Many-Valued Logics
A Mathematical and Computational Introduction

Second Edition

Luis M. Augusto
Contents

Preface to the 1st edition xiii
Preface to the 2nd edition xvii

1 Introduction 1
1.1 Logics, classical and non-classical, among which the many-valued 1
1.2 Mathematical logic 3
1.3 Logic and computation 6

1 THINGS LOGICAL 11

2 Logical languages 13
2.1 Formal languages and logical languages 13
2.2 Propositional and first-order languages 17
2.3 The language of classical logic 22
2.4 Clausal and normal forms 25
 2.4.1 Literals and clauses 25
 2.4.2 Negation normal form 26
 2.4.3 Prenex normal form 28
 2.4.4 Skolem normal form 30
 2.4.5 Conjunctive and disjunctive normal forms 32
2.5 Signed formalisms 37
 2.5.1 Signed logic 37
 2.5.2 Signed clause logic 39
2.6 Substitutions and unification for FOL 40
Exercises 46

3 Logical systems 51
3.1 Logical consequence and inference 51
3.2 Semantics and model theory 55
 3.2.1 Truth-functionality and truth-functional completeness 55

v
Contents

5.2.1 Suszko’s Thesis .. 152
5.2.2 Non-trivial many-valuedness 154
5.2.3 Classical generalizations to the many-valued logics 155
5.3 Structural properties of many-valued logics 160
5.4 The Łukasiewicz propositional logics 161
 5.4.1 Łukasiewicz’s 3-valued propositional logic L_3 161
 5.4.2 Tautologousness, contradictoriness, and entailment
 in L_3 .. 167
 5.4.3 N-valued generalizations of L_3 167
5.5 Finitely many-valued propositional logics 170
 5.5.1 Bochvar’s 3-valued system 171
 5.5.2 Kleene’s 3-valued logics 174
 5.5.3 Finn’s 3-valued logic 176
 5.5.4 Logics of nonsense: the 3-valued logics of Halldén,
 Åqvist, Segerberg, and Piróg-Rzepecka 177
 5.5.5 Heyting’s 3-valued logic 181
 5.5.6 Reichenbach’s 3-valued logic 182
 5.5.7 Belnap’s 4-valued logic 183
 5.5.8 The finitely n-valued logics of Post and Gödel 186
 5.5.8.1 Post logics 186
 5.5.8.2 Gödel logics 188
5.6 Fuzzy logics .. 189
5.7 Quantification in many-valued logics 193
 5.7.1 Quantification in finitely many-valued logics 194
 5.7.2 Quantification in fuzzy logics 202
Exercises ... 207

III REFUTATION CALCULI FOR MANY-VALUED LOGICS 215

6 The signed SAT for many-valued logics 217
 6.1 From the MV-SAT to the signed MV-SAT 217
 6.2 From many-valued formulae to signed formulae 221
 6.2.1 General notions and definitions 221
 6.2.2 Transformation rules for many-valued connectives 226
 6.2.3 Transformation rules for many-valued quantifiers . 229
 6.2.4 Transformation rules and preservation of structure 233
 6.2.5 Translation to clausal form 234
Exercises ... 238

7 Signed tableaux for the MV-SAT 239
Contents

7.1 Introductory remarks .. 239
7.2 Signed analytic tableaux for classical formulae 241
7.3 Surma's algorithm .. 243
7.4 Signed tableaux for finitely many-valued logics 249
 7.4.1 Propositional signed tableaux 252
 7.4.2 FO signed tableaux .. 263
7.5 Signed tableaux for infinitely many-valued logics 270
Exercises .. 277

8 Signed resolution for the MV-SAT 281
 8.1 Introductory remarks .. 281
 8.2 Signed resolution for finitely many-valued logics 283
 8.2.1 Signed resolution proof procedures 283
 8.2.1.1 Main rules ... 283
 8.2.1.2 Refinements of signed resolution 286
 8.2.2 The main theorem of signed resolution 287
 8.3 Signed resolution for infinitely many-valued logics 294
Exercises .. 307

IV APPENDIX .. 311

9 Mathematical notions .. 313
 9.1 Sets ... 313
 9.2 Functions, operations, and relations 316
 9.2.1 Functions, ordered intervals, and sets: Crisp sets
 and fuzzy sets ... 319
 9.3 Algebras and algebraic structures 321
 9.4 Lattices .. 325
 9.5 Graphs and trees .. 330

Bibliography .. 333

Index ... 349
List of Figures

1.1.1 Some main non-classical logics. ... 4

2.4.1 Tseitin transformations for the connectives of L. 36
2.5.1 A partially ordered set. ... 38
2.6.1 Unifying the pair \(P(a, x, h(g(z))), P(x, h(y), h(y)) \) 45

3.4.1 Adequateness of a deductive system \(L = (L, \vdash) \). 74

4.3.1 Closed semantic tree of \(C = \{C_1, C_2, C_3, C_4, C_5\} \) in Example
4.3.3 ... 92
4.3.2 A closed semantic tree. ... 93
4.4.1 Proof of \(\vdash A \rightarrow A \) in \(L \). .. 96
4.4.2 \(A, \forall x.A \rightarrow B \vdash \forall x.B \): Proof in the axiom system \(L^* \). 97
4.4.3 \(\forall \mathcal{K} \) proof of \(\vdash (A \rightarrow B) \land (A \rightarrow C) \rightarrow (A \rightarrow (B \land C)) \). 99
4.4.4 Proof in \(\mathcal{L}_2 \) of a FO theorem. 104
4.4.5 Proof in \(\mathcal{L}_2 \) of axiom \(\mathcal{L}_2 \) of the axiom system \(L \). 105
4.4.6 A DPLL proof procedure. .. 107
4.5.1 Analytic tableau expansion rules: \(\alpha \beta \)-classification. 111
4.5.2 \(\vdash ((A \rightarrow B) \land ((A \land B) \rightarrow C)) \rightarrow (A \rightarrow C) \): A propositional tableau proof. ... 113
4.5.3 Analytic tableau expansion rules: \(\gamma \delta \)-classification. 117
4.5.4 An FO tableau proof. ... 120
4.5.5 An FO tableau with unification. ... 122
4.6.1 A refutation tree. .. 126
4.6.2 A refutation-failure tree. ... 127
4.6.3 Hyper-resolution of \(\Xi = (C_3; C_1, C_2) \). 135
4.6.4 Input in Prover9-Mace4. .. 138
4.6.5 Output by Prover9-Mace4. ... 139
4.6.6 Output by Prover9-Mace4. ... 140
4.6.7 Schubert’s steamroller in natural language. 141
4.6.8 Schubert’s steamroller in FOL. ... 142
4.6.9 Proof of Schubert’s steamroller by Prover9-Mace4. 143

5.2.1 The homomorphic interpretation \(h \in Hom(L, \mathfrak{A}) \) and the valuation \(val_h : F \rightarrow W_2 \). 154
List of Figures

5.4.1 Proof of \(\vdash_{L_3} \neg P \rightarrow (P \rightarrow Q) \) in \(L_3 \). .. 164
5.4.2 Proof of \(\vdash_{L_N} P \rightarrow ((P \rightarrow Q) \rightarrow Q) \) in \(L_N \). 170
5.5.1 The lattices \(A_4 \) (1.) and \(L_4 \) (2.). .. 184
5.7.1 Proof of \(\vdash_{L_3} \forall x P(x) \rightarrow \exists x P(x) \) in \(L_3^* \). 197
5.7.2 A fuzzy binary relation. .. 204

6.2.1 \(cnfs \) for the connective \(\rightarrow_{L_3} \). ... 230
6.2.2 Transformation rules for signed formulae of \(L_n \). 235
6.2.3 Clause transformation process of a signed FO many-valued
formula. ... 237

7.1.1 General tableau rule schema for finite tableaux. 239
7.2.1 Signed tableaux expansion rules: \(\alpha \beta \)-classification. 242
7.2.2 Signed tableaux expansion rules: \(\gamma \delta \)-classification. 242
7.2.3 A signed tableau proof of a CPL theorem. 243
7.4.1 Signed tableau rules for some connectives of \(L_4 \). 257
7.4.2 A signed tableau proof in \(L_4 \) of the classical tautology
\textit{modus ponens}. .. 259
7.4.3 Signed tableau rules for the logical system MK. 262
7.4.4 FO tableau rules for filters (1) and ideals (2). 268
7.4.5 Signed tableau rules for quantified formulae in MK. 270
7.5.1 Signed fuzzy tableaux. ... 275

8.2.1 A signed resolution procedure. 290

9.1.1 Venn diagram of the set \(A \). ... 313
9.1.2 Venn diagrams of the union (1) and the intersection (2) of
two sets. ... 315
9.2.1 A partially ordered set. ... 318
9.2.2 Membership functions for young, middle, and old age in
humans. ... 321
9.4.1 Join table of \(2^A \). ... 327
9.4.2 Meet table of \(2^A \). .. 328
9.4.3 The lattice \((S, \cup, \cap) \). ... 328
9.4.4 The non-distributive lattices \(L_1 \) and \(L_2 \). 329
List of Algorithms

2.1 NNF transformation ... 27
2.2 PNF transformation ... 29
2.3 Skolemization .. 31
2.4 CNF/DNF transformation .. 34
2.5 Tseitin CNF transformation 35
2.6 Robinson unification procedure 42

4.1 Construction of the Herbrand universe 89
4.2 DPLL proof procedure .. 107
4.3 Analytic tableaux proof procedure 109
4.4 Binary resolution proof procedure 124

7.1 Signed tableaux proof procedure for MV-SAT 250

8.1 Signed resolution procedure for MV-SAT (a.k.a. MVRES) 293
Preface to the 1st edition

Although the title of this book indicates two main components, to wit, mathematical and computational, we wish to emphasize that this is first and foremost a book on many-valued logics. As such, the reader who might just be interested in the various many-valued logics will find abundant material in that which is the central part of this book, to wit, Part II. In this, the several main many-valued logics are presented from the viewpoints of their semantical properties, and their semantics are characterized mostly by means of truth tables and logical matrices. From the proof-theoretical viewpoint, for many of these logics partial or full axiomatizations are provided.

This Part II is, mainly for the objective of self-containment, preceded by an extensive introduction to "things" logical: logical languages, systems, and decisions. In this Part I, important notions such as logical consequence, adequateness of a logical system, and matrix semantics, among others, are rigorously defined. Further notions regarding decision procedures in classical logic are introduced, namely the satisfiability and validity problems (abbreviated as SAT and VAL, respectively), and they are put into relation with the several proof systems available. In Part III, we chose to approach the many-valued satisfiability problem (MV-SAT) via refutation, i.e. by proving unsatisfiability of a set of formulae (a theory), because of the many advantages, computational and other, that this proof procedure presents for the many-valued logics. This explains our extensive discussion of the analytic tableaux and resolution calculi for classical logic in this Part I. However, we wanted the reader to acquire a good grasp also of validity- and satisfiability-testing methods, and we thus provide sufficient material on this topic.

Part III deals with well-studied computational, or potentially comput-erizable, approaches to the many-valued logics, namely as far as automated deduction is concerned. Here, signed (clause) logic has a central place (Chapter 6). In effect, both signed tableaux and signed resolution are automatable proof calculi that can very naturally be applied to many-valued logics, reason why we chose to elaborate on them at length. This elaboration constitutes Chapters 7 and 8, for signed tableaux and
Preface to the 1st edition

signed resolution, respectively.

We did not wish to emphasize the mathematical component, as this could scare away many a potential reader. Nevertheless, we believe that logic is a branch of mathematics, and as such it is both mathematically motivated and justified. (Incidentally, we do not think that logic is a foundation for mathematics—the reverse is true, in our opinion.) Given these two somehow conflicting views, we decided that the best thing to do would be to provide the mathematically literate, or just simply interested, readers with an Appendix in which the mathematical bases of our approach are expounded to the required extent. This is Part IV.

Logic is a subject that requires (many) years before one grasps satisfactorily what it is actually all about. This stage will arguably not be reachable without hands-on practice, much in the same way, perhaps, that many other fields require extensive, often arduous, practice. In this belief, we provide the readers with a large selection of exercises.¹

In effect, this book is conceived for the reader who wishes to do something with many-valued logics, especially—but by no means only—in a computational context. With this we associate fields as diverse as cognitive modeling and switching theory. The literature on many-valued logics is abundant, but the “standard” monographs (Balc & Borowik, 1992; Malinowski, 1993; Rescher, 1969; Rosser & Turquette, 1952), while not being obsolete, are now of mainly theoretical and historical interest. Some more recent work claiming to have practical applications in mind (e.g., Balc & Borowik, 2003) follows to a great extent in the footsteps of these earlier monographs. On the other hand, recent work both in mathematical logic (e.g., Gottwald, 2001; Hahne, 2001) and in philosophical logic / the philosophy of logic (e.g., Bergmann, 2008) provides little or no material for the practical applications mentioned.

Surprisingly—or just plainly intriguingly—, the last comprehensive discussion of modern applications of many-valued logics dates from 1977 (Dunn & Epstein). The fact is that many-valued logics are today in more demand than ever before, due to the realization that inconsistency in information (and knowledge bases are frequently inconsistent) “is respectable and is most welcome” (Gabbay, 2014). We now know and accept that it is often the case that theories have truth-value gaps (some propositions appear to be neither true nor false), truth-value gluts (some propositions appear to be both true and false), vague concepts (e.g., cold, young, tall, sufficient), indefinite functions, lacunae, etc. Moreover, theories are in constant updating processes, and human and arti-

¹For reasons of timing, solutions to the exercises are not provided in this edition. In due time, there will be an Appendix with these solutions, which may actually be (also) posted online.

xiv
ficial reasoners require formal means to keep pace with these often fast and/or unpredictable processes, namely in order to review beliefs: what yesterday was a true/false proposition may today be neither true nor false, or both; what yesterday was clear-cut is now vague or indeterminate. The many-valued logics provide us with a powerful formalism to tackle these cases in terms of reasoning. In fact, this scenario calls for not only a practical-based approach to the many-valued logics per se, but also for hybridizations of these with other formal systems, as well as with more quantitative(-like) cognitive approaches (e.g., D’Avila Garcez, Lamb, & Gabbay, 2009). Importantly, the practical applications of many-valued logics have now gone beyond the mere industrial applications (e.g., fuzzy logics in washing machines), and promise to be of import for “higher,” cognitive modeling. This new logic entails, in particular, a reappraisal of both “psychologism” and “formalism”—if not also of “logicism”—, especially because it proposes a reappraisal of what a cognitive, or reasoning, agent is (see, e.g. Gabbay & Woods, 2001). In order for this emerging work (Gabbay & Woods, 2003; 2005) to be further carried out and to incorporate the many-valued logics, we need a solid mathematical-computational grasp of these logics.

We hope the present book will provide the motivation for a new comprehensive treatment of the modern applications of many-valued logics that will include the new-logic factor as a central aspect of modern logic and its applications. Thus, a book like this on many-valued logics is now very timely, for the times, they are a-changin’.

I wish to thank Dov M. Gabbay for including this book in the excellent Studies in Logic series of College Publications. My thanks go also to Jane Spurr for a smooth publication process.

Madrid, Summer 2017

Luis M. S. Augusto
Preface to the 2nd edition

Generally, the present 2nd edition corrects detected addenda and errata, uniformizes the notation, has improved figures, and introduces and/or defines some concepts that were either missing or not adequately defined in the 1st edition (e.g., quantifier closure, parameter, free for, fuzzy set).

The most significant change was in the notation. Because in this book there is a large variety of logical systems with corresponding object languages a meta-metalanguage was thought useful for utmost generality. This meta-metalanguage is easily made evident by the use of Greek letters for formulae and sets of formulae; the use of the same Roman letters for all the object languages gives homogeneity to the metalanguage-level presentation of the diverse object languages. Still with respect to this aspect, a new Proposition (3.4.7) was introduced, as it helps to clarify what appears to be, perhaps mostly for historical reasons, an inevitable notational ambiguity in modern first-order logic.

The Index was completely revised with the aim of being as comprehensive as possible. This said, only for names of authors are pages given exhaustively; for the concepts, only the page in which they are defined is given, unless a concept has more than one definition or occurs in distinct contexts.

Although the original structure of the book is unaltered (i.e. no chapters, sections, etc. were deleted or newly added), throughout the main text changes—often substantial—were made with enhanced clarity in view, so that paragraphs or sentences in the first edition might have been significantly changed or even entirely deleted, while new paragraphs were added. In particular, many new propositions and examples were added in this edition. This, together with some typographical improvements, contributed to the increase in the number of pages.

Another innovation is the isolation of algorithms in shaded boxes. In this edition, I dispense entirely with pseudo-code for the formulation of algorithms, preferring a simple listing or enumeration of steps or rules to be applied. The readers can easily turn this formulation into their own (pseudo-)code.
Preface to the 2nd edition

Finally, for the same reason invoked in the 1st edition, no solutions are given for any of the exercises.

I acknowledge the readiness of College Publications to publish the present 2nd edition.

Madrid, June 2020

Luis M. S. Augusto

Index
This index is a hybrid of an Index nominum and an Index rerum. With respect to the latter, only the most general, positive concept is given; for example, for (un)satisfiability and (un)satisfiable, look under satisfiability. (An exception is indeterminacy.) For complex expressions (e.g., many-valued satisfiability problem), look under the final noun (e.g., Problem, Many-valued satisfiability). Exceptions are complex expressions beginning with one or more proper nouns, which should be looked under the (first) name (e.g., Belnap’s 4-valued system; Hintikka set; Church-Turing theorem) and expressions beginning with central concepts (e.g., Truth-value gap). For most concepts, only the page where they are defined or first occur significantly is given. Abbreviations are provided in brackets, and recurrent abbreviations are also listed as entries (e.g., CNF). Logical systems are listed both by the first name/concept and by the first letter denoting them (e.g, both Post’s n-valued system and “P_n” are distinct entries in the Index). As for the Index nominum, only proper nouns associated with fundamental aspects (e.g., theorems, problems, structures) and/or logical systems are listed; for these, all pages of occurrence are given. The letters \hat{A} and L are alphabetically processed as A and a variant of L, respectively, and the Greek letter Π is so as P.

351
Index

2-SAT, 84
3-SAT, 84
3TAP (Tableaux-based prover), 240

A
Adequateness, 73
Adjunction, 78
Algebra of formulae, 63
Algebra of signs, 253
Algebra, Absolutely free, 322
Algebra, Abstract, 321
Algebra, Boolean, 58, 323
Algebra, G- (Gödel algebra), 325
Algebra, Many-valued (MV-algebra), 324
Algebra, MV- (Many-valued algebra), 324
Algebra, II- (Product algebra), 325
Algebra, Product (II-algebra), 325
Algebras, BL-, 324
Algorithm, 6
Algorithm, DPLL, 107
An_3 (Åqvist's 3-valued system), 178
Analytic (proof procedure), 8
Åqvist, L., 178
Åqvist's 3-valued system (An_3), 178
Argument, Logical, 51
Aristotle, 151
Assistant, Proof, 7
Assumption, 97
Atom, 14
Axiom, 67
Axiom, Derived, 163
Axiomatization, 73

B
B^E_3 (Bochvar's external 3-valued system), 173
B^I_3 (Bochvar's internal 3-valued system), 171
B_4 (Belnap's 4-valued system), 183
Belnap, N. D., 183–185
Belnap's 4-valued system (B_4), 183
Bernays, P. I., 197
Beth, E. W., 86, 108
Bivalence, 2
BL (Basic logic), 191
BL* (FO basic logic), 202
Blake, A., 87
Bochvar, D. A., 171, 172, 174, 176, 177, 196
Bochvar's 3-valued system (see also: B^E_3, B^I_3), 171
Boole, G., 86, 151
Brouwer, L. E. J., 3

C
Calculus, 67
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus, Logical</td>
<td>15</td>
</tr>
<tr>
<td>Calculus, Sequent</td>
<td>101</td>
</tr>
<tr>
<td>CFOL (Classical first-order logic)</td>
<td>23</td>
</tr>
<tr>
<td>Church, A.</td>
<td>82, 86</td>
</tr>
<tr>
<td>Church-Turing theorem</td>
<td>82</td>
</tr>
<tr>
<td>Church-Turing thesis</td>
<td>86</td>
</tr>
<tr>
<td>CL (Classical logic)</td>
<td>22</td>
</tr>
<tr>
<td>Clause, 25</td>
<td></td>
</tr>
<tr>
<td>Clause, Definite</td>
<td>25</td>
</tr>
<tr>
<td>Clause, Dual-Horn</td>
<td>25</td>
</tr>
<tr>
<td>Clause, Empty</td>
<td>25</td>
</tr>
<tr>
<td>Clause, Empty signed</td>
<td>39</td>
</tr>
<tr>
<td>Clause, Ground</td>
<td>25</td>
</tr>
<tr>
<td>Clause, Horn</td>
<td>25</td>
</tr>
<tr>
<td>Clause, Parent</td>
<td>125</td>
</tr>
<tr>
<td>Clause, Regular Horn</td>
<td>39</td>
</tr>
<tr>
<td>Clause, Signed</td>
<td>39</td>
</tr>
<tr>
<td>Clause, Unit</td>
<td>25</td>
</tr>
<tr>
<td>Closure (under a rule r)</td>
<td>67</td>
</tr>
<tr>
<td>Closure, Existential</td>
<td>20</td>
</tr>
<tr>
<td>Closure, Quantifier</td>
<td>19</td>
</tr>
<tr>
<td>Closure, Universal</td>
<td>20</td>
</tr>
<tr>
<td>CNF (Conjunctive normal form)</td>
<td>32</td>
</tr>
<tr>
<td>cnf (minimal CNF for signed formulae)</td>
<td>228</td>
</tr>
<tr>
<td>CNF-SAT</td>
<td>84</td>
</tr>
<tr>
<td>Combination, Boolean positive</td>
<td>272</td>
</tr>
<tr>
<td>Compactness</td>
<td>71</td>
</tr>
<tr>
<td>Complementarity, 25</td>
<td></td>
</tr>
<tr>
<td>Complementarity, T^{-}</td>
<td>302</td>
</tr>
<tr>
<td>Complementarity, ε^{-}</td>
<td>296</td>
</tr>
<tr>
<td>Completeness</td>
<td>72</td>
</tr>
<tr>
<td>Completeness, Functional</td>
<td>23</td>
</tr>
<tr>
<td>Completeness, Refutation</td>
<td>292</td>
</tr>
<tr>
<td>Complexity, Computational</td>
<td>82</td>
</tr>
<tr>
<td>Conclusion (of an argument)</td>
<td>51</td>
</tr>
<tr>
<td>Condensation</td>
<td>132</td>
</tr>
<tr>
<td>Confidence</td>
<td>300</td>
</tr>
<tr>
<td>Conjunction (Connective)</td>
<td>22</td>
</tr>
<tr>
<td>Conjunction, Bold/Strong</td>
<td>207</td>
</tr>
<tr>
<td>Connective, Logical</td>
<td>18</td>
</tr>
<tr>
<td>Consequence, Disjunctive (Rule; DCh)</td>
<td>165</td>
</tr>
<tr>
<td>Consequence, Logical</td>
<td>52</td>
</tr>
<tr>
<td>Consistency</td>
<td>69</td>
</tr>
<tr>
<td>Constant, Logical</td>
<td>13</td>
</tr>
<tr>
<td>Constant, Non-logical</td>
<td>13</td>
</tr>
<tr>
<td>Contingency</td>
<td>60</td>
</tr>
<tr>
<td>Contradiction</td>
<td>60</td>
</tr>
<tr>
<td>Contradiction, Quasi-</td>
<td>157</td>
</tr>
<tr>
<td>Contraposition (Rule; ConP)</td>
<td>165</td>
</tr>
<tr>
<td>Contraposition, Generalized (Rule; GConP)</td>
<td>165</td>
</tr>
<tr>
<td>Cook, S. A.</td>
<td>84</td>
</tr>
<tr>
<td>Correlate, Semantical</td>
<td>55</td>
</tr>
<tr>
<td>Countermodel</td>
<td>59</td>
</tr>
<tr>
<td>Counter-proof</td>
<td>69</td>
</tr>
<tr>
<td>CPL (Classical propositional logic)</td>
<td>23</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Davis, M.</td>
<td>86, 87, 104, 123, 137</td>
</tr>
<tr>
<td>De Morgan’s laws (DM)</td>
<td>27</td>
</tr>
<tr>
<td>Decidability</td>
<td>81</td>
</tr>
<tr>
<td>Decisiveness</td>
<td>161</td>
</tr>
<tr>
<td>Decomposition, Unicity of</td>
<td>14</td>
</tr>
<tr>
<td>Deduction, Res $<_A$</td>
<td>133</td>
</tr>
<tr>
<td>Deduction, Resolution</td>
<td>125</td>
</tr>
<tr>
<td>Denotation</td>
<td>55</td>
</tr>
<tr>
<td>Derivability</td>
<td>69</td>
</tr>
<tr>
<td>Disjunction (Connective)</td>
<td>22</td>
</tr>
<tr>
<td>Disjunction, Bold/Strong</td>
<td>207</td>
</tr>
<tr>
<td>Distribution function</td>
<td>15</td>
</tr>
<tr>
<td>Distributive laws</td>
<td>34</td>
</tr>
<tr>
<td>DM (De Morgan’s laws)</td>
<td>27</td>
</tr>
<tr>
<td>DNF (Disjunctive normal form)</td>
<td>32</td>
</tr>
<tr>
<td>dnf (minimal DNF for signed formulae)</td>
<td>228</td>
</tr>
<tr>
<td>Domain (of discourse)</td>
<td>20, 314</td>
</tr>
</tbody>
</table>
Index

E
Entailment, 60
Entailment, Degree-, 159
Entailment, Fuzzy, 190
Entailment, Quasi-, 159
Entscheidungsproblem, 81
Equisatisfiability, 30
Equivalence, Logical, 17
Ex falso quodlibet, 78
Expression, 14
Expression, Signed formula (SFE), 39

F
F₃ (Finn’s 3-valued system), 176
Factor, 125
Factoring, Signed, 284
Filter, 319, 330
Finn, V. K., 176, 177
Finn’s 3-valued system (F₃), 176
FO (First-order), 18
Form, Conjunctive normal (CNF), 32
Form, Disjunctive normal (DNF), 32
Form, Negation normal (NNF), 26
Form, Partial normal (PaNF), 198
Form, Prenex normal (PNF), 28
Form, Skolem normal (SNF), 30
Formula, 14
Formula, Closed, 19
Formula, Complementary, 37
Formula, Open, 19
Formula, Quantified, 19
Formula, Regular Horn, 39
Formula, Signed, 37
Formula, Signed 2-CNF, 39
Formula, Signed CNF, 39
Formula, Well-formed, 18
Frame, 20
Frame, Constraint, 270
Free for, 24
Frege system, 96
Frege, F. L. G., 3, 55, 86, 95, 151
Fregean axiom, 55
Frege-Lukasiewicz axiom system, 95
Function, 316
Function, Boolean, 56
Function, Characteristic, 320
Function, Membership, 320

G
G₃ (Gödel’s 3-valued system), 189
G₃* (Gödel’s FO 3-valued system), 233
G₅ (Gödel’s fuzzy system), 192
G₅* (Gödel’s FO fuzzy system), 205
Gₙ (Gödel’s n-valued system), 188
Gₙ* (Gödel’s FO n-valued system), 233
GEN-SAT∞ (Generalized satisfiability problem), 296
Gentzen, G., 97, 100, 240
Gilmore, P. C., 87, 94
Gödel algebra (G-algebra), 325
Gödel t-norm, 191
Gödel, K., 71, 73, 76, 181, 188, 223
Gödel’s 3-valued system (G₃), 189
Gödel’s completeness theorem, 76
Gödel’s FO 3-valued system (G₃*), 233
Gödel’s FO fuzzy system (G₅*), 205
Gödel’s FO n-valued system (Gₙ*), 233
Gödel’s fuzzy system (G₅), 192
Gödel’s n-valued system (Gₙ), 188
Graph, 330
Grelling, K., 171

355
Index

H
Halldén, S., 177–180
Halldén’s 3-valued system (H₃), 177
Herbrand base, 90
Herbrand instance, 90
Herbrand interpretation (H-interpretation), 90
Herbrand model (H-model), 91
Herbrand semantics, 87
Herbrand universe, 88
Herbrand, J., 85, 87, 88, 93
Herbrand’s theorem, 88
Heyting, A., 181, 182
Heyting’s 3-valued system (see G₃), 182
Hilbert system, 96
Hilbert, D., 3, 86, 96, 197
H-interpretation (Herbrand interpretation), 90
Hintikka set, 115
Hintikka sign set, 260
Hintikka, J., 86, 108
Hintikka’s lemma, 115
H-model (Herbrand model), 91
H₃ (Halldén’s 3-valued system), 177
HORN-SAT, 84
HORN-SAT∞, 296
Hypothetical syllogism, 76

I
Ideal, 319, 329
Indeterminacy, 151
Inference, 54
Inference, Deductive, 59
Instance, 41
Instance, Ground, 41
Interpretation, 20
Interpretation, Signature, 20
Involution law (LDN), 27

J
Jaśkowski, S., 97

K
K₃ (Kleene’s strong 3-valued system), 174
K₃ (Kleene’s weak 3-valued system), 175
Kleene, S. C., 96, 152, 174, 175, 261, 269
Kleene’s strong 3-valued system (K₃), 174
Kleene’s weak 3-valued system (K₃₆), 175
K-regularity, 161
KROM-SAT_∞, 296
k-SAT, 84

L
L (a propositional axiom system), 79
L* (FO extension of L), 96
L₃ (3-valued system [R. Hähnle’s]), 256
Lₖ (Continuum-valued logic), 191
L* (FO continuum-valued logic), 202
Language, First-order, 18
Language, Formal, 13
Language, Logical, 13
Language, Object, 13
Language, Propositional, 18
Lattice, 325
Law of contraposition, 76
Law of identity, 76
LDN (Double negation law), 27
Leibniz, G. W. von, 86
Lifting lemma, 128
Lindenbaum bundle, 66
Lindenbaum condition, 168
Lindenbaum matrix, 66
Lindenbaum, A., 66, 153
Lis, Z., 243
Literal, 25
Literal, Signed, 38
Logemann, G., 87, 104
Logic, A, 61, 69
Logic, Basic (BL), 191
Logic, Classical first-order (CFOl), 23
Logic, Classical propositional, 23
Logic, Computational, 6
Logic, Continuum-valued (L∗), 191
Logic, Deductive, 1
Logic, FO basic (BL∗), 202
Logic, FO continuum-valued (L∗), 202
Logic, FO product (Π∗), 205
Logic, Fuzzy (FL), 189
Logic, Fuzzy operator, 298
Logic, Mathematical, 3
Logic, Product (fuzzy) (Π), 193
Logic, Signed, 37
Loveland, D., 87, 104
Loś, J., 70
L3 (Łukasiewicz’s 3-valued system), 161
Ln (Łukasiewicz’s n-valued system), 169
L∗n (Łukasiewicz’s FO n-valued system), 196
Ln (Łukasiewicz’s fuzzy system), 169
L∗n (Łukasiewicz’s FO fuzzy system), 196
Łukasiewicz’s 3-valued system (L3), 161
Łukasiewicz’s n-valued system (Ln), 169
Łukasiewicz’s FO n-valued system (L∗n), 196
Łukasiewicz’s fuzzy system (L∞), 169
Łukasiewicz’s FO fuzzy system (L∗q), 196
Łukasiewicz t-norm, 190

M
Malinowski, G., xiv, 65, 66, 155, 162, 169, 186, 197
Material equivalence (Connective), 22
Material implication (Connective), 22
Matrix (of a formula in PNF), 28
Matrix representation, 65
Matrix, Logical, 63, 64
Matrix, Minimal, 179
McCarthy, J., 261
McCarthy-Kleene’s many-valued system (MK), 261
Meaninglessness, 177
Metalanguage, 13
Metalogic, 5
MGU (Most general unifier), 41
MK (McCarthy-Kleene’s many-valued system), 261
Model, 59
Model (algebraic structure), 321
Model theory, 55
Modus ponens (MP), 68
Modus ponens, Generalized (Rule; GMP), 166
Modus tollens, 76
Monotonicity, 54
Monotonicity, Weak, 78
Morphisms, 322
Mostowski, A., 196, 198
MP (Modus ponens), 68
MULtolog, 235
MV-SAT (Many-valued satisfiability problem), 217

357
Index

MV-SAT_\infty (Problem for infinitely many-valued logics, Satisfiability), 294
MV-VAL (Many-valued validity problem), 7

N
Negation (Connective), 22
Negation law, Double (LDN), 27
Nelson, L., 171
Newell, A., 86
NNF (Negation normal form), 26
Nonsense (Logical), 177
Nonsense, Logics of, 177
Normality, 160

O
Operation, 316
Operation, Consequence, 52
Operation, Finitary consequence, 53
Operation, Idle consequence, 53
Operation, Inconsistent/Trivial consequence, 53
Operation, Inference, 54
Operation, Matrix consequence, 64
Operation, Standard consequence, 53
Operation, Structural consequence, 53
Operator, Fuzzy, 298
Order (n-th), 17
Order, Partial, 317
Ordering, Atom (or A-), 130

P
P_3^3 (Post's FO 3-valued system), 233
P_n (Post's n-valued system), 186
P_n^* (Post's FO n-valued system), 233
Paradox, Semantical, 171
Paradox, Sorites, 177
Parameter, 97
Pavelka-style system, 202
Peirce, C. S., 151, 152
PEM (Principle of excluded middle), 2
P_{n} (Product (fuzzy) logic), 193
PI-clash, 135
Piróg-Rzepecka, K., 180
Piróg-Rzepecka's 3-valued system (Rn_3), 180
PNC (Principle of non-contradiction), 76
PNF (Prenex normal form), 28
Poset, 317
Post algebra, 58
Post, E. L., 57, 58, 152, 157, 186, 187
Post's FO 3-valued system (P_3^3), 233
Post's FO n-valued system (P_n^*), 233
Post's n-valued system (P_n), 186
P \neq NP, 82
Prawitz, D., 87, 97, 99
Premise, 51
Presburger, M., 86
Principle of bivalence, 76
Principle of excluded middle (PEM), 2
Principle of explosion, 78
Principle of extensionality, 55
Principle of non-contradiction (PNC), 76
Principle, Interpretation, 155
Principle, Resolution, 123
Problem for infinitely many-valued logics (MV-SAT_\infty), Satisfiability, 294
Problem, Boolean satisfiability (SAT; VAL), 83
Problem, Decision, 7
Problem, Deduction, 6
Problem, Generalized satisfiability (GEN-SAT\(_\infty\)), 296
Problem, Many-valued satisfiability (MV-SAT), 217
Problem, Many-valued validity (MV-VAL), 7
Problem, Signed satisfiability, 220
Problem, Unification, 42
Problem, Validity (VAL; SAT), 6
Procedure, Decision, 7
Procedure, Refutation, 8
Product t-norm, 191
Product, Fuzzy, 300
Proof, 68
Proof theory, 66
Proof, Tableau, 108
Provability, 70
Prover, Theorem, 7
Prover9-Mace 4 (Resolution-based prover), 137
Putnam, H., 87, 104, 123, 137

Q
Q\(_3\) (Reichenbach’s 3-valued system), 182
QN (Quantifier duality), 27
Quantification, Existential, 21
Quantification, Trivial, 19
Quantification, Universal, 21
Quantifier, 19
Quantifier duality (QN), 27
Quantifier, Distribution, 201
Quantifier, Existential, 22
Quantifier, Generalized, 194
Quantifier, Universal, 22
Quantifiers, Mutual definability of the (QD), 197
Quine, W. O., 86

R
Reasoning, Automated, 7
Reductio ad absurdum, 76
Reductio ad absurdum, Strong, 78
Redundancy, 78
Reflexivity, 54
Refutation, 69
Reichenbach, H., 182
Reichenbach’s 3-valued system (Q\(_3\)), 182
Relation, 316
Relation, Binary, 316
Relation, Consequence, 53
Relation, Fuzzy binary, 205
Relation, Inference, 54
Relation, Matrix consequence, 64
Relation, Semantical consequence, 60
Relation, Syntactical consequence, 69
Renaming, Variable, 41
Representation, Signed CNF/DNF, 222
Rescher, N., xiv, 151, 152, 154, 157–160, 169, 186
Residuation, Law of, 329
Resolution refinement, 129
Resolution, Binary, 123
Resolution, Hyper-, 134
Resolution, Lattice-regular positive unit, 308
Resolution, Macro-, 134
Resolution, Mono-signed/regular binary, 284
Resolution, Negative hyper-, 134
Resolution, PI-, 136
Resolution, Positive hyper-, 134
Resolution, Regular, 308
Resolution, Regular negative hyper-, 308

359
Index

Resolution, Regular positive unitary, 298
Resolution, Semantic, 134
Resolution, Signed $<_A$-ordering macro-, 287
Resolution, Signed binary, 283
Resolution, Signed hyper-, 287
Resolution, Signed macro-, 287
Resolution, Signed many-valued, 288
Resolution, Unit-resulting, 141
Resolvent, 125
Resolvent, Hyper-, 134
Resolvent, Macro-, 134
Resolvent, \mathcal{I}-semantic, 135
Resolvent, PI-, 135
Resolvent, Signed $<_A$-ordering macro-, 287
Resolvent, Signed hyper-, 287
Resolvent, Signed macro-, 287
Resolvent, T_-, 302
Rn_3 (Piróg-Rzepecka's 3-valued system), 180
Robinson algorithm, 42
Robinson, A. J., 42, 87
Robinson, G., 87
Rosser, J. B., xiv, 156, 157, 198, 200
Rosser-Turquette (RT) generalized quantifier, 198
Rule of Inference, 67
Rule of universal generalization (GEN\forall), 202
Rule, Analytic, 112
Rule, Condensation, 132
Rule, Cut, 104
Rule, Derived, 165
Rule, Generalization (GEN), 96
Rule, Generalization (GEN$'$), 197
Rule, Lattice-regular reduction, 308
Rule, One-literal, 123
Rule, Propositional CNF/DNF transformation, 224
Rule, Quantifier CNF/DNF transformation, 225
Rule, Reduction, 224
Rule, Regular reduction, 298
Rule, Rewriting, 26
Rule, Sequent, 101
Rule, Signed merging, 285
Rule, Structural inference, 67
Rule, Substitution (SBT), 166
Rule, Substitution (SUB), 68
Rule, Transformation, 224
Rule, Transposition (TR), 165
Rule, Unification, 43
Russell, B., 86, 171, 186

S
SAT (Boolean satisfiability problem), 83
SAT, Signed (Signed satisfiability problem), 220
Satisfiability, 59
Satisfiability, D_-, 218
Satisfiability, \forall_-, 122
Satisfiability, Fuzzy, 296
Satisfiability, S_-, 219
Satisfiability, T_-, 301
Satisfiability, ε_-, 296
Satisfiability-equivalence, 30
Schema, Axiom, 67
Schubert's steamroller, 139
SCNFF (Signed CNF formula), 39
Scope, Quantifier, 19
Segerberg, K., 179
Segerberg's 3-valued system (S_{n_3}; $i = 1, 2, 3$), 179
Semantic clash, 135
Semantics, 15, 59
Semantics, Signed formulae, 219
Semantics, Tableaux-manageable, 270
Semi-decidability, 82
Sentence, 19
Sequent, 100
Set, 313
Set complementarity, 314
Set of signs, Complete, 254
Set, Contradiction, 258
Set, Crisp, 319
Set, Disagreement, 42
Set, Downward saturated, 115
Set, Fuzzy, 320
SFE (Signed formula expression), 39
Sheffer stroke, 78
Sign (of a formula), 37
Sign, Empty, 39
Sign, Positive/Negative regular, 302
Sign, Regular, 38
Signature, 19
Signed predicate, 304
Skolem constant, 30
Skolem function, 30
Skolem, T., 30, 87
Shupecki, J., 57, 166
Snᵢ (i = 1, 2, 3; Segerberg’s 3-valued system), 179
SNF (Skolem normal form), 30
Soundness, 72
SUB (Substitution rule), 68
Subformula property, 101
Subformula, Immediate, 14
Substitutable for, 24
Substitution, 15
Substitution lemma, 74
Substitution, Empty, 41
Substitution, Ground, 41
Substitutions, Composition of, 41
Subsumption, 39
Surma, S. J., 240, 241, 244, 245, 247, 249, 251, 252
Surma’s algorithm, 244
Susko, R., 64, 70, 153–155, 160
Susko’s Thesis, 153
Syllogism, Generalized hypothetical (Rule; GHS), 165
Syllogism, Hypothetical (Rule; HS), 165
Syntax, 15
System, Axiom, 96
System, Deductive, 71
System, Inference, 54
System, Logical, 52
System, Proof, 67
System, Tableaux proof, 108

T
Tableau, 108
Tarski, A., 15, 71, 168, 169
Tarskian logic, 153
Tarskian semantics, 87
Tarski-style conditions, 78
Tautology, 60
Tautology, Quasi-, 157
Term, 14
Theorem, 68
Theorem, Compactness, 71
Theorem, Deduction, 71
Theorem, Deduction-detachment, 80
Theorem, Modified deduction-detachment, 208
Theorem, Quasi-deduction, 208
Theory, 81
t-norm, 190
Tractability, 82
Transitivity, 54
Tree, 331
Tree, Deduction, 125
Tree, Refutation, 125
Index

Tree, Semantic, 92
Truth function, 15
Truth table, 15
Truth value, 15
Truth value, Anti-designated, 158
Truth value, Designated, 63
Truth value, Undesignated, 157
Truth-functionality, 55
Truth-functionality, Quasi-, 158
Truth-preservation, 59
Truth-value gap, 161
Truth-value glut, 171
Tseitin algorithm, 35
Turing machine, 82
Turing, A., 82, 86
Turquette, A. R., xiv, 156, 157, 198, 200

U
Unification, 41
Unifier, 41
Unifier, Most general (MGU), 41
Uniformity, 160
Unit deletion, 137
Universe, 314

V
Vagueness, 189
VAL (Validity problem), 6
Validity, 60
Validity, D-, 217
Validity, Degree-, 159
Validity, Fuzzy, 189
Validity, Quasi-, 160
Validity, S-, 219
Valuation, 15
Valuation, Boolean, 2
Variable, Bound, 19
Variable, Free, 19
Variant, x-, 74

W
Wajsberg, M., 163, 169

Whitehead, A. N., 86, 186
Wójcicki, R., 55, 66
Wos, L., 87

Z
Z$_R$ (Zadeh’s fuzzy system), 272
Zadeh, L. A., 189, 190, 295
Zadeh’s fuzzy system (Z$_R$), 272