Logical Consequences Theory and Applications: An Introduction

Luis M. Augusto

© Individual author and College Publications 2017 All rights reserved.

ISBN 978-1-84890-236-7

College Publications Scientific Director: Dov Gabbay Managing Director: Jane Spurr

http://www.collegepublications.co.uk

Printed by Lightning Source, Milton Keynes, UK

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission, in writing, from the publisher.

Contents

Pr	eface	•	κi
I.	Int 0.1. 0.2.	Some introductory remarks on logical consequence	1 3 5
11.	\mathbf{Th}	eoretical aspects of logical consequence 1	1
1.	Since 1.1. 1.2. 1.3.	Sets, operations, and relations	3 4 2
2.	2.1.	The formal language L* and the logical system L 2 Proof theory and proof systems 3 2.2.1. Frege and Hilbert systems 3 2.2.2.2. Gentzen-style systems 3 2.2.2.1. Natural deduction 3 2.2.2.2. Sequent calculi 3 Model theory and semantics 4 2.3.1. Truth tables 4	9 9 2 3 5 8 0 3 4
	2.4.2.5.	The consequence operation	8 8 8 9 1 4 5 5
		-	8

Contents

			-	cactical consequence relation antical consequence relation		58 61
	26			lerivability and entailment		63
	2.6. 2.7.	_				64
		_	_	ence and the definition of a logic cs		65
	2.0.			al semantics		65
						69
		2.8.2.	Aigebrai	c and matrix semantics	•	09
111	. Lo	gical c	conseque	ences and their applications		77
3.	Clas	ssical d	deductive	e consequence		79
				heorem and deductive systems		79
				ermined logics		82
	3.2.			ditions for deductive classicality		83
		3.2.1.	-	■ -consequence relations and operations		84
			3.2.1.1.			
				tions		85
			3.2.1.2.	Classical syntactical ■-consequence op-		
				erations		86
			3.2.1.3.	Classical semantical ■-consequence rela-		
				tions		86
			3.2.1.4.	Classical semantical ■-consequence op-		
				erations		88
		3.2.2.	Classical	\forall - and \exists -consequence relations and op-		
			erations			88
	3.3.	Non-m	nonotonic	and defeasible consequence		89
4.				ctive consequences		97
	4.1.		_	and deduction \dots		97
	4.2.	Many-		nsequence		98
		4.2.1.		ain many-valued logical systems		98
				Łukasiewicz logics		99
			4.2.1.2.	Kleene's 3-valued logical system		
			4.2.1.3.	Bochvar's 3-valued logical system		
			4.2.1.4.	Fuzzy logics		
		4.2.2.	_	consequence in many-valued logics		
	4.3.			nsequence		
	4.4.		-	nce		
		4.4.1.	-	and possibility		
		4.4.2.		ions and extensions		
			4.4.2.1.	Temporal logic		130

		C	ontents
		4.4.2.2. Dynamic logic	136
	4.5.	Paraconsistent consequence	144
		4.5.1. Relevance	146
		4.5.2. Preservationism	149
	4.6.	Substructural consequence	154
		4.6.1. Relevance, again	156
		4.6.2. Linear Logic	159
		4.6.3. The Lambek calculus $\dots \dots \dots \dots$	164
5.	Non	-deductive logical consequences	167
	5.1.	Abductive consequence	169
	5.2.	Inductive consequence	
	5.3.	Probabilistic consequence	188
Bi	bliog	raphy	195
In	\mathbf{dex}		209

List of Figures

0.2.1.A (fragment of an infinite) hierarchy of theories based on
order relations
0.2.2.A fragment of the hierarchy of modal logics based on order
relations
1.2.1. Hasse diagram for the strict partial order in Example 1.2.1.
1.2.2.A directed acyclic graph
1.2.3. Transitive reduction of the DAG of Fig. 1.2.2 18
1.2.4. Join table of 2^A
1.2.5.Meet table of 2^A
1.2.6. The lattice (S, \cup, \cap)
1.2.7. The non-distributive lattices \mathcal{L}_1 and \mathcal{L}_2
2.2.1 \mathcal{NK} proof of $((A \to B) \land (A \to C)) \to (A \to (B \land C))$ 38
2.2.2.A \mathcal{LK} proof of $\forall x (A(x) \to B) \Rightarrow \exists x (A(x) \to B)$ 40
$2.3.1.$ $\vdash (\phi \rightarrow \psi) \rightarrow (\neg (\psi \land \chi) \rightarrow \neg (\chi \land \phi))$: an analytic tableau
proof
2.5.1.A proof in the form of labeled trees
2.8.1.Graphical depiction of the accessibility relations in Ex-
ample 2.8.1
2.8.2.Interpretation of a propositional language by means of a
matrix
4.4.1.Main normal modal systems and respective axioms 127
4.4.2.The operators of LTL
4.4.3. Systems with initial states satisfying $\mathbf{A}\Box\phi$, $\mathbf{E}\Box\phi$, and
$\mathbf{A} \Diamond \phi$ respectively 137

Preface

Wishing to anchor my research more and more in logic, pure or applied (where *or* is to be read in the logical, inclusive, sense), I aimed to increase substantially my knowledge of (classes of) logics. For both the pure and applied aspects I had in mind, tackling the central notion of logical consequence appeared as the best way to achieve my objective.

My work in this topic benefited from a short stay in early 2015 as a visiting researcher at the University of Barcelona, where, at the libraries of the Faculties of Mathematics and of Philosophy, I was able to collect much of the material that allowed me to take the turnstiles by the horns.

Melvin Fitting, Peter Schotch, and Yde Venema read parts of the manuscript and their observations helped me to improve it considerably. My sincere thanks to them.

I wish also to express my thanks to Dov M. Gabbay for including this book in this excellent series of College Publications, and to Jane Spurr for impeccable assistance during the publication process.

Madrid, February 2017

Luis M. Augusto