Languages, Machines,

and Classical Computation
Second Edition

Luis M. Augusto

© Individual author and College Publications 2019. Second edition 2020.
All rights reserved.

ISBN 978-1-84890-300-5
College Publications

Scientific Director: Dov Gabbay
Managing Director: Jane Spurr

http://www.collegepublications.co.uk

Cover produced by Laraine Welch

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise
without prior permission, in writing, from the publisher.

Contents

Preface to the 1st edition

Preface to the 2nd edition

I Introduction

4%

xix

1 Classical computation: Turing, von Neumann, and Chom-

sky

1.1 Computers, information, and computations
1.2 Computational problems, algorithms, and decisions
1.3 The Turing-von Neumann paradigm
1.4 Models of classical computation: Automata
1.5 The Chomsky hierarchy

Il Preliminaries and notation

2 Mathematical notions

2.1 Basicnotions oo
2.1.1 Sets, relations, functions, and operations
2.1.2 Binary relations and ordered sets

2.2 Discrete structureso oL
2.2.1 Algebraic structures and operations
2.2.1.1 Algebras and morphisms

2.2.1.2 Boolean algebras

2.2.2 Graphsandtrees

2.3 Proof techniques oL
2.3.1 Mathematical and structural induction
2.3.2 Proof by contradiction

Il Languages, machines, and classical computation

3 Formal grammars and languages

15

17
17
18
26
33
34
34
35
40
45
46
47

51

53

Contents

3.1 Basicnotionso 54
3.1.1 Strings and operations on strings 54
3.1.2 Formal languages and operations thereon 56
3.1.3 Formal grammars. 59

3.1.3.1 Central notions 59
3.1.3.2 Rules, symbols, and grammar cleaning . 61

3.2 Regular languages oL 69
3.2.1 Regular expressions 69
3.2.2 Regular grammars 74
3.2.3 Properties of regular languages 80

3.2.3.1 Pumping lemma for regular languages . . 80

3.2.3.2 Algebra and linear equations for regular
languages L. 81

3.2.3.3 Closure properties of the regular languages 83

3.3 Context-free languages 88

3.3.1 Context-free grammars. 88
3.3.1.1 Context-free vs. context-sensitive gram-

MATS « « v v e e e e e e e e e e 88
3.3.1.2 Normal forms for CFGs I: Chomsky nor-

mal form 90
3.3.1.3 Normal forms for CFGs II: Greibach nor-

mal form 000 94

3.3.1.4 Derivation, or parse, trees 99

3.3.1.5 Ambiguity and inherent ambiguity 100

3.3.2 Properties of the context-free languages 105
3.3.2.1 Pumping lemma for CFLs and Ogden’s

lemma 105

3.3.2.2 Further properties of CFLs 108

3.4 Recursively enumerable languages 116

3.5 The Chomsky hierarchy (I) 121

4 Models of computation 125

4.1 Finite-state machines 0L 125
4.1.1 Finite automata 126

4.1.1.1 Basic aspects of finite automata 127
4.1.1.2 Characteristic equations 133

vi

4.1.1.3 The pumping lemma for regular languages135
4.1.1.4 The Myhill-Nerode theorem and FA min-
imization, 136
4.1.1.5 Deterministic and non-deterministic FAs 142
4.1.1.6 Kleene’s theorem and the properties of
REGL . .. 149

Contents

4.1.2 Finite transducers 153
4.1.2.1 Moore and Mealy machines 153
4.1.2.2 Equivalence of finite transducers 158
4.1.2.3 Minimizing finite transducers 160
4.1.2.4 Conversion of transducers into acceptors 165
4.2 Pushdown automata 174
4.2.1 Basicaspectsof PDAs 175
4.2.2 Two acceptance modes by PDAs: Final state and
empty stack oo oo 178
4.2.3 Equivalence between CFLs and PDAs 180
4.2.4 CFLs accepted by deterministic PDAs 187
4.2.4.1 Deterministic PDAs 187
4242 LR(k)grammars 189
4.3 Turing machines 204
4.3.1 Basic aspects of Turing machines 204
4.3.2 Turing machines computing functions 207
4.3.3 Turing machines accepting languages 209
4.3.3.1 Turing machines and unrestricted gram-
IATS v v e e e e e e e e e e e e 209
4.3.3.2 Linear-bounded automata: Special Tur-
ing machines for CSGs 213
4.3.4 The universal Turing machine 214
4.4 The Chomsky hierarchy (IT) 220
5 Computability and complexity 225
5.1 The decision problem and Turing-decidability 225
5.2 Undecidable problems and Turing-reducibility 228
5.3 The Chomsky hierarchy (III) 234
5.4 Computational complexity 236
5.4.1 Computational problems 236
5.4.2 The Blum axioms and complexity measures 237
5.4.3 Complexity classes 241
5.4.4 The Cook-Levin theorem and polynomial-time re-
ducibility o L 246
5.5 The Chomsky hierarchy (IV) 258
Bibliography 261
Index 267

vii

List of Figures

1.5.1
1.5.2

2.1.1
2.1.2
221

3.2.1
3.2.2

3.2.3
3.3.1

3.3.2
3.3.3
3.34
3.3.5
3.4.1

4.1.1
4.1.2
4.1.3
4.14
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10

4.1.11
4.1.12
4.1.13
4.1.14
4.1.15
4.1.16

The basic postulate of the Chomsky hierarchy. 12
Two derivation trees.o L. 14
A partially ordered set. 29
Hasse diagram of a poset. 33
A simple graph with five vertices and seven edges. 42
A labeled digraph) (r) for a regular expression 7. 75
A labeled digraph & (G) corresponding to a left-linear

grammar G. L e 78
The digraph &' (G') obtained from & (G). 79
Derivation tree of the string w = acbabc € L (G) with the

corresponding partial derivation trees.. 101
Two leftmost derivations of the stringa +ax*a. 102
Parse tree of an unambiguously derived string. 104
Parse trees for productions (1) S — a and (2) S — AB. . . 106
Parse tree for z = wolwzly. 107

A derivation graph of the string bab generated by a UG. . 119

Computer model of a FA. 127
State diagrams of FAs. 130
A FA with two accepting states and one rejecting state. . . 130
A FA for the regular language L = {c, ba}* {ac,aab*}. . . 131
A finite automaton M for the pumping lemma. 136
A FA (1) and its minimal equivalent FA (2). 141
A NDFA for the language L = {001} {0,010}". 143
Equivalent NDFAs with and without e-transitions. 146
Equivalent NDFA (1) and FA (2). 150
Schematic diagrams for FAs accepting (1) L; U Lo, (2)

LlLQ, and (3) (Ll)* 152
A FA accepting L=L1ULo.., 152
Moore (1) and Mealy (2) machines. 155
A Mealy machine (1) and its equivalent Moore machine (2).161
A Mealy machine (1) and its minimal equivalent (2). . . . 166
A Moore machine converted intoa FA. 167
Deterministic finite automata. 170

ix

List of Figures

4.1.17 Mealy machines.o oL Lo 173
4.1.18 Abarcode. 174
4.2.1 Computer model for a PDA. 176
422 A PDA M accepting the language L (M) = {a™b™|m > 0}.
178
4.2.3 Proving the equivalence of L (M) =N (M). 181
4.2.4 NDFA recognizing the viable prefixes for the CFG of Bal-
anced Parentheses. oo 194
4.2.5 Pushdown automata. 199
4.2.6 A PDA accepting L (M) = {u € Z*|lu = wwf®}. 200
427 Top-down (1) and bottom-up (2) PDAs. 202
4.3.1 Computer model for a Turing machine. 205
4.3.2 A Turing machine that computes the function f(m,n) =
m+nformn€Zt. .. 208
4.3.3 Turing machine M7 that computes the function f (m,n) =
2m+3nform,mn €ZT. . .. 210
4.3.4 Program for Turing machine My that computes the func-
tion f (m,n) =2m+3nform,neZ*. 211
4.3.5 The encodings (M) and (Mp,z). 216
4.3.6 A combination of Turing machines. 218
4.3.7 A Turing machine., 219
5.2.1 A combination of Turing machines. 233
5.3.1 The Chomsky hierarchy and beyond: Decidable, Turing-
recognizable, and not-Turing-recognizable languages. . . . 235
5.4.1 The hierarchy of complexity classes with corresponding
tractability status. o000 245
5.4.2 A tableau for the Turing machine M. 251
5.4.3 Typical structure of NP-completeness proofs by polynomial-
time reductions.o Lo Lo 254

List of Tables

3.5.1

4.4.1

5.3.1

5.4.1

The Chomsky hierarchy. 123

The extended Chomsky hierarchy: Grammars, languages,
and associated computer models. 222

Decidability (“Yes”) and undecidability (“No”) of some prop-
erties of interest for the Chomsky hierarchy. 235
Rates of growth of some standard functions. 242

xi

List of Algorithms

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

Grammar cleaning L L 63
Left- /Right-linear grammar to right-/left-linear grammar 79
Chomsky-normal-form transformation 92
Greibach-normal-form transformation 95
Language class by grammar type 124
Deterministic FA minimization 140
Subset-construction algorithm 148
Partition refinement for the states of a Mealy machine . . 163
Mealy machine minimization 164
Conversion of a CFG G intoa PDA M 184

xiii

Preface to the 1st edition

Teachers tend to be picky with the material they use in teaching con-
texts. This may be for personality reasons, but the variety of contexts
and students also plays a role in this pickiness. Be it as it may, it of-
ten is the case that students end up with teaching material in many
formats and from many different sources, creating often a lack of unifor-
mity, both in notation and terminology. Because I am picky for all the
reasons above, I typically feel that my teaching task is substantially fa-
cilitated and optimized when I have gone to the great lengths of putting
all the material for a particular academic subject together in a single
manual or textbook. This guarantees not only conceptional and nota-
tional uniformity, but also a selection of approaches that I feel work well,
or better, for particular topics or problems.

This book is not about discovering the wheel; that is, possibly no novel
contents are to be found in it. The objective when writing it was that
of “putting together” a textbook on the classical theory of computing. If
there is any novel aspect in this textbook, it may well be the fact that
I insist on preceding the terms “(theory of) computation” and “(theory
of) computing” with the adjective “classical” to collect under the same
label the Chomsky hierarchy and the Turing-von Neumann paradigm of
computing. The former comprises three closely associated central topics,
to wit, formal grammars, formal languages, and models of computation
(a.k.a machines, or automata), and the latter gives to these, namely
via the Turing machine, measures of the spatial and temporal costs of
computation. I say that this collection constitutes (the) classical (theory
of) computation, because many, often newer, other forms of computing
have emerged or become (more) popular since the Turing “revolution,”
many of which today may be said to constitute the non-classical (theory
of) computation. This is, for the initiated, more immediately the field of
quantum computing, but other forms of computation such as artificial
neural networks and evolutionary computing may be seen as also non-
classical versions of computing.

It is arguably possible to produce a textbook on formal languages,
grammars, and automata with no emphasis on computing, let alone
with any specific computational concerns. One such approach might be
with linguists in mind, though contemporary linguistics is not averse to

p.q%

Preface to the 1st edition

computation. On the extreme pole of this position, formal grammars,
languages, and automata are often reduced to the theory of computation,
namely as it serves the theoretical foundations of the digital computer.
Without taking a reductive view, I discuss formal languages and gram-
mars from the viewpoint of computation, and consider the associated
automata as models thereof. This said, readers with other foci will find
that the computational perspective taken here does not hinder—and may
even facilitate—their particular interests and concerns.

The backbone of this book is undoubtedly the Chomsky hierarchy.
Although much computing has run in the digital computer since N.
Chomsky first conceived it, it still works well for combining the mostly
linguistic approach with the computational one. In particular, it keeps
reminding us that we are linguistic beings to the point that one of
our most interesting creations—the digital computer—is language-based
through and through, a feature well-patent in the famous Turing Test,
a “test” conceived by the creator of the Turing machine to distinguish
a human computer from a non-human one. Indeed, it seems to have
been the rationale in Turing (1950) that language is sufficient to distin-
guish the human from the non-human computer or reasoner. More than
anything, it might have been this insistence on the verbal behavior of
computers that motivated the can-of-worms idea of Al (artificial intel-
ligence) as ultimately aiming at human-like machines, at least from the
viewpoint of intelligence, if not of emotion.

There is no way to go around this and it requires emphasis: (clas-
sical) computing is a mathematical subject. Although the presence of
automata, of which the most famous is the Turing machine, lends it a fla-
vor of engineering, these are not physical machines nor can they be; they
are mathematical objects. To be sure, the digital computer is based on
the Turing machine, but this has a feature—an infinite tape—that makes
of the former a mere approximation of the latter. The mathematical
nature of this subject accounts for the clearly mathematical approach
in this book: I distinguish statements into definitions and propositions,
and provide proofs (or sketches thereof) to further distinguished—if not
distinct—statements, to wit, theorems and their companion lemmas and
corollaries. The numbering of such statements finds its utility in inter-
nal referencing, if it gives a more high-brow quality to the main text. I
reserve the status of theoremhood for statements of higher importance
than propositions, but the reader is free to consider (most) propositions
in this text as de-facto theorems; the fact that proofs are provided (or
left as exercises) for propositions supports this view.

This mathematical nature of the subject also justifies the large se-
lection of exercises here provided. Indeed, only few students are gifted

xvi

with mathematical skills that free them from the arduous and time-
consuming practice of doing exercises. On the other hand, some may
find this a pleasant activity. Between these fall most mortals, one should
think. But the selection of exercises in this book was also guided by the
belief that one should be confronted with novel material and problems,
in order to develop research, as well as creative, skills.

Still with regard to the mathematical nature of this text, there are
throughout it a few algorithms for the computation of specific functions
(e.g., computing the Chomsky normal form of a given grammar). I chose
not to stick to a single pseudo-code or to a single algorithm format in
the belief that different algorithms can be better grasped in distinct
ways. Yet another advantage of this might be the familiarity with diverse
pseudo-codes and algorithm formats. Importantly, too, no programming
language or software plays any role whatsoever in this book. This is so
deliberately to keep the subject matter as general as possible, untied to
specific implementations or applications.

As said above, the aim for this book is not (re)inventing the wheel.
Although classical computing and its theory are in a current state of
development, with many a problem as focus of research-notably so the

=7INP problem—, the subject of the theory of classical computing has
attained a certain fixed form that is historically justified. In the second
half of last century, when this subject emerged, an abundance of text-
books and monographs were published, and a few of these established
themselves as standard references in the field. As such, it is only natural
that in pedagogical pursuits one should resort to them as sources. This I
do with two such classics in particular, to wit, Davis & Weyuker (1983)
and Hopcroft & Ullman (1979), the latter of which has evolved into the
more undergraduate-friendly Hopcroft, Motwani, & Ullman (2013). A
further source is Du & Ko (2001), a thoroughly mathematical approach.
Readers can greatly benefit from a direct use of all these referenced
works. Texts and manuals on this subject matter directed at under-
graduate audiences abound, with many a good one to further assist
readers in their academic pursuits. Referencing them all is of course
impossible, but interested readers know where to find them. More spe-
cific, often more advanced, literature is cited throughout this text in the
appropriate places; in particular, I cite the works in which important
results (e.g., theorems) were first published.

Lastly, this textbook is a further elaboration on what was originally
a chapter in a book of mine first published by College Publications, to
wit, Augusto (2018). In this book, a chapter on the theory of comput-
ing appeared to be relevant, because issues such as Turing-completeness
of logic programming and the complexity of the satisfiability problem

xvii

Preface to the 1st edition

(a.k.a SAT) required a minimal grasp of, among other topics, the Tur-
ing machine. Having resorted to this chapter to teach topics in au-
tomata, formal languages, and the classical theory of computation, and
having obtained satisfactory results, I decided to expand it to what
is now the present textbook. The main guideline for this expansion
was the inclusion of topics that were left out in the mentioned chap-
ter for spatial and temporal reasons, but which are essential for a fuller
treatment of this subject. Some of these new topics—e.g., characteristic
equations of finite automata, grammar cleaning algorithm—may appear
quite inessential from an Anglo-Saxon perspective, but my individual
work with Spanish students preparing themselves to take exams on the
above-mentioned topics made me realize the need to be as encompass-
ing and comprehensive as possible, namely with the large diversity of
readers of this subject in mind.

I wish to thank Dov M. Gabbay, the scientific director of College
Publications, and Tan Mackie, the editor for the Texts in Computing
series, for publishing this book. My thanks go also to Jane Spurr, the
managing director, for a smooth publication process.

Madrid, February 2019

Luis M. S. Augusto

xviil

Preface to the 2nd edition

The present edition corrects identified addenda and errata, and has both
improved and new figures. It also includes the odd minor change in the
main text of the first edition. The major changes are as follows:

e Figures 4.1.11 and 4.3.7 were replaced by more adequate ones:
In the case of Figure 4.1.11, the union of languages was rather
opaque, and the original finite automaton was replaced by a clearer
illustration; as for Figure 4.3.7, the original Turing machine, which
was too simple, was replaced by a more complex one.

e Exercise 4.1.14 has now five items, an increase aiming at providing
more practice of a complex algorithm.

e An additional algorithm for the conversion of a context-free gram-
mar into a pushdown automaton (Algorithm 4.5) is now included
and, based on it, Example 4.2.3 was greatly revised and extended.
This change entailed a new Figure (4.2.7), to be found in Exercise
4.2.8, which was completely redesigned.

These changes are now made available thanks to the readiness of Col-
lege Publications to publish a second edition so shortly after the first.
Renewed thanks are in order.

Madrid, May 2020

Luis M. S. Augusto

xix

Arden, D. N. (1960). Delayed-logic and finite-state machines. In
Theory of machine computing design (pp. 1-35), Ann Arbor: Uni-
versity of Michigan Press.

Augusto, L. M. (2017a). Logical consequences. Theory and appli-
cations: An introduction. London: College Publications.

Augusto, L. M. (2017b). Many-valued logics. A mathematical and
computational introduction. London: College Publications.

Augusto, L. M. (2018). Computational logic. Vol. 1: Classical
deductive computing with classical logic. London: College Publi-
cations.

Bar-Hillel, Y., Perles, M., & Shamir, E. (1961). On formal proper-
ties of simple phrase structure grammars. Zeitschrift fir Phonetik,
Sprachwissenschaft und Kommunikationsforschung, 14, 143-172.

Blum, M. (1967). A machine-independent theory of the complexity
of recursive functions. Journal of the Association for Computing
Machinery, 14, 322-336.

Bridges, D. S. (1994). Computability. A mathematical sketchbook.
New York, etc.: Springer.

Chomsky, N. (1956). Three models for the description of language.
IRE Transactions on Information Theory, 2, 113-124.

Chomsky, N. (1957). Syntactic structures. The Hague & Paris:
Muton.

Chomsky, N. (1959). On certain formal properties of grammars.
Information and Control, 2, 113-124.

Chomsky, N. (1962). Context-free grammars and pushdown stor-
age. MIT Quarterly Progress Reports, 65, 187-194.

Church, A. (1936a). A note on the Entscheidungsproblem. Journal
of Symbolic Logic, 1, 40-41.

Church, A. (1936b). An unsolvable problem of elementary number
theory. American Journal of Mathematics, 2, 345-363.

Cook, S. A. (1971). The complexity of theorem proving proce-
dures. Proceedings of the 3rd Annual ACM Symposium of Theory
of Computing, 151-158.

263

264

Cooper, S. B. (2003). Computability theory. Boca Raton, etc.:
CRC Press.

Davis, M. D. & Weyuker, E. J. (1983). Computability, complex-
ity, and languages. Fundamentals of theoretical computer science.
Orlando, etc.: Academic Press.

Du, D.-Z. & Ko, K.-I (2001). Problem solving in automata, lan-
guages, and complezity. New York, etc.: John Wiley & Sons.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intel-
ligence through simulated evolution. New York, NY: John Wiley
& Sons.

Gallier, J. (2011). Discrete mathematics. New York, etc.: Springer.

Garey, M. R. & Johnson, D. S. (1979). Computers and intractabil-
ity: A guide to the theory of NP-completeness. New York: W. H.
Freeman and Company.

Godel, K. (1964). Postscriptum to Godel (1934). In Collected
works I (pp. 369-371), Oxford: OUP, 1986.

Grune, D. & Jacobs, C. J. H. (2010). Parsing techniques: A prac-
tical guide. 2nd ed. New York, NY: Springer.

Hausser, R. (2014). Foundations of computational linguistics. Hu-
man-computer communication in natural language. 3rd ed. Hei-
delberg, etc.: Springer.

Hilbert, D. & Ackermann, W. (1928). Grundziige der theoretischen
Logik. Berlin: Springer.

Holland, J. H. (1975). Adaptation in natural and artificial systems.
Ann Arbor, MI: University of Michigan Press.

Hopcroft, J. E & Ullman, J. (1979). Introduction to automata
theory, languages, and computation. 1st ed. Reading, MA, etc.:
Addison-Wesley.

Hopcroft, J. E., Motwani, R., & Ullman, J. (2013). Introduction
to automata theory, languages, and computation. 3rd ed. Boston,
etc.: Pearson.

Khoussainov, B. & Nerode, N. (2001). Automata theory and its
applications. New York: Springer.

Kleene, S. C. (1938). On notation for ordinal numbers. Journal
of Symbolic Logic, 3, 150-155.

Kleene, S. C. (1956). Representation of events in nerve nets and fi-
nite automata. In C. E. Shannon & J. McCarthy (eds.), Automata
studies (pp. 3-42). Princeton: Princeton University Press.

Kohavi, Z. & Jha, N. (2010). Switching and finite automata theory.
3rd ed. Cambridge, etc.: Cambridge University Press.

Lovelace, A. (1843). Notes on L. Menabrea’s “Sketch of the Analyt-
ical Engine invented by Charles Babbage, Esq.” Taylor’s Scientific
Memoirs, vol. 3. London: J. E. & R. Taylor.

Makinson, D. (2008). Sets, logic, and maths for computing. Lon-
don: Springer.

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the
ideas immanent in nervous activity. Bulletin of Mathematical Bio-
physics, 5, 115-133.

Mealy, G. H. (1955). A method for synthesizing sequential circuits.
Bell System Technical Journal, 84, 1045-1079.

Moore, E. F. (1956). Gedanken-experiments on sequential ma-
chines. Awtomata Studies, Annals of Mathematical Studies, 34,
129-153.

Nerode, A. (1958). Linear automaton transformations. Proceed-
ings of the AMS, 9, 541-544.

Oettinger, A. G. (1961). Automatic syntactic analysis and the
pushdown store. In R. Jakobson (ed.), Structure of language and
its mathematical aspects (pp. 104-139). Proceedings of Smposia in
Applied Mathematics, 12. Providence, RI: American Mathematical
Society.

Ogden, W. (1968). A helpful result for proving inherent ambiguity.
Mathematical Systems Theory, 2, 191-194.

Rabin, M. O, & Scott, D. (1959). Finite automata and their deci-
sion problems. IBM Journal, 3, 115-125.

Reghizzi, S. C. (2009). Formal languages and compilation. Lon-
don: Springer.

265

266

Révész, G. E. (1991). Introduction to formal languages. Minneola,
NY: Dover.

Rumelhart, D. E., McClelland, J. L., & the PDP Research Group
(1988). Parallel distributed processing. Explorations in the mi-
crostructure of cognition. Vol. 1: Foundations. Cambridge, MA
& London, UK: The MIT Press.

Sakarovitch, J. (2009). Elements of automata theory. Cambridge:
Cambridge University Press.

Sippu, S. & Soisalon-Soininen, E. (1990). Parsing theory. Vol. 11I:
LR (k) and LL(k) parsing. Berlin, Heidelberg: Springer.

Turing, A. M. (1936-7). On computable numbers, with an appli-
cation to the Entscheidungsproblem. Proceedings of the London
Mathematical Society, Series 2, 41, 230-265.

Turing, A. M. (1950). Computing machinery and intelligence.
Mind, 59, 433-460.

von Neumann, J. (1945). First draft of a report on the EVDAC.
Technical report. University of Pennsylvania. (Reprinted in B.
Randell (ed.), The origins of digital computers. Selected papers
(pp. 383-392). 3rd ed. Berlin, etc.: Springer. 1982)

Younger, D. H. (1967). Recognition and parsing of context-free
languages in time n3. Information and Control, 10, 189-208.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8,
338-353.

Index

267

Index

A

Adequateness, Structural, 104

Algorithm, CYK, 259

Alphabet, 54

Arden’s lemma, 82

Artificial neural network, 4

Automaton, Cellular, 4

Automaton, Finite (FA), 127

Automaton, Linear-bounded (LBA),
213

Automaton, Non-deterministic Fi-
nite (NDFA), 142

Automaton, Pushdown (PDA),
175

Automaton, Two- stack pushdown,
221

Automaton, Two-way finite (2FA),
174

B

Big-O notation, 240
Blum axioms, 238
Boolean algebra, 35
Boolean expression, 37
Boolean function, 37
Boolean variable, 37

C

ChNF (Chomsky normal form),
90

Chomsky hierarchy, 121

Chomsky hierarchy, Extended, 221

Church-Turing Thesis, 226

Class, Language, 58

Classifier, 126

CNF (Conjunctive normal form),
38

Complement (of a language), 58

Complexity classes, 241

Complexity, Computational, 241

Complexity, Space, 238

Complexity, Time, 239

Computation, 3

Computation, Classical, 5

Computation, Evolutionary, 4

Computation, Fuzzy, 4

Computation, Non-classical, 5

Computation, Quantum, 4

Computational intelligence, 4

Computer, 3

Computer, Digital, 3

Computing, Hard, 4

Computing, Soft, 4

Concatenation, Language, 58

Concatenation, String, 55

Conjunctive normal form, Per-
fect, 38

Conversion: Mealy into Moore,
158

Conversion: Moore into Mealy,
158

Cook-Karp Thesis, 244

Cook-Levin Theorem, 249

D
De Morgan’s laws, 36

269

Index

Derivation, 59

Derivation graph, 117

Derivation, Direct, 59

Derivation, Leftmost, 59

Derivation, Rightmost, 59

Diagonalization method, 21

Digraph corresponding to a gram-
mar, 77

Digraph corresponding to a reg-
ular expression, 72

Disjunctive normal form, Perfect,
38

DNF (Disjunctive normal form),
39

DPDA (Deterministic pushdown
automaton), 187

E

Entscheidungsproblem, 6
Equivalence, Strong, 103
Equivalence, Structural, 103
Equivalence, Weak, 103

F

FA, Computation for a, 127

FA, Computer model for a, 127
FA, Configuration for a, 127
FA. Product, 172

FA. State diagram of a, 128

FA, Transition function of a, 127
FA, Transition table of a, 129
Finite-state machine, 125
Finite-state recognizer, 127
Finite-state transducer (FT), 153
Frequency (of a letter), 54

FT (Finite-state transducer), 153
FT, Computation for a, 155

FT, Computer model for a, 154
FT, Configuration for a, 154

G
GNF (Greibach normal form), 94
Grammar equivalence, 60

270

Grammar, Ambiguous, 103

Grammar, Clean, 61

Grammar, Context-free (CFG);
Type-2, 88

Grammar, Context-sensitive (CSG);
Type-1, 90

Grammar, Formal, 59

Grammar, Left-linear, 74

Grammar, Linear, 74

Grammar, LL(k), 204

Grammar, LR(k), 189

Grammar, Phrase-structure, 121

Grammar, Regular; Type-3, 74

Grammar, Right-linear, 74

Grammar, S-restricted left-/right-

linear, 77

Grammar, Transformational-gene-
rative, 11

Grammar, Unrestricted (UG); Type-
0, 116

H
Hardware, 8
Hilbert’s Tenth Problem, 234

I

Induction, Mathematical, 46
Induction, Structural, 46
Information, 3

Intersection, Language, 58

J
JFLAP [free software|, 125

K
Kleene closure, 58
Kleene star, 58

L

Language, Context-free (CFL),
88

Language, Context-sensitive (CSL),
90

Language, Decidable, 228
Language, Formal, 56
Language, Leftmost, 60
Language, Recursive, 220
Language, Recursively enumer-
able (REL), 116
Language, Regular, 70
Language, Rightmost, 60
Language, String, 115
Language, Tree, 115
LBA (Linear-bounded automa-
ton), 213
LBA, Configuration of a, 213
Length (of a string), 54
Letter, 54

M

Mealy machine, 153

Mirror image (of a language), 57
Mirror image (of a string), 55
Monoid, Free, 57

Moore machine, 153
Myhill-Nerode Theorem, 138

N

Name of a rule, 117

NDFA (Non-deterministic finite
automaton), 142

NDFA, Computer model of a, 143

Non-terminal (symbol), 59

Normal form, Chomsky (ChNF),
90

Normal form, Conjunctive (CNF),

38

Normal form, Disjunctive (DNF),
39

Normal form, Greibach (GNF),
94

(0]
Ogden’s Lemma, 108

Index

P

P =7 NP, 243

Palindrome, 55

Parser, LL(*), 204

PDA (Pushdown automaton), 175

PDA, Bottom-up, 200

PDA, Computation for a, 176

PDA, Computer model of a, 175

PDA, Configuration for a, 176

PDA, State diagram of a, 178

PDA, Top-down, 183

PDA, Transition table of a, 177

PDA, Two-way (2PDA), 203

Positive closure, 58

Post’s Correspondence Problem,
234

Power, i-th (of a language), 58

Power, i-th (of a string), 55

Precedence properties, 71

Prefix, 55

Problem for Horn formulas, The
satisfiability (HORN-SAT),
258

Problem for quantified Boolean
formulas, The satisfiabil-
ity (QBF-SAT), 258

Problem, Computational, 236

Problem, Decision, 225

Problem, Function, 237

Problem, The 2-SAT, 246

Problem, The Acceptance (ACPT),
229

Problem, The Busy Beaver, 234

Problem, The Circuit Satisfiabil-
ity (CIRCUIT-SAT), 247

Problem, The Clique (CLIQUE),
247

Problem, The Graph Colorabil-
ity, 247

Problem, The Graph Isomorphism,
248

Problem, The Halting (HALT),

271

Index

229

Problem, The Hamiltonian Cy-
cle (HAM-CYCLE), 247

Problem, The Hamiltonian Path
(HAMPATH), 237

Problem, The k-SAT, 247

Problem, The Maximum Satisfi-
ability (MAX-SAT), 258

Problem, The Relative Primes,
246

Problem, The Satisfiability (SAT),
248

Problem, The Shortest Path, 246

Problem, The State-Entry (STEN-
TRY), 231

Problem, The Subgraph Isomor-
phism, 247

Problem, The Subset-Sum (SUBSET-

SUM), 248
Problem, The Traveling Salesman
(TSP), 248
Problem, The Vertex Cover (VER-
TEX-COVER), 247
Production rule, 59
Production, Copying, 62
Production, Empty, 62
Production, Recursive, 62
Production, Renaming, 62
Production, Right-recursive, 68
Production, Unit, 62
Proof by contradiction, 47
Proof, Constructive, 115
Pumping lemma for CFLs, 105
Pumping lemma for regular lan-
guages, 80, 135
Pushdown automaton (PDA), 175

R

Recurrence, Left, 97

Recursion, 68

Reducibility, 230

Reducibility, Polynomial-time, 246

272

Reductio ad absurdum, 47
Reduction, LR(k)-grammar, 190
Regular expression, 69

Reverse (of a language), 57
Reverse (of a string), 55

Rice’s Theorem, 234

S

Savitch’s Theorem, 243
Semi-decidability, 228
Semigroup, Free, 57
Sentential form, 59
Shuffle, Language, 58
Shuffle, String, 55
Software, 8

State, Trapping, 129
String, 54

String, Empty, 54
Substitution, 109
Substring, 55

Suffix, 55

Symbol, Accessible, 61
Symbol, Non-generating, 61
Symbol, Reachable, 61
Symbol, Well-defined, 61
Syntax, 56

T

Terminal (symbol), 59

Tractability, 244

Transducer, Finite (FT), 153

Transducer, Pushdown, 203

Transition function, Extended, 132

Transition relation, 142

Tree, Derivation, 99

Tree, Parse, 99

Truth-value assignment, 37

Turing machine, 204

Turing machine, Computation for
a, 206

Turing machine, Computer model
for a, 205

Turing machine, Configuration of
a, 205

Turing machine, Non-deterministic,

212
Turing machine, State diagram
of a, 207
Turing machine, Total, 220
Turing machine, Transition ta-
ble for a, 207
Turing machine, Universal, 214
Turing-decidability, 226
Turing-recognizability, 235
Turing-reducibility, 230
Turing’s Theorem, 7
Turing-von Neumann paradigm,
8

U
Union, Language, 58

v
Variable, 59

Variable, Start, 59

von Neumann architecture, 7

A%%
Word, 54

Y
Yield, 59

Index

273

