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Preface to the first edition

It is often the case that computer science is considered merely a branch of
mathematics. This (still) often motivates the belief that logic is required
for computer science just because it is required for mathematics, namely
for proofs. However, logic in computing goes well beyond the context of
mathematical proof, being present today in fields such as artificial in-
telligence and cognitive science, and having significant engineering and
industrial applications. This impressive plethora of computational ap-
plications of logic could not be possible without a large variety of logics,
which for our purposes can be elegantly–i.e. by means of the English
connector and–segregated in two major classes: classical logic(s) and
non-classical logics.

Yet another, but perhaps not so elegant, segregation must be con-
templated when speaking of computing today: classical computing or
non-classical computing. While in the latter kind one can include a large
variety of computation models and computers (e.g., quantum comput-
ers, artificial neural networks, evolutionary computing), we shall con-
sider classical computing to be the processing of information carried out
by the von Neumann, or industrial-scale digital computer, which has as
a major theoretical foundation the Turing computing paradigm. This
paradigm, concretized in the Turing machine, sees computation as a
spatial-temporal discrete business over symbols that can best be carried
out in binary code. While this paradigm does not take into account the
resources available for computation, the von Neumann computer is in
fact constrained by physical–i.e. spatial and temporal–resources, which
means that classical computing has more or less clearly established lim-
itations.

When logic, whether classical or non-classical, is applied in comput-
ing, either classical or non-classical, we speak of computational logic.
This is an important label in at least two senses. Firstly, it captures
the fact that there is a subfield of formal logic that can be applied in
a computational setting. This subfield might be obtained by imposing
restrictions (for example, on the sets of operators), but also by exten-
sions or just plain variations. Secondly, it helps us to distinguish clearly
between computation carried out with a logical language from computa-
tion carried out with other formal languages. In effect, while the latter

xiii



Preface to the first edition

typically is concerned with preserving the legality of symbol strings (le-
gal strings are processed into further legal strings), the former often
aims at truth-preservation. Say that we have a theory and wish to know
whether some assertion follows logically from it, i.e. belongs to it, or
is true in it. The deduction theorem allows us to express this logical
following in a single symbol string, known as a logical formula, and our
question is notoriously best concretized in the validity and satisfiability
problems, which ask whether a logical formula is always true, or is true
in some interpretation, respectively. When these problems–in particular
the latter–are posed in a computational context, we accordingly speak of
deductive computation. When the computational solution is to be found
by means of classical computing, we then speak of classical deductive
computing.

In this book we elaborate on classical deductive computing with classi-
cal logic, and we do so without a specific regard to the field of application.
Our foci are first and foremost two main subjects in which classical de-
ductive computing with classical logic has a prominent role: automated
theorem proving and logic programming.

This is thus a book on applied logic. Furthermore, this is a book on
applied mathematical logic. We take here the label mathematical logic
as synonymous with formal logic, and this in a very narrow sense: for-
mal logic is logic whose foundations lie in mathematical objects and
structures. Although these mathematical foundations may be incon-
spicuous at the object-language level, at the metalanguage level they do
become more conspicuous or even explicit. Interestingly enough–though
not surprising anymore–, the mathematical structures and objects usu-
ally required in mathematical logic are precisely those needed for clas-
sical deductive computing; we talk here of lattices, graphs, trees, etc.,
all known as discrete structures and objects. This accounts for a whole
chapter (Chapter 1) dedicated to the topics of discrete mathematics re-
quired for a satisfactory grasping of the material in this book. More
specifically, we restrictively provide the mathematical notions that are
foundational for both the theory of classical computing and classical de-
duction. Chapter 1 constitutes Part II of this volume, Part I being the
Introduction.

Were this book on formal logic alone, there would be no need for
a chapter on the theory of computing. Although logical languages are
first and foremost formal languages, outside a computational context no
issues of computability or complexity arise–certainly not in the usual
treatment of logic for philosophy courses, but not even in pure mathe-
matical logic textbooks. These issues arise when we need to compute
with logical languages (e.g., Turing-completeness of programming lan-

xiv



guages). Because these issues arise here, we need to approach Turing
machines, which, in turn, require the fundamentals of formal languages
and models of computation, in order to be satisfactorily understood.
We thus provide the basics of the general theory of classical computing,
which includes the study of formal languages and grammars, models of
computation, and computability theory. As a matter of fact, we pro-
vide more than the basics, doing so in the belief that such knowledge
often comes in handy for anyone interested in computational logic. This
material constitutes Chapter 2, which is Part III.

This book is one–the first–of two volumes addressing the topic of clas-
sical deductive computing. In it we focus on computing with classical
logic. Although new technologies have opened a path that led to a pro-
liferation of new logics, the so-called non-classical logics, classical logic
remains as the standard logical system which the other, newer, systems
extend or from which they diverge. This would be reason enough to
justify this volume, but the fact is that, despite the many technological
advances witnessed in the last decades, classical logic is still the logical
system of choice for many technological applications requiring what in
this book we call deductive computation.

Although the literature on classical logic is prolific, with many good
introductions to the subject, with self-containment in view we provide
a whole chapter (Chapter 4) on classical logic. This follows a compre-
hensive discussion on formal logic, deduction, and deductive computation
carried out in Chapter 3, in which such fundamental notions as logical
language, from the viewpoints of both form and meaning, and logical
consequence, in relation to inference and deductive systems, as well as
to computation, are thoroughly discussed.

The decision problem in computational logic is overwhelmingly tackled
by checking for (un)satisfiability, namely by means of the so-called SAT
testers or solvers. However, we thought that a working knowledge of
classical validity testing methods is also required. These–the classical
calculi–we present in Chapter 5, which is followed, in Chapter 6, by the
different semantics that provide a foundation for meaning in classical
logic.

Chapters 3 to 6, constituting Part IV of this book, comprise our dis-
cussion of classical deduction and classical logic.

In Part V, we begin by elaborating on the (classical) satisfiability
problem, already introduced in Chapter 2, and by providing the means
to computerize classical logic with a view to finding computational solu-
tions to this problem. This satisfiability testing is extensively discussed
in the remaining Sections of this Chapter 7. We then proceed with ex-
tensive treatments of the aforementioned main fields of computational

xv



Preface to the first edition

logic, to wit, automated theorem proving (Chapter 8) and logic pro-
gramming (Chapter 9). With respect to the former, we give an equal
weight to resolution and analytic tableaux. This is uncommon, as the
resolution calculus has all but obliterated the analytic tableaux calculus
in the context of automated theorem proving, but we think this obliter-
ation is not justified and hope to contribute to the reassessment of the
pay-offs of further automating the analytic tableaux calculus. Precisely
due to this imbalance our treatment of this calculus is not as compre-
hensive as our elaboration on resolution. As far as logic programming
is concerned, we naturally focus on Prolog, as this is the major (family
of) language(s) in this programming paradigm. It is our belief that by
mastering the essential aspects of Prolog related to its deductive capa-
bilities, as well as the general theory of logic programming, the reader
will be well equipped to tackle most tasks involving this programming
paradigm, as well as other (sub-)languages thereof, such as Datalog and
Answer Set Programming.

We restrict our elaboration on classical computing to first-order predi-
cate logic, which is known to be adequate (i.e. sound and complete) and
as such provides us with a reliable means for classical deductive compu-
tation. This by no means entails that we disfavor higher-order logics, but
we leave their inclusion in this text to possible future editions thereof.

As said above, this is the first of two volumes. Born in the late 1960s
/ early 1970s, computational logic has quickly grown to have many sub-
fields or subjects; many, indeed (see Introduction). Clearly, this prolif-
eration cannot be covered by a single volume, and we decided to divide
the material we find essential in two volumes, the main segregation be-
tween both being that we dedicate this (first) volume to computing with
classical logic, and we shall elaborate on computation with non-classical
logics in a second volume. This segregation is justified not only by the
fact that classical and non-classical logics have very different computa-
tional assumptions and applications, but also by the sheer quantity of
topics that need to be addressed; a single book would certainly be too
voluminous and readers may be interested in only one of these, classical
or non-classical logics.

An advantage of this project over other works in the field is the breadth
of its covering: the reader has in it far more content on computational
logic than is usually the case in a single monograph or textbook. This,
like any advantage, comes at a price, though: depth had to be relin-
quished. This is, however, remediated by bibliographical references to
works of a more limited breadth but with greater depth of treatment.
Moreover, this work contains a large selection of exercises on all the
approached topics. Having in mind both that most specialized mono-
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graphs and handbooks lack any exercises and the large variety of topics
here approached, this is indeed yet another advantage, at least for the
reader of a more practical persuasion. In our selection of exercises we
included novel material (e.g., theorems not given in the main text), so
that the reader is expected also to approach problems in computational
logic in a creative way. Exercises asking the reader to reflect on some
statements or passages, as well as to engage in research, are also in-
cluded. These latter exercises are meant to complement the main text
with some topics that, while not being secondary, would require some
extended discussion, making of this a much larger volume.

Some final remarks: Some of the material in this volume draws on two
books of ours also published in College Publications, to wit, Augusto
(2017a, b). This material either is as was first published, or has been
submitted to some, often substantial, revisions and extensions. As was
or revised/extended, it is mostly to be found in Chapters 1, 7, and
8, as well as in all Chapters of Part IV, though not in all Sections
thereof. Chapters 2 and 9, as well as many Sections in Part IV (e.g.,
Sections 3.1-3), are completely novel, drawing only from folklore or from
works by other authors. These are orthodoxly cited and indicated in the
bibliographical references, but not always did we see it necessary to do
so, especially with respect to material that has to some extent already
acquired the character of mathematical or logical folklore.

Being a book on computational logic, this is, as said,–also–a book on
mathematical logic. This explains the usual distinction in the main text
of statements into definitions (abbreviated Def.), propositions (Prop.),
and the odd undistinguished paragraph that for ends of internal ref-
erence is referred to as “§”; these are all given a number indicating the
Section (two digits separated by a dot) and the order in the Section. For
example, 2.1.3 (Def.) indicates Definition 3 in Section 2.1. Theorems,
as well as their companion lemmas and corollaries, are numbered in the
same way but separately from the other numbered statements, and the
same holds for examples. Exercises are numbered according to not only
Section, but also Subsection.

It is usual to provide the reader with a schematic guide for the read-
ing of a book in the fields that are our foci. With this in mind, but
not wishing to direct the reader more than the Table of Contents al-
ready is expected to do, we think that in order for the lay reader to have
a minimal satisfactory grasping of classical deductive computing with
classical logic the following topics are essential: The system of classical
logic CL and the logic CL (Chapter 4), Herbrand semantics (concen-
trated in Sections 6.2 and 7.3.3), and Sections 7.1-2 for the satisfiability
problem and for the necessary means to make logical formulae of CL
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Preface to the first edition

amenable to computation. These are sine-qua-non requirements for a
good understanding of automated theorem proving (Chapter 8) or logic
programming (Chapter 9), or both. The novice reader wishing to gain
a full grasp of our main topic cannot eschew the reading of the whole
volume. It should be remarked, however, that some Chapters are self-
standing in the sense that they can be used independently from the rest
of the volume. This is particularly true of Chapter 2, which is largely
conceived as a condensed treatment–with the usual selection of exer-
cises–of the theory of classical computing, and thus can be of use for
readers whose interest might fall exclusively on this topic.

For reasons to do with time, we do not include solutions to any of
the exercises in this edition, but sooner or later they are expected to be
provided, either online or in later editions. Readers wishing to contribute
with original solutions to problems other than the most basic ones (e.g.,
proofs of theorems) are welcome to contact me for this end.

My thanks go to Dov M. Gabbay for including this work in this ex-
cellent series of College Publications, and to Jane Spurr for her usual
impeccable assistance in the publication process.

Madrid, June 2018

Luis M. S. Augusto
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Preface to the second edition

The first edition of the present work was rather hastily completed for
many reasons. This hastiness contributed to addenda and errata lists
longer than I feel comfortable with, as well as to the omission of some
contents that I consider important in a comprehensive introduction to
the large field of classical deductive computing with classical logic. Thus,
this second edition improves on the first by both eliminating (hopefully
most) addenda and errata, and including the mentioned contents. These
are largely constituted by Datalog, on which I elaborate at length in a
wholly new chapter (Chapter 9.3) for mainly two reasons: Firstly, Dat-
alog has an intrinsic interest from the viewpoint of databases, thus ex-
panding on the applications of logic programming; secondly, it provides
an important illustration of the equation Algorithm = Logic in computa-
tional logic, to be contrasted with the case of Prolog, which concretizes
the equation Algorithm = Logic + Control. On a more personal level,
Datalog is a highy rewarding topic to research into; more specifically,
how such a frugal logical language as Datalog can call for impressively
complex formal semantics promises to keep researchers busy for a long
time to come.

A few more exercises, in particular exercises aiming at connecting Part
III and Parts IV-V, were added in this edition. Further minor improve-
ments were made by redrawing some of the figures and by making minor
changes to the main text.

Madrid, January 2020

Luis M. S. Augusto
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Explosion, Principle of, 196

Extensionality, Principle of, 197

F

Fact (in LP), 406

Fail operator, 443

Finite satisfiability, 234

Finite transducer, 96

Finite-model property (FMP), 239

Finite-state machine, 98

Finite-state recognizer (FSR), 81

Finite-state recognizer, Nondeter-
ministic (NDFSR), 86

Fixed point, 469

Fixed point, Least, 469

Function (symbol), 174

Function, Extended transition, 82

Function, Transition, 81

Functional completeness, 198

G

Generalization rule (GEN), 281

Goal (in LP), 406

Goal clause, 416

Goal clause, Empty, 416

Grammar, Ambiguous, 67

Grammar, Context-free (CFG);
Type-2, 64

Grammar, Context-sensitive (CSG);
Type-1, 65

Grammar, Formal, 52

Grammar, LR(k), 111

Grammar, Regular; Type-3, 63

Grammar, Unrestricted (UG); Type-
0, 76

Graph, Dependency, 482

Ground expression, 171

Ground extension, 235

Ground instance, 249

Ground substitution, 249

H

Herbrand base, 301

Herbrand instance (H-instance),
301

Herbrand interpretation (H-interpre-
tation), 301

Herbrand model (H-model), 302

Herbrand model, Least, 425

Herbrand model, Minimal, 425

Herbrand satisfiability (H-satisfia-
bility), 302

Herbrand universe, 300

Herbrand’s Theorem, 341

Hilbert’s Tenth Problem, 146

Hintikka set, 390

Hintikka’s Lemma, 390

Hypothetical syllogism (HS), 192

I

Identity of indiscernibles (IdI),
273

Identity, Law of, 262

Induction, Mathematical, 46

Induction, Structural, 46

Inference, 210

Inference operation, 210

Inference relation, 210

Inference rule, 213

Inference system, 210

Instance, Database, 463

Interpretation, 200

Interpretation of a LP program,
Declarative, 406

Interpretation of a LP program,
Procedural, 406

Invalidity, 219

K

Kleene’s Least Fixed-PointTheorem,
472
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Kleene’s Theorem for regular lan-
guages, 93

Knaster-Tarski Theorem, 472

L

Language, Context-free (CFL),
64

Language, Context-sensitive (CSL),
65

Language, Decidable, 140
Language, First-order (FO), 175
Language, Formal, 52
Language, Logical, 170
Language, Object, 169
Language, Propositional, 175
Language, Recursive, 135
Language, Recursively enumer-

able (REL), 77
Language, Regular, 61
Language, Relational, 452
Leibniz’s law (LL), 273
Lifting lemma, 362
Lindenbaum’s Theorem, 229
Lindenbaum-Tarski algebra, 307
Logic (of a logical system), The,

217, 221
Logic programming (LP), 399
Logic, Classical, 7
Logic, Classical first-order (CFOL),

248
Logic, Classical propositional (CPL),

248
Logic, Computational, 8
Logic, Deductive, 6
Logic, Formal, 5
Logic, Informal, 5
Logic, Mathematical, 4
Logic, Truth-preserving, 6
Logical consequence, 206
Logical equivalence, 199, 202
Logical system, 207
Logics, Non-classical, 7

Löwenheim-Skolem Theorem, 240

M

Matching, 473

Mealy machine, 96

Meaning, 194

Meaning of a program, 411

Meaning of a program, Intended,
412

Meaning, Principle of composi-
tionality of, 197

Metalanguage, 169

Meta-variable, 434

Model, 219

Model, Computer, 82

Model, Herbrand (H-model), 302

Model, Herbrand least, 425

Model, Supported, 472

Modus ponens (MP), 192

Modus ponens, Universal (UMP),
411

Modus tollendo ponens (TP), 192

Modus tollens (MT), 192

Monotonicity, 210

Moore machine, 96

Myhill-Nerode Theorem, 93

N

Natural deduction calculus, 283

Negation by failure (NBF), 427

Negation distribution, 178

Negation law, Double (DN), 257

Negation, Cut-failure, 446

Non-contradiction, Principle of
(PNC), 257

Non-monotonicity, 427

Normal form, Chomsky, 64

Normal form, Conjunctive (CNF),
329

Normal form, Disjunctive (DNF),
330

Normal form, Greibach, 107
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Normal form, Negation (NNF),
327

Normal form, Prenex (PNF), 327

Normal form, Skolem (SNF), 329

O

Ogden’s Lemma, 74

One-literal rule, 348

P

P =? NP, 155

Paramodulation, 377

Paramodulation, Ordered, 379

Paramodulation, Simultaneous, 379

Post’s Correspondence Problem,
146

Predicate (symbol), 174

Predicate, Built-in, 434

Prefix classes, 239

Problem for 2-CNF formulae, The
satisfiability (2-SAT), 335

Problem for 3-CNF formulae, The
satisfiability (3-SAT), 335

Problem for DNF formulae, The
satisfiability (DNF-SAT),
336

Problem for dual-Horn formulae,
The satisfiability (DUAL-
HORN-SAT), 337

Problem for Horn formulae, The
satisfiability (HORN-SAT),
335

Problem for k-CNF formulae, The
satisfiability (k-SAT), 335

Problem for quantified Boolean
formulae, The satisfiabil-
ity (QBF-SAT), 336

Problem, Computational, 149

Problem, Decision, 138

Problem, Function, 149

Problem, Hilbert’s Tenth, 146

Problem, Logical (LOGP), 230

Problem, The Acceptance (ACPT),
141

Problem, The Boolean satisfia-
bility (SAT), 319

Problem, The Busy Beaver, 146
Problem, The Circuit Satisfiabil-

ity (CIRCUIT-SAT), 159
Problem, The Clique (CLIQUE),

160
Problem, The Graph Colorabil-

ity, 159
Problem, The Graph Isomorphism,

160
Problem, The Halting (HALT),

141
Problem, The Hamiltonian Cy-

cle (HAM-CYCLE), 160
Problem, The Hamiltonian Path

(HAMPATH), 149
Problem, The maximum satisfi-

ability (MAX-SAT), 337
Problem, The Null-Value, 462
Problem, The Relative Primes,

158
Problem, The satisfiability (SAT),

318
Problem, The Shortest Path, 158
Problem, The State-Entry (STEN-

TRY), 143
Problem, The Subgraph Isomor-

phism, 159
Problem, The Subset-Sum (SUBSET-

SUM), 160
Problem, The Traveling Salesman

(TSP), 160
Problem, The validity (VAL), 230
Problem, The Vertex Cover (VER-

TEX-COVER), 159
Production rule, 56
Program clause, 415
Program, Datalog, 458
Program, General, 431
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Program, Logic, 408

Program, Prolog, 408

Programming system, 401

Prolog, Pure, 405

Prolog, Real, 433

Proof, 214

Proof calculus, 214

Proof system, 214

Provability, 214

Pumping lemma for CFLs, 70

Pumping lemma for regular lan-
guages, 62, 95

Q

Quantifier (symbol), 175

Quantifier axioms, 281

Quantifier duality, 202

Quantifier reversal, 178

Query, 400

Query system, 400

Query, Meta-safe, 449

Query, Restricted Prolog, 449

R

Recursion, 425

Reducibility, 142

Reducibility, Polynomial-time, 158

Reductio ad absurdum (RA), 262

Reduction (in LP), 414

Reduction, Ground, 414

Reduction, LR(k)-grammar, 111

Refutation, 215

Refutation completeness, 416

Reply, Conjunctive, 404

Reply, Consequentially strongest
correct, 403

Reply, Most general, 404

Reply, Provably correct, 401

Representation theorem, 308

Resolution principle for FOL, 354

Resolution principle for proposi-
tional logic, 348

Resolution refinement, 364
Resolution with rule NF, SLD

(SLDNF), 431
Resolution, Binary, 354
Resolution, Hyper-, 369
Resolution, LD, 376
Resolution, LI, 375
Resolution, Linear, 375
Resolution, Macro-, 369
Resolution, RUE, 382
Resolution, Semantic, 370
Resolution, SLD, 376
Resolution, Unit-resulting, 356
Rice’s Theorem, 146
Rule (in LP), 406

S

Satisfiability, 218
Savitch’s Theorem, 155
Schema (of a Datalog program),

460
Schema, Extensional, 460
Schema, Intensional, 460
Search, Breadth-first, 422
Search, Depth-first, 419
Semantical correlate, 197
Semantics, 219
Semantics, 3-valued, 492
Semantics, Fixed-point, 468
Semantics, Inflationary, 492
Semantics, Least-Herbrand-model,

470
Semantics, Perfect-model, 492
Semantics, Stratified, 481
Semantics, Well-founded, 492
Semantics,Stable-model, 492
Semi-decidability, 140
Sentential form, 57
Sequent calculus, 288
Skolem constant, 329
Skolem function, 329
Soundness, 224

512



Index

State diagram, 83
Statement (in LP), 406
Stratification, 484
Substitution, 249
Substitution principle (SubP), 273
Substitution rule (SUB), 215
Syntax, 53, 169
Syntax, Ambivalent, 407

T
Tableau proof, 383
Tarski-style conditions, 255
Tautology, 220
Theorem, 214
Theory, 228
Theory, Scapegoat, 267
Trace, 414
Tractability, 156
Transition relation, 86
Transition table, 85
Tree, Derivation, 66
Tree, Formula, 180
Tree, Parse, 66
Tree, Proof, 415
Tree, Refutation, 349
Tree, Semantic, 342
Tree, SLD-resolution, 419
Truth function, 195
Truth table, 195
Truth value, 195
Truth-functionality, 7
Truth-preservation, 258
Turing machine, 121
Turing machine, Non-deterministic,

125
Turing machine, Total, 135
Turing machine, Universal, 126
Turing paradigm, 12
Turing-completeness, 10
Turing-decidability, 138
Turing-recognizability, 147
Turing-reducibility, 142

U
Ultrafilter theorem, 312
Unicity of decomposition, 172
Unification, 250
Unification problem, 251
Unifier, Most general (MGU), 250
Unit deletion, 356

V
Validity, 219
Valuation, 195
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