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Preface

Often spoken of as the science of reasoning, logic can be formal or
informal. While it is not unequivocal–there is significant overlap be-
tween both–, the use of these two adjectives allows us to distinguish
between a largely mathematical from a substantially psychological ap-
proach, respectively, to logic. This might appear unwarranted to those
well-acquainted with logic as an object language, but at the metalan-
guage and/or metalogical levels it becomes clear that formal logic has
its foundations in mathematics, namely in what can be called abstract
mathematics, whereas informal logic reposes on psychological theories
of human reasoning. This book is an introduction to formal logic.

A second major distinction in contemporary logic segregates classical

logic from the non-classical logics. These–note the plural–are typically
rivals of the former–note the singular–, it being meant by this that they
aim at replacing it in many contexts and/or applications. This rivalry
notwithstanding, they are either extensions or restrictions of classical
logic, which means that anyone advocating a non-classical logic should
be well-versed in classical logic. This book is an introduction to classical
logic.

While formal classical logic is certainly interesting per se, today its
study is often associated to computer science with a plethora of compu-
tational implementations in view. This association of logic and compu-
tation can be roughly captured by the expression computational logic.
This book is an introduction to computational logic.

Do we then need to specify that this book is an introduction to formal
classical computational logic? Not really, because in it we take the ad-
jectives formal and computational to be so intimately related that they
can be often considered synonyms. This synonymy is more typically to
be found between the expressions formal language and computer lan-

guage, but we discuss here the language of classical logic as first and
foremost a formal language, and hence the redundancy of the adjective
computational in the title.

This book is thus an introduction to formal classical logic with its
contemporary uses in mind, to wit, logical problems that are in fact de-

cision problems that are in fact computational problems whose proofs are
delegated to computer software. In effect, logic is—arguably—all about

xv
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proving, but proofs can be costly, often impossibly so, in terms of space
and time, it being meant by this that proofs require storage space (i.e., a
physical memory) and they take time to be computed; hence, monetary
costs are also often associated to proofs, as space and time, as well as
human work, cost money. Given these costs, unrealistic for human com-
puters and undesirable for companies, today most proofs are delegated
to (partly) automatic provers, namely the so-called SAT solvers. These
are software based on the (Boolean) satisfiability problem, or SAT. This
is the dual of the (Boolean) validity problem, or VAL, at the core of the
conception of the digital computer via Hilbert’s Entscheidungsproblem

and the Universal Turing Machine.

These two problems, VAL and SAT, can be said to be the two clas-
sical problems that initiated the computational history of formal clas-
sical logic, a history that can be more immediately traced back to the
Entscheidungsproblem, but that actually also requires digressions into
the work of the likes of J. Venn, G. Frege, and A. Turing–if not Aristotle,
too. In particular, we discuss the classical formal semantics conceived
by, or originating in the work of, G. Boole, J. Herbrand, and A. Tarski.
While this, as said, is an introduction to formal classical logic, we dis-
pense with the adjective “classical” between “formal” and “logic” in the
title, because this book has as its backbone these two semantical prob-
lems. The fragment “Formal logic: Classical problems” indicates that
our introduction to formal logic is so via the classical problems, first
and foremost VAL and SAT, but then also all the decision and compu-
tational problems that can be formulated in terms of these, namely with
computer implementations in mind.

But, as stated above, logic is–arguably–all about proving. Without
(adequate) proof systems at hand, these two problems and all the other
problems formulated in their terms (let us call them all classical problems

for the sake of simplicity) have no solution beyond propositional logic,
given the undecidability of first-order logic (abbr.: FOL), a problem
motivated by semantical structures known as models that, differently
from proofs, which are finite by definition, may be infinite. Indeed, to
say that VAL and SAT are formulated in semantical terms means that
they are formulated in terms of preservation of truth: If all the, say,
facts in a database are true, is a certain conclusion one wishes to draw
therefrom always, or at least in some cases, also so? Given classical
problems of very low complexity formulated in propositional logic, the
semantical construct known as a truth table can provide a solution. But
classical problems are more often than not highly complex, sometimes
industrial-scale so, and they typically require a first- (or higher-) order
language.

xvi



Fortunately, we have today a plethora of adequate proof systems for
VAL and SAT. The Hilbert(-style) systems and the Gentzen systems,
the latter divided into natural deduction and the sequent calculus, are
proof systems to address VAL, and resolution and analytic tableaux are
the two proof systems of election to find answers to classical problems
formulated in terms of SAT. The comprehensive elaboration on these
systems accounts for the expression “proofs” in our title, now complete
as Formal logic: Classical problems and proofs. Although the first sys-
tems above are not algorithmic in nature, thus not providing efficient
methods for classical problems, they are both historically and pedagogi-
cally relevant, and we accordingly discuss them in due detail. Resolution
and analytic tableaux are at the root of many efficient SAT solvers, and
we give equally full treatments of these calculi.

But there are more than these proofs. In the paragraph above we
wrote “adequate” without brackets (compare with farther above), it be-
ing meant by this with respect to a proof system that one can prove
in it every logical truth of the associated logic and nothing that is not
a logical truth thereof. But these properties, known as completeness
and soundness, require metalogical proofs—i.e. proofs at a level higher
than the logical proofs. The same is true of the general undecidabil-
ity of FOL, a result that is a celebrated answer to VAL. In turn, VAL
and SAT have been proven to belong to specific classes of computa-
tional complexity—i.e. it has been shown how much they “cost”—, with
these proofs constituting fundamental knowledge for the computational
implementations of classical problems. Fulfilling our requirements of
self-containment and comprehensiveness, we provide discussions of these
celebrated proofs, as well as of the above-mentioned properties for all
the proof systems we elaborate on in detail.

It is the moment now to convince the reader that ours is a truly
original introduction to logic. Largely depending on the applications
in view, logic can be approached today from three perspectives, to wit,
mathematical, computational, or philosophical. Introductory textbooks
to logic accordingly segregate their contents: Mathematical approaches
typically concentrate on the mathematical properties of logical systems;
computational approaches focus on computational implementations and
automation of proofs; philosophical treatments greatly concentrate in
argumentation. Gödel’s (in)completeness and satellite results feature
prominently in the first, as mathematical proof is a major concern of
mathematical logic and it is unpalatable not to be able to prove a math-
ematical truth once one is discovered (or constructed, depending on
one’s philosophy of mathematics). The temporal and spatial costs of
computational implementations, from the simple transformation of a
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formula into one acceptable by some software to the carrying out of
a proof in it, are central topics in the second kind. Arguments, cate-
gorical syllogisms and fallacies included, occupy many of the pages of
the third type. More technically, this can be reformulated as follows
by invoking the four so-called pillars of formal logic: Model theory and
set theory are major topics to be found in mathematical treatments of
logic; recursion, or computability, theory features significantly in compu-
tational approaches; proof theory tends to be weighty in introductions to
logic written for philosophy students. In particular, while the classical
problems—VAL significantly less so than SAT—feature in introductory
logic textbooks aimed at computer science students, they are largely or
wholly absent from textbooks targeting a mathematical or philosophical
studentship.

This segregation has constituted a successful recipe for a long time
now, and possibly rightly so, but it does not reflect the current state of
what can very generally be called formal logic. This book corrects this
misguided state of affairs. Not focusing on the history of classical logic,
this book nevertheless provides discussions and quotes central passages
on its origins and development, namely from a philosophical perspective.
Not being a book in mathematical logic, it takes formal logic from an
essentially mathematical perspective. Biased towards a computational
approach, with SAT and VAL as its backbone, this is thus an introduc-
tion to logic that covers essential aspects of the three branches of logic,
to wit, philosophical, mathematical, and computational. More so, it
gives practical applications of all these fields, namely in argumentation,
theorem proving, logic programming, and even in logic design.

To be sure, the aim of reaching a large academic readership poses the
risk of serving only a small one: The “traditional” tripartite segregation
may in fact mirror some real distinctions, whether in skills or interests,
in the different studentships. Moreover, the ambition of treating classi-
cal logic both at the object-language and at the metalanguage/metalogic
levels while trying to keep the book in a “manageable” size may entail
the suppression or obliteration of important contents of either of these
components. To this we reply that no book stands alone, or is wholly
self-contained; just as in any other field, certain treatments of logic have
reached the status of standard works, and we refer to Hurley (2012),
Mendelson (2015), and Boolos, Burgess, & Jeffrey (2007), for “classics”
in philosophical, mathematical, and computational logic, respectively.
Additionally, we hope the intersection of the above mentioned reader-
ships is not empty. Our hope may in fact be a justified belief, as, for
instance, linguists and computer scientists, to mention but these, may
prove.
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Be it as it may, we assume knowledge of, or at least familiarity with,
mathematical concepts such as sets, functions, operations, and relations,
providing solely definitions of less basic notions (e.g., Boolean algebra).
In order to refresh their memory, or newly acquire such notions, math-
ematically literate readers can benefit from Bloch (2011) and the more
mathematically reticent can do so from Makinson (2008). We also think
that logic is a subject that requires both hands-on practice and reflection
(or rumination), and we accordingly provide a vast selection of exercises
ranging from the typical logic “drilling” exercise to commentary of rele-
vant passages.

Finally: This book is in a large measure a selection, a restructuring,
and an extension of contents first published in Augusto (2018). Main
motivations for the present resulting text were the desire to improve, by
reviewing and extending, the contents of the mentioned book, as well as
the aim to provide a comprehensive stand-alone book on formal classical
logic with the above-mentioned characteristics, in the belief that classical
logic, particularly so in its formal version, is a subject both fascinating
and–more and more–fundamental.

I wish to thank Dov M. Gabbay for accepting to publish this“extended
remix,” as well as Jane Spurr for her impeccable assistance as managing
director of College Publications.

Madrid, Summer 2019

Luis M. S. Augusto
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