
Contents

Preface to the first edition xiii

Preface to the second edition xix

I Introduction 1
0.1 Symbolic computation and classical computing 3

0.2 Logic: Formal, symbolic, deductive, and classical 5

0.3 Computational logic and its subfields 8

0.4 Classical deductive computing and its assumptions 10

II Mathematical foundations 15

1 Mathematical notions 17

1.1 Basic notions . 17

1.1.1 Sets, relations, functions, and operations 17

1.1.2 Binary relations and ordered sets 25

1.2 Discrete structures . 30

1.2.1 Algebras and models 30

1.2.2 Lattices . 34

1.2.3 Graphs and trees 42

1.3 Mathematical induction 46

III Classical computing 49

2 Fundamentals of classical computing 51

2.1 Formal languages and grammars 52

2.1.1 Regular languages 60

2.1.2 Context-free languages 64

2.1.3 Recursively enumerable languages 76

2.1.4 The Chomsky hierarchy (I) 78

2.2 Models of computation . 81

2.2.1 Finite-state machines 81

v

Contents

2.2.2 Pushdown automata 100

2.2.3 Turing machines 121

2.2.4 The Chomsky hierarchy (II) 135

2.3 Computability and complexity 136

2.3.1 The decision problem and Turing-decidability . . . 136

2.3.2 Undecidable problems and Turing-reducibility . . . 140

2.3.3 The Chomsky hierarchy (III) 147

2.3.4 Computational complexity 148

2.3.5 The Chomsky hierarchy (IV) 164

IV Classical deduction and classical logic 167

3 Preliminaries: Formal logic, deduction, and deductive
computation 169

3.1 Logical form I: Logical languages 170

3.1.1 Alphabets, expressions, and formulae logical 170

3.1.2 Orders . 173

3.1.3 Formalization . 179

3.2 Logical form II: Argument form 187

3.3 Logical meaning: Valuations and interpretations 194

3.4 Logical systems, logics, and logical theories 206

3.4.1 Logical consequence, inference, and deduction . . . 206

3.4.2 Syntactical consequence and proof theory 213

3.4.3 Semantical consequence and model theory 218

3.4.4 Adequateness of a deductive system 223

3.4.5 Logical theories . 228

3.5 Deductive computation 230

3.5.1 Logical problems and computational solutions . . . 230

3.5.2 Taming FOL undecidability 233

3.5.2.1 Finite satisfiability and ground extensions 233

3.5.2.2 Finite models and prefix classes 238

3.5.3 The complexity of logical problems 240

4 The system CL and the logic CL 247

4.1 The language of classical logic 247

4.1.1 The language L1 247

4.1.2 Substitutions and unification for L1 249

4.2 Classical logical consequence 255

4.2.1 Classical ♥-consequences 255

4.2.1.1 Classical syntactical ♥-consequences . . . 256

4.2.1.2 Classical semantical ♥-consequences . . 258

vi

Contents

4.2.2 Classical �-consequences 260
4.3 The logic of CL . 262
4.4 Classical FO theories and the adequateness of CFOL . . . 265
4.5 The extension CL=: CL with equality 273

5 Classical proofs 279
5.1 The axiom system L . 280
5.2 The natural deduction calculus NK 283
5.3 The sequent calculus LK 288

6 Classical models 295
6.1 Tarskian semantics . 295
6.2 Herbrand semantics . 299
6.3 Algebraic semantics: Boolean algebras 306

V Classical deductive computing with classical logic 315

7 Classical logic and deductive computation 317
7.1 The computational problem of classical satisfiability, or

SAT . 318
7.2 Computerizing CFOL . 325

7.2.1 Literals and clauses 326
7.2.2 Negation normal form 327
7.2.3 Prenex normal form 327
7.2.4 Skolem normal form 328
7.2.5 Conjunctive and disjunctive normal forms 329

7.3 Computing the SAT . 335
7.3.1 The different forms of the SAT 335
7.3.2 The SAT and unsatisfiability I: The DPLL proce-

dure and model finding 337
7.3.3 The SAT and unsatisfiability II: Herbrand theo-

rem and refutation 340

8 Automated theorem proving 347
8.1 Resolution . 348

8.1.1 The resolution principle for propositional logic . . 348
8.1.2 The resolution principle for FOL 354
8.1.3 Completeness of the resolution principle 362
8.1.4 Resolution refinements 364

8.1.4.1 A-ordering 365
8.1.4.2 Hyper-resolution and semantic resolution 369

8.1.5 Paramodulation 377

vii

Contents

8.2 Analytic tableaux . 383
8.2.1 Analytic tableaux as a propositional calculus . . . 383
8.2.2 Analytic tableaux as a FO predicate calculus . . . 391

8.2.2.1 FOL tableaux without unification 393
8.2.2.2 FOL tableaux with unification 396

9 Programming 399
9.1 Logic programming as deductive programming 400

9.1.1 Query systems and programming systems 400
9.1.2 LP programs and their meaning 405
9.1.3 Resolution and LP computations 414
9.1.4 Negation as failure 425

9.2 Declarative + procedural interpretation: Prolog 433
9.2.1 Prolog and Prolog 433
9.2.2 Logic + control: ! and fail 440
9.2.3 Negation in Prolog: The predicate not 446

9.3 Purely declarative interpretation: Datalog 451
9.3.1 Relational languages and databases 452
9.3.2 Deductive databases and Datalog 455
9.3.3 Semantics for Datalog DDBs 462

9.3.3.1 Herbrand semantics 462
9.3.3.2 Fixed-point semantics 468

9.3.4 A proof system for Datalog definite programs: SLD
resolution . 472

9.3.5 Datalog with negation: Datalog¬ 480

Bibliography 493

Bibliographical references 495

Index 505

viii

List of Figures

1.1.1 A partially ordered set. 26

1.1.2 Hasse diagram of a poset. 29

1.2.1 Join table of 2A. 36

1.2.2 Meet table of 2A. 37

1.2.3 The lattice (S,∪,∩). 37

1.2.4 The non-distributive lattices L1 and L2. 38

1.2.5 A simple graph with five vertices and seven edges. 43

2.1.1 Derivation tree of the string w = acbabc ∈ L (G) with the
corresponding partial derivation trees. 68

2.1.2 Two leftmost derivations of the string a + a ∗ a. 69

2.1.3 Parse tree of an unambiguously derived string. 71

2.1.4 Parse trees for productions (1) S → a and (2) S → AB. . . 72

2.1.5 Parse tree for z = uviwxiy. 73

2.1.6 An algorithm based on the Chomsky hierarchy for deciding
on the class of a language. 80

2.2.1 State diagrams of FSRs. 84

2.2.2 A FSR with two accepting states and one rejecting state. . 85

2.2.3 A NDFSR accepting the language L = {001}∗ {0, 010}∗. . . 87

2.2.4 Equivalent NDFSR (1) and FSR (2). 92

2.2.5 Schematic diagrams for finite automata accepting (i) L1 ∪
L2, (ii) L1L2, and (iii) (L1)∗. 94

2.2.6 A finite automaton M for the pumping lemma. 96

2.2.7 Moore (1) and Mealy (2) machines. 98

2.2.8 A PDA M accepting the language L (M) = {ambm|m ≥ 0}.
103

2.2.9 Proving the equivalence of L (M) = N (M). 106

2.2.10 NDFSR recognizing the viable prefixes for the CFG of
Balanced Parentheses. 115

2.2.11 A Turing machine computing the function f (m,n) = m+n.124

2.2.12 The encodings 〈MT 〉 and 〈MT , z〉. 127

2.2.13 A Turing machine that computes the function f (n,m) =
2n + 3m. 129

2.2.14 Program for a Turing machine computing the function
f (n,m) = 2n + 3m. 130

ix

List of Figures

2.2.15 A combination of Turing machines. 133

2.2.16 A Turing machine. 134

2.3.1 A combination of Turing machines. 146

2.3.2 The Chomsky hierarchy and beyond: Decidable, Turing-
recognizable, and not-Turing-recognizable languages. . . . 147

2.3.3 The hierarchy of complexity classes with corresponding
tractability status. 157

2.3.4 Typical structure of NP-completeness proofs by polynomial-
time reductions. 161

3.1.1 Formalizations for English by means of the language of
classical propositional logic. 184

3.1.2 Formalizations for English by means of the language of
classical FO logic. 185

3.2.1 Some classical formally correct arguments. 192

3.3.1 Truth table for the connective → in the 3-valued logics L3,
KW

3
, and Rn3. 199

3.4.1 Adequateness of a deductive system L = (L,). 226

4.1.1 Unifying the pair 〈P (a, x, h (g (z))) , P (z, h (y) , h (y))〉 . . 253

5.1.1 Proof of ⊢ L φ → φ . 281

5.1.2 Proof of {φ, ∀x (φ) → χ} ⊢ Lq ∀x (χ). 281

5.2.1 Proof of ⊢NK ((A → B) ∧ (A → C)) → (A → (B ∧ C)). . . 286

5.2.2 Proof of an argument in (extended) NK. 287

5.2.3 A FO NK proof. 287

5.3.1 Proof in LK of a FO validity. 292

5.3.2 Proof in LK of axiom L 2 of the axiom system L 293

7.1.1 A tableau for the Turing machine M. 323

7.2.1 Tseitin transformations for the connectives of L. 333

7.3.1 A DPLL proof procedure. 339

7.3.2 Closed semantic tree of C = {C1, C2, C3, C4, C5} in Example
7.3.3. 343

7.3.3 A closed semantic tree. 344

8.1.1 A refutation tree. 350

8.1.2 A propositional argument as input in Prover9-Mace4. . . . 350

8.1.3 Output by Prover9: A valid propositional argument. . . . 351

8.1.4 Output by Prover 9: A valid formula. 353

8.1.5 Output by Mace4: A counter-model. 353

8.1.6 A refutation failure tree. 355

8.1.7 Input in Prover9-Mace4: A FO theory. 356

x

List of Figures

8.1.8 Output by Prover9. 357
8.1.9 Output by Prover9. 358
8.1.10 Schubert’s steamroller in natural language. 359
8.1.11 Schubert’s steamroller in FOL. 360
8.1.12 Proof of Schubert’s steamroller by Prover9. 361
8.1.13 Hyper-resolution of Ξ = (C3; C1, C2). 370
8.1.14 Theory of distributive lattices and commutativity of meet:

Input in Prover9-Mace4. 373
8.1.15 Proof by Prover9 of the commutativity of meet in a dis-

tributive lattice. 374
8.1.16 A linear-resolution refutation. 375
8.1.17 Theory of commutative groups: Input in Prover9-Mace4. . 380
8.1.18 Output by Prover9. 381
8.2.1 Analytic tableaux expansion rules: αβ-classification. . . . 386
8.2.2 A propositional tableau proof. 388
8.2.3 Analytic tableaux expansion rules: γδ-classification. 392
8.2.4 A FO tableau proof without unification. 395
8.2.5 A FO tableau with unification. 398

9.1.1 The abstract interpreter Ψ with input (Π,G) operating
with ground reductions. 415

9.1.2 A LI-resolution proof on a LP program. 417
9.1.3 A LI-resolution proof tree. 418
9.1.4 A SLD-resolution proof. 420
9.1.5 A complete SLD-proof tree for a Prolog program. 421
9.1.6 SWI-Prolog answering a query and outputting traces for

some “true” instantiations. 423
9.1.7 SWI-Prolog traces of a “true” and a “false” instantiation. . 424
9.2.1 A SLD-proof tree for a Prolog program with !. 442
9.3.1 Table for BIRD (SPECIES,NAME). 453
9.3.2 The EDB Avian Center EDB. 459
9.3.3 An instance of the Datalog database Avian Center DDB

with respect to the program Avian Sick Prog. 465
9.3.4 Cn(Avian Sick Prog∪EAvian Center DDB). 466
9.3.5 A Datalog proof tree. 474
9.3.6 Datalog definite program Avian center Quarantine. 476
9.3.7 A SLD-resolution proof of a Datalog query. 477
9.3.8 Dependency graph ~GΠ¬

1
of the Datalog¬ program Π¬

1
. . . 483

9.3.9 Dependency graph of a non-stratifiable program. 487

xi

Preface to the first edition

It is often the case that computer science is considered merely a branch of
mathematics. This (still) often motivates the belief that logic is required
for computer science just because it is required for mathematics, namely
for proofs. However, logic in computing goes well beyond the context of
mathematical proof, being present today in fields such as artificial in-
telligence and cognitive science, and having significant engineering and
industrial applications. This impressive plethora of computational ap-
plications of logic could not be possible without a large variety of logics,
which for our purposes can be elegantly–i.e. by means of the English
connector and–segregated in two major classes: classical logic(s) and
non-classical logics.

Yet another, but perhaps not so elegant, segregation must be con-
templated when speaking of computing today: classical computing or
non-classical computing. While in the latter kind one can include a large
variety of computation models and computers (e.g., quantum comput-
ers, artificial neural networks, evolutionary computing), we shall con-
sider classical computing to be the processing of information carried out
by the von Neumann, or industrial-scale digital computer, which has as
a major theoretical foundation the Turing computing paradigm. This
paradigm, concretized in the Turing machine, sees computation as a
spatial-temporal discrete business over symbols that can best be carried
out in binary code. While this paradigm does not take into account the
resources available for computation, the von Neumann computer is in
fact constrained by physical–i.e. spatial and temporal–resources, which
means that classical computing has more or less clearly established lim-
itations.

When logic, whether classical or non-classical, is applied in comput-
ing, either classical or non-classical, we speak of computational logic.
This is an important label in at least two senses. Firstly, it captures
the fact that there is a subfield of formal logic that can be applied in
a computational setting. This subfield might be obtained by imposing
restrictions (for example, on the sets of operators), but also by exten-
sions or just plain variations. Secondly, it helps us to distinguish clearly
between computation carried out with a logical language from computa-
tion carried out with other formal languages. In effect, while the latter

xiii

Preface to the first edition

typically is concerned with preserving the legality of symbol strings (le-
gal strings are processed into further legal strings), the former often
aims at truth-preservation. Say that we have a theory and wish to know
whether some assertion follows logically from it, i.e. belongs to it, or
is true in it. The deduction theorem allows us to express this logical
following in a single symbol string, known as a logical formula, and our
question is notoriously best concretized in the validity and satisfiability
problems, which ask whether a logical formula is always true, or is true
in some interpretation, respectively. When these problems–in particular
the latter–are posed in a computational context, we accordingly speak of
deductive computation. When the computational solution is to be found
by means of classical computing, we then speak of classical deductive
computing.

In this book we elaborate on classical deductive computing with classi-
cal logic, and we do so without a specific regard to the field of application.
Our foci are first and foremost two main subjects in which classical de-
ductive computing with classical logic has a prominent role: automated
theorem proving and logic programming.

This is thus a book on applied logic. Furthermore, this is a book on
applied mathematical logic. We take here the label mathematical logic
as synonymous with formal logic, and this in a very narrow sense: for-
mal logic is logic whose foundations lie in mathematical objects and
structures. Although these mathematical foundations may be incon-
spicuous at the object-language level, at the metalanguage level they do
become more conspicuous or even explicit. Interestingly enough–though
not surprising anymore–, the mathematical structures and objects usu-
ally required in mathematical logic are precisely those needed for clas-
sical deductive computing; we talk here of lattices, graphs, trees, etc.,
all known as discrete structures and objects. This accounts for a whole
chapter (Chapter 1) dedicated to the topics of discrete mathematics re-
quired for a satisfactory grasping of the material in this book. More
specifically, we restrictively provide the mathematical notions that are
foundational for both the theory of classical computing and classical de-
duction. Chapter 1 constitutes Part II of this volume, Part I being the
Introduction.

Were this book on formal logic alone, there would be no need for
a chapter on the theory of computing. Although logical languages are
first and foremost formal languages, outside a computational context no
issues of computability or complexity arise–certainly not in the usual
treatment of logic for philosophy courses, but not even in pure mathe-
matical logic textbooks. These issues arise when we need to compute
with logical languages (e.g., Turing-completeness of programming lan-

xiv

guages). Because these issues arise here, we need to approach Turing
machines, which, in turn, require the fundamentals of formal languages
and models of computation, in order to be satisfactorily understood.
We thus provide the basics of the general theory of classical computing,
which includes the study of formal languages and grammars, models of
computation, and computability theory. As a matter of fact, we pro-
vide more than the basics, doing so in the belief that such knowledge
often comes in handy for anyone interested in computational logic. This
material constitutes Chapter 2, which is Part III.

This book is one–the first–of two volumes addressing the topic of clas-
sical deductive computing. In it we focus on computing with classical
logic. Although new technologies have opened a path that led to a pro-
liferation of new logics, the so-called non-classical logics, classical logic
remains as the standard logical system which the other, newer, systems
extend or from which they diverge. This would be reason enough to
justify this volume, but the fact is that, despite the many technological
advances witnessed in the last decades, classical logic is still the logical
system of choice for many technological applications requiring what in
this book we call deductive computation.

Although the literature on classical logic is prolific, with many good
introductions to the subject, with self-containment in view we provide
a whole chapter (Chapter 4) on classical logic. This follows a compre-
hensive discussion on formal logic, deduction, and deductive computation
carried out in Chapter 3, in which such fundamental notions as logical
language, from the viewpoints of both form and meaning, and logical
consequence, in relation to inference and deductive systems, as well as
to computation, are thoroughly discussed.

The decision problem in computational logic is overwhelmingly tackled
by checking for (un)satisfiability, namely by means of the so-called SAT
testers or solvers. However, we thought that a working knowledge of
classical validity testing methods is also required. These–the classical
calculi–we present in Chapter 5, which is followed, in Chapter 6, by the
different semantics that provide a foundation for meaning in classical
logic.

Chapters 3 to 6, constituting Part IV of this book, comprise our dis-
cussion of classical deduction and classical logic.

In Part V, we begin by elaborating on the (classical) satisfiability
problem, already introduced in Chapter 2, and by providing the means
to computerize classical logic with a view to finding computational solu-
tions to this problem. This satisfiability testing is extensively discussed
in the remaining Sections of this Chapter 7. We then proceed with ex-
tensive treatments of the aforementioned main fields of computational

xv

Preface to the first edition

logic, to wit, automated theorem proving (Chapter 8) and logic pro-
gramming (Chapter 9). With respect to the former, we give an equal
weight to resolution and analytic tableaux. This is uncommon, as the
resolution calculus has all but obliterated the analytic tableaux calculus
in the context of automated theorem proving, but we think this obliter-
ation is not justified and hope to contribute to the reassessment of the
pay-offs of further automating the analytic tableaux calculus. Precisely
due to this imbalance our treatment of this calculus is not as compre-
hensive as our elaboration on resolution. As far as logic programming
is concerned, we naturally focus on Prolog, as this is the major (family
of) language(s) in this programming paradigm. It is our belief that by
mastering the essential aspects of Prolog related to its deductive capa-
bilities, as well as the general theory of logic programming, the reader
will be well equipped to tackle most tasks involving this programming
paradigm, as well as other (sub-)languages thereof, such as Datalog and
Answer Set Programming.

We restrict our elaboration on classical computing to first-order predi-
cate logic, which is known to be adequate (i.e. sound and complete) and
as such provides us with a reliable means for classical deductive compu-
tation. This by no means entails that we disfavor higher-order logics, but
we leave their inclusion in this text to possible future editions thereof.

As said above, this is the first of two volumes. Born in the late 1960s
/ early 1970s, computational logic has quickly grown to have many sub-
fields or subjects; many, indeed (see Introduction). Clearly, this prolif-
eration cannot be covered by a single volume, and we decided to divide
the material we find essential in two volumes, the main segregation be-
tween both being that we dedicate this (first) volume to computing with
classical logic, and we shall elaborate on computation with non-classical
logics in a second volume. This segregation is justified not only by the
fact that classical and non-classical logics have very different computa-
tional assumptions and applications, but also by the sheer quantity of
topics that need to be addressed; a single book would certainly be too
voluminous and readers may be interested in only one of these, classical
or non-classical logics.

An advantage of this project over other works in the field is the breadth
of its covering: the reader has in it far more content on computational
logic than is usually the case in a single monograph or textbook. This,
like any advantage, comes at a price, though: depth had to be relin-
quished. This is, however, remediated by bibliographical references to
works of a more limited breadth but with greater depth of treatment.
Moreover, this work contains a large selection of exercises on all the
approached topics. Having in mind both that most specialized mono-

xvi

graphs and handbooks lack any exercises and the large variety of topics
here approached, this is indeed yet another advantage, at least for the
reader of a more practical persuasion. In our selection of exercises we
included novel material (e.g., theorems not given in the main text), so
that the reader is expected also to approach problems in computational
logic in a creative way. Exercises asking the reader to reflect on some
statements or passages, as well as to engage in research, are also in-
cluded. These latter exercises are meant to complement the main text
with some topics that, while not being secondary, would require some
extended discussion, making of this a much larger volume.

Some final remarks: Some of the material in this volume draws on two
books of ours also published in College Publications, to wit, Augusto
(2017a, b). This material either is as was first published, or has been
submitted to some, often substantial, revisions and extensions. As was
or revised/extended, it is mostly to be found in Chapters 1, 7, and
8, as well as in all Chapters of Part IV, though not in all Sections
thereof. Chapters 2 and 9, as well as many Sections in Part IV (e.g.,
Sections 3.1-3), are completely novel, drawing only from folklore or from
works by other authors. These are orthodoxly cited and indicated in the
bibliographical references, but not always did we see it necessary to do
so, especially with respect to material that has to some extent already
acquired the character of mathematical or logical folklore.

Being a book on computational logic, this is, as said,–also–a book on
mathematical logic. This explains the usual distinction in the main text
of statements into definitions (abbreviated Def.), propositions (Prop.),
and the odd undistinguished paragraph that for ends of internal ref-
erence is referred to as “§”; these are all given a number indicating the
Section (two digits separated by a dot) and the order in the Section. For
example, 2.1.3 (Def.) indicates Definition 3 in Section 2.1. Theorems,
as well as their companion lemmas and corollaries, are numbered in the
same way but separately from the other numbered statements, and the
same holds for examples. Exercises are numbered according to not only
Section, but also Subsection.

It is usual to provide the reader with a schematic guide for the read-
ing of a book in the fields that are our foci. With this in mind, but
not wishing to direct the reader more than the Table of Contents al-
ready is expected to do, we think that in order for the lay reader to have
a minimal satisfactory grasping of classical deductive computing with
classical logic the following topics are essential: The system of classical
logic CL and the logic CL (Chapter 4), Herbrand semantics (concen-
trated in Sections 6.2 and 7.3.3), and Sections 7.1-2 for the satisfiability
problem and for the necessary means to make logical formulae of CL

xvii

Preface to the first edition

amenable to computation. These are sine-qua-non requirements for a
good understanding of automated theorem proving (Chapter 8) or logic
programming (Chapter 9), or both. The novice reader wishing to gain
a full grasp of our main topic cannot eschew the reading of the whole
volume. It should be remarked, however, that some Chapters are self-
standing in the sense that they can be used independently from the rest
of the volume. This is particularly true of Chapter 2, which is largely
conceived as a condensed treatment–with the usual selection of exer-
cises–of the theory of classical computing, and thus can be of use for
readers whose interest might fall exclusively on this topic.

For reasons to do with time, we do not include solutions to any of
the exercises in this edition, but sooner or later they are expected to be
provided, either online or in later editions. Readers wishing to contribute
with original solutions to problems other than the most basic ones (e.g.,
proofs of theorems) are welcome to contact me for this end.

My thanks go to Dov M. Gabbay for including this work in this ex-
cellent series of College Publications, and to Jane Spurr for her usual
impeccable assistance in the publication process.

Madrid, June 2018

Luis M. S. Augusto

xviii

Preface to the second edition

The first edition of the present work was rather hastily completed for
many reasons. This hastiness contributed to addenda and errata lists
longer than I feel comfortable with, as well as to the omission of some
contents that I consider important in a comprehensive introduction to
the large field of classical deductive computing with classical logic. Thus,
this second edition improves on the first by both eliminating (hopefully
most) addenda and errata, and including the mentioned contents. These
are largely constituted by Datalog, on which I elaborate at length in a
wholly new chapter (Chapter 9.3) for mainly two reasons: Firstly, Dat-
alog has an intrinsic interest from the viewpoint of databases, thus ex-
panding on the applications of logic programming; secondly, it provides
an important illustration of the equation Algorithm = Logic in computa-
tional logic, to be contrasted with the case of Prolog, which concretizes
the equation Algorithm = Logic + Control. On a more personal level,
Datalog is a highy rewarding topic to research into; more specifically,
how such a frugal logical language as Datalog can call for impressively
complex formal semantics promises to keep researchers busy for a long
time to come.

A few more exercises, in particular exercises aiming at connecting Part
III and Parts IV-V, were added in this edition. Further minor improve-
ments were made by redrawing some of the figures and by making minor
changes to the main text.

Madrid, January 2020

Luis M. S. Augusto

xix

Bibliographical references

• Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of
databases. Reading, MA, etc.: Addison-Wesley.

• Abiteboul, S. & Vianu, V. (1991). Datalog extensions for database
queries and updates. Journal of Computer and System Sciences,
43, 62-124.

• Apt, K. R. (1996). From logic programming to Prolog. Upper
Saddle River, NJ: Prentice Hall.

• Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory
of declarative knowledge. In J. Minker (ed.), Foundations of de-
ductive databases and logic programming (pp. 89-148). Los Altos,
CA: Morgan Kaufmann.

• Aristotle (ca. 350 BC). Metaphysics. Trans. by W. D. Ross (1908).
Available at http://classics.mit.edu//Aristotle/metaphysics.html.

• Augusto, L. M. (2017a). Logical consequences. Theory and appli-
cations: An introduction. London: College Publications.

• Augusto, L. M. (2017b). Many-valued logics: A mathematical and
computational introduction. London: College Publications.

• Augusto, L. M. (2019a). Languages, machines, and classical com-
putation. London: College Publications.

• Augusto, L. M. (2019b). Formal logic: Classical problems and
proofs. London: College Publications.

• Baaz, M., Egly, U., & Leitsch, A. (2001). Normal form trans-
formations. In A. Robinson & A. Voronkov (eds.), Handbook of
automated reasoning, vol. 1 (pp. 273-333). Amsterdam: Elsevier
/ Cambridge, MA: MIT Press.

• Bachmair, L. & Ganziger, H. (2001). Resolution theorem proving.
In A. Robinson & A. Voronkov (eds.), Handbook of automated rea-
soning, vol. 1 (pp. 19-99). Amsterdam: Elsevier / Cambridge,
MA: MIT Press.

495

Bibliographical references

• Beckert, B., Hähnle, R., & Schmitt, P. H. (1993). The even more
liberalized δ-rule in free variable semantic tableaux. In G. Gottlob,
A. Leitsch, & D. Mundici (eds.), Proceedings of the third Kurt
Gödel Colloquium KGC’93, Brno (pp. 108-119). Springer.

• Beth, E. W. (1955). Semantic entailment and formal derivability.
Mededlingen der Koninklijke Nederlandse Akademie van Weten-
schappen, 18, 309-342.

• Beth, E. W. (1960). Completeness results for formal systems. In J.
A. Todd (ed.), Proceedings of the International Congress of Math-
ematicians, 14-21 August 1958 (pp. 281-288). Cambridge: CUP.

• Biere, A., Heule, M., van Maaren, H., & Walsh, T. (2009). Hand-
book of satisfiability. Amsterdam, etc.: IOS Press.

• Blum, M. (1967). A machine-independent theory of the complexity
of recursive functions. Journal of the Association for Computing
Machinery, 14, 322-336.

• Boole, G. (1847). The mathematical analysis of logic. Being
an essay towards a calculus of deductive reasoning. Cambridge:
Macmillan, Barclay, and Macmillan.

• Boole, G. (1854). An investigation of the laws of thought, on which
are founded the mathematical theories of logic and probabilities.
London: Walton and Maberly.

• Börger, E., Grädel, E., & Gurevich, Y. (2001). The classical deci-
sion problem. Berlin, etc.: Springer.

• Ceri, S., Gottlob, G., & Tanca, L. (1989). What you always wanted
to know about Datalog (and never dared to ask). IEEE Transac-
tions on Knowledge and Data Engineering, 1, 146-166.

• Ceri, S., Gottlob, G., & Tanca, L. (1990). Logic programming and
databases. Berlin & Heidelberg: Springer.

• Chang, C.-L. & Lee, R. C.-T. (1973). Symbolic logic and mechan-
ical theorem proving. New York & London: Academic Press.

• Chomsky, N. (1956). Three models for the description of language.
IRE Transactions on Information Theory, 2, 113-124.

• Chomsky, N. (1959). On certain formal properties of grammars.
Information and Control, 2, 113-124.

496

• Church, A. (1936a). A note on the Entscheidungsproblem. Journal
of Symbolic Logic, 1, 40-41.

• Church, A. (1936b). An unsolvable problem of elementary number
theory. American Journal of Mathematics, 2, 345-363.

• Clark, K. L. (1978). Negation as failure. In H. Gallaire & J.
Minker (eds.), Logic and data bases (pp. 293-322). New York:
Plenum.

• Cleave, J. P. (1991). A study of logics. Oxford: Clarendon Press.

• Curry, H. B. (1963). Foundations of mathematical logic. New
York, etc.: McGraw-Hill.

• D’Agostino, M. (1999). Tableau methods for classical proposi-
tional logic. In M. D’Agostino et al. (eds.), Handbook of tableau
methods (pp. 45-123), Dordrecht: Kluwer.

• Date, C. J. (2004). Introduction to database systems. 8th ed.
Reading, MA: Addison-Wesley.

• Davis, M. (2001). The early history of automated deduction. In A.
Robinson & A. Voronkov (eds.), Handbook of automated reasoning,
vol. 1 (pp. 1-15). Amsterdam: Elsevier / Cambridge, MA: MIT
Press.

• Davis, M. & Putnam, H. (1960). A computing procedure for quan-
tification theory. Journal of the ACM, 7, 201-215.

• Davis, M. D. & Weyuker, E. J. (1983). Computability, complex-
ity, and languages. Fundamentals of theoretical computer science.
Orlando, etc.: Academic Press.

• Davis, M., Logemann, G., & Loveland, D. (1962). A machine
program for theorem-proving. Communications of the ACM, 5,
394-397.

• Deransart, P. & Ma luszyński, J. (1993). A grammatical view of
logic programming. Cambridge, MA: MIT Press.

• Digricoli, V. J. & Harrison, M. C. (1986). Equality-based binary
resolution. Journal of the Association for Computing Machinery,
33, 253-289.

• Doets, K. (1994). From logic to logic programming. Cambridge,
MA & London, England: The MIT Press.

497

Bibliographical references

• Enderton, H. B. (2001). A mathematical introduction to logic. 2nd
ed. San Diego, etc.: Harcourt Academic Press.

• Etchemendy, J. (1999). The concept of logical consequence. Stan-
ford: CSLI Publications.

• Fitting, M. (1996). First order logic and automated theorem prov-
ing. 2nd ed. New York, etc.: Springer.

• Fitting, M. (1999). Introduction. In M. D’Agostino et al. (eds.),
Handbook of tableau methods (pp. 1-44). Dordrecht: Kluwer.

• Frege, G. (1892). Über Sinn und Bedeutung. Zeitschrift für Philoso-
phie und philosophische Kritik C, 25-50.

• Gabbay, D. M. & Woods, J. (2003). A practical logic of cognitive
systems. Vol. 1: Agenda relevance. A study in formal pragmatics.
Amsterdam, etc.: Elsevier.

• Gabbay, D. M., Hogger, C. J., & Robinson, J. A. (eds.) (1998).
Handbook of logic in artificial intelligence and logic programming.
Vol. 5: Logic Programming. Oxford: Clarendon Press.

• Gallaire, H., Minker, J., & Nicolas, J.-M. (1984). Logic and data-
bases: A deductive approach. Computing Surveys, 16, 153-185.

• Gallier, J. (2011). Discrete mathematics. New York, etc.: Springer.

• Garey, M. R. & Johnson, D. S. (1979). Computers and intractabil-
ity: A guide to the theory of NP-completeness. New York: W. H.
Freeman and Company.

• Gelfond, M. & Lifschitz, V. (1988). The stable model semantics
for logic programming. In R. Kowalski & K. Bowen (eds.), Logic
programming: Proceedings of the 5th international conference and
symposium (pp. 1070-1080). MIT Press.

• Gentzen, G. (1934-5). Untersuchungen über das logische Schliessen.
Mathematische Zeitschrift, 39, 176-210, 405-431. (Engl. trans.:
Investigations into logical deduction. In M. E. Szabo (ed.), The
Collected Papers of Gerhard Gentzen (pp. 68-131). Amsterdam:
North-Holland.)

• Gilmore, P. (1960). A proof method for quantification theory:
Its justification and realization. IBM Journal of Research and
Development, 4, 28-35.

498

• Gödel, K. (1930). Die Vollständigkeit der Axiome des logischen
Funktionkalküls. Monatshefte für Mathematik, 37, 349-360. (Engl.
trans.: The completeness of the axioms of the functional calculus
of logic. In S. Feferman et al. (eds.), Collected works. Vol. 1:
Publications 1929-1936 (pp. 103-123). New York: OUP & Oxford:
Clarendon Press, 1986.)

• Gödel, K. (1931). Über formal unentscheidbare Sätze der Prin-
cipia Mathematica und verwandter Systeme, I. Monatshefte für
Mathematik und Physik, 38, 173-198. (Engl. trans.: On formally
undecidable propositions of Principia Mathematica and related
systems, I. In S. Feferman et al. (eds.), Collected works. Vol.
1: Publications 1929-1936 (pp. 144-195). New York: OUP &
Oxford: Clarendon Press, 1986.)

• Gödel, K. (1964). Postscriptum to Gödel (1934). In Collected
works I (pp. 369-371), Oxford: OUP, 1986.

• Greco, S. & Molinaro, C. (2016). Datalog and logic databases.
Morgan & Claypool.

• Grune, D. & Jacobs, C. J. H. (2010). Parsing techniques: A prac-
tical guide. 2nd ed. New York, NY: Springer.

• Hähnle, R. & Schmitt, P. H. (1994). The liberalized δ-rule in free-
variable semantic tableaux. Journal of Automated Reasoning, 13,
211-221.

• Henkin, L. (1949). The completeness of the first-order functional
calculus. Journal of Symbolic Logic, 14, 159-166.

• Herbrand, J. (1930). Recherches sur la théorie de la démonstra-
tion. Thèses présentées à la Faculté des Sciences de Paris.

• Hilbert, D. & Ackermann, W. (1928). Grundzüge der theoretischen
Logik. Berlin: Springer.

• Hintikka, J. (1955). Form and content in quantification theory.
Acta Philosophica Fennica, 8, 7-55.

• Hopcroft, J. E., Motwani, R., & Ullman, J. (2013). Introduction
to automata theory, languages, and computation. 3rd ed. Boston,
etc.: Pearson.

• Hurley, P. J. (2012). A concise introduction to logic. 11th ed.
Boston, MA: Wadsworth.

499

Bibliographical references

• Jaśkowski, S. (1934). On the rules of suppositions in formal logic.
Studia Logica, 1, 5-32.

• Kleene, S. C. (1952). Introduction to metamathematics. Princeton,
NJ: D. van Nostrand Co.

• Kleene, S. C. (1956). Representation of events in nerve nets and fi-
nite automata. In C. E. Shannon & J. McCarthy (eds.), Automata
studies (pp. 3-42). Princeton: Princeton University Press.

• Leitsch, A. (1997). The resolution calculus. Berlin, etc.: Springer.

• Letz, R. (1999). First-order tableau methods. In M. D’Agostino et
al. (eds.), Handbook of tableau methods (pp. 125-196), Dordrecht:
Kluwer.

• Libkin, L. (2012). Elements of finite model theory. Berlin, etc.:
Springer.

• MacKenzie, D. (1995). The automation of proof: A historical and
sociological exploration. IEEE Annals of the History of Comput-
ing, 17, 7-29.

• Makinson, D. (2008). Sets, logic, and maths for computing. Lon-
don: Springer.

• Martin, N. M. & Pollard, S. (1996). Closure spaces and logic.
Dordrecht: Kluwer.

• Mendelson, E. (2015). Introduction to mathematical logic. 6th ed.
Boca Raton, FL: Taylor & Francis Group.

• Minker, J. (1997). Logic and databases: Past, present, and future.
AI Magazine, 18, 21-47.

• Minsky, M. (1974). A framework for representing knowledge. Re-
port AIM, 306, Artificial Intelligence Laboratory, MIT.

• Newell, A. (1973). Production systems: Models of control struc-
tures. In W. G. Chase (ed.), Visual information processing (pp.
463-526), New York: Academic Press.

• Newell, A. (1990). Unified theories of cognition. Cambridge, MA:
Harvard University Press.

500

• Nieuwenhuis, R. & Rubio, A. (2001). Paramodulation-based the-
orem proving. In A. Robinson & A. Voronkov (eds.), Handbook of
automated reasoning, vol. 1 (pp. 371-443). Amsterdam: Elsevier
/ Cambridge, MA: MIT Press.

• Prawitz, D. (1965). Natural deduction. A proof-theoretical study.
Stockholm: Almqvist & Wiksell.

• Przymusinski, T. C. (1989). On the declarative and procedural
semantics of logic programs. Journal of Automated Reasoning, 5,
167-205.

• Quine, W. V. O. (1938). Completeness of the propositional calcu-
lus. Journal of Symbolic Logic, 3, 37-40.

• Rahwan, I. & Simari, G. R. (eds.) (2009). Argumentation in
artificial intelligence. Dordrecht, etc.: Springer.

• Reiter, R. (1978). On closed world data bases. In H. Gallaire &
J. Minker (eds.), Logic and data bases (pp. 55-76). New York:
Plenum.

• Reiter, R. (1984). Towards a logical reconstruction of relational
database theory. In M. L. Brodie, J. Mylopolous, & J. W. Schmidt
(eds.), On conceptual modeling. Perspectives from artificial intelli-
gence, databases, and programming languages (pp. 191-238). New
York: Springer.

• Robinson, A. J. (1965). A machine-oriented logic based on the
resolution principle. Journal of ACM, 12, 23-41.

• Robinson, G. & Wos, L. (1969). Paramodulation and theorem-
proving in first-order theories with equality. Machine Intelligence,
4, 135-150.

• Shepherdson, J. C. (1984). Negation as failure: A comparison of
Clark’s completed data base and Reiter’s closed world assumption.
Journal of Logic Programming, 1, 1-48.

• Siekmann, J. H. (ed.) (2014). Handbook of the history of logic.
Vol. 9: Computational logic. Amsterdam, etc.: North-Holland,
Elsevier.

• Sippu, S. & Soisalon-Soininen, E. (1990). Parsing theory. Vol. II:
LR(k) and LL(k) parsing. Berlin, Heidelberg: Springer.

501

Bibliographical references

• Smullyan, R. M. (1968). First-order logic. Mineola, NY: Dover.

• Stepney, S. et al. (2005). Journeys in non-classical computation I:
A grand challenge for computing research. International Journal
of Parallel, Emergent and Distributed Systems, 20, 5-19.

• Sterling, L. & Shapiro, E. (1994). The art of Prolog. Cambridge,
MA & London, England: The MIT Press.

• Stone, M. H. (1936). The theory of representation for Boolean
algebras. Transactions of the American Mathematical Society, 40,
37-111.

• Tarski, A. (1930). Fundamentale Begriffe der Methodologie der
deduktiven Wissenschaften. I. Monatshefte für Mathematik und
Physik, 37, 361-404. (Engl. trans.: Fundamental concepts of the
methodology of the deductive sciences. In A. Tarski, Logic, seman-
tics, metamathematics: Papers from 1923 to 1938 (pp. 60-109).
Oxford: Clarendon Press, 1956.)

• Tarski, A. (1935). Der Wahrheitsbegriff in formalisierten Sprachen.
Studia Philosophica, 1, 261-405 (Engl. trans.: The concept of truth
in formalized languages. In A. Tarski, Logic, semantics, metamath-
ematics: Papers from 1923 to 1938 (pp. 152-278). Trans. by J. H.
Woodger. Oxford: Clarendon Press, 1956) (Originally published
in Polish in 1933.)

• Tarski, A. (1994). Introduction to logic and to the methodology of
deductive sciences. 4th ed. J. Tarski (ed.). New York & Oxford:
Oxford University Press.

• Troelstra, A. S. & Schwichtenberg, H. (2000). Basic proof theory.
2nd ed. Cambridge: Cambridge University Press.

• Tseitin, G. S. (1968). On the complexity of derivations in the
propositional calculus. In A. O. Slisenko (ed.), Studies in con-
structive mathematics and mathematical logic. Part 2. Seminar
in mathematics (pp. 115-125). Steklov Mathematical Institute.

• Turing, A. (1936-7). On computable numbers, with an application
to the Entscheidungsproblem. Proceedings of the London Mathe-
matical Society, Series 2, 41, 230-265.

• van Emden, M. H. & Kowalski, R. A. (1976). The semantics of
predicate logic as a programming language. Journal of the Asso-
ciation for Computing Machinery, 23, 733-742.

502

• van Gelder, A. (1986). Negation as failure using tight derivations
for general logic programs. In Proceedings of the Third IEEE Sym-
posium on Logic Programming, pp. 137-146.

• van Gelder, A., Ross, K. A., & Schlipf, J. S. (1991). The well-
founded semantics for general logic programs. Journal of the ACM,
38, 620-650.

• Walther, C. (1985). A mechanical solution of Schubert’s Steam-
roller by many-sorted resolution. Artificial Intelligence, 26, 217-
224.

• Wójcicki, R. (1988). Theory of logical calculi: Basic theory of
consequence operations. Dordrecht: Kluwer.

• Younger, D. H. (1967). Recognition and parsing of context-free
languages in time n3. Information and Control, 10, 189-208.

503

Index

505

Index

A

Abstract interpreter, 411

Adequateness of a logical system,
225

Adequateness of a program, 411

Adequateness of a query system,
402

Algorithm, 11

Algorithm, Analytic tableaux, 383

Algorithm, CYK, 165

Algorithm, DPLL, 339

Algorithm, Robinson’s, 251

Algorithm, Tseitin transforma-
tion, 332

Analytic tableaux, 383

A-ordering, 365

Argument, 188

Assumption, Closed-world (CWA),
427

Assumption, Complete database
(CDB), 427

Assumption, Completion, 454

Assumption, Domain-closure, 454

Assumption, Unique-name, 454

Automated theorem proving (ATP),
347

Automaton, Finite, 86

Automaton, Linear-bounded (LBA),
131

Automaton, Pushdown (PDA),
101

Axiom, 214

Axiom system, 280

Axiom, Logical, 228

Axiom, Non-logical or proper, 228

Axioms, Blum, 150

Axioms, Particularization, 454

B

Backtracking, 419

Backus-Naur form, 176

Big-O notation, 152

Bivalence, 7

Boolean algebra, 31

Boolean expression, 310

Boolean function, 197

C

Chomsky hierarchy, 79

Chomsky hierarchy, Extended, 136

Church-Turing Thesis, 138

Clark completion, 428

Clark formula, 428

Clause, 326

Clause, Definite, 326

Clause, Dual-Horn, 326

Clause, General, 430

Clause, Horn, 326

Closure operation, 211

Closure system, 208

Closure, Existential, 177

Closure, Universal, 177

Compactness, 211

Compactness of propositional logic,
341

Completeness, 224

507

Index

Completeness theorem, 267
Complexity classes, 153
Complexity, Combined, 243
Complexity, Computational, 153
Complexity, Data, 243
Complexity, Expression, 243
Complexity, Space, 150
Complexity, Time, 151
Computation, 3
Computation (for a machine), 82
Computation, Deductive, 13
Computation, Symbolic, 3
Computation, Truth-preserving,

13
Computational yield, 402
Computing, Assumptions of clas-

sical, 12
Computing, Classical, 10
Configuration, 82
Consequence operation, 207
Consequence operator, Immedi-

ate, 468
Consequence relation, 207
Consistency, 216
Constructive dilemma (CD), 192
Contingency, 220
Contradiction, 220
Contraposition, Law of, 262
Cook-Karp Thesis, 156
Cook-Levin Theorem, 160
Counter-model, 219
Counter-proof, 215
Cut operator, 440

D

Database, Datalog, 458
Database, Deductive (DDB), 457
Database, Disjunctive deductive

(DDDB), 472
Database, Extended disjunctive

deductive (EDDDB), 462
Database, Extensional (EDB), 454

Database, Indefinite deductive (ID-
DDB), 462

Database, Intensional (IDB), 455
Database, Relational, 452
Database, Temporal deductive,

462
Datalog¬, Semi-positive, 481
De Morgan’s laws (DM), 262
Decision procedure, 232
Deduction theorem (DT), 223
Deduction, Computational, 232
Deduction, Resolution, 349
Deduction-Detachment theorem

(DDT), 227
Deductive system, 210
Denotation, 296
Derivability, 214
Derivation (in a grammar), 57
Destructive dilemma (DD), 192
Determinacy (of a programming

system), 401
Determinism (of a programming

system), 401
Diagonalization method, 21
Distributive laws, 331
Domain of discourse, 200
DPDA (Deterministic pushdown

automaton), 109
DPLL procedure, 337

E

Equality, 273
Equality substitution, 377
Equisatisfiability, 329
Evaluation (Datalog), 478
Evaluation, Bottom-up Datalog,

478
Evaluation, Top-down Datalog,

478
Ex contradictione quodlibet (ECQ),

192
Ex falso quodlibet (EFQ), 256

508

Index

Excluded middle, Principle of (PEM),
257

Existential distribution, 178

Explosion, Principle of, 196

Extensionality, Principle of, 197

F

Fact (in LP), 406

Fail operator, 443

Finite satisfiability, 234

Finite transducer, 96

Finite-model property (FMP), 239

Finite-state machine, 98

Finite-state recognizer (FSR), 81

Finite-state recognizer, Nondeter-
ministic (NDFSR), 86

Fixed point, 469

Fixed point, Least, 469

Function (symbol), 174

Function, Extended transition, 82

Function, Transition, 81

Functional completeness, 198

G

Generalization rule (GEN), 281

Goal (in LP), 406

Goal clause, 416

Goal clause, Empty, 416

Grammar, Ambiguous, 67

Grammar, Context-free (CFG);
Type-2, 64

Grammar, Context-sensitive (CSG);
Type-1, 65

Grammar, Formal, 52

Grammar, LR(k), 111

Grammar, Regular; Type-3, 63

Grammar, Unrestricted (UG); Type-
0, 76

Graph, Dependency, 482

Ground expression, 171

Ground extension, 235

Ground instance, 249

Ground substitution, 249

H

Herbrand base, 301

Herbrand instance (H-instance),
301

Herbrand interpretation (H-interpre-
tation), 301

Herbrand model (H-model), 302

Herbrand model, Least, 425

Herbrand model, Minimal, 425

Herbrand satisfiability (H-satisfia-
bility), 302

Herbrand universe, 300

Herbrand’s Theorem, 341

Hilbert’s Tenth Problem, 146

Hintikka set, 390

Hintikka’s Lemma, 390

Hypothetical syllogism (HS), 192

I

Identity of indiscernibles (IdI),
273

Identity, Law of, 262

Induction, Mathematical, 46

Induction, Structural, 46

Inference, 210

Inference operation, 210

Inference relation, 210

Inference rule, 213

Inference system, 210

Instance, Database, 463

Interpretation, 200

Interpretation of a LP program,
Declarative, 406

Interpretation of a LP program,
Procedural, 406

Invalidity, 219

K

Kleene’s Least Fixed-PointTheorem,
472

509

Index

Kleene’s Theorem for regular lan-
guages, 93

Knaster-Tarski Theorem, 472

L

Language, Context-free (CFL),
64

Language, Context-sensitive (CSL),
65

Language, Decidable, 140
Language, First-order (FO), 175
Language, Formal, 52
Language, Logical, 170
Language, Object, 169
Language, Propositional, 175
Language, Recursive, 135
Language, Recursively enumer-

able (REL), 77
Language, Regular, 61
Language, Relational, 452
Leibniz’s law (LL), 273
Lifting lemma, 362
Lindenbaum’s Theorem, 229
Lindenbaum-Tarski algebra, 307
Logic (of a logical system), The,

217, 221
Logic programming (LP), 399
Logic, Classical, 7
Logic, Classical first-order (CFOL),

248
Logic, Classical propositional (CPL),

248
Logic, Computational, 8
Logic, Deductive, 6
Logic, Formal, 5
Logic, Informal, 5
Logic, Mathematical, 4
Logic, Truth-preserving, 6
Logical consequence, 206
Logical equivalence, 199, 202
Logical system, 207
Logics, Non-classical, 7

Löwenheim-Skolem Theorem, 240

M

Matching, 473

Mealy machine, 96

Meaning, 194

Meaning of a program, 411

Meaning of a program, Intended,
412

Meaning, Principle of composi-
tionality of, 197

Metalanguage, 169

Meta-variable, 434

Model, 219

Model, Computer, 82

Model, Herbrand (H-model), 302

Model, Herbrand least, 425

Model, Supported, 472

Modus ponens (MP), 192

Modus ponens, Universal (UMP),
411

Modus tollendo ponens (TP), 192

Modus tollens (MT), 192

Monotonicity, 210

Moore machine, 96

Myhill-Nerode Theorem, 93

N

Natural deduction calculus, 283

Negation by failure (NBF), 427

Negation distribution, 178

Negation law, Double (DN), 257

Negation, Cut-failure, 446

Non-contradiction, Principle of
(PNC), 257

Non-monotonicity, 427

Normal form, Chomsky, 64

Normal form, Conjunctive (CNF),
329

Normal form, Disjunctive (DNF),
330

Normal form, Greibach, 107

510

Index

Normal form, Negation (NNF),
327

Normal form, Prenex (PNF), 327

Normal form, Skolem (SNF), 329

O

Ogden’s Lemma, 74

One-literal rule, 348

P

P =? NP, 155

Paramodulation, 377

Paramodulation, Ordered, 379

Paramodulation, Simultaneous, 379

Post’s Correspondence Problem,
146

Predicate (symbol), 174

Predicate, Built-in, 434

Prefix classes, 239

Problem for 2-CNF formulae, The
satisfiability (2-SAT), 335

Problem for 3-CNF formulae, The
satisfiability (3-SAT), 335

Problem for DNF formulae, The
satisfiability (DNF-SAT),
336

Problem for dual-Horn formulae,
The satisfiability (DUAL-
HORN-SAT), 337

Problem for Horn formulae, The
satisfiability (HORN-SAT),
335

Problem for k-CNF formulae, The
satisfiability (k-SAT), 335

Problem for quantified Boolean
formulae, The satisfiabil-
ity (QBF-SAT), 336

Problem, Computational, 149

Problem, Decision, 138

Problem, Function, 149

Problem, Hilbert’s Tenth, 146

Problem, Logical (LOGP), 230

Problem, The Acceptance (ACPT),
141

Problem, The Boolean satisfia-
bility (SAT), 319

Problem, The Busy Beaver, 146
Problem, The Circuit Satisfiabil-

ity (CIRCUIT-SAT), 159
Problem, The Clique (CLIQUE),

160
Problem, The Graph Colorabil-

ity, 159
Problem, The Graph Isomorphism,

160
Problem, The Halting (HALT),

141
Problem, The Hamiltonian Cy-

cle (HAM-CYCLE), 160
Problem, The Hamiltonian Path

(HAMPATH), 149
Problem, The maximum satisfi-

ability (MAX-SAT), 337
Problem, The Null-Value, 462
Problem, The Relative Primes,

158
Problem, The satisfiability (SAT),

318
Problem, The Shortest Path, 158
Problem, The State-Entry (STEN-

TRY), 143
Problem, The Subgraph Isomor-

phism, 159
Problem, The Subset-Sum (SUBSET-

SUM), 160
Problem, The Traveling Salesman

(TSP), 160
Problem, The validity (VAL), 230
Problem, The Vertex Cover (VER-

TEX-COVER), 159
Production rule, 56
Program clause, 415
Program, Datalog, 458
Program, General, 431

511

Index

Program, Logic, 408

Program, Prolog, 408

Programming system, 401

Prolog, Pure, 405

Prolog, Real, 433

Proof, 214

Proof calculus, 214

Proof system, 214

Provability, 214

Pumping lemma for CFLs, 70

Pumping lemma for regular lan-
guages, 62, 95

Q

Quantifier (symbol), 175

Quantifier axioms, 281

Quantifier duality, 202

Quantifier reversal, 178

Query, 400

Query system, 400

Query, Meta-safe, 449

Query, Restricted Prolog, 449

R

Recursion, 425

Reducibility, 142

Reducibility, Polynomial-time, 158

Reductio ad absurdum (RA), 262

Reduction (in LP), 414

Reduction, Ground, 414

Reduction, LR(k)-grammar, 111

Refutation, 215

Refutation completeness, 416

Reply, Conjunctive, 404

Reply, Consequentially strongest
correct, 403

Reply, Most general, 404

Reply, Provably correct, 401

Representation theorem, 308

Resolution principle for FOL, 354

Resolution principle for proposi-
tional logic, 348

Resolution refinement, 364
Resolution with rule NF, SLD

(SLDNF), 431
Resolution, Binary, 354
Resolution, Hyper-, 369
Resolution, LD, 376
Resolution, LI, 375
Resolution, Linear, 375
Resolution, Macro-, 369
Resolution, RUE, 382
Resolution, Semantic, 370
Resolution, SLD, 376
Resolution, Unit-resulting, 356
Rice’s Theorem, 146
Rule (in LP), 406

S

Satisfiability, 218
Savitch’s Theorem, 155
Schema (of a Datalog program),

460
Schema, Extensional, 460
Schema, Intensional, 460
Search, Breadth-first, 422
Search, Depth-first, 419
Semantical correlate, 197
Semantics, 219
Semantics, 3-valued, 492
Semantics, Fixed-point, 468
Semantics, Inflationary, 492
Semantics, Least-Herbrand-model,

470
Semantics, Perfect-model, 492
Semantics, Stratified, 481
Semantics, Well-founded, 492
Semantics,Stable-model, 492
Semi-decidability, 140
Sentential form, 57
Sequent calculus, 288
Skolem constant, 329
Skolem function, 329
Soundness, 224

512

Index

State diagram, 83
Statement (in LP), 406
Stratification, 484
Substitution, 249
Substitution principle (SubP), 273
Substitution rule (SUB), 215
Syntax, 53, 169
Syntax, Ambivalent, 407

T
Tableau proof, 383
Tarski-style conditions, 255
Tautology, 220
Theorem, 214
Theory, 228
Theory, Scapegoat, 267
Trace, 414
Tractability, 156
Transition relation, 86
Transition table, 85
Tree, Derivation, 66
Tree, Formula, 180
Tree, Parse, 66
Tree, Proof, 415
Tree, Refutation, 349
Tree, Semantic, 342
Tree, SLD-resolution, 419
Truth function, 195
Truth table, 195
Truth value, 195
Truth-functionality, 7
Truth-preservation, 258
Turing machine, 121
Turing machine, Non-deterministic,

125
Turing machine, Total, 135
Turing machine, Universal, 126
Turing paradigm, 12
Turing-completeness, 10
Turing-decidability, 138
Turing-recognizability, 147
Turing-reducibility, 142

U
Ultrafilter theorem, 312
Unicity of decomposition, 172
Unification, 250
Unification problem, 251
Unifier, Most general (MGU), 250
Unit deletion, 356

V
Validity, 219
Valuation, 195

513

