Formal Logic
Classical Problems and Proofs

Luis M. Augusto



© Individual author and College Publications, 2019, 2020
All rights reserved.

ISBN 978-1-84890-317-3
College Publications

Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise without prior permission, in writing, from the
publisher.



Contents

Preface
Note to the 2nd printing . . . . . .. ... ... ... ...

I  Formal Logic: Form, Meaning, and Consequences

1 Preliminary notions

1.1 Formal languages: Alphabets and grammars . . . . . . . .
1.2 Logical languages: Form and meaning . . . . ... .. ..
1.2.1 Object languages and metalanguages . . . . . . . .

1.2.2  Logical sentences: From categorical propositions
to set-theoretical expressions . . . ... ... ...
1.3 Logic and metalogic: Proofs and metaproofs . . . . . . ..
1.3.1 Induction, mathematical and structural . . . . ..
1.3.2  Proof by contradiction . . . . . . .. .. ... ...

1.4 Logic and computation: Turing machines, decidability
and tractability . . . . . ... oo

2 Logical form
2.1 Logical languages and well-formed formulas . . . . . . ..
2.1.1  Alphabets, expressions, and formulas logical . . . .
212 Orders . . . . . . .. . e
2.2  Formalizing natural language . . . . . ... ... .. ...
2.3 Argument form . . .. .. ... ...
2.4 Normal forms and substitutions for L1 . . . . . ... ...
2.4.1 Literals and clauses . . . . .. ... ... .....
2.4.2 Negation normal form . . .. ... ... ... ...
2.4.3 Prenex normal form . . .. ... ... ... ...
2.4.4 Skolem normal form . .. ... .. ... ......
2.4.5 Conjunctive and disjunctive normal forms . . . . .
2.4.6  Substitutions and unification for L1 . . . . .. ..

3 Logical meaning
3.1 Truth: Values, tables, and functions . . . ... ... ...
3.2 The Boolean foundations of logical bivalence . . . .. ..



Contents

vi

3.3 Compositionality and truth-functionality . . . . . . . . .. 83
3.4 Classical interpretations and valuations . ... ... ... 88
3.5 Meaning and form . . .. .. ... ... ... ... ... 93
Logical consequences 99
4.1 Logical consequence: A central notion . . ... ... ... 99
4.1.1 Consequences and systems logical, inferential, and
deductive . . . ... ... o o 99
4.1.2 Syntactical consequence and proof theory . . . . . 105
4.1.3 Semantical consequence and model theory . . . . . 111
4.1.4 Adequateness of a deductive system . . ... . .. 116
4.2 Logical theories and decidability . . . .. ... ... ... 120
4.2.1 Theories, subtheories, and extensions . . . . . . . . 121
4.2.2 FOL theories and decidability . . . . . . ... ... 123
4.2.2.1 Finite satisfiability and ground extensions 125
4.2.2.2 Finite models and prefix classes . . . . . 132
The System CL and the Logic CL 139
The language of classical logic 141
5.1 Some preliminary remarks . . . . . . ... ... ... ... 141
5.2 L1 and classical subsets/extensions thereof . . . . . . . .. 144
5.2.1 The classical connectives . . . . . . ... ... ... 144
5.2.2 The quantifiersof CFOL . . . . . .. .. ... ... 148
5.3 Applicationsof L1 . . . . . ... oL 148
5.3.1 Logical arguments: Categorical syllogisms . . . . . 148

5.3.1.1 Evaluating arguments with Euler diagrams150
5.3.1.2  Evaluating arguments with Venn diagrams151

5.3.2 Logic programming (I): Prolog . . . . . ... ... 153
5.3.2.1 The language (of) Prolog . . . . ... .. 155
5.3.2.2 Increased expressiveness and ambivalent

syntax . . ... ..o 158

5.3.2.3 Programs and substitutions . . . . . . .. 159

5.3.3 Logic design: Logic circuits . . . . ... ... ... 162
Classical logical consequence 175
6.1 Classical O-consequences . . . . . . . .. ... ... .... 175
6.1.1 Classical syntactical O-consequences . . . . . . .. 176
6.1.2 Classical semantical O-consequences . . . . . . .. 178

6.2 Classical #-consequences . . . . ... ... ... ..... 180
CL and extensions 183



71 ThelogicCL . .............
7.2 The extension CL=: CL with equality

Contents

8 Classical FO theories and the adequateness of CFOL

Il Classical Models

9 Three formal semantics for classical logic

9.1 Tarskian semantics . . . .. ... ...
9.2 Herbrand semantics . ... ... ...
9.3 Algebraic semantics: Boolean algebras

IV Classical Proofs I: Direct Proofs

10 The validity problem, or VAL

10.1 The Entscheidungsproblem and Turing’s negative answer .

10.2 VAL and direct proofs . . . .. .. ..
10.3 The complexity of VAL . . .. .. ..

11 Hilbert-style systems
11.1 The axiom system £ . . . . . ... ..
11.1.1 The propositional system £ . .
11.1.2 The FO system £ . . ... ..
11.2 Further Hilbert-style systems . . . . .
11.2.1 Theclass 2 . ... ... ...
11.2.2 Other systems . . ... .. ..

12 Gentzen systems
12.1 The natural deduction calculus NK .
12.1.1 The propositional calculus N'K
12.1.2 The FO predicate calculus NK
12.1.3 The extension NK= for CL= .
12.2 The sequent calculus £IC . . . . . . ..

V Classical Proofs II: Indirect Proofs

13 The satisfiability problem, or SAT
13.1 SAT and refutation proofs . . . . . . .
13.1.1 The different forms of SAT . .
13.1.2 Indirect proofs . . .. ... ..

193

201

203
204
206
212

221

223
223
227
231

237
238
238
245
246
246
248

253
253
254
265
270
271



Contents

13.2 The complexity of SAT . . . . .. ... ... ... .... 295
13.3 Herbrand’s Theorem and the SAT . . ... ... ... .. 300

14 The resolution calculus 311
14.1 The resolution principle . . . . . . ... .. .. ... ... 313
14.1.1 The resolution principle for propositional logic . . 313

14.1.2 The resolution principle for FOL . . . .. ... .. 317

14.2 Resolution refinements . . . . . . . . ... 324
14.2.1 Semantic resolution . . . .. ... ... ... ... 325

14.2.2 Linear resolution: Logic programming (II) . . . . . 332

14.3 Paramodulation . . . . . . .. ... ... 346

15 The analytic tableaux calculus 365
15.1 Analytic tableaux as a propositional calculus . . . . . .. 367
15.2 Analytic tableaux as a FO predicate calculus . . . .. .. 376
15.2.1 FOL tableaux without unification . . .. ... .. 378

15.2.2 FOL tableaux with unification . . ... .. .. .. 380
Bibliography 385
Bibliographical references 387
Index 395

viii



List of Figures

1.1.1
1.2.1

1.4.1
1.4.2

1.4.3

144
1.4.5

221

2.2.2

2.3.1
2.3.2
24.1
2.4.2
2.4.3

3.3.1
3.3.2

4.1.1
4.1.2

5.1.1
5.2.1
5.2.2

5.2.3
5.3.1

A syntactic, or derivation, tree. . . . . .. ... ... ... 6
Relations of inclusion and exclusion in diagrammatic rep-
resentation. Source: Venn (1881). (Work in the public

domain.) . ... 8
Computer model of a Turing machine. . . . . ... .. .. 17
A Turing machine that computes the function f (n,m) =

n+mforn,meNT. . ... 19
The hierarchy of complexity classes with corresponding

tractability status. . . . . . ... .o oL 21
The encodings (Mr) and (Mp,z). . . . . . ... ... ... 24
State diagram of a Turing machine. . . . . ... ... ... 30

Formalizations for English by means of the language of

classical propositional logic. . . . . ... .. ... ... .. 45
Formalizations for English by means of the language of

clagsical FO logic. . . . . . . ... ... oL 47
Some classical formally correct arguments. . . . . . .. .. 51
Two invalid argument forms. . . . . . . . . ... ... ... 52
Tseitin transformations for the connectives of L. . . . . . . 61
Unifying the pair (P (a,z,h (g (2))), P (z,h(y),h(y))) . . 67
A FOL argument. . . . . .. ... ... ... 73
A truth table with 23 =8 rows. . . ... ... ....... 84
Truth tables for the connective — in the 3-valued logics

ks, K},:V, and Rng. . ... .. ... .. .. ... ... 87
The properties of a Boolean algebra. . . . ... ... ... 95
The complete lattice S = (2‘4, Q) for A={a,b,c}.. . ... 103
Adequateness of a deductive system L = (L,IF). . . .. .. 119
Venn diagram of theset A. . . . . . . ... ... ... ... 143
Diagrammatic representations of the connectives of O. . . 145
Diagrammatic representations of the logical connectives

Oc={1%1%x2 oo 147
Euler diagrams for the classical quantifiers. . . . . . . . . . 149

Euler diagrams of an invalid (1) and a valid (2) argument. 152



List of Figures

5.3.2  Venn diagram with eight minterms. . . . . . .. ... ... 153
5.3.3 A Venn-diagram representation of argument Al. . . . . . . 154
5.3.4 A Venn-diagram representation of argument A2. . . . . . . 154
5.3.5  From a binary switch (i) to a series-parallel connection (v). 164
5.3.6  Logic gates and their graphical representations. . . . . . . 165
5.3.7 A logic circuit for the function f (z1,z2,23) = (1 A z2) V

(CL'l A 1‘3) ............................. 166
5.3.8 A logic circuit for f (z1,29,23) =x1 A(xaVas3). . . . . .. 166
5.3.11 Propertiesof XOR. . . . . ... ... ... ... ...... 167
5.3.9  Two functionally equivalent logic circuits. . . . . ... .. 168
5.3.10 The De Morgan’s laws and the NOR and NAND gates. . . 169
5.3.12 Logic circuits. . . . . . . .. ... L oo 174
11.1.1 ProofofFge P—P . . . . . . . .. ... ... ... ..., 239
11.1.2 Proof of an argument in £p . . . . .. .. ... ... ... 241
11.1.3 Proof in £q of a valid syllogism. . . . . . .. .. ... ... 246
12.1.1 A proof of a propositional derivation in NK. . . . . . . .. 256
12.1.2 A proof in NK of the distributivity property for A. . . . . 259
12.1.3 Proofof Fyx (P—=Q)A (P = R)) = (P = (Q AR)). . . 260
12.1.4 Proof of an argument in (extended) NIC. . . . ... .. .. 261
12.1.5 Proofof Fyc p <> ——p. . . o o oo oL 263
12.1.6 A proof with universal generalization. . . . . . . ... ... 266
12.1.7 An example of universal instantiation. . . ... ... ... 267
12.1.8 An example of existential generalization. . . . . . ... .. 267
12.1.9  An example of existential instantiation. . . . . . . .. . .. 268
12.1.10 AFONK proof. . . ... ... .. ... 269
12.1.11 Aproof in NK=. . . . .. ... ... 271
12.2.1 Proof in LK of axiom £2 of the axiom system %£. . .. . 276
12.2.2 Proof in LK of a FO theorem. . . . . . . . ... ... ... 277
13.2.1 A tableau for the Turing machine M. . . . . ... ... .. 298
13.3.1 Closed semantic tree of C' = {C1,Ca,Cs,C4,C5} in Example

1331, . o 303
13.3.2 A closed semantic tree. . . . ... ... 304
14.1.1 A refutation tree. . . . . . . . ... 315
14.1.2 A propositional argument as input in Prover9/Mace4. . . . 316
14.1.3 Output by Prover9: A valid propositional argument. . . . 316
14.1.4 Output by Prover 9: A valid formula. . . . . . .. ... .. 318
14.1.5 Output by Mace4: A counter-model. . . . ... ... ... 318
14.1.6 A resolution refutation-failure tree. . . . . . ... ... .. 320
14.1.7 Input in Prover9/Maced: A FO theory. . ... ... ... 320

X



List of Figures

14.1.8 Output by Prover9. . . . . . . .. ... .. ... ...... 321
14.1.9 Output of Prover9: A valid FO argument. . . ... .. .. 322
14.2.1 A Pl-resolution tree. . . . ... ... ... ... ...... 328
14.2.2 Hyper-resolution of Z = (C3;C1,C2). . . . . . . . . .. ... 331
14.2.3 A hyper-resolution deduction tree. . . . . . . . . ... ... 331
14.2.4 Theory of distributive lattices and commutativity of meet:
Input in Prover9/Maced. . . . . ... ... ... ... ... 332
14.2.5 Proof by Prover9 of the commutativity of meet in a dis-
tributive lattice. . . . . .. ..o oL 333
14.2.6 A linear-resolution refutation tree. . . . . . . . . . ... .. 334
14.2.7 Trace by SWI-Prolog. . . . . . . . ... .. ... ... ... 338
14.2.8 A failed proof tree. . . . . . . ... ... 340
14.2.9 A successful reduction interpreted as a resolution proof. . . 342
14.2.10 A Ll-resolution proof tree. . . . . . .. ... .. .. .... 343
14.2.11 A SLD-resolution proof. . . . . ... ... ... ... ... 346
14.2.12 A complete proof tree. . . . . . ... .. ... 347

14.2.13 SWI-Prolog answering a query and outputting traces for

some “true” instantiations. . . . . . . ... ... ... .. 348

14.2.14 SWI-Prolog traces of a “true” and a “false” instantiation. . 349

14.3.1
14.3.2

15.1.1
15.1.2
15.2.1
15.2.2
15.2.3

Theory of commutative groups: Input in Prover9/Mace4. . 353

Output by Prover9. . . . . ... ... ... ... ...... 354
Analytic tableaux expansion rules: af-classification. . . . 369
A closed propositional tableau. . . . . . .. ... ... ... 373
Analytic tableaux expansion rules: ~yd-classification. . . . . 377
A closed FO tableau without unification. . . . . . . .. .. 379
A closed FO tableau with unification. . . . . . . . ... .. 382

xi






List of Algorithms

2.1 PNF transformation. . . . . . . . ... ... ... .. 55
2.2  Skolemization. . . . . . . . . . . e 56
2.3 Tseitin transformation. . . . . . . . . . . . ... ... ... 60
2.4 The Robinson algorithm.. . . . . ... ... ... .. ... 65
14.1 Binary resolution. . . . . . . . .. ... ... oL, 312
14.2 Reduction. . . . . . . . . . . ... 340
15.1 Analytic tableaux proof. . . . . . . . ... ... ... ... 366

xiii






Preface

Often spoken of as the science of reasoning, logic can be formal or
informal. While it is not unequivocal-there is significant overlap be-
tween both—, the use of these two adjectives allows us to distinguish
between a largely mathematical from a substantially psychological ap-
proach, respectively, to logic. This might appear unwarranted to those
well-acquainted with logic as an object language, but at the metalan-
guage and/or metalogical levels it becomes clear that formal logic has
its foundations in mathematics, namely in what can be called abstract
mathematics, whereas informal logic reposes on psychological theories
of human reasoning. This book is an introduction to formal logic.

A second major distinction in contemporary logic segregates classical
logic from the non-classical logics. These—note the plural-are typically
rivals of the former—note the singular—, it being meant by this that they
aim at replacing it in many contexts and/or applications. This rivalry
notwithstanding, they are either extensions or restrictions of classical
logic, which means that anyone advocating a non-classical logic should
be well-versed in classical logic. This book is an introduction to classical
logic.

While formal classical logic is certainly interesting per se, today its
study is often associated to computer science with a plethora of compu-
tational implementations in view. This association of logic and compu-
tation can be roughly captured by the expression computational logic.
This book is an introduction to computational logic.

Do we then need to specify that this book is an introduction to formal
classical computational logic? Not really, because in it we take the ad-
jectives formal and computational to be so intimately related that they
can be often considered synonyms. This synonymy is more typically to
be found between the expressions formal language and computer lan-
guage, but we discuss here the language of classical logic as first and
foremost a formal language, and hence the redundancy of the adjective
computational in the title.

This book is thus an introduction to formal classical logic with its
contemporary uses in mind, to wit, logical problems that are in fact de-
cision problems that are in fact computational problems whose proofs are
delegated to computer software. In effect, logic is—arguably—all about
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Preface

proving, but proofs can be costly, often impossibly so, in terms of space
and time, it being meant by this that proofs require storage space (i.e., a
physical memory) and they take time to be computed; hence, monetary
costs are also often associated to proofs, as space and time, as well as
human work, cost money. Given these costs, unrealistic for human com-
puters and undesirable for companies, today most proofs are delegated
to (partly) automatic provers, namely the so-called SAT solvers. These
are software based on the (Boolean) satisfiability problem, or SAT. This
is the dual of the (Boolean) validity problem, or VAL, at the core of the
conception of the digital computer via Hilbert’s Entscheidungsproblem
and the Universal Turing Machine.

These two problems, VAL and SAT, can be said to be the two clas-
sical problems that initiated the computational history of formal clas-
sical logic, a history that can be more immediately traced back to the
Entscheidungsproblem, but that actually also requires digressions into
the work of the likes of J. Venn, G. Frege, and A. Turing—if not Aristotle,
too. In particular, we discuss the classical formal semantics conceived
by, or originating in the work of, G. Boole, J. Herbrand, and A. Tarski.
While this, as said, is an introduction to formal classical logic, we dis-
pense with the adjective “classical” between “formal” and “logic” in the
title, because this book has as its backbone these two semantical prob-
lems. The fragment “Formal logic: Classical problems” indicates that
our introduction to formal logic is so via the classical problems, first
and foremost VAL and SAT, but then also all the decision and compu-
tational problems that can be formulated in terms of these, namely with
computer implementations in mind.

But, as stated above, logic is—arguably—all about proving. Without
(adequate) proof systems at hand, these two problems and all the other
problems formulated in their terms (let us call them all classical problems
for the sake of simplicity) have no solution beyond propositional logic,
given the undecidability of first-order logic (abbr.: FOL), a problem
motivated by semantical structures known as models that, differently
from proofs, which are finite by definition, may be infinite. Indeed, to
say that VAL and SAT are formulated in semantical terms means that
they are formulated in terms of preservation of truth: If all the, say,
facts in a database are true, is a certain conclusion one wishes to draw
therefrom always, or at least in some cases, also so? Given classical
problems of very low complexity formulated in propositional logic, the
semantical construct known as a truth table can provide a solution. But
classical problems are more often than not highly complex, sometimes
industrial-scale so, and they typically require a first- (or higher-) order
language.
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Fortunately, we have today a plethora of adequate proof systems for
VAL and SAT. The Hilbert(-style) systems and the Gentzen systems,
the latter divided into natural deduction and the sequent calculus, are
proof systems to address VAL, and resolution and analytic tableaux are
the two proof systems of election to find answers to classical problems
formulated in terms of SAT. The comprehensive elaboration on these
systems accounts for the expression “proofs” in our title, now complete
as Formal logic: Classical problems and proofs. Although the first sys-
tems above are not algorithmic in nature, thus not providing efficient
methods for classical problems, they are both historically and pedagogi-
cally relevant, and we accordingly discuss them in due detail. Resolution
and analytic tableaux are at the root of many efficient SAT solvers, and
we give equally full treatments of these calculi.

But there are more than these proofs. In the paragraph above we
wrote “adequate” without brackets (compare with farther above), it be-
ing meant by this with respect to a proof system that one can prove
in it every logical truth of the associated logic and nothing that is not
a logical truth thereof. But these properties, known as completeness
and soundness, require metalogical proofs—i.e. proofs at a level higher
than the logical proofs. The same is true of the general undecidabil-
ity of FOL, a result that is a celebrated answer to VAL. In turn, VAL
and SAT have been proven to belong to specific classes of computa-
tional complexity—i.e. it has been shown how much they “cost”™—, with
these proofs constituting fundamental knowledge for the computational
implementations of classical problems. Fulfilling our requirements of
self-containment and comprehensiveness, we provide discussions of these
celebrated proofs, as well as of the above-mentioned properties for all
the proof systems we elaborate on in detail.

It is the moment now to convince the reader that ours is a truly
original introduction to logic. Largely depending on the applications
in view, logic can be approached today from three perspectives, to wit,
mathematical, computational, or philosophical. Introductory textbooks
to logic accordingly segregate their contents: Mathematical approaches
typically concentrate on the mathematical properties of logical systems;
computational approaches focus on computational implementations and
automation of proofs; philosophical treatments greatly concentrate in
argumentation. Godel’s (in)completeness and satellite results feature
prominently in the first, as mathematical proof is a major concern of
mathematical logic and it is unpalatable not to be able to prove a math-
ematical truth once one is discovered (or constructed, depending on
one’s philosophy of mathematics). The temporal and spatial costs of
computational implementations, from the simple transformation of a
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formula into one acceptable by some software to the carrying out of
a proof in it, are central topics in the second kind. Arguments, cate-
gorical syllogisms and fallacies included, occupy many of the pages of
the third type. More technically, this can be reformulated as follows
by invoking the four so-called pillars of formal logic: Model theory and
set theory are major topics to be found in mathematical treatments of
logic; recursion, or computability, theory features significantly in compu-
tational approaches; proof theory tends to be weighty in introductions to
logic written for philosophy students. In particular, while the classical
problems— VAL significantly less so than SAT—feature in introductory
logic textbooks aimed at computer science students, they are largely or
wholly absent from textbooks targeting a mathematical or philosophical
studentship.

This segregation has constituted a successful recipe for a long time
now, and possibly rightly so, but it does not reflect the current state of
what can very generally be called formal logic. This book corrects this
misguided state of affairs. Not focusing on the history of classical logic,
this book nevertheless provides discussions and quotes central passages
on its origins and development, namely from a philosophical perspective.
Not being a book in mathematical logic, it takes formal logic from an
essentially mathematical perspective. Biased towards a computational
approach, with SAT and VAL as its backbone, this is thus an introduc-
tion to logic that covers essential aspects of the three branches of logic,
to wit, philosophical, mathematical, and computational. More so, it
gives practical applications of all these fields, namely in argumentation,
theorem proving, logic programming, and even in logic design.

To be sure, the aim of reaching a large academic readership poses the
risk of serving only a small one: The “traditional” tripartite segregation
may in fact mirror some real distinctions, whether in skills or interests,
in the different studentships. Moreover, the ambition of treating classi-
cal logic both at the object-language and at the metalanguage/metalogic
levels while trying to keep the book in a “manageable” size may entail
the suppression or obliteration of important contents of either of these
components. To this we reply that no book stands alone, or is wholly
self-contained; just as in any other field, certain treatments of logic have
reached the status of standard works, and we refer to Hurley (2012),
Mendelson (2015), and Boolos, Burgess, & Jeffrey (2007), for “classics”
in philosophical, mathematical, and computational logic, respectively.
Additionally, we hope the intersection of the above mentioned reader-
ships is not empty. Our hope may in fact be a justified belief, as, for
instance, linguists and computer scientists, to mention but these, may
prove.
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Be it as it may, we assume knowledge of, or at least familiarity with,
mathematical concepts such as sets, functions, operations, and relations,
providing solely definitions of less basic notions (e.g., Boolean algebra).
In order to refresh their memory, or newly acquire such notions, math-
ematically literate readers can benefit from Bloch (2011) and the more
mathematically reticent can do so from Makinson (2008). We also think
that logic is a subject that requires both hands-on practice and reflection
(or rumination), and we accordingly provide a vast selection of exercises
ranging from the typical logic “drilling” exercise to commentary of rele-
vant passages.

Finally: This book is in a large measure a selection, a restructuring,
and an extension of contents first published in Augusto (2018). Main
motivations for the present resulting text were the desire to improve, by
reviewing and extending, the contents of the mentioned book, as well as
the aim to provide a comprehensive stand-alone book on formal classical
logic with the above-mentioned characteristics, in the belief that classical
logic, particularly so in its formal version, is a subject both fascinating
and—more and more—fundamental.

I wish to thank Dov M. Gabbay for accepting to publish this “extended
remix,” as well as Jane Spurr for her impeccable assistance as managing
director of College Publications.

Madrid, Summer 2019

Luis M. S. Augusto
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Note to the 2nd printing

The present 2nd printing corrects identified addenda and errata, has im-
proved figures and a more uniform notation, and introduces a few notions
that were either missing or not adequately defined in the original edition
(e.g., parameter, trivial quantification, free for). A few paragraphs un-
derwent minor changes, mostly in Chapter 2, namely in Sections 2.1.1-2
and 2.4.6. Concerning the notation, the major change was the decision
to reserve the Greek letters in the metalanguage for utmost generality,
with Backus-Naur definitions, as well as most axiom schemata and rules
of inference, featuring the same letters from the Roman alphabet. An-
other minor change in notation was the replacement of the symbol = by
F in the rules of the sequent calculus LK. All this done, the pagination
is essentially the same as in the original edition.

Madrid, June 2020

Luis M. S. Augusto
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This Index is a hybrid of an Index rerum and an Index nominum. In
the first case, we give solely the page for the first definitional occurrence
of the term or expression; in the second case, we give all the occur-
rences of a specific name. In the latter case, only names of (historical)
significance for the classical formalization of logic are given.
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Herbrand’s Theorem, 301
Hilbert(-style) systems, 237
Hilbert, D., 31, 125, 206, 223,
224, 226, 237, 247
Hintikka set, 375
Hintikka, J., 365
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Identity of indiscernibles (IdI),
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Identity, Law of, 183
Induction, Mathematical, 12
Induction, Structural, 12
Inference, 104
Inference operation, 105
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Interpretation, 89

J
Jaskowski, S., 253

K

Kalmér, L., 242, 247
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L

Language, First-order (FO), 38
Language, Logical, 33
Language, Object, 7
Language, Propositional, 37
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Lindenbaum’s Theorem, 122
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Logic (of a logical system), The,
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Logic program, 159

Logic, Classical first-order (CFOL),
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Logic, Classical propositional (CPL),
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Logical equivalence, 87, 92

Logical system, 100

Lowenheim-Skolem Theorem, 136
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M
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Meaning, 77

Meaning of a program, 336

Meaning of a program, Intended,
337

Meaning, Principle of composi-
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Metalogic, 11

Metaproof, 11

Model, 111

Modus ponens (MP), 51

Modus ponens, Universal (UMP),
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Modus tollens (MT), 51
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N

Natural deduction calculus, 253

Negation distribution, 40

Negation law, Double (DN), 177

Nicod, J. G., 248

Non-contradiction, Principle of
(PNC), 178
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Normal form, Negation (NNF),
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Normal form, Prenex (PNF), 54
Normal form, Skolem (SNF), 54

O
One-literal rule, 313

P

Parameter, 265

Paramodulation, 350

Paramodulation, Binary, 350

Paramodulation, Ordered, 352

Paramodulation, Simultancous, 352

Peirce arrow, 147

PI-clash, 327

PI-deduction, 328

Post, E., 28, 31

Prawitz, D., 253, 255, 279

Predicate (symbol), 36

Prefix classes, 132

Prior, A., 235

Problem (MAX-SAT'), The max-
imum satisfiability, 309

Problem for 2-CNF formulas (2-
SAT), The satisfiability,
290

Problem for 3-CNF formulas (3-
SAT), The satisfiability,
291

Problem for DNF formulas (DNF-
SAT), The satisfiability,
292

Problem for dual-Horn formulas
(DUAL-HORN-SAT), The
satisfiability, 309

Problem for Horn formulas (HORN-
SAT), The satisfiability,
291
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Problem for k-CNF formulas (k-
SAT), The satisfiability,
291

Problem for quantified Boolean
formulas (QBF-SAT), The
satisfiability, 292

Problem, (Logical) Decision, 123

Problem, Computational, 15

Problem, Decision, 19

Problem, Hilbert’s tenth, 31

Problem, Post’s correspondence,
31

Problem, The acceptance, 30

Problem, The Boolean satisfia-
bility (SAT'), 289

Problem, The busy beaver, 31

Problem, The clique, 22

Problem, The decision, 224

Problem, The halting, 30

Problem, The satisfiability (SAT),
123, 288

Problem, The validity (VAL), 123

Problem, The vertex cover, 22

Procedure, Decision, 123

Program clause, 341

Prolog, 155

Prolog program, 159

Proof, 107

Proof by contradiction, 13

Proof calculus, 106

Proof system, 106

Proof, Constructive, 250

Proof, Logical, 11

Proof, Metalogical, 11

Proposition, Categorical, 150

Provability, 107

Prover9/Mace4, 311

Putnam, H., 313

Q
Quantification, 39

Quantification, Trivial, 39



Quantifier (symbol), 39
Quantifier axioms, 245
Quantifier duality, 92
Quantifier reversal, 40
Query, Prolog, 156
Quine, W. V. O., 194

R

Recursion, 362

Recursive language (or set), 19

Recursively enumerable language
(or set), 20

Reductio ad absurdum (RA), 183

Reductio ad absurdum proof, 14

Reduction (in LP), 338

Reduction, Ground, 338

Refutation, 108

Refutation completeness, 341

Representation theorem, 214

Resolution principle for FOL, 317

Resolution principle for proposi-
tional logic, 313

Resolution refinement, 324

Resolution, Binary, 314

Resolution, Hyper-, 330

Resolution, LD, 335

Resolution, LI, 335

Resolution, Linear, 334

Resolution, Macro-, 330

Resolution, RUE, 363

Resolution, Semantic, 325

Resolution, Set-of-support, 359

Resolution, SLD, 335

Rule, Prolog, 156

Russell, B., 28, 72

S

Satisfiability, 111
Schema, 50

Search, Breadth-first, 362
Search, Depth-first, 344
Semantical correlate, 83

Index

Semantics, 112

Semi-decidable language (or prob-
lem), 20

Sequent calculus, 272

Set-of-support deduction, 359

Set-of-support resolution, 359

Sheffer stroke, 147

Skolem constant, 54

Skolem function, 54

Smullyan, R. M., 365, 376

Soundness, 116

Square of opposition, 150

Statement, Prolog, 156

Stone, M. H., 214

Substitution, 62

Substitution principle (SublP), 187

Substitution rule (SUB), 107

Syllogism, Categorical, 148

Syntax, 7

Syntax, Ambivalent, 158

T

Tableau proof, 367

Tarski, A., 11, 12, 28, 83, 105,
175, 181, 182, 188, 191,
204, 216, 217, 234, 248

Tarski-style conditions, 175

Tautology, 113

Theorem, 107

Theory, 121

Theory, Scapegoat, 194

Trace (of an interpreter), 337

Tree, Derivation, 5

Tree, Formula, 40

Tree, Refutation, 314

Tree, Semantic, 303

Tree, SLD-resolution, 345

Tree, Syntactic, 5

Truth function, 78

Truth table, 77

Truth value, 77

Truth-preservation, 178
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Turing machine, Universal, 23
Turing, A., 22, 223, 225, 227,
233
Turing-completeness, 155
Turing-decidability, 20
Turing-recognizability, 20
Turing’s Theorem, 225

U

Ultrafilter theorem, 219

Unicity of decomposition, 35
Unification, 63

Unification problem, 64

Unifier, Most general (MGU), 63

\%

Validity, 112

Validity, Analytical, 235
Validity, Refutation, 293
Valuation, 77

Venn diagram, 143
Venn, J., 9, 27

w
Wajsberg, M., 248
Whitehead, A. N., 28
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