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Abstract

Knowledge representation (KR) is actually more than representation: It in-
volves also inference, namely inference of “new” knowledge, i.e. new facts. Logic
programming is a suitable KR medium, but more often than not discussions on
this programming paradigm focus on aspects other than KR. In this paper, I
elaborate on the general theory of logic programming and give the essentials of
two of its main implementations, to wit, Prolog and Datalog, from the view-
point of deductive computing over knowledge bases, which includes deductive
programming.
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1 Introduction

Logic programming (LP) is a programming paradigm based on the notion of a program
as defining a set of logical consequences, so that a computation is actually a deduction
of consequences of the program.1 This is called deductive computation in general; more
narrowly, one speaks of deductive programming. In effect, a logic program is a set of
formulae that are rules or axioms. In particular, these rules and axioms are so of
relations between objects, reason why it should be obvious that logic programming
languages rely heavily on first- or even second-order logic.2

A. Newell influentially defined the relationship between knowledge and represen-
tation by means of the equation

*
� luis.ml.augusto@gmail.com

1See Augusto (2020b) for a monograph on logical consequence.
2I restrict my discussion to first-order predicate logic. I refer the reader to Augusto (2019) for a

textbook on classical first-order logic (CFOL).
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Representation = Knowledge + Access

in which knowledge is defined as the abstract set of all the possible expressions –
including new ones – that can be derived from a symbolic structure (such as a knowl-
edge base). The term derivation is to be understood here in its logical sense, and this
– entailment or proof – is what Newell meant by access. Without this logical level
one could not attain the knowledge level of a system, that which makes of a system,
either organic (say, an ant) or mechanical (e.g., a robot), an intelligent system.3 Al-
though A. Newell segregated the two levels clearly, apparently favoring other kinds
of programming language over a logical language as a KR medium at the knowledge
level, LP has been proved to be highly adequate for KR.4 In this introduction to LP,
I elaborate on its general theory and its adequacy to provide us with a suitable KR
medium, namely by means of deductive knowledge bases, i.e. knowledge bases (abbr.:
KBs) over which deduction is carried out. I shall here consider a KB as a major
component of a knowledge system taken as a triple

K = (K S ,K P,K A )

where K S is a collection of knowledge structures, K P is a collection of knowledge
processes, and K A is a collection of knowledge agents. (Figure 1 shows a standard
knowledge system.) I shall consider that the main knowledge structure is a KB, a
symbolic structure constituted by facts and rules expressed in the standard language
of first-order predicate logic or a fragment thereof; the core knowledge process is de-
duction (or inference); the main task of the knowledge agent (KA) is that of querying
the (updated) KB, denoted by Ξ(i).

I shall further consider that there are formal ways to (i) distinguish a fact (i.e. a
knowledge unit) from a datum and (ii) convert data into facts and the other way round
(see Augusto, 2020c). Hence, I shall see collections of data – programs or databases
– as (potentially) KBs, especially the elements thereof that are seen as facts, and I
speak of programs and databases mostly for consistency with the standard literature.

Created in the early 1970s, the fact that this programming paradigm not only
has resisted the test of time but has now a large plethora of recent applications (see,
e.g., Kifer & Liu, 2018) justifies yet another review on it.5 I first approach LP at
the metalanguage level, and then discuss it at the object-language level. This latter
discussion focuses on more strictly logical aspects of LP. As for the implementations,
I give the essentials of the main LP language, to wit, Prolog, as well as of Datalog.
The objective is to enable the reader to understand the main theoretical aspects of
this programming paradigm that, despite being spoken of as the declarative paradigm,
is often given in the literature by the equation

Algorithm = Logic + Control.

3Newell (1980, 1982, 1990) comprise to a great extent the central aspects of A. Newell’s per-
spective. See Augusto (2021) for an analysis of this perspective and its lasting influence in KR
and knowledge-based AI. (“KR” is the common acronym for “knowledge representation.” Perhaps
needless to say – but one never knows – “AI” is so for “Artificial Intelligence.”)

4See on this subject, for example, Brewka & Dix (2005).
5The aim of this paper is not “teaching” how to program with Prolog and Datalog. This said,

references that can be used for this aim are given below.
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Figure 1: A standard knowledge system. (Source: Augusto, 2020c.)

2 Logic programming as deductive programming

2.1 Query systems and programming systems

The notion of deductive programming finds theoretical support on a few rather in-
tuitive analogies, or equivalences, between the logical and the computing domains:
Besides the already mentioned notions of a program as a set of formulae and a compu-
tation as a proof, further equivalences can be established between inputs and queries,
as well as between outputs and replies to queries, where both queries and replies are
formulae.

These intuitive analogies or equivalences are also clearly formalizable. I begin by
defining a proof system.

Definition 1. A proof system is a triple P = (Θ,P,⊢) where Θ is a set of formulae,
P = {■1, ...,■k} is a set of proofs, and ⊢⊆ 2Θ × P × Θ is a ternary relation of
syntactical consequence satisfying the following conditions for any sets X,Y ⊆ Θ of
formulae and for arbitrary formulae ϕ, χ ∈ Θ:

(R1) If ϕ ∈ X, then X ⊢■ ϕ
(R2) If X ⊢■ ϕ and X ⊆ Y , then Y ⊢■ ϕ
(R3) If X ⊢■ ϕ and Y ⊢■ χ for every χ ∈ X, then Y ⊢■ ϕ

For some proof ■ ∈ P , the relation Θ ⊢■ ϕ means that ■ is a proof of ϕ from premises
in Θ. P is a monotonic proof system if it is verified that, for F ⊆ Θ and ■ ∈ P ,

if F ⊢■ ϕ and F ⊆ G, then G ⊢■ ϕ.

J. Knowl. Struct. Syst., 5:1 3
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Proofs and the syntactical consequence are well known concepts of formal logic
(see Augusto, 2019; 2020b) and one entails the other, so that we can write simply
X ⊢ ϕ to denote that there is a proof that ϕ follows from X. I now formalize the less
known logical objects queries and replies, as well as the relation between both.

Definition 2. Let the symbol ¿ denote a query. A query system is a triple Q =
(Θ¿, Q,⋗), where Θ¿ is a set of formulae that are replies to queries, Q is a set of
queries, and ⋗ ⊆ Q×Θ¿ is a binary relation.

Definition 3. A proof system for a query system Q = (Θ¿, Q,⋗) is a triple PQ =
(Θ,P,⊢) where Θ ⊇ Θ¿ such that ϕ ∈ Θ¿ is a provably correct reply to a query ¿ ∈ Q
if, for some F ⊂ 2Θ, we have

¿⋗ F ⊢■ ϕ

formalizing the fact that, given the premises (of Θ) in F, we may have a proof ■ ∈ P
that ϕ as a reply (denoted by ⋗) to the query ¿. This can be specified according to
the condition

¿⋗ F ⊢■ ϕ iff ¿⋗ ϕ and F ⊢■ ϕ.

I now introduce the fundamental notion of a programming system.

Definition 4. A programming system is a 6-tuple

P = (Π, I,O,Ξ,▷,⊢)

where Π = {Π1, ...,Πn} is a set of programs, I = {ι1, ..., ιn} is a set of inputs,
O = {o1, ..., on} is a set of outputs, Ξ = {ξ1, ..., ξn} is a set of computations, ⊢ is a
ternary relation on Π × Ξ × O such that for each Π ∈ Π there is a ξ ∈ Ξ and an
o ∈ O with

(P⊢) Π ⊢ξ o

and ▷ is a relation on I ×P⊢ such that for each ι ∈ I we have

ι ▷ Π ⊢ξ o

denoting that given input ι one possible computation ξ carried out by program Π
yields output o. If ι ▷ Π ⊢ o iff there is a computation ξ ∈ Ξ such that ι ▷ Π ⊢ξ o ,
then this defines the computed-output relation on I ×Π ×O.

The above definition shows clearly that deductive programming is a specific in-
stance of the more general concept of deductive computation.

Definition 5. A programming system P = (Π, I,O,Ξ,▷,⊢) is said to be deterministic
iff, for each input ι ∈ I and program Π ∈ Π, there is a unique computation ξ ∈ Ξ
such that ι ▷ Π ⊢ξ (o), and it is said to be determinate iff for each input ι ∈ I and
each program Π ∈ Π there is at most one output o ∈ O such that ι ▷ Π ⊢(ξ) o. These
are the properties of determinism and determinacy, respectively, of a programming
system.

We have the following result:6

6Proofs are left as an exercise for the reader, whenever we do not give them.

4 J. Knowl. Struct. Syst., 5:1
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Proposition 6. For a query system Q = (Θ¿, Q,⋗) with a monotonic proof system
PQ = (Θ,P,⊢), Θ ⊇ Θ¿, and a programming system P = (Π, I,O,Ξ,▷,⊢) the
following equivalence holds:(

LP⇐⇒
⊢

)
¿⋗ F ⊢■ ϕ⇐⇒ ι ▷ Π ⊢ξ o

This equivalence expresses the correspondence between the objects of logic and the
objects of computation that account for the notion of deductive computation, and, in
this particular case, deductive programming, or LP. This equivalence is particularly
well established by the fact that I identify the symbol for syntactical consequence
with the symbol for computational yield, an identity that I formalize more clearly
now, namely from the semantical viewpoint.

As seen above, defined by means of a proof system the relation⋗merely determines
the formal acceptability of a reply to a query. In order to determine the semantical
correctness of a reply to a query we need to specify a semantics that is adequate for
Q.

Definition 7. A semantical system for a query system Q = (Θ¿, Q,⋗) is a triple
S = (Θ,M, |=) where Θ ⊇ Θ¿ and M is a set of models such that ϕ ∈ Θ¿ is a
semantically correct reply to a query ¿, denoted by ¿ ⋗K |=M ϕ for K ⊆ Θ and a
modelM∈M , according to the condition

¿⋗K |=M ϕ iff ¿⋗ ϕ andK |=M ϕ.

If in the above definition we let K denote “explicit knowledge,” we begin to see
that a program of LP is in fact a KB, and the role of the user of the program (the
KA) is merely that of asking questions concerning the KB.

Proposition 8. For a query system Q = (Θ¿, Q,⋗) with a semantical system S =
(Θ,M, |=), Θ ⊇ Θ¿, and a programming system P = (Π, I,O,Ξ,▷,⊢) the following
equivalence holds: (

LP⇐⇒
|=

)
¿⋗ F |=M ϕ⇐⇒ ι ▷ Π ⊢ξ o

The adequateness of a query system Q = (Θ¿, Q,⋗) is then established if, if
¿⋗K ⊢■ ϕ then ¿⋗K |=M ϕ (soundness), and if ¿⋗K |=M ϕ then ¿⋗K ⊢■ ϕ (com-
pleteness). Note, however, that by adequateness of a query system Q = (Θ¿, Q,⋗)
it is now meant that a formula ϕ ∈ Θ¿ is both formally acceptable and semantically
correct as a reply to a query ¿ ∈ Q. Generalizing the adequateness of Q = (Θ¿, Q,⋗)
to LP is then a straightforward matter.

However, we may start with a sound and complete proof system but end up with
an incomplete programming system if we do not pay attention to the proof strategies
to be of use in the latter. Typically, these proof strategies are actually restricted
forms of proofs (e.g., cut elimination), and thus this is a problem that is rather easy
to avoid. I concentrate on semantical aspects, as these are rather more complex and
can lead to serious specification errors.

Definition 9. Let Q = (Θ¿, Q,⋗) be a query system and S = (Θ,M, |=) be a seman-
tical system with Θ¿ ⊆ Θ. We say that a formula ϕ is a consequentially strongest
correct reply to the query ¿ iff for K ⊆ Θ

J. Knowl. Struct. Syst., 5:1 5
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1. ¿⋗K |= ϕ;

2. for all ψ ∈ Θ¿, whenever ¿⋗K |= ψ, then ϕ |= ψ.

The above gives us the semantical equivalence of all consequentially strongest
correct replies to a query ¿. In LP we are particularly interested in questions of the
form

¿x1, ..., xk

where x1, ..., xk is a list of non-repeating variables.

Definition 10. Let now

Q = {(¿x1, ..., xk : ϕ) |ϕ ∈ Θ¿} .

We define the relation ⋗ ⊆ Q×Θ¿ by

(¿x1, ..., xk : ϕ)⋗ ψ

iff
ψ = ϕ [x1/t1, ..., xk/tk]

for some terms t1, ..., tk ∈ K ⊆ Θ¿.

In a query as specified above, we are interested in knowing for what terms t1, ..., tk
does ϕ [x1/t1, ..., xk/tk] hold.

Proposition 11. The set

{(t1, ..., tk) |¿⋗K |= ϕ [x1/t1, ..., xk/tk]}

is semi-computable.

Proposition 12. Let ψ′ be an instance of ψ. Then, ψ |= ψ′, and it follows immediately
that if ¿⋗K |= ψ, then ¿⋗K |= ψ′. If ψ′ is a variable renaming of ψ, then ψ′ ≡ ψ.

Proof. Trivial.

Definition 13. Let K ⊆ Θ be a set of formulae and let q = (¿x1, .., xk : ϕ) ∈ Q be a
query. We say that a reply ψ is a most general reply to q iff

1. q ⋗K |= ψ;

2. for all ψ′ ∈ Θ¿, if ψ is an instance of ψ′ and q ⋗K |= ψ′, then ψ′ is a variable
renaming of ψ.

Definition 14. A set R ⊆ Θ¿ ⊆ Θ is a most general set of correct replies to q for K iff

1. each ϕ ∈ R is a most general reply to q for K ;

6 J. Knowl. Struct. Syst., 5:1
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2. for all ψ ∈ Θ, if q ⋗K |= ψ, then ψ is an instance of some ϕ ∈ R;

3. for all ϕ1, ϕ2 ∈ R, if ϕ2 is an instance of ϕ1, then ϕ2 = ϕ1.

Definition 15. Let now

Q∧ =

{(
¿
∧x1, ..., xk : ϕ

)
|ϕ ∈ Θ¿

}
and define the relation ⋗ ⊆ Q∧ ×Θ¿

(
¿
∧x1, ..., xk : ϕ

)
⋗ ψ

iff

ψ = ϕ
[
x1/t

1
1, ..., xk/t

1
k

]
∧ ... ∧ ϕ [x1/tn1 , ..., xk/tnk ]

for some terms t11, ..., t
n
k ∈ K ⊆ Θ¿. Then, the triple Q∧ =

(
Θ¿
∧, Q∧,⋗

)
is a query

system for conjunctive replies to queries of the form “for what terms t1, ..., tk does
ϕ [x1/t1, ..., xk/tk] hold?”

In Q∧, replies to
¿
∧x1, ..., xk : ϕ are conjunctions of replies to ¿x1, ..., xk : ϕ. The

former may have a consequentially strongest reply even if the latter does not. In
fact, if the most general set of replies to ¿x1, ..., xk : ϕ is finite, their conjunction is a

consequentially strongest reply to
¿
∧x1, ..., xk : ϕ.

2.2 LP programs and their meaning

2.2.1 The language of LP

In the above discussion, I elaborated on the semantical systems that allow us to specify
an LP language and on the proof systems that allow us to implement an LP language.
Importantly, there is no question of precedence of one over the other, implementation
or specification, in the design of an LP language.

I now move from the metalanguage of LP to the object-language level. LP as
a programming language can be considered as a synonym for pure Prolog, a proper
subset of real Prolog, which I approach in Section 3 below. Unless otherwise stated,
the points that I next discuss, as well as the examples given, are so with pure Prolog in
mind. However, the distinction between pure and real Prolog, though an important
one, is of no import in this Section, and the examples below can be implemented
in any Prolog environment. (I suggest the latest version of the LP implementation
SWI-Prolog.)7

It will be easy to see how the above metalanguage definitions apply to the object-
language constructs of LP. The definitions of expressions, substitution, and unification
for CFOL hold generally, with the following specifications:8

7Freely available at www.swi-prolog.org.
8A complete specification is given for real Prolog in Section 3 below. For the standard CFOL

definitions, see Augusto (2019).

J. Knowl. Struct. Syst., 5:1 7
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Definition 16. An LP formula is a logical expression of the form

(ϕLP ) ∀x1...∀xl (A1, ..., Am ← B1, ..., Bn)

where l,m, n ≥ 0, A1, ..., Am, B1, ..., Bn are atoms, A1, ..., Am = A1 ∨ ... ∨ Am, and
B1, ..., Bn = B1∧...∧Bn. An LP formula is closed (ground) in the same circumstances
as a CFOL formula is closed (ground, respectively).

More specifically, an LP formula is always a clause.9

Definition 17. An LP clause is an LP formula of the form

(CLP ) ∀x1...∀xl (A← B1, ..., Bn) .

An LP clause is typically simplified as

(CLP ) A← B1, ..., Bn.

In CLP , A is called the head, and B1, ..., Bn is the body. This is in fact a Horn clause,
as inverting the symbol ← we have the formula B1 ∧ ... ∧ Bn → A; applying now
p→ q := ¬p ∨ q and the De Morgan law for ∧, we have

B1 ∧ ... ∧Bn → A ≡ ¬ (B1 ∧ ... ∧Bn) ∨A ≡ ¬B1 ∨ ... ∨ ¬Bn ∨A.

Obviously, CLP is a definite clause.
Intuitively, CLP can be interpreted as, for 0 ≤ i ≤ n, if every Bi is true, then A is

true; or, what is the same, A can be proved by proving all the Bi. In other words, we
say that A is implied by

∧n
i=1Bi (the declarative reading), or that in order to answer

query A we have to answer the query
∧n

i=1Bi (the procedural reading).10

Definition 18. The basic constructs of LP are terms and statements.

1. An LP term can be simple or compound. A simple term is a variable or a
constant. A compound term comprises a functor and a sequence of one or more
terms called arguments. A compound term of arity n has the form p (t1, ..., tn),
where p is the name of the functor and t1, ..., tn are the arguments of p. A
functor p with arity n is denoted by p/n. A functor can be a relation symbol
or a function symbol. The name of a functor is an atom. A constant just is a
functor of arity 0, so that it is also an atom.11

9Note the following basic definitions: We define a literal, denoted by L, to be an atom (e.g., P )
or the negation of an atom (e.g., ¬P ). We say that the literals P and ¬P are complementary. A
clause C is a finite disjunction of literals, i.e. C = L1 ∨ ... ∨ Ln = ∥L1, ..., Ln∥. C is a Horn clause if
it contains at most one positive literal. A Horn clause with exactly one positive literal is a definite
clause. C is a dual-Horn clause if it has at most one negative literal. The empty clause ∥ ∥, denoted
by □, is a clause that contains no literals. A clause is called ground if no individual variables occur
in it.

10See Apt (1996) for an elaboration on these two readings or interpretations.
11Note that variables, too, can be atoms in the language Prolog that I shall use for real Prolog (see

below).

8 J. Knowl. Struct. Syst., 5:1
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2. LP statements can be facts, goals, rules, and queries. Let CLP be given; then,
the unit clause A is a fact, the Bi are goals, and CLP , for n ≥ 0, is a rule. Thus,
a fact is the special case of a rule when n = 0. When n = 1, we have an iterative
clause. The empty clause 2 is considered a goal. A query is a clause with a
question mark.

It should be obvious that relation symbol just is another name for predicate (symbol),
and I shall favor the latter over the former for consistency reasons. Contrarily to
the standard language of CFOL, the same functor name can be used for functions
or predicates of different arity, a feature that is responsible for what is spoken of as
ambivalent syntax. This is a useful feature when there is a natural relation between
predicate and function symbols.

Example 19. X, Y, John, john, sara, father, father (X, Y), and male(john) are terms
of LP.12

� X, Y and John are individual variables, john and sara are atoms (constants,
or names of individuals), and father (X, Y), as well as male(john), are functors
whose arity is denoted by father/2 and male/1, respectively. It is easy to see
that individual variables are written with initial uppercase letters and atoms are
written with initial lowercase letters; variables can also start with an underscore
“ ”.13

� father (X, Y) is a non-ground predicate and male(john) is a ground predicate.

� father (X, sara) . and male(john). (note the end marks) are facts built from the
predicates father (X, sara) and male (john).

� father(john, sara)? is a query asking whether the relation “X is the father of
Y ” holds between John and Sara, i.e. whether John is the father of Sara.

� daughter (X, Y)← father (Y, X) , female (X) . is a rule for the relation daughter-
of. In this rule, father (Y, X) and female (X) are the goals, but the head,
daughter (X, Y), can also be a goal.

� father (john, father (rita)) is a legal atom of LP.

12This example illustrates clearly that it is very useful to use this font when writing LP terms
and statements: It helps to distinguish the natural language English from the formal language(s)
of LP, a distinction that is crucial given the “denotational” character of the latter. I shall carry
this practice over to both Prolog and Datalog. Precisely because of these, I also adopt the common
practice – actually required by most software – of always ending a fact or a rule with an end mark.
This said, I shall often relax these practices, writing simply, say, p (X,Y ) ← q (Y,X) , r (X) instead
of p (X, Y)← q (Y, X) , r (X) ., namely when LP languages are considered more immediately as logical
languages. Further variations are p (X,Y )← q (Y,X) ∧ r (X) and p (X, Y) : −q (Y, X) , r (X) ..

13Variables with “ ” are called anonymous variables and each such occurrence in a clause or query
denotes a different variable.

J. Knowl. Struct. Syst., 5:1 9
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2.2.2 Logic programs: Goals and meanings

Definition 20. A logic program in its simplest form is a finite set of facts. More
typically, a logic program is a finite set of rules formulated as definite clauses, reason
why we call this a definite program.

I shall often write Prolog program as a synonym for logic, or LP, program. More
properly, though, an LP program is a finite sequence of rules. In effect, conjunction,
as well as disjunction, is not a commutative operation, with ϕ1

∧
∨ϕ2 ̸= ϕ2

∧
∨ϕ1 in terms

of processing for ϕ a rule or a literal. These aspects, and their import to deductive
programming, will become clearer below.

Example 21. The following facts constitute the program Fatherhood :

father (john, sara) . male (john) .

father (john, peter) . male (rick) .

father (john, rick) . male (peter) .

father (rick, carl) . male (carl) .

father (harry, louis) . male (harry) .

father (harry, mary) . male (louis) .

father (harry, jane) . female (sara) .

female (mary) .

female (jane) .

Example 22. The following program, called Addition, has only two rules:

plus (0, X, X) .

plus (s (X) , Y, s (Z))← plus (X, Y, Z) .

The basic operation on an LP program is unification. It is essentially the same as
for CFOL and I provide here only a few specifications.

Definition 23. An LP substitution is a set of pairs of the form Xi = ti, 0 ≤ i ≤ n,
where Xi is a variable and ti is a term, Xi ̸= Xj for every i ̸= j, and Xi does not occur
in tj for any i and j. Let σ be a substitution and A a term; then the result of applying
substitution σ to term A, denoted by Aσ, is the term obtained by substituting t for
every occurrence of X in A for every pair (X = t) ∈ σ.

Definition 24. We say that B is an instance of A if there is a substitution σ such that
Aσ = B. C is a common instance of A and B if it is an instance of A and an instance
of B, i.e. if there are substitutions σ1, σ2 such that Aσ1 ≡ Bσ2.

Example 25. Consider the program Fatherhood. Let there be given the substitution
σ = {X = john, Y = sara}. The result of applying σ to the term father (X, Y), denoted
by (father (X, Y))σ, is the term father(john, sara). The goal father(john, sara) is
an instance of the goal father (X, Y) (under substitution σ). Equally,

(daughter (Y, X)← father (X, Y) , female (Y) .)σ

10 J. Knowl. Struct. Syst., 5:1
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gives us

daughter (sara, john)← father (john, sara) , female (sara) .

This unification for the goal ?− daughter (sara, john) . can be represented in a tree
as shown in Figure 2.

Figure 2: Unification via a substitution σ.

Example 26. Consider now the program Addition. Let there be given the substitutions
σ1 = {X = 1} and σ2 = {Y = 1}. Then the goals plus (0, 1, X) and plus (0, Y, Y) have
the common instance plus (0, 1, 1) by applying to them the substitutions σ1 and σ2,
respectively.

Common instances are important because in fact we can reply to a query by finding
a common instance of both a query and a fact.

Variables in facts are implicitly universally quantified, whereas variables in queries
are implicitly existentially quantified.

Definition 27. A fact p (t1, ..., tn) reads “for all X1, ..., Xn, where the Xi are variables
in the fact, p (t1, ..., tn) holds or is true,” i.e.

∀X1, ...,∀Xn (p (t1, ..., tn)) .

This definition holds for rules, too: The variables occurring in the head are uni-
versally quantified and their scope is the whole rule. However, variables occurring in
the body of a rule but not in its head are considered to be existentially quantified.

Example 28. grandfather (X, Y)← father (X, Z) , father (Z, Y) . is read“for all X and
Y, X is the grandfather of Y if there exists a Z such that X is the father of Z and Z
is the father of Y.”

Definition 29. A query p (t1, ..., tn)? reads “are there variables X1, ..., Xn such that
p (t1, ..., tn) holds or is true?”, i.e.

∃X1, ...,∃Xn (p (t1, ..., tn))?

For convenience, the universal quantifiers are omitted in facts and the existential
quantifiers are so in queries; both quantifiers are omitted in rules.

J. Knowl. Struct. Syst., 5:1 11
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Definition 30. For any substitution σ,

1. from a universal fact P deduce an instance Pσ of it. We call this instantiation
and denote it by ⊢inst.

2. an existential query P is a logical consequence of an instance Pσ of it. We call
this generalization and denote it by ⊢gen.

By combining 1 and 2 above, we have a reply to a query by means of a common
instance, i.e. we have

P. ⊢inst Pσ ⊢gen (P?)

Definition 31. A solution to a query is a fact that is a (common) instance of the query.

Example 32. The goal father(john, sara) implies that there exists an X such that
father(X, sara) is true, in this case X = john. Then, father(john, sara) is a solution
to the query father(X, sara)?, and the solution is represented by the substitution
X = john.

An existential query may have several solutions.

Example 33. Consider the program Addition. plus (X, Y, 4)?, the query asking for
numbers X and Y that add up to four, has as possible solutions {X = 0, Y = 4} and
{X = 3, Y = 1}.14

Definition 34. A query that is a goal is actually a special case of a conjunctive query,
i.e. a conjunction of goals of the form

(q1, ..., qn?) ≡ (q1 ∧ ... ∧ qn?)

We denote a conjunctive query by Q∧.

Definition 29 above determines that the scope of the existential quantifier in a
conjunctive query is the whole conjunction, so that a query p (X) , q (X)? actually
asks whether there is an X such that both p (X) and q (X) hold.

Definition 35. In a conjunctive query of the form p (X) , q (X)? we say that X is a
shared variable.

Definition 36. A conjunctive query Q∧ = q1, ..., qn? is a logical consequence of a
program Π, denoted by

Π ⊢ q1, ..., qn?

if for every goal qi ∈ Q∧, 0 < i ≤ n, we have

Π ⊢ qi

where shared variables in the qi are instantiated to the same values.

14Note that in fact we have the query plus (X, Y, s (s (s (s (0)))))? and the possible solutions
{X = 0, Y = s (s (s (s (0))))} and {X = s (s (s (0))), Y = s (0)}, as the natural numbers are defined by
means of the function s (0) such that s (0) = 1, s (s (0)) = 2, etc.

12 J. Knowl. Struct. Syst., 5:1
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In order to allow a logic program to compute deductively we need to define one
further rule:

Definition 37. Universal modus ponens (UMP) – From the rule r = A ← B1, ..., Bn

and the facts B
′

1, ..., B
′

n we can deduce A′ if A
′ ← B

′

1, ..., B
′

n is an instance of r.

For convenience, let us denote a quantified goal by G.

Definition 38. An existentially quantified goal G is a logical consequence of a program
Π, denoted by Π ⊢ G, if there is a clause in Π with a ground instance A← B1, ..., Bn,
n ≥ 0, such that Π ⊢ Bi for all 0 < i ≤ n and A is an instance of G. In other words,
G is a logical consequence of Π iff G can be deduced from Π by a finite number of
applications of UMP.

Definition 39. An abstract interpreter Ψ for a logic program is an algorithm that takes
as input a program Π and a goal G, answering true (or yes) if G is a logical conse-
quence of Π and false (or no) otherwise. In the first case we say that Ψ performs a
true-computation, and in the second case we say that Ψ performs a false-computation.

Definition 40. The meaning of a program Π, denoted by M (Π), is the set of unit
ground goals G = {B1, ..., Bn} such that for all 0 < i ≤ n we have

Π ⊢ Bi.

Let now the intended meaning of a program Π be denoted by IM(Π). A program Π
is said to be correct with respect to some IM(Π) iff M (Π) ⊆ IM (Π), and it is said
to be complete with respect to some IM (Π) iff IM (Π) ⊆ M (Π). A program Π is
adequate, i.e. both correct and complete, with respect to some intended meaning M
iff IM (Π) =M (Π).

Informally, a program Π is correct iff it does not “say” unintended “things,” and
it is complete if every “thing” that is intended can be “said.” The meaning of a basic
program built up solely of ground facts is the program itself. Put differently, the
program “means” just what it “says.” The meaning of a regular logic program (i.e.
a logic program comprising rules) contains explicitly whatever the program states
implicitly.

Example 41. The meaning of the program Fatherhood (Example 21),M (Fatherhood),
just is the program itself. If we add to this program the rule

parent (X, Y)← father (X, Y) .

then M (Fatherhood) additionally contains all goals of the form parent (X, Y) for
every pair (X,Y ) such that father (X, Y) . is in the program.

This said, it should be obvious that the intended meaning of a program Π – a
set IM (Π) of unit ground goals – is intuitively given by the choice of names in the
program. This allows a semantics of quasi-truth values in the following way:

Definition 42. Given a program Π, we say that a ground goal G is true with respect
to IM (Π) if G ∈ IM (Π); otherwise, we say that G is false.

J. Knowl. Struct. Syst., 5:1 13
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Algorithm 1 Ground reduction

Input: (Π,G)
Output: True or False

Initialize the resolvent to G

while resolvent ̸= □ do
choose a goal A from the resolvent
choose a ground instance of a clause A′ ← B1, ..., Bn ∈ Π s.t. A = A′

if no such goal and clause exist, leave the while loop
replace A by B1, ..., Bn in the resolvent

if resolvent = □, then output true, else output false

2.3 Resolution and LP computations

2.3.1 Reductions and reduction proof trees

I now expand on the abstract interpreter Ψ of Definition 39, namely as a search
algorithm of LP when computing a goal.

Definition 43. We call resolvent the current (usually conjunctive) stage of an LP
computation. The empty resolvent (or empty clause), denoted by □, is the clause
with empty head and empty body. The sequence of resolvents produced during a
computation is called the trace of the interpreter.

Definition 44. Given an LP program Π and a goal G, the replacement of G by the
body of an instance of a clause C ∈ Π whose head is identical to G is called a reduction.
A reduction is ground if both the goal G and the instance of the clause C are ground.
The goal replaced in a reduction is said to be reduced and we say that the new goals
are derived.

The algorithm for this procedure is given as Algorithm 1. If goal G is not deducible
from program Π, then Ψ may fail to terminate. Note that each iteration of the “while
loop” is a single application of UMP, i.e. a reduction. It is easy to see that reduction
is the basic computational step in LP. The selection of the goal to be reduced and the
order of the reductions thereof is arbitrary, as all the goals in a given resolvent must be
reduced. The selection of a clause and a suitable instance thereof is non-deterministic
but critical.

Recall from the above discussion that given a query system Q = (Θ¿, Q,⋗) and
a proof system for it PQ = (Θ ⊇ Θ¿, P,⋗), for some query ¿ and a set of formulae
F ⊆ 2Θ we have a provably correct reply ϕ ∈ Θ¿ to ¿, i.e. ¿⋗ F ⊢■ ϕ, iff we have

¿⋗ ϕ and F ⊢■ ϕ.

This, by Proposition 6, is equivalent to ι ▷ Π ⊢ξ o in terms of LP. This entails that
given input ι, a computation ξ producing output o from a program Π actually is a
proof that the query follows from the program. Such a proof is implicitly represented
in the trace of a query, but we can represent it explicitly in the form of a tree.
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Definition 45. A (reduction) proof tree is a (directed) tree whose nodes represent the
goals that are reduced during a computation, there being a (directed) edge from a
node to each node that corresponds to a derived goal of a reduced goal. In a proof tree,
the number of nodes corresponds to the number of reduction steps in a computation.
The root of a proof tree for a simple query is the query itself. The proof tree for a
conjunctive query is the collection of all the proof trees for its individual goals.15

Example 46. Figure 2 above shows in fact the (reduction) proof tree for the goal
?− daughter (sara, john) . given the program Fatherhood augmented as in Example
41.

2.3.2 LI resolution and SLD resolution

However, knowledge of the resolution calculus and a little thought will reveal that
reduction, a generalization of UMP, can be re-expressed in terms of this calculus.16

Indeed, it is easy to see that we can apply resolution to find a contradiction from
the combination of a goal clause, with solely negative literals, and a fact (in a rule),
a positive literal. It is important to remark that a goal clause G is not a program
clause, which can be only either a rule or a fact. This should be born in mind when
considering Π ∪{G}, i.e. when we add a goal clause G to an LP program Π. The goal
clause G = ∥¬q1, ...,¬qn∥ is added to the program, in order to test if Q∧ = q1∧ ...∧qn
follows from it, and this is the case iff Π ∪ {G} is unsatisfiable. This is so iff we can
deduce the empty goal clause 2 from Π ∪ {G} by an application of resolution. More
specifically, we refer here to linear input resolution (abbr.: LI resolution), as this has
been proven complete for Horn clauses. LI resolution, in turn, is a refinement of linear
resolution.

Definition 47. Given a set of clauses C, we say that a clause C is a linear resolution de-
duction from C, and write C ⊢lres C, if there is a sequence of pairs (C0,D0) , ..., (Cn,Dn)
such that C = Cn+1 and (i) C0, called the starting clause, and the Di are elements of
C or some Cj , j < i, (ii) each Ci+1, i ≤ n, is a resolvent of Ci and Di. The elements
of C are called the input clauses, the Ci are the center clauses and the Di the side
clauses. If C = 2, we say that there is a linear-resolution refutation of C, and write
C ⊢lres 2.

Example 48. Figure 3 shows the linear resolution refutation of the obviously unsatis-
fiable set of clauses C = {∥p, q∥ , ∥p,¬q∥ , ∥¬p, q∥ , ∥¬p,¬q∥}.

15Basically, a (reduction) proof tree shows the instantiation of goals up to the queried goal. See
Fig. 2.

16This is a complex calculus and here I give only some of its core aspects. Just as a reminder, recall

that the first-order resolution principle states that given two clauses C1 = C′1 ∨ L and C2 = C′2 ∨ ¬L
of first-order predicate logic we have the inference rule

C′1 ∨ L C′2 ∨ ¬L(
C′1 ∨ C

′
2

)
σ

if there is a substitution σ such that σ unifies the pair of complementary literals L and ¬L. A reso-
lution deduction of C from a set of clauses C, denoted by C ⊢res C, is a finite sequence C1, C2, ..., Ck
of clauses such that each Ci is either a clause in C or a resolvent of clauses preceding Ci, and Ck = C.
We call the deduction of the empty set □ from C a refutation, or proof of C. (The reader is referred
to Augusto [2019; 2022] for an extensive discussion of the resolution calculus and to Leitsch [1997]
for a monograph thereon.)
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∥p, q∥ ∥p,¬q∥
| ⧸
∥p∥ ∥¬p, q∥
| ⧸
∥q∥ ∥¬p,¬q∥
| ⧸
∥¬p∥ ∥p∥
| ⧸
2

Figure 3: A linear-resolution refutation.

Definition 49. Linear resolution is called linear input resolution (abbr.: LI resolution)
if, given a sequence of pairs (C0,D0) , ..., (Cn,Dn), then all the Di are variants of clauses
in C.

Example 50. Consider the program Addition. Figure 4 shows an LI-resolution proof
that 0+2 = 2, i.e. plus (0, s (s (0)) , s (s (0))). Notice that each resolvent is a reduced
goal. Figure 5 is the corresponding resolution-proof tree, in which for convenience I
label the tree only with the numbers in the proof of Figure 4.

1. ← plus (X, Y, s (s (0))) . Goal

2. plus (s (X1) , Y1, s (Z1))← plus (X1, Y1, Z1) . Variable renaming

3. ← plus (X1, Y1, s (0)) . Resolution (1, 2)

σ = {X = s (X1), Y = Y1, Z1 = s (0)}
4. plus (s (X2) , Y2, s (Z2))← plus (X2, Y2, Z2) . Variable renaming (2)

5. ← plus (X2, Y2, 0) . Resolution (3, 4)

τ = {X1 = s (X2), Y1 = Y2, Z2 = 0}
6. plus (0, X3, X3) . Variable renaming

7. □ Resolution (5, 6)

λ = {X2 = 0, X3 = 0, Y2 = 0}

Figure 4: An LI-resolution proof on an LP program.

Lemma 51. Let Π be an LP program and G = ∥¬q1, ...,¬qn∥ a goal clause. Then, all
the qi are consequences of Π iff Π ∪ {G} is unsatisfiable.

Theorem 52. (Refutation completeness of linear resolution for Horn clauses) If C is
an unsatisfiable set of Horn clauses, then there is a linear resolution proof that is a
refutation of C, i.e. C ⊢lres 2.

Proof. (Idea) Assume that C is finite and proceed by induction on the elements of
C.

16 J. Knowl. Struct. Syst., 5:1
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1. 2.
| ⧸
3. 4.
| ⧸
5. 6.
| ⧸
2

Figure 5: An LI-resolution proof tree.

Although LI resolution is the general resolution rule for LP, when given as input
the query q1, ..., qn? an LP interpreter actually searches for an SLD-resolution proof
of 2, in turn a case of LD resolution.

Definition 53. Let C = ∥¬L1, ...,¬Ln∥, D = ∥M,¬M1, ...,¬Mm∥ be ordered clauses.
The following rule of inference, where we have σ = mgu (M,Li) and the resolvent is an
ordered (or definite) clause, is called linear definite resolution (abbr.: LD resolution):

¬L1 ∨ ... ∨ ¬Ln M ∨ ¬M1 ∨ ... ∨ ¬Mm

(¬L1 ∨ ... ∨ ¬Li−1 ∨ ¬M1 ∨ ... ∨ ¬Mm ∨ ¬Li+1 ∨ ... ∨ ¬Ln)σ

The following inference rule, where σ = mgu (M,Li) and r is a selection rule or
function, is called selective linear definite resolution (abbr.: SLD resolution):

r (¬L1 ∨ ... ∨ ¬Ln) M ∨ ¬M1 ∨ ... ∨ ¬Mm

(¬L1 ∨ ... ∨ ¬Li−1 ∨ ¬M1 ∨ ... ∨ ¬Mm ∨ ¬Li+1 ∨ ... ∨ ¬Ln)σ

I now define these two resolution refinements with respect to LP.

Definition 54. LetΠ∪{G} be given as a set of ordered clauses. Then, an LD-resolution
refutation of Π ∪ {G}, denoted by Π ∪ {G} ⊢ldres 2, is a sequence

(G0, C0) , ..., (Gn, Cn)

where the Gi, Ci, 0 ≤ i ≤ n, are ordered clauses, such that G0 = G = ∥¬p1, ...,¬pn∥
and Gn+1 = 2. More specifically, we have

Gi =
∥∥¬pi,1, ...,¬pi,n(i)∥∥ , |Gi| = n (i)

are the goal clauses, and for the Ci ∈ Π we have

Ci =
∥∥q,¬qi,1, ...,¬qi,m(i)

∥∥ , |Ci| = m (i) + 1 or 1 if Ci = ∥q∥ .

Then, for each i < n there is a resolution rule

Gi Ci
Gi+1

where Gi+1 =
∥∥¬pi,1, ...,¬pi,k−1,¬qi,1, ...,¬qi,m(i),¬pi,k+1, ...,¬pi,n(i)

∥∥, an ordered
clause with |Gi+1| = (n (i)− 1) +m (i), is the resolvent.
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Lemma 55. For an LP program Π and a goal clause G = ∥¬q1, ...,¬qn∥, if Π ∪ {G}
is an unsatisfiable set of ordered clauses, then there is an LD-resolution refutation of
Π ∪ {G} beginning with G.

We obtain SLD resolution by introducing a selection rule r to choose the literal
pi ∈ Gi to be resolved upon with LD resolution, so that r (Gi) is the literal resolved
upon in the (i+ 1)-th step of the proof.

Definition 56. The LD-resolution rule

r (Gi) Ci
Gi+1

where r is a selection rule, is called an SLD-resolution rule.

In LP, the selection rule simply chooses the leftmost literal in the goal clause to
be resolved upon.

Theorem 57. (Completeness of SLD resolution for LP) Given an LP program Π and
a goal clause G = ∥¬q1, ...,¬qn∥, if Π ∪ {G} is an unsatisfiable set of ordered clauses,
then there is a selection rule r such that there is an SLD-resolution refutation of
Π ∪ {G} via r beginning with r (G).

Proof. (Sketch). Lemma 55 assures us that there is an LD-resolution refutation of
(Π ∪ {G}) /∈ SAT beginning with G. We only need to prove that there is an SLD-
resolution refutation of (Π ∪ {G}) /∈ SAT via r (G). The proof is by induction on
the length of G. If |G| = 1, then G0 is a unit clause and r (G0) is irrelevant. We
now let (G0, C0) , ..., (Gn, Cn) be an LD-resolution refutation of (Π ∪ {G0}) /∈ SAT
and we suppose that the selection rule r chooses the literal ¬p0,k ∈ G0. Because
(Π ∪ {G0}) /∈ SAT , we must have Gn+1 = 2, and hence there must be some j < n at
which we resolve on ¬p0,k. If j = 0, we are done. If j ≥ 1, then there must be some
C that is a resolvent of G0 and Cj . Then, there must be an LD-resolution refutation
of length n − 1 of Π ∪ {C} beginning with C. By induction, this refutation can be
replaced by an SLD-resolution refutation via r. We add this refutation onto the single
step resolution of G0 and Cj obtaining the SLD-resolution of (Π ∪ {G}) /∈ SAT via
r (G) beginning with G = G0.

I now elaborate on how SLD resolution corresponds to the search process in LP
when a query is entered as input. An LP-proof tree corresponds to the search process
known as depth-first search with backtracking : By“depth-first search” it is meant that,
given a finitely branching tree, all the descendants of a node are checked before their
siblings on the right of the tree and no edge is traversed more than once; if a fail leaf
is encountered, then the search “backtracks” to the immediate ancestor of this leaf
and the depth-search process is resumed. If a success leaf (denoted by 2) is found,
the search stops until we prompt the search to proceed further by means of an expand
“command” that makes the search retake.17 The search is considered successful if at
least one 2-resolvent is found on the tree; otherwise, the search fails and “false” is the
output to the query.

17In the SWI-Prolog interpreter, we simply enter “;”.
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Put briefly, given an LP programΠ and a goal clause G, every branch of a complete
LP-proof tree is either a successful SLD-resolution proof or a failed SLD-resolution
proof. For this reason, we refer to this tree as an SLD-resolution tree.

Example 58. Let there be given the following LP program Π1:

1. p (X, Y)← q (X, Z) , r (Z, Y) .
2. p (X, X)← s (X) .
3. q (X, b) .
4. q (b, a) .
5. q (X, a) .
6. r (b, a) .
7. s (X)← t (X, a) .
8. s (X)← t (X, b) .
9. s (X)← t (X, X) .
10. t (a, b) .
11. t (b, a) .

Our query is ?− p (X, X), i.e. ∥¬p (X, X)∥, where I use the symbol ¬ for convenience
(see next Section). The depth-first algorithm starts by checking premise 1 and then
moves to premise 2. Beginning with premise 1, we have it that there is a successful
SLD-resolution proof when we apply SLD resolution to the premises 1, 3, and 6, in
this exact order, with, after renaming of variables, substitutions σ = {X1 → X, Y→ X},
θ = {X2 → X, Z→ b}, and λ = {X→ a} (cf. Figure 6). Applying SLD resolution to the
sequences 1 and 4 or 1 and 5 will not produce successful proofs. The search starting
by checking premise 2 produces two successful proofs and a failure. Figure 7 shows
the complete SLD-proof tree for Π1 ∪ {∥¬p (X, X)∥} with the further substitutions
ω = {X→ b, Z→ a}, ς = {Z→ a}, and µ = {X→ b}; renaming of variables was
omitted and ε denotes the empty substitution.

∥¬p (X, X)∥ 1. ∥p (X1, Y) ,¬q (X1, Z) ,¬r (Z, Y)∥
| ⧸σ

∥¬q (X, Z) ,¬r (Z, X)∥ 3. ∥q (X2, b)∥
| ⧸θ

∥¬r (b, X)∥ 6. ∥r (b, a)∥
| ⧸λ
2

Figure 6: An SLD-resolution proof.

Example 59. Figure 8 shows how SWI-Prolog answers the query ?− p(X, X). when
given program Π1 and how it answers the request to produce a trace of some instan-
tiations. In the first case, given the input (query) ?− p(X, X)., SWI-Prolog gives the
first answer, to wit, X = a. Asked to provide more answers by means of the prompt“;”,
SWI-Prolog gives the replies X = b and X = a, finally replying that there are no more
instantiations (denoted by false). Asked to output traces of ?− p(X, X)., ?− p(a, X).,
and ?− p(b, X)., SWI-Prolog does so, in each case adding that X = a. Compare these
with the SLD-proof tree in Figure 7. Figure 9 shows both the case of a successful
instantiation ?− p(b, b). and a failed instantiation ?− p(c, d).. In these last traces,
“redo” indicates backtracking.
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Figure 7: A complete SLD-proof tree for a Prolog program.

2.4 Negation in LP

2.4.1 Negation and completeness I: Negation by failure

I begin this Section by retaking the LP program Π1 of Example 58. Consulting
this program, SWI-Prolog will reply true to the queries ?− p(a, a)., ?− p(b, a)., and
?− p(b, b).; but the queries ?− p(a, b). and ?− p(c, c)., for example, are given the
reply false. In CFOL, this would mean that, given some interpretation I, there is a
valuation valI such that valI (p (a, a)) = t iff valI (¬p (a, a)) = f, and valI (p (c, c)) =
f iff valI (¬p (c, c)) = t. In this resides the bivalent character of CFOL. However, in
LP this simply means that

Π1, ?− p(a, a). ⊢sldres 2 ⇒ p (a, a) = true

indicating success, and

Π1, ?− p(c, c). ⊬sldres 2 ⇒ p (c, c) = false

indicating failure. In other words, given an LP program Π and a goal G = ∥¬q∥,
SWI-Prolog replies to a query with true if (Π ∪ {G}) /∈ SAT and with false if
(Π ∪ {G}) ∈ SAT . This latter case just means that SWI-Prolog failed to prove goal
G by means of SLD resolution; it means neither that val (G) = f nor that val (¬G) = t.

However, LP is deductive computation also because it is truth-preserving compu-
tation, and above I elaborated at length on the completeness of LP, so that one can
say that there is a truth-based semantics for LP. Indeed, this is the case; what there
is not is a semantics of falsity, namely with respect to the classical negation denoted
by ¬. In LP, falsity with respect to a query q is the case when, as seen, q cannot
be deduced from the program, or q does not match any of the data in the program.
This is well expressed in terms of the meaning of a program Π, denoted by M (Π), in
Definition 42. But this does not mean that we have ¬q, instead. It just means that
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?- p(X,X).

X = a ;

X = b ;

X = a ;

false.

?- trace.

true.

[trace] ?- p(X,X).

Call: (8) p(_2768, _2768) ? creep

Call: (9) q(_2768, _2986) ? creep

Exit: (9) q(_2768, b) ? creep

Call: (9) r(b, _2768) ? creep

Exit: (9) r(b, a) ? creep

Exit: (8) p(a, a) ? creep

X = a .

[trace] ?- p(a,X).

Call: (8) p(a, _2770) ? creep

Call: (9) q(a, _2986) ? creep

Exit: (9) q(a, b) ? creep

Call: (9) r(b, _2770) ? creep

Exit: (9) r(b, a) ? creep

Exit: (8) p(a, a) ? creep

X = a .

[trace] ?- p(b,X).

Call: (8) p(b, _2770) ? creep

Call: (9) q(b, _2986) ? creep

Exit: (9) q(b, b) ? creep

Call: (9) r(b, _2770) ? creep

Exit: (9) r(b, a) ? creep

Exit: (8) p(b, a) ? creep

X = a .

Figure 8: SWI-Prolog answering a query and outputting traces for some“true” instantiations.
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[trace] ?- p(b,b).

Call: (8) p(b, b) ? creep

Call: (9) q(b, _2950) ? creep

Exit: (9) q(b, b) ? creep

Call: (9) r(b, b) ? creep

Fail: (9) r(b, b) ? creep

Redo: (9) q(b, _2950) ? creep

Exit: (9) q(b, a) ? creep

Call: (9) r(a, b) ? creep

Fail: (9) r(a, b) ? creep

Redo: (9) q(b, _2950) ? creep

Exit: (9) q(b, a) ? creep

Call: (9) r(a, b) ? creep

Fail: (9) r(a, b) ? creep

Redo: (8) p(b, b) ? creep

Call: (9) s(b) ? creep

Call: (10) t(b, a) ? creep

Exit: (10) t(b, a) ? creep

Exit: (9) s(b) ? creep

Exit: (8) p(b, b) ? creep

true.

[trace] ?- p(c,d).

Call: (8) p(c, d) ? creep

Call: (9) q(c, _2950) ? creep

Exit: (9) q(c, b) ? creep

Call: (9) r(b, d) ? creep

Fail: (9) r(b, d) ? creep

Redo: (9) q(c, _2950) ? creep

Exit: (9) q(c, a) ? creep

Call: (9) r(a, d) ? creep

Fail: (9) r(a, d) ? creep

Redo: (8) p(c, d) ? creep

Fail: (8) p(c, d) ? creep

false.

Figure 9: SWI-Prolog traces of a “true” and a “false” instantiation.
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we failed to prove that q is deducible from the program or matches some data in it.
This should clarify why above I spoke of a “semantics of quasi-truth values” for LP.

This is perfectly evident if we bear in mind that SLD resolution is a convenient
proof calculus to “express” the proof mechanism proper of LP, which is reduction, in
turn based on UMP. In this proof mechanism, what is sought is a repeated replacement
of a goal A by the head of a rule A′ = A until no more replacements can take place:
If we obtain the empty resolvent, then the reduction is considered successful, and A
is deducible from the database via UMP; otherwise, this algorithm fails. In a sense,
then, and a rather implicit one, we can say that if an LP interpreter fails to prove
that q, then ¬q must be the case.

This implicitness of negation can be stated as follows:

Definition 60. Given an LP program Π and a query that is a ground atom q, we have
either ?2 or ?4:

(?2) Π,¬q ⊢sldres 2 ⇒ q

(?4) Π,¬q ⊬sldres 2 ⇒ ¬q
Then, ?4 can be interpreted in terms of ¬ as “¬q succeeds if q finitely fails” and ?2 as
“¬q fails if q finitely succeeds”, where by“finitely succeeds” (“finitely fails”) it is meant
that there is an SLD-resolution tree TΠ,¬q with at least one 2-leaf (with no 2-leaf,
respectively). We accordingly call this interpretation of the symbol “¬” negation by
failure (NBF).

Definition 61. Let the ground atom A be a goal and let ?A denote a query. Then, the
following rule of inference is called negation by failure:

(NF)
? (¬A) ?A fails

2

Rather than a rule of inference, NF is a meta-rule. There are two cases in which
NBF may be an interpretation for ¬, depending on the way we define completeness
with respect to a program. Firstly, the program, or database, is complete in the sense
that it contains all the information that is “true” about some domain. We can assume
that what is “true” is also known to be “true,” and what is not known to be “true” is
“false.” We call this closed-world assumption (CWA).

Example 62. CWA is actually a very frequent kind of reasoning. Suppose you want
a direct flight from Berlin, Germany to Sydney, Australia. You consult the flights
available in a specific airline. If there is no direct flight Berlin-Sydney listed, you
conclude that there is no such flight in this airline, or that the contrary statement is
false. In either case, you can be considered to employ NBF.

CWA was originally proposed by R. Reiter (1978), and the CWA interpretation of
¬ in LP was defended in Shepherdson (1984). This interpretation is highly relevant,
as it makes of LP a kind of non-monotonic deduction. In fact, CWA is, too, an
inference meta-rule.

Definition 63. Let Π be a definite LP program and let the ground atom A be a query.
The following meta-rule of inference is called CWA:

(CWA)
Π ⊬sldres A
¬A
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2.4.2 Negation and completeness II: The Clark completion

Secondly, a program, or database, is said to be complete in the sense that the state-
ments of the definite-clause program or database are assumed to axiomatize completely
all the possible reasons that make atomic ground formulae true. This assumption,
known as complete-database assumption (CDB) (Clark, 1978), is concretized in the
replacement of all ← by ↔.

Example 64. Let there be given the following LP program Π2:

1. p (X)← q (X) .
2. p (X)← r(X).
3. p (X)← t (X) .
4. q (a) .
5. q (c) .
6. r (b) .

Then, we can simply replace statements 1-3 by

7. p (X)↔ (q (X) ∨ r (X) ∨ t (X)) .

called the Clark formula for the predicate p (X). The remaining Clark formulae are

8. q (X)↔ (X = a ∨ X = c) .

and
9. r (X)↔ X = b.

However, the Clark formula for the predicate t (X) is

10. ¬t (X) .

expressing the fact that there is no X such that X is instantiated by a ground term in
t (X). In effect, recall from above that a fact in LP is implicitly universally quantified,
so that we have

∀X (¬t (X)).

As in Example 62, I employ here NBF. In order to have a Clark-complete database
∆ corresponding to program Π2, we have

∆ = {7, 8, 9, 10, 11, 12, 13}

where 7-10 are as above but universally quantified, and the remaining statements are

11. ¬ (a = b) .

12. ¬ (a = c) .

13. ¬ (b = c) .

Definition 65. Given a definite-clause theory or database Θ, the Clark completion of
Θ, denoted by Compl (Θ), is the theory consisting of (i) all the Clark formulae for
every predicate P ∈ Θ, and (ii) statements of the form ¬ (t1 = t2) for every non-
unifiable pair of terms (t1, t2) ∈ T (Θ).
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Algorithm 2 Clark completion

Input: A definite-clause theory or database Θ
Output: Compl (Θ) = ∆

1. Rewrite every individual definite clause

(CLP ) ∀X⃗
(
p
(
t⃗
)
← B1 ∧ ... ∧Bn

)
as

(CCLP ) ∀Y⃗
[
∃X⃗

(
B1 ∧ ... ∧Bn ∧

(
Y⃗ = t⃗

))
→ p

(
Y⃗
)]

where Y⃗ is a sequence of new variables.

(a) If n = 0, then we have

(CCLP ) ∀Y⃗
[
∃X⃗

(
Y⃗ = t⃗

)
→ p

(
Y⃗
)]

.

(b) When CLP is a ground formula, then we have

(CCLP ) ∀Y⃗
[(

B1 ∧ ... ∧Bn ∧
(
Y⃗ = t⃗

))
→ p

(
Y⃗
)]

.

2. Let us simplify CCLP as

∀Y⃗
(
E → p

(
Y⃗
))

.

Suppose that there are k such clauses, i.e. there are E1, ..., Ek. Then, we have the single formula

∀Y⃗
[
p
(
Y⃗
)
↔ (E1 ∨ ... ∨ Ek)

]
.

(a) If k = 0, then we have the Clark formula

∀Y⃗
(
¬p

(
Y⃗
))

.

3. For every non-unifiable pair of terms (t1, t2) ∈ Θ, construct the statement

¬ (t1 = t2) .
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Given a definite-clause theory or database Θ, Algorithm 2 provides an efficient
procedure for constructing the Clark completion Compl (Θ) = ∆.

We have the following important results:

Proposition 66. For a theory Θ to be Clark-complete, all functions f, g ∈ Fun (Θ)
must obey the following three non-logical axioms:

(Ef1) ∀f∀g [¬ (f = g)⇒ ¬ (f (x1, ..., xn) = g (y1, ..., yn))]

(Ef2) ∀fxy [(f (x1, ..., xn) = f (y1, ..., yn))⇒ (x1 = y1) ∧ ... ∧ (xn = yn)]

(Ef3) ∀f∀x¬ (f (x) = x)

Theorem 67. Let Π be a definite program and q a ground atom. Then,

Π |= q ⇒ Compl (Π) |= q.

2.4.3 General programs and stratification

The above notwithstanding, for most practical applications we actually have to extend
CLP to the form (

C−LP

)
A← B1, ..., Bn

where the Bi are either positive literals or negative literals.

Definition 68. C−LP is called a general clause. An LP program in which negation ¬
is allowed to occur in the body of a rule, i.e. an LP program with C−LP , is called a
general program.

I remark that, just as in the case of definite programs, it is not possible for a
negative literal to be a logical consequence of a general program. I introduce now an
LP notion, to wit, stratification, which will also be relevant for Section 4:

Definition 69. We say that a general LP program Π is stratified if the set Pred(Π)
of the predicates in Π can be partitioned into Pred0 (Π) , ..., P redn (Π) such that if
A← B1, ..., Bm is a rule of Π and A ∈ Predk (Π), 0 ≤ k ≤ n, then:

1. If there occurs no negation in Bi for 1 ≤ i ≤ m, then

Bi ∈
k⋃

j=0

Predj (Π) .

2. If, however, Bi = ¬Ci, then

Ci ∈
k−1⋃
j=0

Predj (Π) .

It can be shown that if Π is stratified, then Compl (Π) is consistent. A simple way
to check whether an LP program is stratifiable is by means of a dependency graph for
Π, a directed graph G⃗Π in which the arcs are of the form p −→ q whenever there is
a rule r ∈ Π with q ∈ Headr and p ∈ Bodyr. Because a general LP program can be
seen as a generalization of a Datalog program with negation, I leave the discussion on
stratification with relation to dependency graphs for Section 4 below; the application
of this discussion to general LP programs is straightforward.
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3 Declarative + procedural interpretation: Prolog

Prolog, abbreviating the French expression programmation en logique, is the main
language (family) of LP. Although not the most commonly used programming lan-
guage for commercial or industrial applications, Prolog has the advantage of being a
Turing-complete language, which partly explains its considerable success within the
(European) AI community since its original development in the early 1970s by A.
Colmerauer and P. Roussel. In effect, any computable function – and we know by
the Church-Turing Thesis that this is any function that can be computed by a Turing
machine – can be represented by means of Prolog; in other words, Prolog can simulate
any Turing machine.

As elsewhere in this paper, I concentrate on what in Prolog relates more directly
to logic – or impacts on its deductive properties. Because this is basically the ma-
terial above on LP, or pure Prolog, I now have only a few remarks on real Prolog.
Readers seeking a more hands-on approach comprising aspects not discussed here but
fundamental to Prolog (e.g., lists) can benefit from Sterling & Shapiro (1994).

3.1 Prolog and Prolog

By “real Prolog” I intend to capture pure Prolog extended with the predicates not/1,
!/0, and fail/0. The distinction between real and pure Prolog is actually an impor-
tant one, as only the latter is Turing-complete; the addition of cut, denoted by the
symbol “!”, divests Prolog of this desirable property.18 But most of all, real Prolog,
though of a more procedural type than the more declarative pure Prolog, shows how
deductive programming can be carried out by procedures, too.

In what follows, when I write simply“Prolog”I mean“real Prolog,”unless otherwise
stated.19

Definition 70. A Prolog rule has the form CLP and is written

A : −B1, ..., Bn.

for n ≥ 1; if n = 0, then we have a Prolog fact and we write simply A.. Similarly,
Prolog goals and queries are as in LP, and the same holds for Prolog terms.

Definition 71. A Prolog program Π is a sequence of Prolog facts and rules.

Definitions 70 and 71 show how similar Prolog and LP are. This similarity notwith-
standing, Prolog is more procedural than LP, which is more declarative, and this is
expressed in a few features present solely in Prolog. In turn, these features are associ-
ated to a specific language that we can call Prolog.20 I define some of these features:

18I remark that this is not an established distinction in the field, with the label “pure Prolog”
capturing many different versions of Prolog or LP.

19Additionally, I shall only write “Prolog rule,” “Prolog fact,” etc. if I need to disambiguate;
otherwise, I write simply “rule,”“fact,” etc.

20In this paper, I use this font for the names of languages. In the case of the systems of LP
discussed in this article, the names of the languages and of the corresponding programming systems
are identical (e.g, we have Prolog as the language employed in Prolog). Consistency in using this font
would require a fastidious distinction between the languages and the programs, and then between
these and the corresponding programming systems – a distinction that actually goes against the
common practice in the field of programming. Thus, after the introduction of each of the two LP
languages Prolog and Datalog I relax the use of this font.
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Definition 72. A meta-variable is a variable that can occur as an atom.

Definition 73. A built-in predicate is a predicate that is defined by internal rules of
Prolog, i.e. it need not be defined explicitly when writing a program.

Built-in predicates are particularly relevant for (autonomous) management of the
data in a program, but some were conceived with interaction with the user in mind.
Most built-in predicates have a procedural interpretation, but this can have an impact
on the declarative interpretation of a program. This is the case for the predicates !/0
and fail/0. I discuss them below, given their importance, but anticipate that they
cannot occur in the head of a rule, i.e. they are always goals. Another built-in
predicate of particular interest from the viewpoint of the declarative interpretation is
not/1, and I discuss it at length below.

Example 74. Further built-in predicates relevant for deductive programming (a sam-
ple) are:

� The order predicates <,>,<=, >= corresponding to the more common symbols
<,>,≤,≥.

� The arithmetical predicates == and = ⧹ = for arithmetical equality and dif-
ference, and +, ∗, etc.

� The infix predicate = for unification or matching.

� The predicate read(X) allows the user to unify the variable X with a specific
constant, thus allowing the user to manipulate domains and instantiations at
will.

� The infix predicate is expresses equality in Prolog; in X is Y, X must be instan-
tiated to numbers or other arithmetical expressions (e.g., X is 5 ∗ 2).

� The predicate true/0 that, like !/0 and fail/0, is a goal that always succeeds,
can be used to force the attempt to satisfy subsequent subgoals regardless of
the failure of an earlier goal.

� The predicate call (X) allows us to instantiate a variable X to a term that can
be interpreted as a goal.

I can now define the language Prolog in the Backus-Naur notation as follows:

Definition 75. Let there be given the set

OProlog =

{
: −
,

}
≡

{
←
∧

}
of operators and the punctuation marks“,”(between arguments),“.”, and left and right
parentheses. If we define inductively terms, atoms, and statements over a signature
Υ = (Pred, Fun, ar) with ar ≥ 0 denoted by ·/n for t1, ..., tn terms, as
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Variables X ::= e.g., X | John | 9
Terms t ::= Constants c ::= e.g., a | john | 9

Functors p; f ::= p/n; f/n

Atoms A (B, ...) ::= p | f |X

Facts A ::= A.

Statements Rules r ::= A : −B1, ..., Bn.
Goals G (A, ...) ::= B1, ..., Bn

then we have the language (basic FO) Prolog and its syntax.21

We can extend OProlog with the operator “;” denoting disjunction. I have already
used it in queries to prompt all the possible replies, but it can also be employed in
the body of rules. However, it is interpreted as different clauses. Say you have a rule
A : −B1; B2. Then, the interpreter will consider this as two rules, to wit A : −B1. and
A : −B2.. Example 84 below shows the utility of this operator in the body of rules.

Strictly, Prolog statements are solely facts and rules; goals are parts of rules, and
only as such can they be considered statements. Queries are goals with a question
mark, i.e. “statements” of the form ?− q where q = G; in other words, queries are
not statements of the programs. However, we can extend OProlog with the operator
?. As a matter of fact, full Prolog contains more operators, some of which are actually
built-in predicates.

The above allows for a redefinition of a Prolog program:

Definition 76. A Prolog program is a sequence of facts and rules in which there can
occur (i) meta-variables and (ii) built-in predicates.

This definition shows that, though an FO logical language, Prolog differs from the
standard language of FO logic in important ways. The occurrence of meta-variables
and of functions as atoms, as well as of predicates as arguments (see below), accounts
for what I above referred to as the ambivalent syntax of LP. It should be noted, how-
ever, that this ambivalent syntax does not entail that Prolog is an orderless language.
I omitted quantification in Definition 75, because this is a rather implicit business
in LP, as seen above. In effect, we can use Prolog at a purely propositional level,
but then Prolog is a rather uninteresting programming system; and we can use it at
second or higher orders, but this requires further specifications that I do not discuss
here.22

3.2 Logic + control: ! and fail

3.2.1 Adding control to logic

In the Introduction, I touched upon the aspect of computational logic summarized as
the equation Algorithm = Logic + Control. As seen above, SLD resolution is sound

21In Prolog, a predicate p (t1, ..., tn) with n terms, denoted by p/n, may itself be a term in the
negative literal not (p (t1, ..., tn)). This is a feature that contributes to the ambivalent syntax of
Prolog, a feature already mentioned above for LP and which I further discuss below.

22See, for instance, Sterling & Shapiro (1994), Chapter 16, for 2nd-order Prolog programming.
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and complete for LP; but this does not mean that it is efficient. In fact, it is not, as it
entails the construction and complete traversal of often complex SLD-resolution trees.
This is precisely the point where we add the factor “Control” to “Logic,” making real
Prolog more efficient than pure Prolog as far as computation is concerned. The cost
of controlling deductive computation may be high (see below), but the trade-off may
be favorable in the end, at least in some cases.

Control is added to logic in Prolog by means of special atoms that have a proce-
dural impact on the deductive computation without for that changing the meaning of
a program. In other words, the programmer controls how the deductive computation
takes place. This is done by means of predicates that, inside the body of a rule, have
an interpretation of the kind “If X, then do Y,” rather than the more logical interpre-
tation “If X, then Y follows.” We speak here of the predicates !/0, read “cut,” and
fail/0. As 0-ary predicates, they are interpreted as operators rather than predicates.

3.2.2 The operator !

I begin with the operator !, called cut operator : Given an SLD-resolution tree, its use
is intended to cut off failing branches and to prune succeeding branches.

Definition 77. Given an LP program Π = {C1, ..., Cn}, where C abbreviates CLP , let
Ci ⊆ Π be the clause

A← B1, ..., Bj , !, Bj+2, ..., Bn

and let G be a goal. Then, if G unifies with A ∈ Ci, and B1, ..., Bj ∈ C succeed, ! ∈ C
has the following effects:

1. The program is so to say committed to Ci to reduce G, no alternative to A ∈ Ck,
k > i, being considered.

2. In case Bi, i > j + 1, fails, then backtracking goes no further back than !, the
B1, ..., Bj being pruned from the search tree.

3. If the backtracking search goes as far back as to !, then ! fails, and the search
goes back to the last Cj prior to the choice of Ci.

Although real Prolog is often seen as a good example of a programming system that
allies declarative and procedural paradigms, this alliance is not without issues. As a
matter of fact, this alliance entails the loss of Turing-completeness, a very desirable
property of pure Prolog.

Example 78. Fathers of graduate children are typically proud. This can be deduced
from the following program called Proud fathers:

1. proud (X) : −father (X, Y) , graduate (Y) .
2. father (X, Y) : −parent (X, Y) , male (X) .
3. parent (tom, sheila) .
4. parent (tom, lucy) .
5. male (tom) .
6. graduate (lucy) .
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Given the query ?− proud (tom) . as input, SWI-Prolog will answer “true.” Edit the
program by adding ! at the end of rule 2, so that you have

2′. father (X, Y) : −parent (X, Y) , male (X) , !.

Given the same input, SWI-Prolog now replies “false.” This is so because Sheila, who
is not graduate (by NBF), is the first of Tom’s children in the program sequence, and
after ! there are no more attempts to find any other children. Figure 10 shows – with a
broken line – the pruned successful branch of the SLD-proof tree with the substitution
λ = {Y = lucy} and the first, failed, branch with substitution θ = {Y = sheila}
(σ = {X = tom}). If we now interchange the positions of facts 3 and 4, so that Lucy
appears as the first child of Tom, the same query will be answered “true,” even with
2′; additionally, the failure branch will be pruned from the tree, thus making the
computation more efficient.

Figure 10: An SLD-proof tree for a Prolog program with !.

Example 78 illustrates clearly the fact that ! is a problematic operator in deductive
programming. Indeed, the addition of ! to the program Proud fathers does impact
significantly on the meaning of the program. Let us denote this program by Π and
the query ?− proud(tom). by G. Then we have

Π ⊢ G
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accordingly to its meaning, to wit, M (Π) = G = {proud (tom)}. Let us now consider
the same program but with ! added, i.e. Π ∪ {!}. Then we have

Π ∪ {!} ⊬ G

as well as23

Π ∪ {!} ⊢ ¬G.

Clearly, M (Π ∪ {!}) ̸= G. This shows how a procedural interpretation of a pro-
gram may in fact impact on the declarative meaning thereof. The fact that inter-
changing facts 3 and 4 corrects the problem can be used to “blame” the programmer
for the undesirable results above, which is partly true, but it should also highlight
the problems that may arise with the addition of ! to a program, particularly so in
the case of complex programs. When the operator ! does change the meaning of a
program, we call it a red cut – the opposite being a green cut.

Theorem 79. Prolog with the operator ! is not Turing-complete.

Proof. (Idea) In pure Prolog we are assured that, given a program Π and a query
q, Prolog either proves or refutes Π ⊢ q. In effect, Prolog carries out the unification
algorithm and is guaranteed to stop when all the variables have been instantiated or
when Π ⊢ q has been disproved. The operator ! “cuts off”branches of the search tree,
possibly precisely those that contain the proof of Π ⊢ q.

3.2.3 The fail operator

Yet another way to control deductive computation in Prolog is by means of the pred-
icate fail/0. We already know fail from the context of SLD-resolution proofs for
given goals: Given an LP program Π, if a goal G succeeds, then the goal ¬G fails at
all the possible attempts to satisfy it by backtracking, and we have

Π ⊢ G.

Otherwise, i.e. if a goal G fails (for the reasons above), ¬G succeeds and we have

Π ⊬ G.

In the latter case, to the query ?− G. SWI-Prolog replies “false.” The predicate
fail/0, which just like ! is rather an operator, is a means to control this deductive
effect: The programmer elects the goals that are to fail. But contrarily to !, fail has
the procedural effect that no alternative solution whatsoever is considered to satisfy
a goal followed by it: The goal immediately fails.

Definition 80. The 0-ary predicate fail is a built-in predicate with the empty defini-
tion whose procedural interpretation is as follows: Given this predicate in the body
of a rule, the head of the rule fails.

Example 81. Let the Prolog program with the single rule crazy (daffy) : −fail. be
given. Then, given the query ?− crazy (daffy), SWI-Prolog will reply “false.”

23That is to say, if given the goal ?− not (G) . as input, SWI-Prolog, for instance, will reply “true.”
See next Section for the predicate not/1.
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According to Definition 75, both ! and fail are goals; as built-in undefined
goals, they have the property that they always succeed, so they should be cautiously
employed when writing a Prolog program. Their combination, in particular, is a
powerful means to control deductive computation (see next Section).

3.3 Negation in Prolog

3.3.1 The predicate not

As seen, the operator ! may – and often does – lead to incorrect programs, and
fail requires cautious employment as well. An alternative to each of these, but
actually employing them in combination, is negation. In effect, a form of NBF can
be implemented in Prolog by means of ! and fail in this exact order. We express it
by means of the predicate not/1 for convenience, but if using SWI-Prolog, the unary
predicate \+ must be used instead.

Definition 82. The Prolog predicate not/1 is defined as:

not (X) : −X, !, fail.
not (X) .

We call this combination of ! and fail cut-failure negation.
This is a built-in predicate, so the programmer does not need to write this defini-

tion as part of a program.

Example 83. Given the program above Proud fathers SWI-Prolog gives the following
replies to the indicated queries:

?− graduate (sheila).
false

?− not (graduate (sheila)) .
true

?− not (graduate (lucy)) .
false

For the first query SWI-Prolog simply applies NBF: The goal graduate (sheila)
does not match any data in the program. As for the second and third queries,
SWI-Prolog applies the definition of not/1. In these two queries, the goal G is
← not (graduate (Y)) . and the subgoal G′ is ← graduate (Y) .. If G′ succeeds, then
the operator ! cuts off the possibility that G may be the case and G fails. In this
case (the third query above), SWI-Prolog replies “false.” If, however, G′ finitely fails,
the search algorithm tries G by means of backtracking and G succeeds. In this case
(the second query above), the answer is “true.”

It should be noted that cut-failure negation is indeed a form of NBF: Given the
program Proud fathers, the query ?− not (graduate (a)) . will be answered “true” for
any ground term a such that a ̸= lucy. This leaves us with an infinite domain in
which the predicate not (graduate (X)) ∈ Proud fathers is “true.”
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Example 84. As said above, for practical reasons the predicate not/1 is often essential
in a program. For instance, suppose an avian center requires a database from which it
can be easily known which bird(s) might have escaped the closed precincts by flying.
This center has all sorts of birds, a few of which do not normally fly, but most of
which do fly. By adding a rule to the database like

fly (X) : −bird (X) , not (abnormal (X)) .

we can eliminate all non-flying birds, i.e. the “abnormal” birds, such as penguins,
ostriches, etc. This possibly still leaves a lot of flying birds, but we can further reduce
the possibilities by employing another negated atom, say, not (quarantined (X)). The
program Avian center can be sketched as follows:24

fly(X):-bird(X),\+(abnormal(X)),\+(quarantined(X)).

bird(X):-canary(X);nightingale(X);penguin(X);ostrich(X);

crow(X);emu(X);woodpecker(X);turkey(X);duck(X);hen(X).

abnormal(X):-penguin(X);ostrich(X);emu(X);turkey(X);hen(X).

penguin(toto).

ostrich(sheila).

emu(tom).

turkey(sam).

turkey(sandra).

hen(lolita).

canary(roberto).

nightingale(sarita).

crow(bob).

woodpecker(lola).

duck(cassandra).

duck(samantha).

quarantined(roberto).

quarantined(bob).

The query ?− fly (X) . and the operator “;” will output all the reduced possibilities:

X = sarita;

X = lola;

X = cassandra;

X = samantha;

false

More negated goals will help us to obtain a further reduced sample of the birds that
could have escaped by flying, from which sample it might be much easier to determine
the fleeing bird(s).

24In, for example, the predicate penguin (toto), toto is just a constant; it can stand equally for
a single penguin (say, in a shelter for birds) or for all the penguins (in a large avian center, for
instance). Note also the useful operator “;” in the body of the second and third rules of this program.
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3.3.2 Restricted Prolog programs and queries

In Definition 82, it should be noted that X is a meta-variable, a syntactical feature
that is absent in CFOL, as already commented upon. This entails yet another feature
that violates CFOL syntax: Given the n-ary function symbol f (t1, ..., tn), then the
query ?− not (f (t1, ..., tn)) . in Definition 82 requires a computation in which f/n is
both a function and a predicate symbol. The same is true of a rule such as

p (t1, ..., tn) : −not (p (t1, ..., tn)) .

in which p/n is a predicate symbol in the head and a function symbol in the body of
the rule. This requires that we accept that, given a signature for a Prolog program
Π, we may have

Pred (Π) ∩ Fun (Π) ̸= ∅.

In other words, we take ambivalent syntax to be a feature of Prolog.
One of the main goals when writing a Prolog program should be to make the

deductive computation on it run error-free. Useful as negated atoms may be in Prolog,
negation is unfortunately a source of errors. Let us say that a program is safe if no
errors are generated, namely with respect to the SLD-resolution process.

Definition 85. We say of an atom A that it is unsafe if

1. A is a meta-variable.

2. A = not (X), for X a variable.

3. A = not (not (t)), for a term t.

Definition 86. A Prolog query is meta-safe if none of its atoms is unsafe.

If a meta-variable is selected in the SLD-resolution process, then errors are bound
to occur. Hence, we have a problem, as Definition 82 does indeed contain a meta-
variable.25 The possible solution runs as follows, from definitions to theorem:

Definition 87. A Prolog programΠ containing the two rules of Definition 82 as a prefix
and in which for every LP atom ¬A we write not (A) instead is called a restricted Prolog
program if, when omitting the mentioned prefix and writing ¬A instead of not (A), we
still have a syntactically correct general LP program. In the same way, we say that a
Prolog query in which we write not (A) instead of ¬A is a restricted Prolog query if it
is a syntactically correct LP query when writing ¬A instead of not (A).

Lemma 88. Let q be a meta-safe Prolog query and Π a restricted Prolog program.
Then all resolvents of q are meta-safe.

Theorem 89. The computation of a restricted Prolog query and a restricted Prolog
program generates no errors.

25It should be noted that even if we choose to define the first rule without a meta-variable, namely
as

not (p (t1, ..., tn)) : −p (t1, ..., tn) , !, fail.
we have the ambivalent-syntax problem.
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4 Purely declarative interpretation: Datalog

Henceforth I shall be focusing on databases, namely on relational databases. More
precisely, I shall concentrate on these as deductive databases. However, as stated in the
Introduction I approach databases as KBs, i.e. as collections of data that are facts (cf.
Augusto, 2020c). This is not (explicitly) the standard approach in the literature and
I give the following suggestions for the readers interested in standard discussions: For
the large topic of databases, the reader may benefit from Date (2004); for databases
and LP I refer the reader to Ceri et al. (1989, 1990), Gallaire et al. (1984), Minker
(1997) – which also provides historical aspects on the topic of logic and databases –,
and Abiteboul et al. (1995), a comprehensive textbook. Finally, Greco & Molinaro
(2016) provides an extensive elaboration on Datalog.

In terms of deductive programming, Datalog has a purely declarative interpre-
tation. This means that as far as the equation Algorithm = Logic + Control is
concerned, we have now the identity Algorithm = Logic. This identity is supported
by an FO language – a subset of Prolog – that, besides being capable of represent-
ing knowledge in terms of relations, also allows deduction to be carried out over sets
of formulae expressing relations. This means that Datalog both is a relational lan-
guage over which we can build relational databases and allows deduction over those
databases. Although my interest falls mainly on Datalog as a deductive database,
these relational notions need to be briefly elaborated on, as in fact Datalog is the ad-
dition to relational databases of logical features pertaining to CFOL. In other words,
Datalog is the formalization of relational databases by means of a subset of the stan-
dard CFOL, a formalization that entails the deductive properties inherent in this
subset when considered in the framework of a calculus under (mostly) Herbrand se-
mantics. Anticipating the due formal definitions, this subset is function-free – which
in principle guarantees decidability under Herbrand semantics – and includes solely
the connectives for conjunction and (inverse) implication, so that, just as in the case
of Prolog, we shall be employing SLD resolution over sets of Horn clauses.

The contents of Section 2 hold mutatis mutandis, as I include deductive databases
in deductive programming, for which the notions query and query system are central.
Exceptions and specifications will be clearly stated. In particular, I go on denoting
arbitrary variables by the uppercase letters X,Y, ... and arbitrary predicate symbols
by lowercase letters (e.g., p).

4.1 Relational languages and databases

Definition 90. Let L be a formal language over a signature Υ = (Pred, ∅, Cons).26
Then, if the assertions of L are of the form R (t1, ..., tn), where R is an n-ary relation
symbol and the ti are variables and/or constants, L is called a relational language.

Although, as it will be seen, we may consider a relational language as a function-
free fragment of the language of CFOL, in the more narrowly defined context of
relational databases the following specifications need to be made:

Definition 91. Let a domain Di, for 1 ≤ i ≤ n, be a set of values.

26Or Υ = (Pred, ∅, ar ≥ 0).
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1. We say that the (commutative) Cartesian product D1 × ... × Dn of i = 1, ..., n
domains is a (finite) relation R ⊆ D1 × ...×Dn of arity i = 1, ..., n.

2. The values of domain Di are called attributes. Let A1, ..., An be attributes.
Then, a relation R with n attributes defines a (non-ordered) n-tuple (A1, ..., An)
such that R (A1, ..., An) is called a relation scheme and

R =
{(
c11, ..., c

1
n

)
, ...,

(
ck1 , ..., c

k
n

)}
where the cji , 1 ≤ j ≤ k, denote specific elements (items or individuals), is said
to be an instance (or extension) thereof.

3. A finite set of instances of relations Rl ⊆ D l
1× ...×D l

n, l = 1, ...,m, is a (finite)
relational database.

We can envisage a relation R as a table of which the attributes Ai, i = 1, ..., n, are

the columns and the instances uj =
(
cj1, ..., c

j
n

)
, 1 ≤ j ≤ k, are the rows.

Example 92. Let us revisit the avian center of Example 84 above. A relational
database for this center can be constructed by means of a relation R (A1, A2) where
R = BIRD, A1 = SPECIES, and A2 = NAME. Attributes A1, A2 are associated with
the corresponding domains D1,D2 of, respectively, bird species and proper nouns. The
table for this relation is shown in Figure 11.

BIRD

SPECIES NAME

Penguin Toto

Ostrich Sheila

Emu Tom

Turkey Sam

Turkey Sandra

Hen Lolita

Canary Roberto

Nightingale Sarita

Crow Bob

Woodpecker Lola

Duck Cassandra

Duck Samantha

Figure 11: Table for BIRD (SPECIES,NAME).

Then, the relational database Avian center is constituted by the finite instances of
the relation scheme BIRD (SPECIES,NAME). (Note how for the values Turkey
and Duck there are two rows on the table for this relation scheme.) The extension of
this relation scheme is the set:

BIRD =


(penguin, toto) , (ostrich, sheila) , (emu, tom) ,
(turkey, sam) , (turkey, sandra) , (hen, lolita) ,

(canary, roberto) , (nightingale, sarita) ,
(crow, bob) , (woodpecker, lola) ,

(duck, cassandra) , (duck, samantha)
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More frequently than not, a relational database has more than a single relation
scheme. As a matter of fact, a relational database can be further specified as a set of
ground assertions over a relational language L together with the following axioms:

Definition 93. If c1, ..., cp are all the constant symbols of a relational language L and
R
(
c11, ..., c

1
n

)
, ..., R (cm1 , ..., c

m
n ) denote all the facts under R for each relational symbol

R ∈ ΣL, then the following, together with the axioms for equality, are the axioms of
a relational database over L:27

(UN) (c1 ̸= c2) , ..., (c1 ̸= cp) , (c2 ̸= c3) , ..., (cp−1 ̸= cp)

(DC) ∀X [(X = c1) ∨ ... ∨ (X = cp)]

(CO) ∀X1...∀Xn[R (X1, ..., Xn)→((
X1 = c11

)
∧ ... ∧

(
Xn = c1n

))
∨ ... ∨ ((X1 = cm1 ) ∧ ... ∧ (Xn = cmn ))]

I denote the set of all the axioms above, often called the particularization ax-
ioms, by AX∆, where ∆ denotes an arbitrary relational database.28 This axiomati-
zation, firstly formulated in Reiter (1984), formalizes three assumptions of relational
databases: The unique-name assumption (axiom UN), which states that every distinct
individual in the database has a different name or, which is the same, individuals with
different names are distinct; the domain-closure assumption (axiom DC), according
to which there are no other individuals than those in the database; the completion
assumption (axiom CO), which states that the only tuples that a relation R can have
are those specified in the relational database. Importantly, the completion assumption
“translates” the closed-world assumption (CWA) already known from the discussion
above on Prolog: That there are no other instances of some relation R than those
implied by the database entails that ¬R (c1, ..., cn) is assumed to be true if the tuple
(c1, ..., cn) does not constitute an instance of R in the database.

Definition 94. Given a finite set of ground assertions R, a relational database ∆ is
defined as:

∆ = R ∪AX∆

27The axioms for equality are as follows:

(E1) ∀x (x = x)
(E2) ∀x∀y ((x = y)→ (y = x))
(E3) ∀x∀y∀z [((x = y) ∧ (y = z))→ (x = z)]
(E4) ∀f∀x∀y [(x = y)→ (f (x) = f (y))]
(E5) ∀P∀x∀y [(x = y)→ (P (x) = P (y))]

E4 is irrelevant for Datalog. To simplify, consider E5 as formalized in FOL:

∀x∀y [(P (x) ∧ (x = y))→ P (y)] .

28Not to be confused with a general database ∆, as used above in the context of Prolog programs.
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Example 95. Given the relational database Avian center, by axiom UN we can assume
that Sam and Sandra are two distinct turkeys, i.e. sam ̸= sandra; by DC, we know
that these are the only two turkeys in the database, as for all the birds X in the
database and the value Turkey we have (X = sam) ∨ (X = sandra); and by CO we
can safely assume that Sheila is not a turkey, as (turkey, sheila) /∈ BIRD, and hence
we can conclude ¬BIRD (turkey, sheila).

Definition 96. Let there be given a relational database ∆. Then:

1. The set of ground assertions of the form R (c1, ..., cn), is called the extensional
database (EDB).

2. The set of axioms of the form R1 (x⃗1)← R2 (x⃗2) , ..., Rm (x⃗m), where the x⃗i are
tuples of appropriate arities, is called the intensional database (IDB).

4.2 Deductive databases and Datalog

Given a relational language, for some relation R ⊆ D1 × ... × Dn, the corresponding
attributes A1, ..., An can be expressed as variables X1, ..., Xn ∈ V i (as constants
c1, ..., cn ∈ Cons), so that we actually have p (X1, ..., Xn) (respectively, p (c1, ..., cn)),
where p is a predicate symbol of arity n. In other words, we can express n-ary relations
of a relational database as atoms of the form p (t1, ..., tn) where ti ∈ (V i ∪ Cons). The
language Datalog allows us to do this.29

Definition 97. Let there be given the set

ODlog =

{
: −
,

}
of operators and the punctuation marks “,” (between arguments), “.”, and left and
right parentheses. If we define inductively terms, functors (predicate, or relation,
symbols of arity n), atoms, and statements over a signature Υ = (Pred, ∅, Cons) as

Terms t ::= Variables X ::= e.g., X | John
Constants c ::= e.g., a | john | 8

Functors p ::= p (t1, ..., tn)

Atoms A (B, ...) ::= p

Facts A ::= A.

Statements Rules r ::= A : −B1, ..., Bn.
Goals G (A, ...) ::= B1, ..., Bn

then we have the language Datalog and its syntax if the following safety conditions
are satisfied:

1. Each fact A is a ground atom.

29Cf. footnote 20 above for the use of this font for language names.

J. Knowl. Struct. Syst., 5:1 39



Review Prolog and Datalog Luis M. AUGUSTO

2. Given a rule r = A : −B1, ..., Bn., if a variable X occurs in A, the head of the rule
(i.e. {A} ⊆ Headr), then it must occur at least in one of the (non-arithmetical)
Bi ∈ Bodyr constituting the body of r (for {B1, ..., Bn} ⊆ Bodyr).

From the above definitions, it is obvious that Datalog is a function-free subset of the
standard language of CFOL. Let us denote this language by L1 and its function-free
fragment by L1ff .

Proposition 98. Datalog ⊆ L1ff is a relational language.

Proof. Trivial.

Trivial as the proof above might be, some remarks need to be made. Let RT L
be the class of relational languages; then, Datalog is a relational language in the sense
that we have Datalog ⊇ RT L . This containment relation formalizes the fact that
Datalog is more expressive than a relational language. This is particularly so with
respect to recursion: While this property is expressible in Datalog, it is not a feature
of the class RT L . But the impact of applying Datalog on a relational database has
further interesting and important consequences. I next elaborate on this topic.

The main objective of “logicizing” relational databases, namely by means of Data-
log, is that of allowing deduction to be carried out over them. We call these“logicized”
relational databases deductive databases (abbrev.: DDBs). In effect, given a query q
and a relational database ∆, we may wish to know whether q ∈ ∆. This is clearly
a decision problem, and, as is well known, we can formulate it as a logical problem:
Given the pair (∆, q), we wish to find out a “Yes/No” answer to the question

∆
?

⊢ q.

This logical formulation, in turn, requires that our relational database be capable of
having deduction carried out over it, so that q = R

(
ci1, ..., c

i
n

)
may be a new relation

instance – a view, in DDB jargon – deducible from ∆, but not an explicit assertion in
∆. Furthermore, we aim at adequate deduction over our database, so that we want
the proof system P∆ for ∆ to correspond to some semantics S∆ in the sense that we
have ∆ ⊢ q iff we have ∆ |= q.

Interestingly enough, all we have to do is to see ∆ as an FO logical theory. In
effect, just compare Definition 94 above with the following definition, armed with the
knowledge that AX∆ ⊆ (EDB ∪ IDB).

Definition 99. A theory Θ is a deductively closed (sub)set of formulae of some logical

language L, i.e. Θ = F
(′)
L ∪AX ∪RI.

1. Let Θ be a theory. ΘB is said to be an extension of Θ if every theorem of Θ
is a theorem of ΘB, i.e. if Θ ⊂ ΘB, and Θ′ is said to be a subtheory of Θ if
Θ′ ⊂ Θ.

2. A theory Θ is said to be consistent if it is not the case that we have both Θ ⊢ ϕ
and Θ ⊢ ¬ϕ for some formula ϕ. Otherwise, Θ is inconsistent.
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3. A theory Θ is complete if it is the case that either Θ ⊢ ϕ or Θ ⊢ ¬ϕ for some
formula ϕ. Otherwise, Θ is incomplete.

We shall consider this FO formalization of ∆ to be a deductive database.

Definition 100. A deductive database (DDB), denoted by ∆, is defined as:

∆ = EDB ∪ IDB

Proposition 101. A deductive database ∆ is a logical theory. In particular, a deductive
database ∆ is a logical theory over L1ff .

Proof. Trivial.

For reasons to do with implementation, we shall consider that every formula in ∆
satisfies the particularization axioms, but shall not consider explicitly AX∆ ⊆ ∆. One
of the reasons for this omission is that we do not wish to employ L1=, the language
L1 augmented with the symbol for identity “=”, or any of its reducts containing this
symbol; in particular, AX∆ would contribute to combinatorial complexity leading to
inefficient implementations. This restriction can be satisfied by considering a DDB
as:30

∆ = EDB ∪ IDB ∪ {NF}

It is evident that we can construct such a DDB by means of the logical-relational
language Datalog.31 As a matter of fact, we can speak of a Datalog database as a
synonym for DDB.

Definition 102. Let there be given a Datalog database ∆. Then, a Datalog program
Π∆ ⊆ ∆ is defined as:

Π∆ = IDB⧹EDB

In other words, a Datalog program is a finite set of Datalog rules. This may appear
at first a very narrow definition, accepted on the basis that the EDB be physically
stored in a relational database, a feature that is explained by the need to store a large
number of assertions. Indeed, it may appear that an assertion in a relational language
just is a fact in LP, in which a fact just is a special rule, namely a rule without a
body. But this is actually not supported by the semantics for Datalog. Thus, we have
both pragmatic and formal reasons to define a Datalog program as above.

I next elaborate on this, for which end we shall require a more precise definition
of a Datalog program:

Definition 103. Let there be given a Datalog DB ∆. Then, the finite set

Π∆ = Datalog rules︸ ︷︷ ︸
IDB⊆∆

⧹Assertions︸ ︷︷ ︸
EDB⊆∆

is a Datalog program if

30I shall have more to say about negation in Datalog below.
31A DDB also typically comprises a set of integrity constraints, FO formulae expressing facts such

as “an individual cannot be both mother and father of a child.” However, these constraints are not
essential in DDBs. If a constraint is indeed essential, then it can be formulated as a rule in the DDB.
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1. the head predicate of every rule in Π∆ does not occur in EDB, or, in other
words, is an intensional predicate (or relation), and

2. predicates in EDB occur only in the bodies of rules in Π∆, being thus called
extensional predicates (or relations).

Example 104. Let us retake the relational database of Examples 92 and 95, based on
the Prolog program Avian center (cf. Example 84). We extend this database with
the supplementary relation schemas ABNORMAL (c), QUARANTINED (c), and
EATS (c1, c2). The corresponding attributes and domains should be evident from the
values given. The complete relational database Avian Center DB is given in Figure
12.

BIRD =


(penguin, toto) , (ostrich, sheila) , (emu, tom) ,

...
(duck, cassandra) , (duck, samantha)


ABNORMAL = {(penguin) , (ostrich) , (emu) , (turkey) , (hen)}

QUARANTINED = {(roberto) , (bob)}

EATS =


(penguin, fish) , (ostrich, all) , (emu, all) ,
(turkey, seeds) , (hen, all) , (canary, seeds) ,

(nightingale, seeds) , (crow, all) ,
(woodpecker, bugs) , (duck, all)


Figure 12: The relational database Avian Center DB.

The complete EDB Avian Center EDB is shown in Figure 13. We can now build a
Datalog DB Avian Center DDB constituted by the EDB Avian Center EDB and the
following Datalog rules, which, in turn, constitute the program Avian Sick Prog :



bird (penguin, toto) , bird (ostrich, sheila) , bird (emu, tom) ,
bird (turkey, sam) , bird (turkey, sandra) , bird (hen, lolita) ,

bird (canary, roberto) , bird (nightingale, sarita) ,
bird (crow, bob) , bird (woodpecker, lola) ,

bird (duck, cassandra) , bird (duck, samantha) ,
abnormal (penguin) , abnormal (ostrich) ,

abnormal (emu) , abnormal (turkey) , abnormal (hen) ,
quarantined (roberto) , quarantined (bob) ,

eats (penguin, fish) , eats (ostrich, all) , eats (emu, all) ,
eats (turkey, seeds) , eats (hen, all) , eats (canary, seeds) ,

eats (nightingale, seeds) , eats (crow, all) ,
eats (woodpecker, bugs) , eats (duck, all)


Figure 13: The EDB Avian Center EDB.

r1 : sick (Y) : −quarantined (Y) .
r2 : on diet (Y, Z) : −bird (X, Y) , sick(Y), eats (X, Z) .
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Here, the predicate on diet (Y, Z) denotes the fact that the sick bird Y is on an extra
portion of Z, the food adequate for its species, for quick convalescence. After querying
the DB with respect to the currently sick birds (query: ?− sick (Y) .), staff respon-
sible for quarantined birds can check on their dietary needs by means of the query
?− on diet (Y, Z) . For instance, knowing that Bob is quarantined, one can query the
DB with the query ?− on diet (bob, Z) .. (Actually, one can simply query the DB
by means of ?− on diet (Y, Z) ., getting at once the information on the quarantined
birds and their corresponding diets.)

This example illustrates the following facts: Firstly, it shows why the separation
between the relational DB and the program proper is of advantage. Indeed, the DB
requires regular, perhaps daily, updating, as the number of birds in the center changes
frequently and quarantines need regular updates, too. An industrial-scale relational
DB may be so complex as to actually require some sort of automatic updating. On
the contrary, the rules of the program do not change. Secondly, a large institution
typically has different departments. In this particular example, the reader can easily
imagine a department in the avian center for the quarantined birds. Staff working in
this department might very likely be the only ones who need to use this program, but
the DB must be available to the whole center. This accounts for the head predicates
in the program rules not occurring in the DB, as well as for the fact that the DB, in
turn, has predicates that do not occur in the program. For instance, in the program
of Example 104, the predicate name ABNORMAL does not occur.

The practical account for Definitions 102-3 being given, I focus now on the formal
account. This requires yet a further specification for a Datalog program:

Definition 105. Given a Datalog programΠ∆, let us call the finite set of all extensional
predicate names or symbols the extensional schema, denoted by EDB (Π∆), and the
finite set of all intensional predicate names or symbols the intensional schema, denoted
by IDB (Π∆). We set

EDB (Π∆) ∩ IDB (Π∆) = ∅.

Then, the schema of a Datalog program is defined as the set

Sch (Π∆) = [EDB (Π∆) ⊆ Pred (EDB)] ∪ IDB (Π∆) .

Intuitively, Sch (Π∆) gives us the structure of the corresponding Datalog program.

Example 106. I abbreviate the name of the program in Example 104 as A. With
respect to this program, we have the sets

EDB (A) = {bird, quarantined, eats}

and
IDB (A) = {sick, on diet} .

The schema for this program is

Sch (A) = {bird, quarantined, eats, sick, on diet} .

Note that the predicate abnormal ∈ Pred (EDB) does not belong to the schema
of this program, as we have abnormal /∈ EDB (A). Additionally, the intensional
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predicate name sick ∈ IDB (A) occurs also in the body of rule r2, which illustrates
the fact that the body of a Datalog program rule can have both extensional and
intensional predicate names or symbols. It is this fact that accounts for recursion as a
property of Datalog programs: In effect, recursion is the case when some intensional
predicate occurs both in the head and in the body of rules.

4.3 Semantics for Datalog DDBs

I am now ready to introduce semantics for a Datalog DB, namely for a Datalog
program. There are at least two semantics for a Datalog program, to wit, Herbrand
semantics and fixed-point semantics. Importantly, these two semantics are equivalent.
Although with different weights, I discuss here both semantics. I first give some
general remarks on semantics for Datalog DBs.32

Definition 107. Given a Datalog DB ∆, a semantics S∆ for ∆ is the set of models
based on the function

f∆ : EDB (Π∆) −→ IDB (Π∆)

mapping EDB facts to IDB facts.

This definition, which introduces the notion of an IDB fact, entails a semantics S∆

for a DDB ∆ such that S∆ is the set of models based on a mapping from inputs over
the EDB to outputs over the IDB. Hence, a semantics S∆ for ∆ just is the semantics
for the program Π∆ associated with it. This motivates the following definition that
gives a new meaning to the concept query :

Definition 108. Given a Datalog DB ∆, a program Π∆ is a query against E∆ ⊆ EDB,
where E∆ is the set of Datalog formulae expressing the known facts of ∆ that can be
queried via Π∆.

33

In other words, a Datalog program Π∆ provides a means of querying a subset
of an associated relational DB ∆. It should not be hard to see that both the EDB
facts in E∆ and the IDB facts proper are constituted by the ground instances of the
predicates over Sch (Π∆), denoted by Sch (Π∆)g, which, in turn, constitute the set
of ground instances of the goals of a Datalog program. This just is the Herbrand base
obtained from the Herbrand universe of ∆. I can now further specify a semantics
SΠ∆

for a Datalog program as follows.

4.3.1 Herbrand semantics

Definition 109. Given the Herbrand universe H∆ for a Datalog DB ∆ with a program
Π∆, we denote by H (∆) the Herbrand base of ∆. Let us denote by EDB (Π∆)g

32The reader is assumed to be familiar with Herbrand semantics. Augusto (2019; 2020a) contain
extensive sections on this semantics.

33I emphasize the fact that E∆ is not necessarily identical to EDB. Precisely because of this in-
equality, and because the IDB of a Datalog DB may also contain further rules, namely integrity
constraints and particularization axioms, EDB (Π∆) and IDB (Π∆) are relevant notions. In partic-
ular, if a predicate symbol p ∈ [EDB (Π∆) ⊂ Sch (Π∆)], then p occurs in a formula of E∆. As for
the set IDB (Π∆), we may assume that IDB (Π∆) = Pred (IDB (∆)). If IDB (∆) contains more
rules than those whose predicate names are to be found in IDB (Π∆), then we may specify the facts
formed by means of IDB (Π∆) ⊊ Pred (IDB (∆)) as IDB facts proper. In effect, the IDB of any
DDB is the output of querying the associated EDB by means of a Datalog program.
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the ground atoms of H (∆) corresponding to the predicates in EDB (Π∆), and by
IDB (Π∆)g the ground atoms of H (∆) corresponding to the predicates in IDB (Π∆),
so that we have:

Sch (Π∆)g = EDB (Π∆)g ∪ IDB (Π∆)g

Sch (Π∆)g is called an instance of ∆ over Sch (Π∆).
34 Then, a semantics SΠ∆ for a

Datalog program Π∆

1. is a function
g
∆
: EDB (Π∆) −→ IDB (Π∆)

such that, given an extensional schema EDB (Π∆) ⊇ E∆, we have35

g∆ (EDB (Π∆)) = Cn (Π∆ ∪ E∆) = g∆ (E∆)

where p
(
ci1, ..., c

i
n

)
∈ Cn (Π∆ ∪ E∆) if either

(a) p ∈ EDB (Π∆) and p
(
ci1, ..., c

i
n

)
∈ (E∆)g, or

(b) there is some rule r in Π∆ such that p (X1, .., Xn) = Headr and Bodyr ⊆
Sch (Π∆)g, and

2. given some goal G = ?− p (X1, ..., Xn) ., we have

g∆ (G) =
⋃{(

ci1, ..., c
i
n

)
| (Π∆ ∪ E∆) |= p

(
ci1, ..., c

i
n

)}
for i = 1, 2, ..., k and where p ∈ IDB (Π∆) and p

(
ci1, ..., c

i
n

)
∈ g∆ (EDB (Π∆))

is a ground instance of G.

Example 110. Let us retake the Datalog DB Avian Center DDB and the respective
Datalog program Avian Sick Prog, that I shall abbreviate as A. As seen in Example
106, the schema of this program is

Sch (A) = {bird, quarantined, eats, sick, on diet} .

An instance over this schema, denoted by Sch (A)g, is shown in Figure 14. Then,
given goals G1 = ?− sick(Y). and G2 = ?− on diet (Y, Z) ., we have:

g∆ (G1) = {(roberto)} ∪ {(bob)}

and
g∆ (G2) = {(roberto, seeds)} ∪ {(bob, all)}

Note how sick (Y) = Headr1 and on diet (Y, Z) = Headr2 , as well as that Bodyr1 ⊂
Sch (A)g and Bodyr2 ⊂ Sch (A)g, thus satisfying condition 1 in Definition 109. Fur-
thermore, taking into consideration the associated IDB (A), the domain DA is reduced
to

D
′

A = {canary, crow, roberto, bob, seeds, all} .
34Equivalently, given a domain D∆ ⊇ D1, ...,Dn for a DDB ∆, a database instance Sch (Π∆)g is

a finite Herbrand interpretation over D∆. Note that whereas Sch (Π∆) specifies the structure of the
deductive database ∆, Sch (Π∆)g specifies its content.

35Cn denotes the bivalent logical consequence operation. See Augusto (2020c).
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bird (penguin, toto) .
bird (ostrich, sheila) .
bird (emu, tom) .
bird (turkey, sam) .
bird (turkey, sandra) .
bird (hen, lolita) .
bird (canary, roberto) .
bird (nightingale, sarita) .
bird (crow, bob) .
bird (woodpecker, lola) .
bird (duck, cassandra) .
bird (duck, samantha) .

quarantined (roberto) .
quarantined (bob) .

eats (penguin, fish) .
eats (ostrich, all) .
eats (emu, all) .
eats (turkey, seeds) .
eats (hen, all) .
eats (canary, seeds) .
eats (nightingale, seeds) .
eats (crow, all) .
eats (woodpecker, bugs) .
eats (duck, all) .

sick (roberto) .
sick (bob) .

on diet (roberto, seeds) .
on diet (bob, all) .

Figure 14: An instance of the Datalog database Avian Center DDB with respect to the
program Avian Sick Prog.
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This gives us the reduced instance of Figure 15, which in fact corresponds to a
minimal Herbrand model for this program. In effect, we have, for A abbreviating
Avian Sick Prog and AC doing so for the associated EDB Avian Center EDB, and
for the goals above G1 and G2,

A ∪AC |=


sick (roberto)

sick (bob)

and

A ∪AC |=


on diet (roberto, seeds)

on diet (bob, all)

.

bird (canary, roberto) .
bird (crow, bob) .

quarantined (roberto) .
quarantined (bob) .

eats (canary, seeds) .
eats (crow, all) .

sick (roberto) .
sick (bob) .

on diet (roberto, seeds) .
on diet (bob, all) .

Figure 15: Cn(Avian Sick Prog∪EAvian Center DDB).

In particular, we have

(EAC)g =



bird (canary, roberto) ,
bird (crow, bob) ,

quarantined (roberto) ,
quarantined (bob) ,
eats (canary, seeds) ,

eats (crow, all)


and

g∆ (EAC) =



bird (canary, roberto) ,
bird (crow, bob) ,

quarantined (roberto) ,
quarantined (bob) ,
eats (canary, seeds) ,
eats (crow, all) ,
sick (roberto) ,
sick (bob) ,

on diet (roberto, seeds) ,
on diet (bob, all)



.
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In fact, g∆ (EAC) can be further reduced to a subset g∆

(
E

′

AC

)
if we consider a

sub-domain; for instance, let us focus on Bob, so that we have

D
′′

A = {crow, bob, all}

and

g∆

(
E

′

AC

)
=


bird (crow, bob) ,
quarantined (bob) ,
eats (crow, all) ,
sick (bob) ,

on diet (bob, all)

 .

Consider now Definition 109: In it, Π∆ ∪ E∆ |= p
(
ci1, ..., c

i
n

)
can be abbreviated

as Π∆ |= p
(
ci1, ..., c

i
n

)
if we conceive Π∆ = E∆ ∪ IDB∆. This we do if we conceive a

Datalog program as a definite program. Then, we can further specify

Π∆ |=Sch(Π∆)g
p
(
ci1, ..., c

i
n

)
so that we actually have

A ∪AC |=Sch(A)g


sick (roberto)

sick (bob)

and

A ∪AC |=Sch(A)g


on diet (roberto, seeds)

on diet (bob, all)

.

In effect, logical consequence with respect to a Datalog program Π∆ is defined here in
terms of the Herbrand interpretations therefor. Because there are no function symbols
in Datalog, the Herbrand universe HΠ∆

is finite. Also, because the domains are
specified in the associated relational DB, the constants in HIΠ∆

are all the constants
occurring in EDB (Π∆)g. Finally, as there are no (explicitly) negative literals in our
Datalog DDB, there is actually only one H-interpretationHIΠ∆ for a Datalog program
if all the predicate symbols of Sch (Π∆) are included, i.e. if HIΠ∆

=
⋃

iHIiΠ∆
. Then,

we have the following result:

Proposition 111. Given a Datalog program Π∆, there is a least H-model

HMΠ∆
={

p
(
ci1, ..., c

i
n

)
| p

(
ci1, ..., c

i
n

)
∈ Sch (Π∆)g and (Π∆ ∪ E∆) |= p

(
ci1, ..., c

i
n

)}
such that

HMΠ∆ = g∆ (E∆) .

Proof. Left as an exercise. (Hint: Note how, in Example 110, g∆

(
E

′

AC

)
is a minimal

H-model, but not the least H-model for AC ; g∆ (EAC) is.)

In other words – and informally –, g∆ (E∆) provides all the information, and
only the information, expressed by a Datalog program Π∆. In terms of Herbrand
semantics, this just is the least H-model HMΠ∆ .
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4.3.2 Fixed-point semantics

We obtain an equivalent result in the following way: If working with fixed-point
semantics for a DDB, the immediate consequence operator takes over the role of Cn
and |=. We denote this operator by T, and define it as follows:

Definition 112. Let I ⊆ Sch (Π∆)g be a ground instance of a Datalog program Π∆.
Then, the immediate consequence operator is the mapping

TΠ : 2I −→ 2I

where TΠ is a simplified notation for TΠ∆
. For a Datalog program Π∆ and I ⊆

Sch (Π∆)g , we define

TΠ (I) = {σA| (A← B1, ..., Bn) ∈ Π∆ and σ (B1) , ..., σ (Bn) ∈ I}

for some ground substitution σ.36

1. We set
T0

Π (I) := I

after which we iterate
T1

Π (I) := TΠ (I)

T2
Π (I) := TΠ

(
T1

Π (I)
)

...

Tn+1
Π (I) := TΠ (Tn

Π (I))

until no more ground atoms can be output, i.e. until

TΠ (Tn
Π (I)) = Tn

Π (I)

and Tn
Π (I) is a fixed point of Π∆.

2. Let now
TΠ ↑0 (∅) := ∅

TΠ ↑1 (∅) := TΠ

(
TΠ ↑0 (∅)

)
= T0

Π (∅)

TΠ ↑2 (∅) := TΠ

(
TΠ ↑1 (∅)

)
= T1

Π (∅)

...

TΠ ↑n+1 (∅) := TΠ (TΠ ↑n (∅)) = Tn
Π (∅)

such that

TΠ ↑ω (∅) :=
∞⋃

n∈N
TΠ ↑n (∅) = lim

n→∞
TΠ ↑n (∅)

so that for finite n we have TΠ ↑ω (∅) = TΠ ↑n (∅) and we say that TΠ ↑ω (∅)
is the least fixed point of Π∆, denoted by lfp (ΠΠ).

36More correctly, a matching σ (see the next Section).
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Example 113. Consider the following Datalog program as constituted by the following
set of logical formulae:

Π∆ =


p (a)

q (X)← p (X)
r (X)← q (X)

s (X)← r (X) , q (X)


We start with TΠ ↑0 (∅) = ∅, and we then iterate until a least fixed-point is found:

TΠ ↑1 (∅) = TΠ (∅) = {p (a)}

TΠ ↑2 (∅) = TΠ ({p (a)}) = {p (a) , q (a)}

TΠ ↑3 (∅) = TΠ ({p (a) , q (a)}) = {p (a) , q (a) , r (a)}

TΠ ↑4 (∅) = TΠ ({p (a) , q (a) , r (a)}) = {p (a) , q (a) , r (a) , s (a)}

TΠ ↑5 (∅) = TΠ ({p (a) , q (a) , r (a) , s (a)}) = {p (a) , q (a) , r (a) , s (a)}

and
TΠ ↑4 (∅) = lfp (Π∆) .

TΠ ↑4 (∅) is the least fixed-point of Π∆.

The equivalence of Herbrand semantics and fixed-point semantics with respect to
a Datalog program is expressed in the following theorem:

Theorem 114. (van Emden & Kowalski, 1976) Let Π∆ be a set of definite clauses.
Then:

HMΠ∆ = lfp (Π∆) = TΠ ↑ω (∅)

4.4 A proof system for Datalog definite programs: SLD resolution

It should be obvious that each set in g∆ (G) for some goal G corresponds to a ground
instantiation Gσ where σ is a substitution {X 7→ c}.

Example 115. In Example 110, g∆ (G1) is obtained from the ground instantiations

sick (roberto) : −quarantined (roberto) .

given the substitution σ1 = {Y 7→ roberto}, and

sick (bob) : −quarantined (bob) .

given the substitution θ1 = {Y 7→ bob}. As for g∆ (G2), we have the ground instanti-
ations

on diet (roberto, seeds) : −bird (canary, roberto) ,

sick(roberto), eats (canary, seeds) .
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given the substitution σ2 = {Y 7→ roberto, Z 7→ seeds, X 7→ canary}, and

on diet (bob, all) : −bird (crow, bob) ,

sick(bob), eats (crow, all) .

given the substitution θ2 = {Y 7→ bob, Z 7→ all, X 7→ crow}.

The process of ground-instantiating a goal in a Datalog DB is by means of uni-
fication. However, we can make this process more precise with respect to a Datalog
DB ∆ = E∆ ∪Π∆ in the following way:

Definition 116. Let E∆ = {A1, ..., An}, where each Ai is a ground assertion or ground
fact. Then, given some rule (A← B1, ..., Bk) ∈ Π∆, we say that Bj matches some Ai

if there is a substitution σ such that Bjσ = Ai for 0 < j ≤ k, 0 < i ≤ n.

Definition 117. Given a Datalog DB ∆ = E∆∪Π∆, we can infer a (new) fact A from
E∆ = {A1, ..., An} and a rule (A← B1, ..., Bk) ∈ Π∆ if there is a substitution σ such
that Bjσ = Ai is a matching for 0 < j ≤ k, 0 < i ≤ n.

1. We call this inference rule universal modus ponens (UMP) and denote this in-
ference by ∆ ⊢UMP A.

2. The process of obtaining the inference ∆ ⊢ A by a finite number of applications
of UMP is called reduction. We specify this inference by writing ∆ ⊢red A.

Compare Definition 117 with Definitions 37-8 and 44 for Prolog: UMP and reduc-
tion are essentially the same rule and process as defined for (pure) Prolog, the single
difference being in the fact that we now speak of matching as a special form of unifi-
cation, namely a form thereof that does not involve function symbols and their terms.
Basically, we say that given some substitution σ some IDB fact matches an EDB fact.
This conceptual equivalence holds for the notion of a proof tree (cf. Def. 45), which,
given the notion of matching, is more interesting in the context of Datalog, as every
leaf thereof is an EDB fact. An example of a Datalog proof tree is given in Figure 16.

Example 118. Figure 16 shows the proof tree for the IDB fact on diet (bob, all) . ob-
tained from the programAvian Sick Prog as applied over the EDBAvian Center EDB.
The bold-line ellipses are facts in the EDB Avian Center EDB (cf. Fig. 13). σ =
{Y 7→ bob} and θ = {X 7→ crow, Z 7→ all} are the substitutions employed. Note in
this proof tree that the goal – the IDB fact – is the root and each EDB fact is a leaf.

Proposition 119. The pair (∆,⊢red) = P∆ constitutes a proof system for a Datalog
DB ∆.

Proof. Let ∆ be a set of clauses and let A be a ground fact. Then, either A ∈ ∆, in
which case we have ∆ ⊢ A by the very definition of the logical consequence relation
(namely by R1; cf. Def. 1), or A can be inferred by repeated applications of UMP to a
rule r ∈ ∆ and a set of ground facts {B1, ..., Bk} ⊂ ∆, so that we have ∆ ⊢red A.
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Figure 16: A Datalog proof tree.

Just as in the case of Prolog, the LP notion of reduction corresponds to a proof by
resolution. In effect, note that in Proposition 119 there is no mention to a distinction
between the ground assertions in EDB and the rules in IDB: We now see ∆ as a single
set of clauses whose elements are both unit clauses (facts) and definite clauses (rules),
it being the case that these clauses respect the safety conditions of Definition 97. In
other words, ∆ is a set of Datalog formulae.

Recall that
Datalog ⊆ L1ff ⊂ Prolog

which means that Datalog can be seen as a function-free “dialect” of Prolog. Thus,
besides the fact that all the facts in ∆ are ground literals, a Datalog database ∆
distinguishes itself from a Prolog database ∆ in that no predicate has functions as
arguments. Hence, just as in Prolog, in Datalog we have a database ∆ as a basis for
a definite program Π.

Example 120. Figure 17 shows the Datalog definite programAvian Center Quarantine.

With respect to the program of Example 120, it must be remarked that the order
of the facts and rules is wholly irrelevant, as Datalog, contrarily to Prolog, satisfies
the property of commutativity with respect to both ∧ and ∨. This means that the
Prolog operator ! for cut is not a Datalog operator, the same holding for the Prolog
operator fail.

The importance of having a Datalog definite program is that, just as in the case
of Prolog, SLD-resolution provides a complete proof system for it.37

Example 121. Figure 18 shows the SLD-resolution proof for ?− on diet (bob, all) .
given σ = {Y 7→ bob, Z 7→ all}, θ = {X 7→ crow}, and λ = {Y1 7→ bob}.

Because conjunction and disjunction are commutative operators in Datalog, we are
assured that, if there is a resolution proof of a query, then there is an SLD-resolution

37Note, however, that for Datalog a breadth-first search is more adequate than the depth-first
search characteristic of Prolog. Indeed, neither the order of the rules nor that of the goals affect the
evaluation of a Datalog program.
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bird (penguin, toto) .
bird (ostrich, sheila) .
bird (emu, tom) .
bird (turkey, sam) .
bird (turkey, sandra) .
bird (hen, lolita) .
bird (canary, roberto) .
bird (nightingale, sarita) .
bird (crow, bob) .
bird (woodpecker, lola) .
bird (duck, cassandra) .
bird (duck, samantha) .
abnormal (penguin) .
abnormal (ostrich) .
abnormal (emu) .
abnormal (turkey) .
abnormal (hen) .
quarantined (roberto) .
quarantined (bob) .
eats (penguin, fish) .
eats (ostrich, all) .
eats (emu, all) .
eats (turkey, seeds) .
eats (hen, all) .
eats (canary, seeds) .
eats (nightingale, seeds) .
eats (crow, all) .
eats (woodpecker, bugs) .
eats (duck, all) .
sick (Y) : −quarantined (Y) .
on diet (Y, Z) : −bird (X, Y) , sick (Y) , eats (X, Z) .

Figure 17: Datalog definite program Avian center Quarantine.
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← on diet (bob, all) . on diet (Y, Z)← bird (X, Y) , sick (Y) , eats (X, Z) .
| ⧸σ

← bird (X, bob) , sick (bob) , eats (X, all) . bird (crow, bob)← .
| ⧸θ

← sick (bob) , eats (crow, all) . sick (Y1)← quarantined (Y1) .
| ⧸λ

← quarantined (bob) , eats (crow, all) . quarantined (bob)← .
| ⧸

← eats (crow, all) . eats (crow, all)← .
| ⧸

← .
2

Figure 18: An SLD-resolution proof of a Datalog query.

proof of it. (I leave the proofs of soundness and completeness as exercises.) This
means that a Datalog DDB can be seen as a theory, and we can check for goals by
means of proving theorems (for instance, by using Prover9-Mace4).38 In the proof
above, we simply moved the goal quarantined (bob) to the leftmost position in the
goal clause, but we could actually have placed the goal sick (Y) at the rightmost
position in the body of rule r2. However, contrarily to Prolog, to which resolution is
so to say inherent, for Datalog resolution as a proof calculus is a matter of adopting
a top-down vs. a bottom-up evaluation technique, where by “evaluation” I mean the
process (the algorithm) and/or its implementation (e.g., a proof tree) of finding an
answer to a query given a DDB.

Example 122. Figure 16 shows the top-down evaluation of the query ?− on diet (Y, Z) .
for the matching θ = {Y = bob, Z = all}. We say that the query ?− on diet (Y, Z) .
(given θ) evaluates to the reply on diet (bob, all) .. In turn, in this evaluation we
say that r1σ was evaluated before r2θ, so that the term “evaluation” applies also to
every step of the algorithm at hand. Actually, given a rule A← B1, ..., Bn, we speak
also of the evaluation of each of A,B1, ..., Bn. Thus, in the case at hand, the sub-goal
?− sick (Y) . in the body of r2 was evaluated before the other sub-goals in this rule.

4.5 Datalog with negation: Datalog¬

Just as in the case of Prolog, one may simply accept CWA as a meta-rule (cf. Def. 63),
and take NF to be an implicit rule of a Datalog DDB; just as in Prolog, this entails
non-monotonicity with respect to a Datalog DDB. However, there are circumstances
that call for explicit negation in a Datalog DDB. For instance, given a program for
some electronic device (e.g., a printer), a rule such as

ready (X )← device (X ) ,¬busy (X )

may be required for the correct functioning of the device. Yet another illustration: In
the program for a game, the following rule expresses the fact that one wins when one
forces the opponent to a situation in which they have no chance to move:

38This is only possible for small EDBs. Note that a Datalog DDB may be implemented as a
Prolog program – again, solely for small EDBs – only if one is aware of the non-commutativity of
conjunction and disjunction in the latter.

54 J. Knowl. Struct. Syst., 5:1



Review Prolog and Datalog Luis M. AUGUSTO

win (X)← move (X,Y ) ,¬win (Y )

From the viewpoint of programming, we say that negation increases the expressiveness
of the language. This is especially relevant when computing over finite domains, which
is typically the case of a Datalog DDB. Datalog¬ is a more expressive extension of
Datalog; however, as we shall see, this increased expressiveness comes at the cost of
syntactic restrictions.

Definition 123. A Datalog rule r of the form

A← B1, ..., Bn

where each Bi ∈ Bodyr is a positive or a negative literal, i.e. Bi = p (c1, ..., ck) or
Bi = ¬p (c1, ..., ck), respectively, constitutes an extension of Datalog called Datalog
with negation. I abbreviate it as, or denote it by, Datalog¬.

Just as in the case of Datalog, safety conditions apply:

Definition 124. Let r be a rule in a Datalog¬ program, denoted by Π¬∆. Then, r is
said to be a safe rule if

1. negation does not occur in the head of r, and

2. every variable occurring in a negative literal must also occur in a positive literal.

As seen above, one of the advantages of Datalog DDBs over relational DBs is the fact
that the former allow for recursion; in the presence of negation, however, we might
have recursion through negation, i.e. predicates being defined recursively in terms of
their own negation. An example of this is the rule p← ¬p, which can be read as “p is
provable if not-p is provable (or p is not provable),”which is clearly a contradiction.39

It so happens that neither Herbrand semantics nor fixed-point semantics are ad-
equate for Datalog¬. On the other hand, several other semantics can take over in
Datalog¬, with greater or lesser success. I chose to discuss here the so-called stratified
semantics, firstly elaborated on in van Gelder (1986) for general logic programs and
in Apt et al. (1988). In effect, even if not all meaningful Datalog¬ programs are
stratified, the handling of negation in this semantics is highly adequate in my view,
namely from the viewpoint of deduction. Moreover, it is an extension of fixed-point
semantics, already studied above. It is useful to consider stratified semantics as a
natural extension of semi-positive Datalog¬:

Definition 125. We say that a Datalog¬ program Π¬∆ is semi-positive if, whenever
¬p (x⃗) ∈ Bodyr for a rule r ∈ Π¬∆, then p ∈ EDB (Π¬∆).

This means that, given some relation R (t1, ..., tn) in a Datalog DDB, ¬R (t1, ..., tn)
is true iff ti ∈ Di for all i = 1, ..., n and {ti}ni>0 /∈ R, so that we have

(Π¬∆ ∪ EDB) ⊭ R (t1, ..., tn) .

39Note how this collides with the classical equivalence p← ¬p ≡ ¬¬p ∨ p ≡ p.
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But if {ti}ni>0 /∈ R, then by transitive closure there is some relation R′ such that
{ti}ni>0 ∈ R′. This, in turn, means that for any negated relation ¬R (t1, ..., tn) we can

compute its complement R (t1, ..., tn) such that

(Π¬∆ ∪ EDB) |= R (t1, ..., tn)

and thus obtain EDB. In other words, given some predicate p′ ∈ EDB (Π¬∆), we can
replace all occurrences of ¬p′ by the new predicate p′ ∈ EDB (Π¬∆), thus eliminating
negation and obtaining a program that is basically a (positive) Datalog program Π∆.

Example 126. Given EDB = {R (a, b) , R (b, c) , R (a, a) , R (a, c)}, we consider the
semi-positive Datalog¬ IDB

IDB =

 r′ (x, y)← v (x) ,¬r′ (x, y)
t (x, y)← r′ (x, y)

t (x, y)← t (x, z) , r′ (z, y)

 .

We replace ¬r′ by r′, obtaining the “positive” IDB

IDB =

 r′ (x, y)← v (x) , r′ (x, y)
t (x, y)← r′ (x, y)

t (x, y)← t (x, z) , r′ (z, y)

 .

The obtained program can be run as a (positive) Datalog program and we can compute

EDB = {R′ (b, a) , R′ (b, b) , R′ (c, c) , R′ (c, b) , R′ (c, a)} .

Let now the notation J |EDB (Π¬∆) denote the restriction of instance J to EDB (Π¬∆).
Then we have the following result:

Theorem 127. Let Π¬∆ be a semi-positive Datalog¬ program. Then, for every in-
stance I over EDB (Π¬∆), there exists a least H-model / a least fixed-point satisfying
J |EDB (Π¬∆) such that

HMΠ¬
∆
= lfp (Π¬∆) = lim

i→∞

{
Ti

Π¬
∆
(I)

}
i>0

.

Let now there be given a Datalog¬ program Π¬∆ such that there is some rule
r ∈ Π¬∆ and ¬R

(
t⃗
)
∈ Bodyr, where t⃗ abbreviates the sequence {ti}ni=1 for some finite

n. Intuitively, we are interested in knowing the value of R
(
t⃗
)
in order to evaluate

Bodyr: If R
(
t⃗
)
is false, then ¬R

(
t⃗
)
is true; otherwise, if R

(
t⃗
)
is true, then ¬R

(
t⃗
)

is false and r is not applicable. Thus, the first evaluation falls on R
(
t⃗
)
. If rule r is

applicable, we can then move to the stratification of Π¬∆, for whose definition a few
previous notions are required.

Definition 128. Let G⃗ =
(
V,E, f⃗

)
be a directed graph such that, given a Datalog¬

program Π¬∆, we have
V = Sch (Π¬∆)

and for some rules ri, rj ∈ (Π¬∆ ∪ E∆),

E =
{
(R,S) |Headri = R and S ∈ Bodyrj

}
where for any pair of relations (R,S) there is at most one arc R −→ S. We call this

the dependency graph of Π¬∆ and denote it by G⃗Π¬
∆
(abbreviated: G⃗Π).
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1. An arc (R,S) such that Headri = R and ¬S ∈ Bodyrj is said to be a negative
arc; otherwise it is called a positive arc.

Given a dependency graph G⃗Π , for the sake of graphical convenience for each negative
arc we draw an arc of the form R

¬−→ S in G⃗Π .

Example 129. Let there be given the following Datalog¬ program Π¬∆1
(abbr.: Π¬1 ):

Π¬1 =


p (X,Y )← q (X,Y )

p (X,Y )← q (X,Z) , p (Z, Y )
r (X,Y )← s (X,Y ) ,¬p (X,Y )

t (X,Y )← r (X,Y )
t (X,Y )← r (X,Z) , t (Z, Y )


Figure 19 shows the dependency graph of Π¬1 .

Figure 19: Dependency graph G⃗Π¬
1

of the Datalog¬ program Π¬
1 .

Proposition 130. Given some dependency graph G⃗Π , if

((R = R1) −→ R2 −→ ... −→ Rk−1 −→ (Rk = S)) ∈ G⃗Π

such that some Ri −→ Ri+1 for 1 ≤ i ≤ k − 1 is a negative arc, then S must be
evaluated prior to R.
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Proposition 130 is called the stratification principle. In order to elaborate on this
principle a few notions are required.

Definition 131. Consider the set Sch (Π¬∆) of predicate symbols of a Datalog¬ program
Π¬∆ and the function

ℓ : Sch (Π¬∆) −→ N

such that ℓ (p) = 0 if p is a leaf in G⃗Π and ℓ (p) = i for 1 ≤ i ≤ n if there is a path

ε with 1, 2, ..., n arcs in G⃗Π originating in p and ending in some leaf q. We call ℓ (p)
the length of predicate p and the corresponding set

R (Sch (Π¬∆))i = {p | p ∈ Sch (Π
¬
∆) and ℓ (p) = i ∈ [0, n]}

is called the i -th rank of Sch (Π¬∆).

We abbreviate R (Sch (Π¬∆))i simply as Ri. It should be evident that rank R0

contains the predicates in E∆ ⊆ EDB (Π¬∆).

Example 132. The ranking of the predicates of Sch (Π¬1 ) (cf. Example 129) is as
follows:

R0 = {q, s}
R1 = {p}
R2 = {r}
R3 = {t}

Definition 133. A Datalog¬ program Π¬∆ is said to be stratified if there is a partition

PSch(Π¬
∆)

=

n⋃
i≥0

Σi

of Σi strata (singular: stratum) such that for two relations R ∈ Ri, S ∈ Rj such that

there is an arc e = (R −→ S) ∈ G⃗Π (i) if e is a positive arc, then i ≥ j and for every
rule r such that Headr ⊇ S we have r ∈

⋃
i≥j Σi; (ii) if e is a negative arc, then i > j

and for every rule r such that Headr ⊇ S we have r ∈
⋃

i>j Σi.

From this Definition, it is evident that in fact we have

PSch(Π¬
∆)

=

n⋃
i≥1

Σi =
⋃
{(r, p) |Headr ⊇ p and p ∈ Ri}

such that each stratum Σi corresponds to a rank Ri.

Example 134. The computation of PSch(Π¬
1 )

yields

Σ0 = ∅

Σ1 = {p (X,Y )← q (X,Y )} ∪ {p (X,Y )← q (X,Z) , p (Z, Y )}

Σ2 = {r (X,Y )← s (X,Y ) ,¬p (X,Y )}

and
Σ3 = {t (X,Y )← r (X,Y )} ∪ {t (X,Y )← r (X,Z) , t (Z, Y )} .
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Intuitively, we have a finite sequence of subprograms Σ1, Σ2, ..., Σn where each Σi

for 1 ≤ i ≤ n defines at least one EDB relation. The evaluation order for the relations
falls on the ranks in the following way:

Definition 135. Evaluation order: Let there be given the relations in R0 and I =
(E∆)g ⊆ EDB (Π¬∆)g.

1. Evaluate the relations in R1: All relations R ∈ Headr for r ∈ Σ1 are defined.40

This evaluation yields
J1 ⊆ Sch (Σ1)g .

2. Evaluate the relations in R2 considering the relations in EDB (Π¬∆) and R1

as EDB (Σ2), where ¬R
(
t⃗
)
is true if R

(
t⃗
)
is false in I ∪ J1: All relations

R ∈ Headr for r ∈ Σ2 are defined. This evaluation yields

J2 ⊆ Sch (Σ2)g .

3. Repeat for Ri, i = 3, ..., n considering the relations in EDB (Π¬∆) and R1,R2, ...,
Ri−1 as EDB (Σi), where ¬R

(
t⃗
)
is true if R

(
t⃗
)
is false in I∪J1∪J2∪ ...∪Ji−1:

All relations R ∈ Headr for r ∈ Σi are defined. This evaluation yields:

J3 ⊆ Sch (Σ3)g
...

Jn ⊆ Sch (Σn)g

4.
ΠP (I) = I ∪ J1 ∪ J2 ∪ ... ∪ Jn

where ΠP (I) denotes the evaluation of Π¬∆ on I with respect to P.

Example 136. With respect to Π¬1 , let us consider EDB (Π¬1 ) = {q, s} such that
I = {q (a, b) , s (a, b)}. Then, the evaluations of Ri for i = 1, 2, 3 give:

J1 = {p (a, b)}

J2 = {¬r (a, b)}

J3 = {¬t (a, b)}

ΠP (I) = {q (a, b) , s (a, b) , p (a, b) ,¬r (a, b) ,¬t (a, b)}

Note that ¬r (a, b) and ¬t (a, b) are here to be interpreted as “r (a, b) is false in J2”
and “t (a, b) is false in J3”, as facts, whether EDB or IDB ones, are never “negative.”
To play it one the safe side, one may in fact consider that J2 = ∅ and J3 = ∅, so that

ΠP (I) = {q (a, b) , s (a, b) , p (a, b)} .

From Definition 133, it is also obvious that no negative relation occurs in the body
of a rule in Σ0, which can actually be empty.

40Note that Σ1 does not have any negated relations for the reason that EDB facts cannot be
negated relations.
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Theorem 137. A Datalog¬ program Π¬∆ is stratified iff in its dependency graph there
are no cycles containing a negative arc.

Proof. (Sketch) (⇒) Suppose that we have some program Π¬∆ that is stratifiable. Let

(R1 −→ ... −→ Rk −→ R1) ∈ G⃗Π¬
∆

where some Ri −→ Rj for 1 ≤ i ≤ k, 1 ≤ j ≤ k
is a negative arc. Let this arc be Rk → R1. Then, R1 > R1 by Definition 133.ii, but
this is a contradiction. (⇐) Left as an exercise.

Example 138. Let us add the rule p (X,Y ) ← t (X,Y ) to program Π¬1 of Example
129. The new program Π¬1′ is not stratifiable. In effect, the dependency graph of this
new program has a cycle containing a negative arc (see Fig. 20).

Figure 20: Dependency graph of a non-stratifiable program.

I conclude the study of Datalog¬ by giving two important statements.

Proposition 139. For any given program Π¬∆ that is stratifiable ΠP (I) is well defined.

Theorem 140. For any given program Π¬∆ that is stratifiable ΠP (I) is a minimal
model K of Π¬∆ such that K|EDB (Π¬∆) = I.
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