Formal Logic Classical Problems and Proofs

Luis M. Augusto

© Individual author and College Publications, 2019 All rights reserved.

ISBN 978-1-84890-317-3

College Publications Scientific Director: Dov Gabbay Managing Director: Jane Spurr

http://www.collegepublications.co.uk

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission, in writing, from the publisher.

Preface

I	Fo	rmal Logic: Form, Meaning, and Consequences	1
1	Pre	liminary notions	3
	1.1	Formal languages: Alphabets and grammars	3
	1.2	Logical languages: Form and meaning	7
		1.2.1 Object languages and metalanguages	7
		1.2.2 Logical sentences: From categorical propositions	
		to set-theoretical expressions	8
	1.3	Logic and metalogic: Proofs and metaproofs	11
		1.3.1 Induction, mathematical and structural	12
		1.3.2 Proof by contradiction	13
	1.4	Logic and computation: Turing machines, decidability	
		and tractability	15
2	Log	ical form	33
	2.1	Logical languages and well-formed formulas	33
		2.1.1 Alphabets, expressions, and formulas logical	33
		2.1.2 Orders	35
	2.2	Formalizing natural language	40
	2.3	Argument form	46
	2.4	Normal forms and substitutions for $L1$	52
		2.4.1 Literals and clauses	52
		2.4.2 Negation normal form	53
		2.4.3 Prenex normal form	54
		2.4.4 Skolem normal form	54
		2.4.5 Conjunctive and disjunctive normal forms	57
		2.4.6 Substitutions and unification for L1	62
3	Log	ical meaning	77
	3.1	Truth: Values, tables, and functions	77
	3.2	The Boolean foundations of logical bivalence	79
	3.3	Compositionality and truth-functionality	83

 $\mathbf{x}\mathbf{v}$

	$3.4 \\ 3.5$	Classical interpretations and valuations
4	Log : 4.1	cal consequences99Logical consequence: A central notion994.1.1Consequences and systems logical, inferential, and deductive994.1.2Syntactical consequence and proof theory1054.1.3Semantical consequence and model theory1114.1.4Adequateness of a deductive system116Logical theories and decidability1204.2.1Theories, subtheories, and extensions1214.2.2FOL theories and decidability1234.2.2.1Finite satisfiability and ground extensions1254.2.2.2Finite models and prefix classes132
11	\mathbf{Th}	e System CL and the Logic CL 139
5	The 5.1 5.2 5.3	language of classical logic141Some preliminary remarks141L1 and classical subsets/extensions thereof1445.2.1The classical connectives1445.2.2The quantifiers of CFOL148Applications of L11485.3.1Arguments: Categorical syllogisms1485.3.1.1Evaluating arguments with Euler diagrams1505.3.1.2Evaluating arguments with Venn diagrams1515.3.2Logic programming (I)1535.3.2.3Programs and substitutions1595.3.3Logic design: Logic circuits162
6	Clas 6.1 6.2	sical logical consequence175Classical ♡-consequences
7	CL 7.1	and extensions 183 The logic CL 183

vi

	7.2 The extension $CL^{=}$: CL with equality $\ldots \ldots \ldots$	186
8	Classical FO theories and the adequateness of CFOL	193
111	Classical Models	201
9	Three formal semantics for classical logic	203
	9.1 Tarskian semantics	204
	9.2 Herbrand semantics	206
	9.3 Algebraic semantics: Boolean algebras	212
IV	Classical Proofs I: Direct Proofs	221
10	The validity problem, or VAL	223
	10.1 The $Entscheidungsproblem$ and Turing's negative answer .	223
	10.2 VAL and direct proofs \ldots \ldots \ldots \ldots	227
	10.3 The complexity of VAL	231
11	Hilbert-style systems	237
	11.1 The axiom system \mathcal{L}	238
	11.1.1 The propositional system \mathcal{L}	238
	11.1.2 The FO system \mathcal{L}	245
	11.2 Further Hilbert-style systems	246
	11.2.1 The class \mathcal{H}	246
	11.2.2 Other systems	248
12	Gentzen systems	253
	12.1 The natural deduction calculus \mathcal{NK}	253
	12.1.1 The propositional calculus \mathcal{NK}	254
	12.1.2 The FO predicate calculus \mathcal{NK}	265
	12.1.3 The extension \mathcal{NK}^- for CL ⁻	270
	12.2 The sequent calculus \mathcal{LK}	271
v	Classical Proofs II: Indirect Proofs	285
13	The satisfiability problem, or SAT	287
	13.1 SAT and refutation proofs	288
	13.1.1 The different forms of SAT	288
	13.1.2 Indirect proofs \ldots \ldots \ldots \ldots \ldots \ldots	292
	13.2 The complexity of SAT	295

vii

	13.3	Herbrand's Theorem and the SAT $\ . \ . \ . \ .$. 300
14	The	resolution calculus	311
	14.1	The resolution principle $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 313
		14.1.1 The resolution principle for propositional logic $\ .$. 313
		14.1.2 The resolution principle for FOL	. 317
	14.2	Resolution refinements	. 324
		14.2.1 Semantic resolution	. 325
		14.2.2 Linear resolution: Logic programming (II)	. 332
	14.3	Paramodulation	. 346
15	The	analytic tableaux calculus	365
	15.1	Analytic tableaux as a propositional calculus	. 367
	15.2	Analytic tableaux as a FO predicate calculus	. 376
		15.2.1 FOL tableaux without unification	. 378
		15.2.2 FOL tableaux with unification	. 380
Bi	bliog	graphy	385
Bi	bliog	raphical references	387
In	dex		395

List of Figures

$1.1.1 \\ 1.2.1$	A syntactic, or derivation, tree	6
	domain.) $\ldots \ldots \ldots$	8
1.4.1	Computer model of a Turing machine.	17
1.4.2	A Turing machine that computes the function $f(n,m) =$	
	$n+m$ for $n,m \in \mathbb{N}^+$.	19
143	The hierarchy of complexity classes with corresponding	
1.1.0	tractability status	91
1 1 1	The encoding $\langle M_{-} \rangle$ and $\langle M_{-} \rangle$	21
1.4.4	The encodings $\langle M_T \rangle$ and $\langle M_T, 2 \rangle$.	24
1.4.5	State diagram of a Turing machine	30
221	Formalizations for English by means of the language of	
2.2.1	classical propositional logic	45
• • • •	Formalizations for English by means of the language of	10
2.2.2	alassiaal EO logia	17
0 9 1		47 51
2.3.1	Some classical formally correct arguments.	51
2.3.2	Two invalid argument forms	52
2.4.1	Tseitin transformations for the connectives of L	61
2.4.2	Unifying the pair $\langle P(a, x, h(g(z))), P(z, h(y), h(y)) \rangle$.	67
2.4.3	A FOL argument.	73
991	A truth table with 93 9 norms	01
0.0.1	A truth table with $2^\circ = 8$ rows.	04
3.3.2	Truth tables for the connective \rightarrow in the 3-valued logics	~ -
	$E_3, K_3^{\prime\prime}$, and Rn_3 .	87
3.5.1	The properties of a Boolean algebra.	95
111	The complete lattice $S = (2^A \subset)$ for $A = \{a, h, c\}$	03
419	A decustoness of a deductive system $\mathbf{I} = (\mathbf{I} \mid \mathbf{b})$	10
4.1.2	Adequateness of a deductive system $L = (L, \square)$	19
5.1.1	Venn diagram of the set A	43
521	Diagrammatic representations of the connectives of O_1 14	45
522	Diagrammatic representations of the logical connectives	
0.2.2	$O_{C} = \{\uparrow^2 \mid \downarrow^2 \not a_{c}^2\}$	17
592	$C_{G} = \bigcup_{i=1}^{N} , \forall i \in \mathcal{I}, \dots, \dots$ Fully diagrams for the classical quantifiers 1	±1 /0
J.∠.J F 9 1	Example 1 in the classical quantitiers. \dots \dots	49 50
5.3.1	Euler diagrams of an invalid (1) and a valid (2) argument. 1	52

List of Figures

5.3.2	Venn diagram with eight minterms	153
5.3.3	A Venn-diagram representation of argument A1	154
5.3.4	A Venn-diagram representation of argument A2	154
5.3.5	From a binary switch (i) to a series-parallel connection (v).	164
5.3.6	Logic gates and their graphical representations	165
5.3.7	A logic circuit for the function $f(x_1, x_2, x_3) = (x_1 \land x_2) \lor$	
	$(x_1 \wedge x_3)$	166
5.3.8	A logic circuit for $f(x_1, x_2, x_3) = x_1 \land (x_2 \lor x_3)$	166
5.3.11	Properties of XOR.	167
5.3.9	Two functionally equivalent logic circuits.	168
5.3.10	The De Morgan's laws and the NOR and NAND gates	169
5.3.12	Logic circuits.	174
	0	
11.1.1	Proof of $\vdash_{\mathcal{L}} \phi \to \phi$	239
11.1.2	Proof of an argument in $\mathcal{L}p$	241
11.1.3	Proof in $\mathcal{L}q$ of a valid syllogism	246
		~~~
12.1.1	A proof of a propositional derivation in $\mathcal{NK}$	256
12.1.2	A proof in $\mathcal{N}\mathcal{K}$ of the distributivity property for $\wedge$	259
12.1.3	Proof of $\vdash_{\mathcal{NK}} ((P \to Q) \land (P \to R)) \to (P \to (Q \land R)).$	260
12.1.4	Proof of an argument in (extended) $\mathcal{NK}$	261
12.1.5	Proof of $\vdash_{\mathcal{NK}} \phi \leftrightarrow \neg \neg \phi$	263
12.1.6	A proof with universal generalization	266
12.1.7	An example of universal instantiation.	267
12.1.8	An example of existential generalization	267
12.1.9	An example of existential instantiation	268
12.1.10	A FO $\mathcal{NK}$ proof	269
12.1.11	A proof in $\mathcal{NK}^{=}$	271
12.2.1	Proof in $\mathcal{LK}$ of axiom $\mathscr{L}2$ of the axiom system $\mathscr{L}$	276
12.2.2	Proof in $\mathcal{LK}$ of a FO validity	277
19.0.1		000
13.2.1	A tableau for the Turing machine $M$	298
13.3.1	Closed semantic tree of $C = \{L_1, L_2, L_3, L_4, L_5\}$ in Example	909
10.0.0	13.31	303
13.3.2	A closed semantic tree	304
14 1 1	A refutation tree	315
14.1.2	A propositional argument as input in Prover9/Mace4	316
14.1.3	Output by Prover9: A valid propositional argument	316
14 1 4	Output by Prover 9. A valid formula	318
14 1 5	Output by Mace4: A counter-model	318
14 1 6	A resolution-refutation failure tree	320
1/1 1 7	Input in $Prover0/Mace4$ A FO theory	320
14.1.1	$\lim_{t \to \infty} \lim_{t \to \infty} \lim_{ $	920

14.1.8	Output by Prover9
14.1.9	Output of Prover9: A valid FO argument
14.2.1	A PI-resolution tree
14.2.2	Hyper-resolution of $\Xi = (\mathcal{C}_3; \mathcal{C}_1, \mathcal{C}_2)$
14.2.3	A hyper-resolution deduction tree
14.2.4	Theory of distributive lattices and commutativity of meet:
	Input in Prover9/Mace4
14.2.5	Proof by Prover9 of the commutativity of meet in a dis-
	tributive lattice
14.2.6	A linear-resolution refutation tree
14.2.7	Trace by SWI-Prolog
14.2.8	A failed proof tree. $\ldots$
14.2.9	A successful reduction interpreted as a resolution proof $342$
14.2.10	A LI-resolution proof tree
14.2.11	A SLD-resolution proof. $\ldots \ldots \ldots \ldots \ldots \ldots 346$
14.2.12	A complete proof tree. $\ldots \ldots \ldots \ldots \ldots \ldots 347$
14.2.13	SWI-Prolog answering a query and outputting traces for
	some "true" instantiations
14.2.14	SWI-Prolog traces of a "true" and a "false" instantiation. $% \left( {{\mathcal{S}}_{\mathrm{s}}} \right)$ . 349
14.3.1	Theory of commutative groups: Input in Prover9/Mace4 353
14.3.2	Output by Prover9
15.1.1	Analytic tableaux expansion rules: $\alpha\beta$ -classification 369
15.1.2	A closed propositional tableau
15.2.1	Analytic tableaux expansion rules: $\gamma \delta$ -classification 377
15.2.2	A closed FO tableau without unification
15.2.3	A closed FO tableau with unification

# List of Algorithms

2.1	PNF transformation
2.2	Skolemization
2.3	Tseitin transformation
2.4	The Robinson algorithm
14.1	Binary resolution
14.2	Reduction
15.1	Analytic tableaux proof

# Preface

Often spoken of as the science of reasoning, *logic* can be *formal* or *informal*. While it is not unequivocal-there is significant overlap between both-, the use of these two adjectives allows us to distinguish between a largely mathematical from a substantially psychological approach, respectively, to logic. This might appear unwarranted to those well-acquainted with logic as an object language, but at the metalanguage and/or metalogical levels it becomes clear that formal logic has its foundations in mathematics, namely in what can be called abstract mathematics, whereas informal logic reposes on psychological theories of human reasoning. This book is an introduction to formal logic.

A second major distinction in contemporary logic segregates *classical logic* from the *non-classical logics*. These–note the plural–are typically rivals of the former–note the singular–, it being meant by this that they aim at replacing it in many contexts and/or applications. This rivalry notwithstanding, they are either extensions or restrictions of classical logic, which means that anyone advocating a non-classical logic should be well-versed in classical logic. This book is an introduction to classical logic.

While formal classical logic is certainly interesting per se, today its study is often associated to computer science with a plethora of computational implementations in view. This association of logic and computation can be roughly captured by the expression *computational logic*. This book is an introduction to computational logic.

Do we then need to specify that this book is an introduction to formal classical computational logic? Not really, because in it we take the adjectives *formal* and *computational* to be so intimately related that they can be often considered synonyms. This synonymy is more typically to be found between the expressions *formal language* and *computer language*, but we discuss here the language of classical logic as first and foremost a formal language, and hence the redundancy of the adjective *computational* in the title.

This book is thus an introduction to formal classical logic with its contemporary uses in mind, to wit, *logical problems* that are in fact *decision problems* that are in fact *computational problems* whose *proofs* are delegated to computer software. In effect, logic is—arguably—all about

### Preface

proving, but proofs can be costly, often impossibly so, in terms of space and time, it being meant by this that proofs require storage space (i.e., a physical memory) and they take time to be computed; hence, monetary costs are also often associated to proofs, as space and time, as well as human work, cost money. Given these costs, unrealistic for human computers and undesirable for companies, today most proofs are delegated to (partly) automatic provers, namely the so-called *SAT solvers*. These are software based on the (Boolean) satisfiability problem, or *SAT*. This is the dual of the (Boolean) validity problem, or *VAL*, at the core of the conception of the digital computer via Hilbert's *Entscheidungsproblem* and the Universal Turing Machine.

These two problems, VAL and SAT, can be said to be the two classical problems that initiated the computational history of formal classical logic, a history that can be more immediately traced back to the *Entscheidungsproblem*, but that actually also requires digressions into the work of the likes of J. Venn, G. Frege, and A. Turing–if not Aristotle, too. In particular, we discuss the classical formal semantics conceived by, or originating in the work of, G. Boole, J. Herbrand, and A. Tarski. While this, as said, is an introduction to formal classical logic, we dispense with the adjective "classical" between "formal" and "logic" in the title, because this book has as its backbone these two semantical problems. The fragment "Formal logic: Classical problems" indicates that our introduction to formal logic is so via the classical problems, first and foremost VAL and SAT, but then also all the decision and computational problems that can be formulated in terms of these, namely with computer implementations in mind.

But, as stated above, logic is-arguably-all about proving. Without (adequate) proof systems at hand, these two problems and all the other problems formulated in their terms (let us call them all *classical problems* for the sake of simplicity) have no solution beyond propositional logic, given the undecidability of first-order logic (abbr.: FOL), a problem motivated by semantical structures known as *models* that, differently from proofs, which are finite by definition, may be infinite. Indeed, to say that VAL and SAT are formulated in semantical terms means that they are formulated in terms of *preservation of truth*: If all the, say, facts in a database are true, is a certain conclusion one wishes to draw therefrom always, or at least in some cases, also so? Given classical problems of very low complexity formulated in propositional logic, the semantical construct known as a truth table can provide a solution. But classical problems are more often than not highly complex, sometimes industrial-scale so, and they typically require a first- (or higher-) order language.

Fortunately, we have today a plethora of adequate proof systems for VAL and SAT. The Hilbert(-style) systems and the Gentzen systems, the latter divided into natural deduction and the sequent calculus, are proof systems to address VAL, and resolution and analytic tableaux are the two proof systems of election to find answers to classical problems formulated in terms of SAT. The comprehensive elaboration on these systems accounts for the expression "proofs" in our title, now complete as *Formal logic: Classical problems and proofs*. Although the first systems above are not algorithmic in nature, thus not providing efficient methods for classical problems, they are both historically and pedagogically relevant, and we accordingly discuss them in due detail. Resolution and analytic tableaux are at the root of many efficient SAT solvers, and we give equally full treatments of these calculi.

But there are more than these proofs. In the paragraph above we wrote "adequate" without brackets (compare with farther above), it being meant by this with respect to a proof system that one can prove in it every logical truth of the associated logic and nothing that is not a logical truth thereof. But these properties, known as completeness and soundness, require *metalogical proofs*—i.e. proofs at a level higher than the *logical proofs*. The same is true of the general undecidability of FOL, a result that is a celebrated answer to *VAL*. In turn, *VAL* and *SAT* have been proven to belong to specific classes of computational complexity—i.e. it has been shown how much they "cost"—, with these proofs constituting fundamental knowledge for the computational implementations of classical problems. Fulfilling our requirements of self-containment and comprehensiveness, we provide discussions of these celebrated proofs, as well as of the above-mentioned properties for all the proof systems we elaborate on in detail.

It is the moment now to convince the reader that ours is a truly original introduction to logic. Largely depending on the applications in view, logic can be approached today from three perspectives, to wit, mathematical, computational, or philosophical. Introductory textbooks to logic accordingly segregate their contents: Mathematical approaches typically concentrate on the mathematical properties of logical systems; computational approaches focus on computational implementations and automation of proofs; philosophical treatments greatly concentrate in argumentation. Gödel's (in)completeness and satellite results feature prominently in the first, as mathematical proof is a major concern of mathematical logic and it is unpalatable not to be able to prove a mathematical truth once one is discovered (or constructed, depending on one's philosophy of mathematics). The temporal and spatial costs of computational implementations, from the simple transformation of a

### Preface

formula into one acceptable by some software to the carrying out of a proof in it, are central topics in the second kind. Arguments, categorical syllogisms and fallacies included, occupy many of the pages of the third type. More technically, this can be reformulated as follows by invoking the four so-called *pillars of formal logic*: Model theory and set theory are major topics to be found in mathematical treatments of logic; recursion, or computability, theory features significantly in computational approaches; proof theory tends to be weighty in introductions to logic written for philosophy students. In particular, while the classical problems—VAL significantly less so than SAT—feature in introductory logic textbooks aimed at computer science students, they are largely or wholly absent from textbooks targeting a mathematical or philosophical studentship.

This segregation has constituted a successful recipe for a long time now, and possibly rightly so, but it does not reflect the current state of what can very generally be called formal logic. This book corrects this misguided state of affairs. Not focusing on the history of classical logic, this book nevertheless provides discussions and quotes central passages on its origins and development, namely from a philosophical perspective. Not being a book in mathematical logic, it takes formal logic from an essentially mathematical perspective. Biased towards a computational approach, with SAT and VAL as its backbone, this is thus an introduction to logic that covers essential aspects of the three branches of logic, to wit, philosophical, mathematical, and computational. More so, it gives practical applications of all these fields, namely in argumentation, theorem proving, logic programming, and even in logic design.

To be sure, the aim of reaching a large academic readership poses the risk of serving only a small one: The "traditional" tripartite segregation may in fact mirror some real distinctions, whether in skills or interests, in the different studentships. Moreover, the ambition of treating classical logic both at the object-language and at the metalanguage/metalogic levels while trying to keep the book in a "manageable" size may entail the suppression or obliteration of important contents of either of these components. To this we reply that no book stands alone, or is wholly self-contained; just as in any other field, certain treatments of logic have reached the status of standard works, and we refer to Hurley (2012), Mendelson (2015), and Boolos, Burgess, & Jeffrey (2007), for "classics" in philosophical, mathematical, and computational logic, respectively. Additionally, we hope the intersection of the above mentioned readerships is not empty. Our hope may in fact be a justified belief, as, for instance, linguists and computer scientists, to mention but these, may prove.

Be it as it may, we assume knowledge of, or at least familiarity with, mathematical concepts such as sets, functions, operations, and relations, providing solely definitions of less basic notions (e.g., Boolean algebra). In order to refresh their memory, or newly acquire such notions, mathematically literate readers can benefit from Bloch (2011) and the more mathematically reticent can do so from Makinson (2008). We also think that logic is a subject that requires both hands-on practice and reflection (or rumination), and we accordingly provide a vast selection of exercises ranging from the typical logic "drilling" exercise to commentary of relevant passages.

Finally: This book is in a large measure a selection, a restructuring, and an extension of contents first published in Augusto (2018). Main motivations for the present resulting text were the desire to improve, by reviewing and extending, the contents of the mentioned book, as well as the aim to provide a comprehensive stand-alone book on formal classical logic with the above-mentioned characteristics, in the belief that classical logic, particularly so in its formal version, is a subject both fascinating and-more and more-fundamental.

I wish to thank Dov M. Gabbay for accepting to publish this "extended remix," as well as Jane Spurr for her impeccable assistance as managing director of College Publications.

Madrid, Summer 2019

Luis M. S. Augusto