts: the existence, due to Frege/Tarski, of  a certain sort of  

semantics, and the seeming absence of intensional contexts from mathemati- 
cal discourse. The philosophical import of  these facts is at best murky. Ex- 

tensionalists will emphasize the success and clarity of  the model theoretic 
semantics; others wiU emphasize the relative poverty of the mathematical 

idiom; still others will question the aptness of  the standard extensional 
semantics for mathematics. 

In this paper I will investigate some implications of  the G6del Second 
Incompleteness Theorem for these positions. I shall argue that the realm 

of mathematics, proof theory in particular, has been a breeding ground for 
intensionality and that satisfactory intensional semantic theories are implicit 

in certain rigorous technical accounts. One moral to be drawn is that inten- 
sionality does not, as a matter of  course, involve incoherence. 

The central argument will conclude that an extensional semantics would 
attribute falsity to the G6del Second Incompleteness Theorem. Since we 

have good reason to believe the theorem true, the correct inference is to the 

insufficiency of  extensional semantics. The intensional context lurking in the 
Second Theorem is that of  indirect discourse. This indirect discourse is, 

contra Quine, not "at variance with the characteristic objectivity of  science". 
In fact, rigorous generalizations of  the Second Theorem provide the proper 
non-extensionalist treatment. 

Each of the matters just broached involves significant subtleties - even the 
matter of  justifying the truth of  the Second Theorem. Moreover, the relevant 
technical work is not well reported in the philosophical literature 1 and has 
only recently been assimilated into logic texts. 2 In what follows, therefore, 
the methodological and metamathematical surveys are necessary preliminaries. 
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I I  

This section illustrates some methodological aspects of the interpretation of 
metamathematical results, the G6del Theorems in particular. Among the per- 

sistent concerns of  philosophers of mathematics are the implications of 

various technical results. This can be overt, as in 'What are the philosophical 

implications of A?', where A is some technical result. Such questions raise 
the further question: what theses are needed to get from A, a purely mathe- 

matical proposition, to B, a non-mathematical proposition? This latter ques- 
tion arises covertly when theorems are rephrased or glossed. The following 
sketch of an answer to one such question is only intended to highlight the 
special features of  my subsequent treatment of the G6del Second Incomplete- 
ness Theorem. 

In 1930 G6del proved that a certain formal system, which he called P, is 
either incomplete or co-inconsistent. This is not what is generally referred to 

by 'G6del's First Incompleteness Theorem'. The 1930 result gains importance 

because P is important and because the proof of the result is clearly general- 

izable. A theorem to the effect that a large and important class of formal 

systems shares the property of incompleteness with P would seem of greater 
import. A refinement of  Rosser's is needed to yield the familiar Incomplete- 

ness Theorem. 

(1) There is no consistent complete axiomatizable extension of Q. 

(1) 3 expresses an up-to-date generalization of the results of the 1930s and 

certainly obtains for us the 'large' class of formal systems we asked for. 
(1) is a provable mathematical result. 

(2) Any sufficiently strong consistent formal system of arithmetic 
is incomplete. 

(2) is often used as an expression of the G6del result. Since (1) and (2) are 
not prima facie synonymous, nor does (2) look wholly mathematical, what 
warrants both the assertion of (2) and the claim that it is an expression of the 

First Incompleteness Theorem? 
Getting from (1) to (2) is a special case of the problem I characterized 

a b o v e -  getting from mathematical A to nonmathematical B. One thesis 
needed is: In this context 'x is an extension of Q' implies 'x is sufficiently 
strong'. 4 In fact the result extends to theories into which Q is interpretable, 
but this is a refinement which need not detain us. 
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Additionally, some account of  'of  arithmetic'  is required. Such an account 

should yield the thesis: Q is a formal system of  arithmetic and all its exten- 

sions in the language of  arithmetic are formal systems of  arithmetic, s 
Each such thesis, dredged up to create a non-enthymematic valid argument 

from (1) to (2), needs to be justified. Why is it true that Q and its extensions 
are ' o f  arithmetic'? I shall not pause over this interesting, and not so simple, 

question. The kind of  theses I have been talking about (call them 'connective 
theses') often assert that a particular formalism is an adequate formalization 

of  some notion. Church's Thesis is a good example. Other examples include 
claims that a formal semantics corresponds in a certain way to an intended 

interpretation. Semantics of  first-order predicate logic/logical validity is such 
a pair, Kripke semantics/Leibnizian possibility another. 

These connective theses are the additional premises needed to produce a 

valid argument from a mathematical theorem to a philosophical claim. What 

has often been stressed in regard to Church's Thesis is also true of  many 
important  connective theses - they are not mathematical truths and do not 

partake of  mathematics '  clarion certainty and precision. Associated with 
G6del's Second Incompleteness Theorem are connective theses of  a some- 
what surprising character. Consideration of  the Second Theorem is perhaps 
best begun by looking at the analogue to (2) - the proposition that is not a 

mathematical  theorem. 

(3) I f  T is a sufficiently strong consistent formal system of  arithmetic, 

then any sentence of T that says that T is consistent is not 

derivable in T. 

(3) is a relatively careful rendering of  one of  the many things that G6del is 

often said to have proved. Sometimes it is put: 'The consistency of  (a formal 
system of)  arithmetic is underivable in (that formal system of)  arithmetic' .  
In many texts such words are offered as glosses of  some technical result 
(usually proved only sketchily, if at all) labeled 'G6del 's Second Incomplete- 
ness Theorem' .  Since what are derivable, or fail to be, are the formulas of  a 
formalism, I take it that (3) is an acceptable rendering of  the slightly looser 
remarks .6 

These looser remarks, or sometimes (3), are the usual material for philo- 
sophical writings concerning the philosophical significance, or consequences, 
of  the G6del Second Theorem. 7 Since (3) isn't the mathematically proved 

Second Theorem, such writings would be helped by an argument that (3) 
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is true - the G6del Second Theorem being a premise in such an argument - 

as well as by evidence that the second Theorem is a special sort of premise in 

such an argument. By this last I simply mean something that would justify 

taking (3) as a gloss, not a mere consequence, of the Second Theorem. Thus, 

in discussing (1), the First Theorem, and its relation to (2), one notes that the 

additional premises are either definitional or trivial. (1) is thereby 'special', 

being neither definitional nor trivial. We need to take a closer look at the 

differences between the two G6del theorems, to begin to uncover what stands 

to (3) as (1) does to (2). 

I I I  

An early reference to the Second Theorem is found in G6del's 1931 paper, 

in which a proof of what he calls Theorem XI is sketched. What does G6del's 

sketch of a proof of Theorem XI show? Briefly, an underivable formula is 

exhibited, different from the one (17Gen r) exhibited in the proof of his 

First Incompleteness Theorem. It should be recalled that in the proof of the 

First Theorem G6del constructs a formula that he shows, on hypothesis of 

consistency of P, to be underivable (in P). That is, he shows that there is a 

proof that the consistency of P implies that a certain formula is underivable. 

Corresponding to this, G6del's proof, there is a derivation in P of a conditional 

formula of P corresponding to G6del's implication: a conditional whose 

antecedent is a sentence which is the formalization of the assertion that P is 

consistent, and whose consequent is the formal sentence saying that the 

G6del sentence is not derivable. By the construction of the First Theorem 

this consequent is equivalent in P t o t h e  G6del sentence itself. Hence, the 

conditional whose antecedent is the consistency sentence and whose conse- 
quent is the G6del sentence is a theorem of P. And since modus ponens 

is a rule of inference of P, the formalized statement of consistency cannot 

be derivable in P if P is consistent. 
This is a rough and deliberately innocent sketch of the idea of the proof of 

XI. A detailed proof would involve constructing (or, at least, showing how to 

construct) the crucial formal derivation. This would include making adequate 

sense of the notion of formalization that infests the above sketch; it is here 
that the complications of the Second Theorem reside. However, the semantic 
flavor of this theorem can be preliminary appreciated by noticing that what is 
underivable is a formula and that this formula is said to say that the formal- 
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ism is consistent (recall (3)). Unlike the situation with some of the informal 
intuitive descriptions of  the First Theorem (and with my description of the 

'consequent' above) that are often given, this apparent semantic character is, 
I shall argue, intrinsic. The constraints on the antecedent are different in kind 
from those on the consequent. 

To draw the contrast between the two Theorems more sharply: The First 
Theorem predicates a simple syntactic property of members of  a large class of 

formal systems. This property,incompleteness, is simple in at least the follow- 

ing respect - it is definable in terms that do not invoke anything akin to a 

translation, or formalization, relation; T is incomplete just in case there is a 
sentence of T such that neither it nor its formal denim is derivable in T. 

The Second Theorem (as glossed by (3)) predicates a certain more com- 

plex property of members of  a large class of  formal systems. Call this proper- 
ty 'KURT'.  T has KURT if and only if any sentence of T that says that T 

is consistent is not derivable in T. We will be seeing what it takes to render 
this definition coherent, for ' T '  taken as a variable. 

What is the underivable formula of the G6del Second Incompleteness 
Theorem? Let us call it, restricting our attention for the moment to just one 

formalism, CON(P) s. Call the underivable formula of  the First Theorem 'G ' .  

A proof of  the Second Theorem establishes that [- CON(P)~ G (in fact 

[-- CON(P) ~ G) and so, not ~- CON(P). In the light of  these facts what would 
make CON(P) importantly different from G? 

Let Pf(y, x) be an open sentence of P that numeralwise expresses 9 the 

proof relation (assuming some fixed G6del numbering of syntactic objects, 
and sequences of them, satisfying the usual constraints) and Fm(x) an open 

sentence of P that nutneralwise expresses sentencehood. Using PF (and a 

symbol representing a substitution function), a proof of the First Theorem 
constructs G, a formula equivalent in P to Vy -1 Pf(y,  ~-), where g is the 
G6del number of  that very formula, G. ] x (Fm(x)  & -3 3y Pf(y, x)) mimics, 

in quantificational structure, a standard definition of consistency. Let such a 
formula be (temporarily) CON(P). Note that this does not pick out a particu- 

lar sentence G nor a particular sentence CON(P) since many formulas of P 
will numeralwise express the proof relation. This produces a fatal equivoca- 
tion in the preceding paragraph. 

This construction does not guarantee that such a CON(P) says that the 
formalism is consistent. It is not essential to a proof of the First Theorem 
that the Gddel sentence say of itself that it is underivable. (Indeed, it is only 
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the case the Grdel sentence is equivalent in Q to a sentence H which asserts 
something about G. But even this need not be that G is underivable.) 1~ That 
it may seem to be one is an artifact of  certain informal, motivating, semantic 

accounts of the First Theorem. Certain entailments of the proposition that 

G says of itself that it is underivable are all that are used and these are suf- 
ficiently captured by the relation of numeralwise expressibility. The plausibil- 
ity of  regarding G as saying of itself that it is not derivable arises from con- 

sidering the standard interpretation, the G6del numbering, and regarding 
Pf as expressing the proof relation. In the case where Pf only satisfies the 

entailments mentioned, however, this last is at best a pun on 'numeralwise 

expressible'. A sentence so constructed is true (in the standard interpretation) 
if and only if it is not derivable; but nothing stronger than this extensional 
agreement is forthcoming. 11 This is all the First Theorem requires, even in the 

general case where P is replaced by an arbitrary sufficiently strong theory T. 
Requiring only extensional agreement with respect to the proof predicate 

will not, however, in the general case, yield extensional agreement with respect 

to the consistency statement. That is, for some T, and some CON(T) con- 

structed as above, it is false that: CON(T) is true if and only if T is consistent. 

Moreover, even in the case of P there are two sentences, CON1 (P) and CON2(P), 
constructed as above, but such that they are not logically equivalent; and one 

of them is derivable in P. 

I V  

I have claimed that the difference between G and CON(P) is that a G may be 
constructed from an open sentence that numeralwise expresses the proof 

relation and that numeralwise expressibility is the only constraint needed to 
show such a G to be underivable; a CON(P), constructed as above, may be 

derivable. Concerning saying that, I have pointed out that the plausibility of  
regarding G as saying that G is not derivable arises, inter alia, from regarding 
Pf as expressing the proof relation, but that this plays no role in establishing 
(1) or (2). But suppose we take this plausibility at face value and benefit 
from the heuristic value of being able to explain the workings of G1 by 
adverting to the simple logic of the antinomies. Then a CON(P), constructed 
as above, should say that P is consistent. But then, I have claimed just above 
and will show below, either (3) is false or the account of  says that is defec- 
tive. Furthermore, abandoning all accounts of says that would eviscerate 
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the Second Theorem. I will now establish and illuminate these claims. 

Rosser exploited numeralwise expressibility's inability to distinguish co- 
extensive relations. By constructing a new open sentence that numeralwise 

expresses y is a proof of  x but which had special properties as well, Rosser 
was able to improve the G6del result. Letting Pf numeralwise express the 

proof relation, Rosser used 

Pf(y, x) & 7 3 y ( y  < x  & Pf(y, neg(x))). 

This reads 'y is a proof of  x and there is no shorter proof of the negation of 
x ' .  A moment's reflection reveals that, for a consistent formalism, this 
numeralwise expresses what Pf does. An even simpler device will make the 

derivability of  "consistency" more blatant. Define Pf '  as 

(4) Pf(y,  x) & 7 e f (y ,  k )  

where k is the G6del number of '0 = 1'. If  the formalism is consistent (4) 

numeralwise expresses what Pf(y, x) does. Consider the consistency schema 
(5). 

(S) 7 3 y ~(y ,  ~)  

Then, although the instance of (5) involving Pf is not derivable, the instance 

in which Pf '  replaces q~, 7 3y(Pf(y,  k-) & 7 Pf(y, k)),  is a theorem of logic: 
What isn't derivable in the formalism is that Pf and Pf '  are coextensive and so 
numeralwise express the same relation. 

In a sense, the G's constructed from such deviant Pf conditionally assert 

their own underivability. The condition is that the formalism is consistent. 

This condition the formalism cannot discharge. (These intuitive readings are 
discussed below.) The prima facie incorrectness of ~ is a proof of  x and y 
isn't a proof of  0 = 1' as expressing y is a proof o f  x is not misleading; a 
proper account of  the Second Theorem must respect this fact. 

The quarantining of the deviant predicates is accomplished in rigorous ac- 
counts of  the Second Theorem that prove generalized versions of it. It does 
not follow as a matter of  course that such accounts yield (3). ((3) If  T is a 
sufficiently strong consistent formal system of  arithmetic, then any sentence 

of T that says that T is consistent isnot derivable in T.) A purely mathemati- 



344 D A V I D  D .  A U E R B A C H  

cal result about formalisms may, in producing an underivable formula for 
each formalism, clearly be a generalized Second Theorem because the result 
is a rigorous version of the sketch on page 340. But it remains to justify such a 
result's rejection of certain extensionally correct proof predicates. 

Technical accounts of the Second Theorem may vary as to how manifest 
is the relation between their machinery and our semantic concerns. It is 
striking that they all bear some familiar hallmark of intensionality. What are 
some of these accounts? 

The earliest treatment occurs in [Hilbert-Bernays, 1939], wherein three 
derivability conditions are enumerated and used to prove a rigorous version 
of the Second Theorem. Any proof predicate that satisfies the derivability 
conditions (one of which is essentially numeralwise expressibility) will suffice 
for the Second Theorem; the labor is in showing that any particular proof 
predicate does satisfy them. This approach is continued in the work of L6b 
(1955) and in recent work on modal systems, where [] is interpreted as 
derivable in a formal system. 12 

The Hilbert-Bernays derivability conditions were conditions on the formal 
proof relation, stricter than numeralwise expressibility, that were sufficient 
to guarantee an unequivocal Second Theorem in the following sense: Any 
proof predicate meeting the three conditions would satisfy the requirements 
of the proof of the Second Theorem; moreover, the proof relations con- 
structed for familiar theories were seen to satisfy the conditions. 

The work of Feferman (1960) and Jeroslow (1965) was stimulated by 
remarks of Kreisel (1965). 13 Feferman points out that merely "numerically 
correct" proof definitions are inadequate for certain results. Results for 
which they are adequate he calls "extensional", the rest "intentional". The 
deviant proof predicates lead to useful extensional results (e.g. Rosser) 
while others have no intrinsic interest (a provable "consistency" sentence). 
For Feferman the weakness of the Hilbert-Bernays approach is that verifying 
whether a particular predicate satisfies the conditions is laborious. 

Feferman presents a large class of formal systems and proves the Second 
Theorem for them. The key to his approach is the notion of a formal system 
that he employs. The consistency sentence for any system is built from the 
proof predicate in some standard way (by a straight-forward transcription of 
any one of the equivalent definitions of consistency); the proof predicate 
is straight-forwardly transcribed from the presentation of the formal system. 
The trick is in obtaining a formal object to represent the presentation. 
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More precisely: I f a ( x )  is a formula that numeralwise expresses the axioms 

of T, a proof predicate can be constructed in a standard way from a.  The 
phrase 'a consistency sentence for a formal system' makes sense only if one 

individuates formal systems more narrowly than by their theorem sets. By 

narrowing the individuation it becomes possible to generalize various meta- 

mathematical results by conditions on the formulas c~. 

Since many a ' s  numerically define the same set of  axioms, different formal 

proof predicates will be defined for the same axioms; one for each a .  Deviant 
a ' s  are bizarre ways of presenting the axioms -b iza r re  enough to carry a 
trivial assurance of consistency (recall schema (5) with q) replaced by Pf'). 

Feferman constructs a sentence Ga, for each formula ot that numerates 

an extension of P, such that Ga  is underivable in the system corresponding 

to c~. Ga corresponds to the usual G6del sentence. (5.6) is a simplified version 
of Feferman's generalization of the Second Theorem. 

(5.6) Let a be a formula that numerates in Q the axioms of a consistent 
extension of P. Call this extension A. I f  ct is an RE-formula 

F-A CONa ~ G and hence not i--A CONa. 

(5.6) differs from a blindly extensional generalization of the G6del result 
only in the restriction that a be what Feferman calls an RE-formula. While 
the precise definition of this does not concern us here what is crucial is 

Feferman's (5.9), which establishes that the purely extensional generaliza- 
tion, (5.6) without the restriction on t~, is false. 

(5.9) Let A be a certain kind of extension of P. There is an a* numeral- 
wise expressing A's axioms in A, such that ~ a  CONa..14 

Not surprisingly, Feferman's a* is a close relative of the deviant proof predi- 

cates described earlier, c~*(x) = a(x)  & Vz (z < x -+ CONalz) & StK(x), where 
a numeralwise expresses A's axioms in Q, and Stk  represents is a sentence. 

It can be read: x is an a-axiom and all the finitel3) axiomatized subsystems 
formed by the axioms shorter than x are consistent. A facile, but not essenti- 

ally misleading, way of reading the corresponding 'consistency' sentence is: 
The largest consistent subsystem of A is consistent. 'The largest consistent 
subsystem of A' denotes A, given that A is consistent; but, of course, it is 
just this fact that is not given to A itself (cf. the end of the section IV). 

In fact, then, the notation 'CON r '  is dangerously vague, unless one has a 
particular presentation of the axioms in mind. 'Its' formalization, 'CONa', 
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makes this clear; particularly as there are (non-RE) a ' s  that render CON a 

derivable in P. The RE a ' s  are not an ad hoc grouping; it can be argued 
(though not here) that the definition of RE-ness meshes perfectly with our 
intuitions about what formalisms are. 

V I  

The problem then is to rescue the plausibility of construing formulas as 

making metamathematical remarks, without falsifying (3). Taking any open 

sentence of arithmetic whose extension, in the standard interpretation, is 
the extension of is a derivation o f  (via some admissible G6del numbering) 

as expressing the formal proof relation marks a commitment to an exten- 
sionalist semantics. The cavils of  the earlier sections show that such a seman- 

tics would indeed fail to do justice to KURT. A semantics based on the 
narrower individuation of predicate expressions that, for example, Feferman's 
treatment mandates, will do justice to KURT is. It is worth emphasizing 

again that G6del's Theorem XI cannot be proved in generality without some- 

how stigmatizing the deviant proof predicates. 
The skeptical reader, wary of intensional semantics in general, may regard 

a coherent applied intensional semantics with suspicion. I will in what follows 

try to alleviate such suspicions. 
It is the common meta-theoretic ground of many programs for semantic 

theory, and the centerpiece of Davidsonian approaches, that the truth-value 

assigned to a sentence depends only upon the semantic value of the parts. Of 
course, much controversy surrounds the proper elucidation of this gnomic 

remark. Intensionality is ascribed if the semantic value of a part needs be 
something other than the extension of that part. It is patent here that the 
notion of part is crucial to such ascription. Frege argued for such a duality 

of semantic values by finding contexts that produced a difference in truth- 
value despite co-extensiveness of parts. Russell's theory of descriptions can 
sometimes be used to avoid ascriptions of intensionality by a change in 

the ascription of parthood. 
Consider the language of elementary proof theory. Evidently it contains 

the predicate 'is a derivation-in-T of ' ,  for each formalism T. (Every- 
thing that follows will apply as well to any synonymous predicate, whether 
couched in Japanese, German, or English.) Using such a predicate we can 
express consistency - 'There is no derivation-in-T of i '  where 1 is a favorite 
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contradiction of a theorem of T. Call this sentence Con(T). We are interested 
in the semantics of  this piece of  (technical) natural language. In particular, 
is the meaning of Con(T) given by the extension of its parts? Not if we wish 
to express (3) in this language. How did the technical details reveal this? 

Con(T) is not a candidate for being underivable-in-T. We do want to show 
that it is unprovable in T by appropriately tbrmalizing the language of ele- 

mentary proof theory and producing a sentence of T, say CON s, whose 
underivability permits the inference to the unprovability of Con(T). This is 

precisely the problem of page 340 - establ/hsing (3) on the basis of a certain 

technical fact. Let us look at this sort of  inference from a wider point of  
view. 

We say that it is provable in P that 2 < 3 because a certain formula of P 

is derivable and the standard interpretation for P makes the appropriate link 
between the formula and the manner in which the standard model is described. 
Mates 16, for example, discusses the reasons for this last clause. He points out 

that in establishing instances of Tarski's schema T, the way in which the 

interpretation is described is utilized. The same interpretation, I, given 
differently, yields both 

'Lal a2' is true under I iff 2 is less 1Lhan 3. 

and 

'Lal a2' is true under I iff the only even prime is less than 3. 

as consequences of the definition of truth in an interpretation. For purposes 

that exceed mere consideration of truth conditions in an extensional language, 

the non-identity of  the two displayed sentences is vital. One such purpose, 

ubiquitous in logic texts, is judging whether a formal sentence is an adequate 
rendering of an English sentence; and this is relative to the way in which the 

interpretation is given. 
The context we are considering (that 2 < 3 is provable in P) is very like 

the translation context that Mates is concerned with. He points out that the 
truth-value of wffs is independent of the manner of  specification of the inter- 
pretation, though the meaning is not. The Fregean move involves locating a 
context that is sentisitive to the manner of  specification, but in the language 
being interpreted; this will produce a difference in truth-value, not just in 
meaning. The Second Theorem provides such a context; the proof of the 
Second Theorem requires significantly more than correct extension be true 
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of the provability predicate. The language of elementary proof theory, in as 

much as it contains (3), is intensional. 

The skeptic may see the 'says that '  idiom of (3) as begging the question, 

and look to (6) as expressing the content of a generalized Second Theorem. 

(6) If T is a consistent formal system of sufficient strength, it is not 
provable in T that T is consistent. 

It should be clear by now that this won't help. A cogent argument for (6) 

will have recourse to a proof of a generalized Second Theorem. Viewed as a 
semantics the Feferman treatment assigns true to (6) by virtue of (5.6). The 

key to the linkage is the occurrence of the formulas ~ as part of the formal- 

ized consistency sentence. The o~'s are assigned by the semantics as represen- 

tatives of formal systems. We can think of them as fixing the reference for 
proper names of the formalism. (5.9) demonstrates that a (6) whose semantics 
treated co-extensive a ' s  indiscriminately would be false. 

The skeptic might now object to the implicit syntax, that is, the parts, 

and say that the superficial form of (6) is misleading. 

(7) If  T is a formal system of sufficient strength, the sentence CON s 
is not derivable in T. 

(7) might be offered. The skeptic goes on to say that an appropriate technical 
account, says Feferman's supplies the sentences CONa. This account must, 

of course, bow to the requirements set by (5.9); this will force the skeptic 
to identify formal theories with RE a 's .  

Having been forced to the bifurcation (RE/non-RE) of the class of ~'s  
numeralwise expressing each set of  theorems, the skeptic has sacrificed two 

things: 1) an explanation of the bifurcation and, more importantly for 
present purposes, 2) a reason for regarding (7) as a remark about consistency. 

The skeptic is unable to distinguish the First and Second Theorems in any 
interesting way (cf. Section III). For if(7)  is to be about consistency, by way 
of CONs being a consistency sentence for formalism T, then a semantics is 
required - one which (5.9) tells us makes the truth of (7) depend on some- 
thing other than the extensions of the parts of  CONa. 

I f  a semantic theory for the language of elementary proof theory allowed 
a non-RE ot to be equivalent to some RE o~ then we would see that it had to 
be an incorrect theory. For then it would be part of  the meaning of 'formal- 
ism' that a formalism be consistent. It is part of  the charm of the G6del 
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Second  Incomple t enes s  T h e o r e m  tha t  it entails  tha t  such a semant ic  t h eo ry  

would  n o t  on ly  be empir ical ly  false, bu t  s imply incons is ten t .  

In sum,  recalling the  remarks  at the  end  o f  sec t ion  II, (1) is to (2) as 

(5.6) is to (3).  The language o f  e l ementa ry  p r o o f  t heo ry  has a co h e ren t  

in tens ional  semant ics  t ha t  cert if ies this ratio.  An extensional is t  semant ics  

is ne i the r  desirable nor  necessary  fo r  all o f  ma themat i c s .  17 

NOTES 

i Resnik (1974) and Detlefson (1979) are recent exceptions that take account of the 
special features of the Second Theorem. 
2 See Boolos-Jcffrey (1974), Boolos (1978) and Monk (1976). 
3 (1) first appears in Tarski (1960). 
4 The converse implication supports a valid deductive argument from (1) to (2). Un- 
fortunately the converse implication is false; weaker theories than Q are sufficiently 
strong. The suggested implication is true, but not sufficiently helpful. A complete analysis 
would bring out the contextual nature of 'sufficiently strong'. Alternatively, one could 
use the converse implication, replacing the predicate 'is an extension of Q' with 'has 
those features of Q that are relevant to the proof of G1 ', or some illuminating coextensive 
predicate. 
s If (2) strikes one as mathematical, note that all that is really needed for my point is 
that passage from (1) to (2) is mediated by theses unsupported by mathematical evidence. 
(2) seems mathematical because the mediating theses seem definitional. 
6 'Derivable', 'underivable', etc. will be used in connection with formulas of a formalism; 
'provable', 'proof' ,  etc., are reserved for the ordinary notions of unformalized mathe- 
matical practice. I occasionally violate this convention, for the sake of custom, in the 
context of discussing is a proo f  o f  and the 'proof'  predicate. Strict speaking would 
demand 'is a derivation o f '  and 'derivation predicate'. Note that the looser remark cited 
in the text offers little obvious guidance regarding a choice between 'underivable' and 
'unprovable'. 
7 See Note 1, above. 
a p is the well-known Peano arithmetic, so-called because of its name. Q is a well-studied 
theory in the language of arithmetic. It has finitely many axioms (seven, all simple and 
clearly true in the standard model), all recursive functions are representable in Q, and yet 
it is a rather weak subtheory of P (that addition is commutative is not a theorem of Q). 
There are even weaker theories that will suffice for the First Theorem; Q's virtue is its 
finite axiomatizability. See Tarski (1960) and Boolos (1978). For now 'CON(P)' is a 
simple term. 
9 Numeralwise expressibility is a three place relation among formal systems, relations 
among or properties of numbers, and predicates of formal systems. A formal predicate 
that numeralwise expresses a relation in an arithmetically correct formal system is there- 
by guaranteed to be extensionally correct with respect to that relation, q~ numeralwise 
expresses R, R an m-place relation, iti 

(i) if R(~), then t--~(~) 
(ii) if 7R(~) ,  then t--qq~(~), 

where ' - '  denotes the function from numbers to their standard numerals in the formal- 
ism. All recursive relations are numeralwise expressible in Q and its extensions, ~cluding, 
of course. P. q~ is said to numerate R~ in consistent formalisms, if R(~) ~ t--q~(~). 
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1o Of course G implies that  its formalism is consistent - provided that G reaUy does 
say that G is undetivable and ,  a f o r t i o r i ,  that  something is underivable. Any formula 
that  says that  something is underivable, either existentially or using a canonical name, is 
a consistency sentence. That is, G and CON(P) are n o t  importantly different provided 
that  G really does say that  G is underivable. Kleene (1950), p. 211 has a similar remark, 
but  with the semantic proviso on G hidden in Kleene's use of  'intuitively' and 'intuitive'.  
11 A typical p roof  of  the First Theorem enforces this extensional agreement by con- 
straints on the open sentences used to bui ld  up G; in particular, the constraint that  Pf  
numeralwise express is a p r o o f  o f .  This allows such a p roof  to be purely syntactic, in 
that it need not  ment ion the standard interpretation. The use of  standard numerals 
in the definition o f  numeralwise expressibility is, however, crucial. 
12 See Boolos (1978). 
13 The cleanest presentation of  the technical facts is in Monk (1976), pp. 298-307 .  
Feferman (1962), pp. 265 -272 ,  contains a useful pr6cis o f  the technical material in 
Feferman (1960). In Monk (1976) the RE-formulas are not  ment ioned as such, but  the 
remark on p. 304 concerning 'U(g**A)' does as well. Monk's text is particularly nice 
for its dovetailing of  the L6b and Feferman material. 
14 For a finitely axiomatized theory there is a unique, principled, best choice for an a .  
For finitely axiomatized A, this a is written [A] and [A] = the obvious formalization of  
' x  = a l  V x = a2 V "." V x = x n '  where a ~ . . . . .  a n are the (G6del numbers o f  the) axioms. 
A is r e f l e x i v e  just in case for each finite F c A, 1--- CON I FI" Feferman's  G a, CONa,  etc., 
are specific constructions defined over a broad class of  canonically presented formalisms, 
schematic only in a .  No theory with induction can be finitely axiomarized, no theory 
without  induction can formalize formalisms - so the little fact here is o f  no help with 
consistency sentences. 
is Jeroslow's approach, though intertranslatable with Feferman's,  is more direct. 
Jeroslow avoids the standard encodings o f  the usual primitive recursive syntactic rela- 
tions and functions, whereas Feferman presents a generalized theory of  those functions 
and relations. Jeroslow specifically represents formal systems as Post Canonical Systems: 
"Formal  logics are not  usually understood as Post Canonical Systems, but  there is a 
natural, uniform procedure for viewing them as such, provided that all  the mechanical 
rules which constitute the formal logic are specified, even the inductive rules for gener- 
ating the terms, formulas, etc. The idea here is that  the predicates of  p roof  theory are 
always inductively defined, and Post Canonical Systems are the language o f  inductive 
definitions p a r  e x c e l l e n c e . "  Post Canonical Systems thus formalize the presentations o f  
tormal systems given in logic books. As the Feferman approach is certified as semantical- 
ly correct by arguing that  the RE/non-RE distinction is principled, the Jeroslow account 
is certified by arguing for Jeroslow's Thesis: PCS's are the best representations of  formal 
systems. The details o f  such argumentation I leave to another paper. 

It is in the spirit o f  the origins o f  formal systems as an object o f  study that  they be 
regarded as systems for generating syntactic objects, in categories, independently of  
their in tended meaning. Note that,  from this point  o f  views, axiom schemata have no 
place, as such; non-finitely axiomatized theories are to be identified with " the  finite 
number  of  rules which describe the generation of  the infinite number  of  axioms" 
(Jeroslow, 1971). Not only is this accord with the view of  formal systems as combina- 
torially secured producers of  theorems, but  also can be connected to the epistemological 
motives behind a Hilbert-style program. Kreisel (1965) adduces some additional con- 
ceptual grounds for Jeroslow's Thesis in pointing out that  we often wish to distinguish 
formal systems by  their rules, and not  by their theorems or even their set o f  proofs. 
Typical contexts  that  require such a fine-grained distinction o f  theories are evidentiary 
ones. One formulation o f  a set o f  theorems may be evident (i.e., evidently true) and 
hence foundationally sound and another not. Moreover, the establishment of  their 
(extensional) equivalence may no t  be evident. 
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1~ Mates (1972), pp. 75-78.  
17 An ancient ancestor of this paper existed in 1976. I have since benefited enormously 
from the comments of George Boolos, Harold Levin, Michael Resnik and most especially 
Mark Richard. 
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