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Preface

Although the title of this book indicates two main components, to
wit, mathematical and computational, we wish to emphasize that this
is first and foremost a book on many-valued logics. As such, the reader
who might just be interested in the various many-valued logics will find
abundant material in that which is the central part of this book, to
wit, Part II. In this, the several main many-valued logics are presented
from the viewpoints of their semantical properties, and their semantics
are characterized mostly by means of truth tables and logical matrices.
From the proof-theoretical viewpoint, for many of these logics partial or
full axiomatizations are provided.

This Part II is, mainly for the objective of self-containment, preceded
by an extensive introduction to “things” logical, i.e. logical languages,
systems, and decisions. In this Part I, important notions such as logical
consequence, adequateness of a logical system, and matrix semantics,
among others, are rigorously defined. Further notions regarding decision
procedures in classical logic are introduced, namely the satisfiability and
validity problems (abbreviated as SAT and VAL, respectively), and they
are put into relation with the several proof systems available. In Part
ITI, we chose to approach the many-valued satisfiability problem (MV-
SAT) via refutation, i.e. by proving unsatisfiability of a set of formulae
(a theory), because of the many advantages, computational and other,
that this proof procedure presents for the many-valued logics. This
explains our extensive discussion of the analytic tableaux and resolution
calculi for classical logic in this Part I. However, we wanted the reader to
acquire a good grasp also of validity- and satisfiability-testing methods,
and we thus provide sufficient material on this topic.

Part III deals with well-studied computational, or potentially comput-
erizable, approaches to the many-valued logics, namely as far as auto-
mated deduction is concerned. Here, signed (clause) logic has a central
place (Chapter 6). In effect, both signed tableaux and signed resolution
are automatizable proof calculi that can very naturally be applied to
many-valued logics, reason why we chose to elaborate on them at length.
This elaboration constitutes Chapters 7 and 8, for signed tableaux and
signed resolution, respectively.

We did not wish to emphasize the mathematical component, as this

xi



Preface

could scare away many a potential reader. Nevertheless, we believe that
logic is a branch of mathematics, and as such it is both mathematically
motivated and justified. (Incidentally, we do not think that logic is a
foundation for mathematics—the reverse is true, in our opinion.) Given
these two somehow conflicting views, we decided that the best thing
to do would be to provide the mathematically literate, or just simply
interested, readers with an Appendix in which the mathematical bases
of our approach are expounded to the required extent. This is Part IV.

Logic is a subject that requires (many) years before one grasps satis-
factorily what it is actually all about. This stage will arguably not be
reachable without hands-on practice, much in the same way, perhaps,
that many other fields require extensive, often arduous, practice. In this
belief, we provide the readers with a large selection of exercises.!

In effect, this book is conceived for the reader who wishes to do some-
thing with many-valued logics, especially-but by no means only-in a
computational context. With this we associate fields as diverse as cog-
nitive modeling and switching theory. The literature on many-valued
logics is abundant, but the “standard” monographs (Bolc & Borowik,
1992; Malinowski, 1993; Rescher, 1969; Rosser & Torquette, 1952), while
not being obsolete, are now of mainly theoretical and historical interest.
Some more recent work claiming to have practical applications in mind
(e.g., Bolc & Borowik, 2003) follows to a great extent in the footsteps
of these earlier monographs. On the other hand, recent work both in
mathematical logic (e.g., Gottwald, 2001; Héhnle, 2001) and in philo-
sophical logic / the philosophy of logic (e.g., Bergman, 2008) provides
little or no material for the practical applications mentioned.

Surprisingly—or just plainly intriguingly—, the last comprehensive dis-
cussion of modern applications of many-valued logics dates from 1977
(Dunn & Epstein). The fact is that many-valued logics are today in
more demand than ever before, due to the realization that inconsis-
tency in information (and knowledge bases are frequently inconsistent)
“is respectable and is most welcome” (Gabbay, 2014). We now know and
accept that it is often the case that theories have truth-value gaps (some
propositions appear to be neither true nor false), truth-value gluts (some
propositions appear to be both true and false), vague concepts (e.g.,
cold, young, tall, sufficient), indefinite functions, lacunae, etc. More-
over, theories are in constant updating processes, and human and arti-
ficial reasoners require formal means to keep pace with these often fast
and/or unpredictable processes, namely in order to review beliefs: what

'For reasons of timing, solutions to the exercises are not provided in this edition. In
due time, there will be an Appendix with these solutions, which may actually be
(also) posted online.

xii



yesterday was a true/false proposition may today be neither true nor
false, or both; what yesterday was clear-cut is now vague or indeter-
minate. The many-valued logics provide us with a powerful formalism
to tackle these cases in terms of reasoning. In fact, this scenario calls
for not only a practical-based approach to the many-valued logics per
se, but also for hybridizations of these with other formal systems, as
well as with more quantitative(-like) cognitive approaches (e.g., D’Avila
Garcez, Lamb, & Gabbay, 2009). Importantly, the practical applica-
tions of many-valued logics have now gone beyond the mere industrial
applications (e.g., fuzzy logics in washing machines), and promise to be
of import for “higher,” cognitive modeling. This new logic entails, in
particular, a reappraisal of both “psychologism” and “formalism”—if not
also of “logicism”—, especially because it proposes a reappraisal of what
a cognitive, or reasoning, agent is (see, e.g. Gabbay & Woods, 2001).
In order for this emerging work (Gabbay & Woods, 2003; 2005) to be
further carried out and to incorporate the many-valued logics, we need
a solid mathematical-computational grasp of these logics.

We hope the present book will provide the motivation for a new com-
prehensive treatment of the modern applications of many-valued logics
that will include the new-logic factor as a central aspect of modern logic
and its applications. Thus, a book like this on many-valued logics is now
very timely, for the times, they are a’changing.

I wish to thank Dov M. Gabbay for including this book in the excellent
Studies in Logic series of College Publications. My thanks go also to Jane
Spurr for a smooth publication process.

Madrid, Summer 2017

Luis M. Augusto
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