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Abstract

For millennia, knowledge has eluded a precise definition. The industrializa-
tion of knowledge (IoK) and the associated proliferation of the so-called knowl-
edge communities in the last few decades caused this state of affairs to deterio-
rate, namely by creating a trio composed of data, knowledge, and information
(DIK) that is not unlike the aporia of the trinity in philosophy. This calls for
a general theory of knowledge (ToK) that can work as a foundation for a sci-
ence of knowledge (SoK) and additionally distinguishes knowledge from both
data and information. In this paper, I attempt to sketch this generality via
the establishing of both knowledge structures and knowledge systems that can
then be adopted/adapted by the diverse communities for the respective knowl-
edge technologies and practices. This is achieved by means of a formal–indeed,
mathematical–approach to epistemological matters a.k.a. formal epistemology.
The corresponding application focus is on knowledge systems implementable as
computer programs.

Key words: Theory of knowledge (ToK); Science of knowledge (SoK); In-
dustrialization of knowledge (IoK); Data, Information, & Knowledge (DIK);
Knowledge structures; Knowledge systems

1 Introduction

In the last few decades, both society at large and individual persons or organizations
became increasingly aware of the ubiquity of knowledge and access thereto. This
awareness has caused the advent of a new age, the Knowledge Age, to be hailed as
rapidly replacing the short-lived Information Age both in the more popular, business-
oriented, circles and in the academe (e.g., Dzisah & Etzkowitz, 2012; Kidd, 2007;
Ragsdell et al., 2002). In these, this phenomenon is particularly well reflected in the
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recent proliferation of“knowledge X” labels, where X can be replaced by, among many
other terms, analysis, discovery, visualization, transfer, etc. The interesting feature of
this proliferation is not the terminological explosion itself–which is in fact a branching
of the more primitive Xs, to wit, engineering, representation, and management–but
rather the fact that each of these labels claims to capture a well-defined, separate
discipline.

But short-lived as the Information Age might have been, it was solidly founded
on a precise notion of information, namely C. E. Shannon’s (1948); the hailed Knowl-
edge Age so far lacks an equally solid foundation, with knowledge featuring in so many
and diverse guises that experts from distinct Xs–henceforth (knowledge) communi-
ties–often talk past each other. Contributing to this state of affairs is the conception
that defining knowledge is an application-dependent task and where applications are
concerned we can do with merely “satisficing” notions of knowledge. For instance, J.
Y. Halpern, a well-known scholar of knowledge representation, writes in the context of
the debate over the right properties of knowledge that his “own feeling is that there is
no unique right notion of knowledge; the appropriate notion is application dependent”
(Halpern, 1995), and in a textbook on knowledge management one can read:

A “good enough” or satisficing definition of knowledge has been shown
to be effective . . . once a satisfactory working or operational definition
of knowledge management has been formulated, then knowledge manage-
ment strategy can be confidently tackled. (Dalkir, 2005)

In contrast to this good-enough perspective, for centuries (actually: millennia), the
word “knowledge,” in particular its Greek or Latin equivalents, was pronounced with
awe, being in certain periods even conceived as divine(-like): Plato famously spoke
of the world of ideas (or forms), a “world”–the huperuranus–separated from this one
we live in where the perfect and atemporal ideas of everything existing down here
were to be contemplated by humans before their birth if they were to be able to
know them, and Augustine, many centuries later but still highly influenced by this
view, saw knowledge as an act of divine grace in which the “ideas,” now placed in the
verbum, were “communicated” to the knowing subject.1

Seen from a chronological viewpoint, between the erudite, often abstruse, discus-
sions of knowledge in epistemology and the satisficing, good enough, notions allowed
today there is the phenomenon that we can call, without discussing it further here,
the industrialization of knowledge (IoK): It is all but impossible to find today a big
company in which knowledge does not have a specific department, and everywhere
there are staff employed as knowledge analysts, engineers, discoverers, architects, etc.

While this phenomenon can be seen as an assimilation of the concept of knowl-
edge by the industry and the business world, the growing plethora of ever-diverging
conceptions of knowledge has to be refrained. We need a notion of knowledge that
is invariant, or general enough, in all these communities if they are to be able to
communicate with each other. In particular, the conceptual promiscuity–indeed, of-
ten a confusion–of the concepts data, information, and knowledge (DIK), associated

1These are Plato’s theories of ideas and of (knowledge as) reminiscence (cf. Phaedo, 80b, and
Phaedrus, 245c-266c, respectively; see also the Analogy of the cave in Republic, 514a-520a), and
Augustine’s theory of illumination, ubiquitous in his Confessions. These are all highly complex
texts originally written in Greek and Latin; if encouraged to pay them a visit with the help of
translations into, and commentaries in, English, see Cooper (1997) and O’Donnell (1992).
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with IoK, needs to be now effectively tackled. It is to this general theory of knowl-
edge (ToK) that clearly distinguishes and defines knowledge that I call a science of
knowledge (SoK; alternatively: knowledge science) proper.

In what follows, I firstly elaborate on why the current erudite notions of knowledge,
albeit relevant, are not appropriate for the required generality and I begin to dissolve
the DIK trinity, namely by distinguishing data and information. I then move on to
the central task of this paper, to wit, the identification, definition from the viewpoint
of generality, and segregation within DIK of knowledge structures and systems.

2 Beating about the Bush

IoK requires that we consider knowledge from three tightly connected factors: Knowl-
edge objects, knowledge agents, and knowledge processes. The first fit generally into
what I here call knowledge structures; together with the remaining two, these go on
to compose what I call knowledge systems. Required is a notion of knowledge that is
invariant with respect to all of these. This invariant notion needs also to be distin-
guished from the associated notions of data and information, often also confused. All
these tasks are bound to conflict with representatives of the current state of affairs,
and care is needed to avoid outright confrontation, reason why I see these tasks as
“beating about the bush”; I will get to the point mainly in Sections 3 and 4.

2.1 Relevant Conceptions of Knowledge

Epistemology is the subject that concerns itself with the nature of knowledge and re-
lated topics. Unsurprisingly, given both the philosophical character and the longevity
of this discipline, there are several opposing theories on what knowledge is–or is not.
This diversity notwithstanding, some consensus has been reached by acknowledging
the Platonic definition of knowledge as justified true belief as imposing the highest
epistemic requirements, i.e. as containing both the necessary and the sufficient con-
ditions for knowledge. In effect, a subject S can be said to know some proposition p
if and only if (abbr.: iff) the following three conditions are satisfied:

(i) p is true.
(ii) S believes that p.
(iii) S is justified in believing that p.

While this tripartite analysis of knowledge, first formulated and discussed in Plato’s
Theaetetus, has moved the debate away from century-old metaphysical battlefields
involving reality and the mind (see Augusto, 2005), it falls prey to a few challenges,
in particular so to gettierization, the case that S may believe a true proposition p
while not being justified in their belief and consequently fail to have knowledge with
respect to p (Gettier, 1963). In effect, in mainstream epistemology the requirements
for epistemic justification (condition [iii]) are often too high, satisfiable only by purely
ideal subjects: For instance, S may be required to be able to reconstruct mentally
the causal chain by means of which they found themselves in a doxastic relation with
p (condition [ii]; see Goldman, 1967). This notwithstanding, the tripartite analysis
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is too pertinent to be summarily dismissed, as I argued for in Augusto (2011), and I
shall retake it below, namely from the perspective of formal epistemology.2

A more recent field, cognitive science, also has its saying on what knowledge is.
Although here, too, there is no single consensual definition of knowledge, this tends to
be associated with cognition to the point that both terms are frequently interchanged
(Augusto, 2010): Cognition is the processing (acquisition, storage, and retrieval) of
information or data–ultimately: knowledge–from the environment with a view to
securing the well-being of the cognitive, or knowledge, agent. While this definition
more explicitly takes the agent into consideration, it is essentially applicable only
to humans (and perhaps other animals) as knowledge agents. However, one of the
innovating features of IoK is that it approaches cognition and knowledge also from
the viewpoint of non-human agents, namely artificial agents, and I shall retake this
topic below.

2.2 Dissolving the DIK Trinity. I: Data vs. Information

Faced with the trio composed of data, information, and knowledge (abbreviated:
DIK), one often feels as perplex as medieval philosophy students when exposed to
the notion of the trinity, composed of the three entities named the father, the son,
and the holy spirit; like these, the elements that compose DIK are said to be one
and the same and yet distinct. This distinction often assumes the form of a pyra-
midal hierarchy with data at the base, knowledge at the top, and information in the
middle, making believe that somehow information intermediates between data and
knowledge. But if perplexity can be a productive mental state in philosophy, in which
field it is called aporia, it is simply undesirable in the context of IoK. In this, it al-
lows for slogans such as “We turn your data into knowledge,” meant to attract those,
particularly companies, that possess large collections of data but are often at a loss
about what to do with them. Luckily, we are here faced with an earthly trinity, one
whose elements became confused in the development of the Information Age and the
aporia can be dismissed. In this Section, where the task is mainly beating about the
bush, information and data are compared and distinguished from each other; below,
knowledge is tackled with respect to this distinguished duo.

Data – Let us suppose that we flip a coin several times and at each flip we write
down the outcome: “H” if it is heads, “T” if it is tails. (Of course, we can also write “1”
or“0,” denoting heads or tails, respectively, for instance.) Given a sequence of 1, 2, ...k
flips, we may end up with a collection of observations like the one in Table 1. Each of
the pairs (1,H), (2,T), ..., abstracted as (Fi, X) for i = 1, 2, ..., 9 and X = x ∈{H,T},
is a datum, and Table 1 is a collection of data.

Flip 1 2 3 4 5 6 7 8 9
Result H T T T H T H H T

Table 1: Sequence of nine coin flips and respective outcomes.

Note the empirical nature of this collection: At each flip, we observed the outcome

2For both the many trees and the big forest that is epistemology, see, for example, Bernecker &
Pritchard (2011). For a segregation of formal epistemology, see Hendricks (2006).
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and noted it down in a convenient tabular form. Note also that before each flip Fi the
outcome is a random variable X. This gives us the definition of a datum as a single
value of a single random variable. A collection of data, denoted by ∆, is a database.
A database can be of various forms, like Table 1, to be sure, but more often like the
construct in Figure 1, called a relational database.

OUTCOME =

 (1, H) , (2, T ) , (3, T ) , (4, T ) ,
(5, H) , (6, T ) , (7, H) , (8, H) ,

(9, T )


Figure 1: The database ∆Flip for the coin-flipping sequence in Table 1.

Information – Suppose now that we face the outcome of flipping a coin from the
viewpoint of uncertainty; for instance, we may win an amount of money if we get the
outcome right, or lose money if we get it wrong. A sensible way to play this game
is by thinking first in terms of the probability mass function, i.e. the function that
gives the probability that a discrete random variable X is exactly equal to some value
xi ∈ X where X is an alphabet. Let p : R −→ [0, 1] be the probability mass function
defined by

pX (xi) = Pr (X = xi)

where −∞ < xi < ∞, Pr is a probability measure,
∑
pX (xi) = 1, pX (xi) > 0,

and pX (x) = 0 for all other x. To make things simpler, let us consider the range of
p to be a set of discrete values X = {x1, x2, ..., xn}. When flipping a coin, we can
expect only two results, heads or tails. Thus, for X and X = (heads, tails), we have
Pr (X = xi) = 0.5 for both x1 = heads and x2 = tails. We have it then that the
probability that flipping a coin will result in heads or tails is exactly 50% for each of
the two possible outcomes. So far, there is in this datum no information proper: 50%
is just a probability datum. Information proper enters the scene when we quantify the
uncertainty involved in the value of the random value X as the outcome of a random
process, a quantity that we can obtain by means of the formula

H (X) = −
n∑
i=1

pX (xi) log2 pX (xi)

called entropy (of the random variable X with probability mass function p). In the
case of the random process of flipping a coin, we have

H (X) = −
((

1

2
log2

1

2

)
+

(
1

2
log2

1

2

))
= 1

and as H (X) is measured in bits, the entropy of the random variable X in the ran-
dom process of flipping a coin is exactly 1 bit. More specifically, H (X) is the self-
information of the random variable X ; we can also measure the information (the
reduction of uncertainty) due to another random variable Y, called mutual informa-
tion and given by

I (X;Y ) = H (X)−H (X|Y ) =
∑
x,y

pX,Y (x, y) log2

pX,Y (x, y)

pX (x) pY (y)
,
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where PX,Y (x, y) = Pr (X = x, Y = y), a quantity that is always non-negative and
symmetric in X and Y, i.e. X has as much information on Y as Y has on X, or
I (X;Y ) = H (X)−H (X|Y ) = H (Y )−H (Y |X) = I (Y ;X).

Information vs. Data –The bit is thus the unit of information, just as the datum
is the unit of data. These are rather distinct entities: The bit is always a quantitative
measure, whereas the value of a random variable X in a datum can be nominal,
quantitative, or qualitative (for instance, we could also write down the outcomes of
flipping a coin as “good” or “bad”). In particular, the bit is a measure of both data
compression and data transmission, the two main problems of communication theory,

measured by min I
(
X; X̂

)
(where X̂ is an estimate of X ) and max I (X;Y ), called

the data compression limit and the data transmission limit, respectively. We can
thus say that a datum becomes information when it is communicated, i.e. compressed
and/or transmitted or coded.3 Inversely, we can say that information becomes data
when there is decompression or decoding. However, what truly distinguishes both is
entropy: Information is characterized by H (X) > 0 with respect to some random
variable , whereas we speak of data when H (X) = 0. Equally, when there is no noise,
i.e. when I (X;Y ) = 0 for two random variables X and Y, we are in the context of
data; of information whenever I (X;Y ) > 0. Figure 2 shows a concise schema of the
distinction data vs. information.

Figure 2: Data vs. Information. A: H (X) > 0; B: H (X) = 0.

Now, it will be useful to extrapolate to a less formal scenario. Let us suppose
that someone, S, is gambling by means of coin flipping: If S correctly guesses the
outcome of a flip (say, the first flip), S wins an amount of money; otherwise, S loses
an equal amount of money. In other words, S is called to act upon the datum (1, X).
This datum is inert in itself; it is the need to act upon it, and consequently the
need to quantify its uncertainty, that turns it into information. Because every action
involves uncertainty, low as it might be, data become information when action is

3In effect, information theory was built upon the fundamental problem of communication, to wit,
how to reproduce “at one point, either exactly or approximately, a message selected at another point”
(Shannon, 1948). I am here assuming that information theory is at the core of information science.
This apparently trivial remark is actually necessary, given the current lack of a consensual definition
of information. See, for instance, Losee (2017).
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called for upon them. In this particular example, S extracts from the datum (1, X)
the information that the value x for X is uncertain (by 1 bit), and thus S hopes luck
to be on their side. Suppose now that S ’s guess was that X = tails. Then, the datum
(1,T) provides to S the information that S has won the amount of money gambled
(but S could have lost it, and thus S acts happily), and the datum (1,H), in contrary,
provides to S the information that they lost their bet (but they could have won it,
and thus are frustrated).

Importantly, note that nothing is being said about the truth or falsity of (1,H)
and (1,T). The subject S is acting upon the information extracted from the data
(1,H) and (1,T), regardless of their truth or falsity.

3 Knowledge Structures

In this Section, I elaborate on knowledge structures, from atomic structures and sim-
ple knowledge bases to compound structures and complex knowledge bases. These
are considered in a purely static perspective, their dynamics being discussed in Sec-
tion 4. I here retake the Platonic conception of knowledge as justified true belief, but
now I shall get to the point. Epistemic justification is a very hard nut to crack, but
mostly so in mainstream epistemology, where such bizarre entities as evil geniuses and
clairvoyants can be invoked alongside with more earthly protagonists, such as dreams
and the sensory modalities; in formal epistemology, it can be practically tackled via
an adequate notion of formal(ized) justification. Truth can be an even harder nut to
crack, but I shall take it as an element of formal semantics, where things are greatly
simplified in comparison to mainstream epistemology. The adequate notions are here
interpretation and model ; in formal semantics, these are mathematical objects, and
truth can be seen from an algebraic perspective. This remark is important, in or-
der to lend generality to the elaboration below. I restrict this formal(ized) tripartite
analysis of knowledge to beliefs that are assertions, or negations of assertions, proper;
these are typically called propositions. The language L, a first-order language without
function symbols and without the identity symbol (=), shall be considered an ade-
quate formalism to this end. In this language, well-formed strings are generally called
formulas; formulas without individual variables are called sentences, and propositions
refer to either formulas with variables or sentences. I elaborate on this language in
the Appendix. (For simplicity, I do not use the term “predicate.”)

The formal language L I shall be working with is a logical language because it has
so-called logical constants, to wit, the elements of the sets Op and Qtf (see Appendix).
However, one can work with non-logical operators and/or without quantifiers. As a
matter of fact, one can work with a formal language that is as close as possible to a
natural language.4 This said, only a mathematical approach can give the generality
I aim at, and I shall be working greatly from a viewpoint that is essentially that of
mathematical logic.

4Formal semantics is typically associated with logic, but this is not necessarily so. In fact, it is
first and foremost associated with formal languages, of which a logical language is a subtype (cf.
Augusto, 2019). Actually, formal semantics also finds important applications in the study of natural
languages. See Saba (2020; this issue) for a discussion of formal semantics as applied to natural
languages in their relations to commonsense knowledge.
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3.1 Facts and Knowledge Bases

3.1.1 Facts and models

Above, I considered the game of flipping a coin from the viewpoint of data and
information. Let us now revisit the coin-flipping sequence above from yet another
viewpoint, that of knowledge. Upon observation of the outcome of Flip 1, I pronounce
or write down the following string of alphanumeric symbols:

(p) The outcome of Flip 1 is heads.

p is a proposition, and an atomic one at that. An atomic proposition just is a da-
tum structured in a certain way, namely verbally in a natural language like English.
Formally, an atomic proposition is often of the form “xRy”, where R denotes a bi-
nary relation between any two arbitrary elements x and y. This can actually be
written more compactly as the string R (x, y), called an atom in formal lingo; hence,
proposition p can be rewritten as the atom

(P ) Outcome (1, h)

where P ∈ L, L is a first-order logical language (see Appendix).5 Clearly, a native
English speaker will understand p effortlessly, and if trained in formal languages will
also do so for P, but they might not understand

(p′) El resultado del lanzamiento 1 es cara.

which in fact is the translation of p into Spanish and expresses just about the same,
or has just about the same, verbal meaning as p.

Because verbal meaning depends to a great extent on natural languages and their
associated cultures, it is highly variable, often varying between two speakers of the
same language. Thus, some other kind of meaning is required if it must be invariant
or general, allowing for a proposition p to be given meaning independently of the
natural language in which it is formulated. What is needed here is an interpretation
in the formal sense, to wit, a triple I = (U,Ψ, $), where U 6= ∅ is the universe
of discourse (e.g., Games), Ψ is a signature function mapping objects of the form
P = R (t1, ..., tk) ∈ PL, where t denotes a term and PL abbreviates P ⊆ L, to a set
of distinguished elements (e.g., W2 = {0, 1}), typically called truth values, and $ is
a function assigning to every variable x an element in U. It is frequently the case
that U is subdivided into domains Di 6= ∅, i = 1, ..., k. In the case at hand, we have
D1 = N and D2 = {h, t} = X , where h abbreviates heads and t does so for tails. The
domains are sets of constants, so that $ is an assignment of one or more constants to
every variable. P is thus the result of, given the atom Outcome (x, y), assigning to x
an element of D1 and to y an element of D2:

Outcome (1, h)︸ ︷︷ ︸
$ (x) = 1 ∈ D1

$ (y) = h ∈ D2

5A unary relation symbol R (x) denotes a property (e.g., IsWhite (x)). Outcome actually abbrevi-
ates IsOutcomeOf. A relation must be written as a single string of one or more symbols. Henceforth,
I write p, q, ... to denote an (arbitrary) proposition and write A,B, ..., P,Q, ... for emphasizing atoms.
I shall denote an arbitrary formula by φ, ψ, or χ. (See Appendix.)
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There is associated to I a valuation function val : PL −→Wn such that:

• valI (x) = $ (x) for all x ∈ V arL;

• valI (R (t1, ..., tk)) = Ψ (R) (valI (t1) , ..., valI (tk)) for every k-ary relation sym-
bol R ∈ RelL and every symbol ti ∈ TerL;

• valI (oi (φ1, ..., φk)) = õi (valI (φ1) , ..., valI (φk)) for every k-ary operator oi ∈
OpL and every formula φ ∈ PL (õi denotes the well-known logical construct
called truth table, in turn an implementation of the function õi : W k

n −→Wn);

• valI (qjxφ) = q̃j (distrI,x (φ)) for every quantifier qj ∈ Qtf , j = 1, 2, where
q̃j :

(
2Wn − ∅

)
−→ Wn is a truth, or distribution, function, and distrI,x (φ) ={

valIxc (φ) |c ∈ U
}

is the distribution of φ in I with respect to x and Ixc is an
interpretation similar to I given $ (x) = c.

Ixc corresponds to an instantiation of φ. For instance, let φ = ∃xF lies (x) and U =
Birds; then, φ′ = Flies (sparrow) is an instance of φ. Wrapping up what can be a
long discussion (see Augusto, 2020d, Appendix), we have:

• “A = ∀xR (x)” is true iff, for all c ∈ U, “R (c)” is true;

• “A = ∃xR (x)” is true iff, for some c ∈ U, “R (c)” is true.

The interpretations considered in this Section are Boolean, i.e. they are interpretations
over the truth-value set W2 = {0, 1}, where 0 denotes falsity and 1 denotes truth.
Furthermore, they are classical : A formula φ is either true or false (principle of
bivalence), and either φ or ¬φ is true (principle of excluded middle).6

Given both a set of formulas PL and a valuation valI for some interpretation
I, one can give meaning to all the formulas of PL by means of a model for L, a
pair ML = (PL, valI) such that for every formula φ ∈ PL it is the case that either
valI (φ) = 1 or valI (φ) = 0. Whenever valI (φ) = 1, it is said that there is a model
for φ, a pair Mφ = (φ, 1) where 1 = valI (φ).7

Suppose now that p is true, i.e. it is indeed the case that the outcome of Flip 1
is heads, or more formally, there is a model for P ∈ PL. Then, p is a fact, a unit of
knowledge. A collection of facts corresponding to atomic propositions Ξ = {pi}ki=1 is
called a (simple) knowledge base (KB). Figure 3 shows the KB ΞFlip constituted by
the facts corresponding to the data in Table 1.

Importantly, to say that p is true (or that P is true in a model for L) does not
entail that this proposition is true in the sense that there is a certain relationship
between it and reality that makes p true in the sense that this word is commonly
used in the natural language English (e.g., “It’s true; I actually saw it.”). In effect,

6An interpretation I can be over Wn for n ≥ 3, including n ∈ [0, 1] (see Augusto, 2020c). Classical
interpretations, however, offer many advantages, and any interpretation I over Wn≥3 can in fact be
reduced to an interpretation over W2 (see below).

7From a strictly algebraic viewpoint, a model is an algebraic structure, a pair (A,R) where A 6= ∅
and R is some relation over A. ML andMφ are indeed models in this sense, as val defines a binary
relation ≤ over elements of PL such that for any two formulas φ, ψ ∈ PL we have val (φ) ≤ val (ψ),
namely via the chain 2 = {0, 1} where 0 < 1. In particular, R is the consequence relation |=, a
central construct of formal logic such that we write |=M φ (or M |= φ) whenever there is a model
for φ. (See Augusto, 2020d.)
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Outcome(1, h).
Outcome(2, t).
Outcome(3, t).
Outcome(4, t).
Outcome(5, h).
Outcome(6, t).
Outcome(7, h).
Outcome(8, h).
Outcome(9, t).

Figure 3: The knowledge base ΞFlip.

when one says that a proposition such as “Snow is white” is true in L, one is not
referring directly to snow in the world, which is typically perceived as being white;
one is simply referring to a construct of the formal language L such that there is
an interpretation I over which this construct (or its corresponding atomic formula
IsWhite (snow)) is valuated as true. This requires that there be an object language
of the type L, whose expressions are solely formulas, and a metalanguage for L that,
besides containing all its formulas, contains additionally expressions such as “is true”
and “iff.” Let us segregate the object language L0 with respect to its metalanguage
L1, L0 ⊂ L1. Then, L0 contains only sentences (e.g., IsWhite (snow)) while L1

additionally contains names (e.g. “Snow is white”), more specifically a name for
every sentence of L0. Let us denote an arbitrary sentence by p and its name by “p”.
Then, an expression such as

“Snow is white” is true iff IsWhite (snow).

is of the general form
(T) “p” is true iff p.

called a T-sentence, which can be further specified as

(T) “p” is true (in L1) iff p (in L0).

In particular, L0 does not contain the sentence IsTrue (p) (or IsFalse (p), for
that matter), nor the relations IsTrue (x) or IsFalse (x). This means that L0 is a
formal language that is not closed semantically, i.e. the theory of truth for L0 is not
construed within L0.8 It should now be obvious that any interpretation I for any
language L0 is always a construct of a metalanguage L1. Hence, when one says that
Outcome (1, h) is true, one is actually expressing the T-sentence

“The outcome of Flip 1 is heads” is true iff Outcome (1, h).

8It is interesting to remark that a semantically closed language is host to the Liar Paradox:
Consider the sentence “This sentence is false”; if it is true, then it is false, and if it is false, then it
is true. It was precisely this and other semantic paradoxes that led A. Tarski to develop this purely
formal analysis of truth (he called it the semantic theory of truth). The example given originally by
Tarski (1944) has snow is white instead of IsWhite (snow); he had formalized languages in general
in mind, and not a specific (logical) language.
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And, in effect, Outcome (1, h) is a sentence of the language L = L0, whose expressive
capabilities are exhausted in expressions of this form (see Appendix).9

3.1.2 Facts and justifiers

Let it be granted that condition (i) of the tripartite analysis of knowledge has thus
been satisfactorily settled, namely by means of the structure Mφ = (φ, 1) called a
model for every fact φ. Then, the structure Ξ, in its simplest form, can be seen as
a set of true beliefs held by one or more subjects S (say, the manager of Ξ and its
users); hence, condition (ii) of the tripartite analysis is settled, too. It is now required
that the same be done for condition (iii). Recall that Table 1 is the result of collect-
ing data by using one’s sensory modalities, vision in the case at hand: Every time
the coin was flipped, an observer wrote down the number of the flipping event and
the corresponding observed outcome. Is this epistemic justification enough? Unfor-
tunately not, as our observer can be short-sighted, or they could be just inattentive
for a myriad reasons (for instance, their mortgage payment was due shortly, or less
plausibly but still possibly, there was a trickster demon interfering with their obser-
vations). Just as in the case of truth, what is required is a formal notion of epistemic
justification; in particular, we need a formal theory of epistemic justification whose
central assumption is that

Every fact has a justification.

I shall call this the universal justification assumption (UJA). In the following para-
graphs, I sketch such a theory, leaving a more comprehensive elaboration for future
work. (In the meantime, the reader is referred to the work of S. Artemov and col-
leagues–e.g., Artemov & Fitting, 2019; Artemov & Nogina, 2005–, some aspects of
which this sketch–tentatively–draws on.)

To begin with, it makes sense to ask what formal structure can be conceived for
epistemic justification of beliefs in general. We need a pair (φ, Jx), where φ is a
belief and J is a binary relation between φ and some (reason) x such that x accounts
for the truth (or validity) of φ or, in other words, is a justification or proof of φ,
written x : φ. Let us call this pair a justifier for S and denote it by JS . For any
particular belief φ, S fails to know φ if JS = (φ, ∅): The pair JS = (φ, ∅) formalizes
the case that φ is not a fact, or true belief. A justifier for S is more generally a pair
JS = (P, Just) where P = {p1, p2, ..., pk} is the set of propositions believed by S and
Just = {Jx1, Jx2, ..., Jxm} is the set of corresponding justifications.10 Just may be
larger than P because there may be, and often there are, more than one justification
for a single true belief, but the reverse can be the case, too, as different true beliefs
may share justifications; in particular, some of–or, though uncommonly, even all–the
beliefs in P may have no justification. If we make a justifer a more precise formal
structure by adding the universe–or domain(s) thereof–over which S has beliefs, then

9This means that any sentence φ ∈ PL is safely assumed to be true, as we have it that φ = ¬φ or
φ = ¬ (¬φ), by an application of double negation. A logical language whose set of sentences contains
both φ and ¬φ gives rise to a trivial logical system, namely via inconsistency.

10More strictly from an algebraic viewpoint, and whenever formally required, we have the pair

JS =
((
P = {pi}ki=1

)
∪
(
{xj}mj=1 = Just

)
, J
)

, where P ∩Just = ∅ and piJxj is a binary relation.

This makes of JS a frame in algebraic jargon.
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these latter cases would be formalized as JU
S = (P, Just ∪ ∅) and JU

S = (P, ∅),
formalizing partial knowledge and ignorance, respectively.

It should be noted that S does not feature in the justifier for S : In effect, a
justification relation φJx such that x : φ is completely independent from any belief
holder; it is a feature of reality, to put it this way, one to which S find themselves
in a relation by holding the belief that φ. Contrarily to the case in mainstream
epistemology, the character of this relation is wholly irrelevant: S may believe that
φ for the wrong reasons, or accidentally; what matters is that there is a justifier for
S. For instance, and invoking a well-known illustration in mainstream epistemology
(e.g., Kripke, 2011), seeing the façade of a red barn Henry (S ) believes that it is
indeed a barn that he is seeing. In fact, Henry has been driving along a country road
where fake façades of blue barns have been strategically posited for tourists, only he is
unaware of this. When seeing this particular barn–a real red barn–he truly believes it
is a barn he is seeing, because he believes he has been seeing a lot of barns. According
to some mainstream epistemologists, Henry is not justified in his belief, so he fails
to know that it is a barn he is seeing. This paradoxical scenario is eliminated by
introducing a structure JHenry = (q, Jr) where q = “This is a barn (I’m seeing),”
because we have qJr for r = “This is a real barn,” and r : q, i.e. this reason justifies
Henry’s belief.

As said above, a true belief that φ may have several justifications; these may
then be ordered by strength as Jx1 � ... � Jxl where Jxi � Jxj is read “Jxj is a
stronger justification than Jxi.” For instance, suppose that some subject S believes
they have acne (q) because they have spots; as a matter of fact, S has folliculitis,
of which acne may be considered a special case. Given reasons s = “The spots are
caused by folliculitis” and t = “The spots are caused by acne,” we have qJs � qJt,
i.e. Js is a better (or stronger) justification than Jt for q, and thus s : q � t : q. That
S actually believes that t : q weakens their epistemic justification, but it does not
obliterate it: No matter how weak one’s justification for φ might be, it contributes
to knowledge of φ. The strongest justifier of all for any φ is the pair JS = (φ, |=)
where |=, abbreviating J |=, denotes the binary logical consequence relation of the
deductive kind.11 This is followed by JS = (φ, | ≈), where | ≈ is some non-deductive
logical consequence, i.e. mostly abductive, inductive, or probabilistic consequence. In
particular, a justification J = |= or J = | ≈ for φ can actually subsume, or entail, the
truth of φ, thus greatly simplifying the analysis of knowledge (Artemov & Nogina,
2005; Augusto, 2011).12 This can be obtained by postulating that for any sentence p
and some proof t,

(Factivity) if t : p, then p is true.

In other words, justification is sufficient to conclude that a belief is true. As seen
above summarily in the red barn and the folliculitis examples, the principle of factivity
may also hold outside the realm of logic proper if, by following UJA, we succeed in
formalizing φJr when r is a reason to be found in reality; this done, the metaphysical

11In this particular case, |=: φ is typically written as |= φ. As a matter of fact, |= can simply

replace J |=, as it is a binary relation (we have ∅ |= φ or P(′) |= φ) that is in fact a consequence
justification in logic. See Augusto (2020d).

12In Augusto (2011), I do this subsumption from an informal, greatly mainstream approach that
is at the same time a defense of pragmatism. This stance can be formalized in a general way for r =
“It pays off to believe,” so that φJr is read “It pays off to believe that φ.”
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battles over truth become irrelevant, as postulated by Tarski (1944). Actually, we not
only simplify the analysis of knowledge, but also have now an axiomatizable system
in which complex justifications can be formally computed. For instance, besides the
tautologies of classical logic and the rule modus ponens, we may axiomatize factivity
as

(F) t : p→ p.

Additionally, we may have the following axioms of justification for propositions φ, ψ,
proofs s, t, and the binary operations application (·) and sum (+), which may be
added to OpL in a purely ad-hoc manner:

• (A) s : (φ→ ψ)→ (t : φ→ [s · t] : ψ)

• (S) s : φ→ [s+ t] : φ; t : φ→ [s+ t] : φ

Intuitively, axiom A (for Application) allows the construction of a proof s ·t from both
proofs s and t, and axiom S (for Sum) formalizes the monotonicity of computing with
justifications: Once a proof, say s, has been found for φ, φJs remains a justification
even if additional evidence is provided by s+ t , i.e. we have φJ (s+ t).

In any case, what we now have is a set J = {φ | t : φ} of justified sentences that is
not dissimilar from the set L = {φ | |= φ} of tautologies that constitute a specific logic.
Let J and L be considered as KBs; then, L is more reliable than J if (|=: φ) � (t : φ)
for any proof t such that t 6= |=; otherwise, they are equally reliable KBs. We can,
as a matter of fact, speak of coincidence of a justifier and a model for φ when φ is a
tautology, a sentence that is true in all interpretations. Because facts correspond to
sentences that are always true at least in some universe U (or some domain D ⊆ U)
we can extend this coincidence to models and justifiers in general.13

Henceforth, I shall speak mostly of truth, but the reader should bear in mind UJA
and this coincidence of models and justifiers.

3.1.3 Conditional facts and rules

The above can now be extended to compound (or complex ) propositions. Let p, q ∈ PL

be atoms; then ¬p or ¬q, p ∧ q, p ∨ q, and p → q are well-formed formulas of L,
namely compound formulas. The meaning of compound propositions is a function of
the meaning of their constituents, a property that is formalized as follows:

• val (¬p) = 1 iff val (p) = 0

• val (p ∧ q) = 1 iff val (p) = 1 and val (q) = 1

• val (p ∨ q) = 1 iff val (p) = 1 or val (q) = 1

• val (p→ q) = 1 iff either val (p) = 0 or val (q) = 1

13Note that whenever φ is a tautology we write simply |= φ (compare with |=M φ above). From an
algebraic perspective, both JS = (φ, J) and Mφ = (φ, 1) are frames, models whose relation R is a
binary relation. As seen, both J and 1 can be realized by the binary relation |=. Then, we can settle
the identity JS = (φ, |=) = Mφ in general for tautologies and the identity JU

S = (φ, |=) = MU
φ

specifically for some domain U.
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This can be extended by induction to any formulas φ, ψ ∈ PL.

In terms of epistemic justification, and so as to make this coincide with truth by
invoking the factivity principle, we have then for some proof t–and greatly, if not
grossly, simplifying justification for compound propositions, especially in the cases of
¬p and p→ q (but see below):

• t : ¬p iff ∅ : p

• t : (p ∧ q) iff t : p and t : q

• t : (p ∨ q) iff t : p or t : q

• t : (p→ q) iff either ∅ : p or t : q

We speak now of complex facts and a KB Ξ = {pi}ki=1 where at least one of the pi is
a complex fact may be called a complex KB (more often than not just KB).

Conditional facts, i.e. complex facts of the form p → q and so called because
the operator → expresses a condition (“if p, then q”) between an antecedent p and
a consequent q, require special attention: In order for a true proposition like p → q
to be a conditional fact it must be the case that p → q be read as “if p is true,
then q is true,” or equivalently “either ¬p or q is true.” Otherwise, sentences such as
“If the moon is made of cheese, then all humans are mortal (immortal),” where the
antecedent is false and the consequent is true (false, respectively), would be facts. This
remark is important, because in classical logic, as seen above, from a false antecedent
anything follows, be it truth or falsity. This classical principle, technically called ex
falso quodlibet, cannot hold insofar as facts are concerned. In the metalanguage of L,
a conditional proposition p→ q is a fact iff |= p→ q, i.e. p→ q is a tautology.14

A conditional fact often has the form

B1 ∧ ... ∧Bk → A

where B1, ..., Bk, A are all true atoms of the form R (c1, ..., cn), the {cj}nj=1 are all
constants from a specific universe. For instance, the proposition

(q) If John is older than Mary and Tessa is older than John, then Tessa is older
than Mary.

formalizable in L as

(q) Older (john,mary) ∧Older (tessa, john)→ Older (tessa,mary)

14We have |= p → q essentially when p = q. This, however, if far from trivial, as it is often the
case that the identity, or equivalence, between p and q is not obvious. For instance, “If the patient
has pyorrhea, then he has periodontitis” and “If they saw the morning star or the evening star, then
they saw Venus” are both tautologies, because in fact pyorrhea and periodontitis designate one and
the same clinical condition, and the morning/evening star just is another name for the planet Venus.
This, in particular the latter example, poses interesting philosophical questions concerning sense and
reference with relation to knowledge that are beyond the scope of this article, but see Frege (1892)
for a well-known philosophical discussion on sense and reference.
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where Older abbreviates IsOlderThan, is a conditional fact. Importantly, the de-
duction theorem (DT) assures us that if all the Bi are true and A is true, then
B1 ∧ ... ∧Bk → A is a tautology, i.e.15

(DT) If (B1 ∧ ... ∧Bk) |= A, then |= (B1 ∧ ... ∧Bk)→ A.

Conditional facts are important knowledge structures, because they are associated
with other knowledge structures called rules. What distinguishes a rule from a con-
ditional fact is the presence of individual variables in the former. In particular, in
a rule B1, ..., Bk, A are all atoms of the form R (t1, ..., tn) where at least one of the
terms tj ∈ ((

⋃
Bi) ∩A) is an individual variable, the Bi are called goals, and A is a

fact. The rule form is actually more often than not formulated as

(r) A← B1, .., Bk

where A is called the head (of the rule) and the Bi constitute the body (of the rule).
Thus, a rule corresponding to proposition q can be formulated as

(rq) Older (x, y)← Older (z, y) , Older (x, z) .

A (complex) KB is accordingly more often than not a pair

Ξ =
(
{pi}ki=1 , {rj}

m
j=1

)
where the pi are (typically) atomic facts and the rj are rules.16 Although the body
of a rule r is said to be composed of goals, these are also facts. Indeed, if there are no
concrete individuals to replace the variables in Older (z, y) and Older (x, z), so that
these two atoms are facts, rule rq is useless. This is formally secured by what can be
called the epistemic equivalent to the deduction theorem, the knowledge generation
theorem (KGT):17

(KGT) If B
′

1, ..., B
′

k are facts and A′ ← B
′

1, ..., B
′

k is a fact, then A′ is a fact.

Informally expressed, we have it that knowledge is solely generated from knowledge.
We can see this as an intuitive formulation of correctness for a KB Ξ. If additionally all
the rules of a KB Ξ together with its facts are sufficient to generate all the knowledge
contained in Ξ, then Ξ is said to be complete. A KB Ξ is said to be adequate if it is
both correct and complete.

15Alternatively, {Bi}ki=1 |= A iff {Bi}k−1
i=1 |= Bk → A, {Bi}k−2

i=1 |= Bk−1 → (Bk → A), and so
forth until we have ∅ |= B1 → (...→ (Bk−1 → (Bk → A))) .

16There are different configurations for this pair. For instance, both sets of Ξ are stored together
in Prolog, but separately in Datalog, in which {pi}ki=1 is a KB proper and {rj}mj=1 is a program. See

Augusto (2020a, Chapter 9).
17In logical terminology, the atom A′ = R (c1, ..., cn) = R

(−→c ) where {ci}ni=1 are constants, is

called an instance of A = R (x1, ..., xn) = R
(−→x ). Then, A′ is a fact iff there is some interpretation

I−→x−→c = I such that valI (A′) = 1. This, in turn, is only the case if there are instances
{
B

′
i

}k
i=1

of

the {Bi}ki=1 such that A′ ← B
′
1, ..., B

′
k is an instance of some rule A← B1, ..., Bk.
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3.2 Dissolving the DIK Trinity. II: Knowledge vs. Data;
Knowledge vs. Information

This–facts, rules, and their assembling into knowledge bases–being established, it is
now required that knowledge be distinguished from both data and information, so
that the DIK trinity be fully dissolved.

Knowledge vs. Data – Let us consider an object of the form p: p is either a fact
or a datum, according to whether it is interpreted by means of some interpretation
I such that there is a model for it, or no interpretation I is considered, respectively.
As seen above, in constructing a KB Ξ a segregation is required between an object
language, say L0, constituted by sentences, and a metalanguage, say L1, such that a
sentence p ∈ Ξ iff a corresponding T-sentence can be stated. No such considerations
are required for a database ∆. Furthermore, given a database ∆, there is no need for
a justifier of the form JS = (φ, Jx), as ∆ does not correspond to a set of justified true
beliefs held by some subject S, simply because no effort whatsoever need be made
in that sense. As a matter of fact, it is difficult for humans to construct a database,
as epistemic justification and truth are more often than not almost intrinsic concerns
for human agents, not the least reason for this being the “intuition” that without
knowledge our well-being is far from secured.18 But a satellite collecting data does
precisely that: It constructs a database ∆. This database ∆ may then become a KB
Ξ if there is some human agent (or some other belief-holding agent) with respect to
whom/which all the data in ∆ are, or can become, justified true beliefs.

Figure 4 shows this distinction between knowledge and data.

Knowledge vs. Information – Above, it was seen that Outcome (1, h) is a sentence
of our KB ΞFlip. Then, presumably it is the case that there is a justification of
the form t : Outcome (1, h), and we assume that there is a justification structure
JS = (Outcome (1, h) , Jt). This, by UJA and the principle of factivity, assures us
that we know that the outcome of Flip 1 was heads. However, if the outcome of Flip
1 was in fact tails, we have the structure JS = (Outcome (1, h) , ∅), and we have no
knowledge with respect to this particular flip. After all, and as emphasized above,
the observer might have been wrong when noting down the outcome of Flip 1. This is
precisely where knowledge distinguishes itself from information: When the epistemic
status of our beliefs (or of the facts in a KB) is uncertain or indeterminate, our facts
become bits. Just as in the case of encoding data, entropy characterizes our beliefs
in the sense that for every proposition p that we believe, it is the case that either p
is true or p is false.19 Then, just as for the possible outcomes when flipping a coin,
if we consider p as a random variable we have Pr (p = xi) = 0.5 for x1 = true and

18In fact, our propositional-like conceptions of the world and their corresponding concepts can be
seen as facts, so that our terminological constructs may in fact correspond to a knowledge base.
See Badie (2020a; this issue) for an account of this hypothesis from the viewpoint of constructive
epistemology.

19This holds even for valuations in many-valued logics, as every many-valued logic can be reduced
to bivalent logic by means of a structure M called a matrix that allows us to “send” all formulas
valuated within a set of distinguished values D ∈ M to a set of true formulas, all the remaining
formulas being considered not-true (rather than false). This “sending” is actually a homomorphism,
and matrix theory is elaborated on in algebraic terms; as this is outside the scope of this paper,
I refer the reader to Augusto (2020c) for a comprehensive discussion, or to Augusto (2020d) for a
briefer discussion.
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Figure 4: Data vs. Knowledge vs. Information. A: H (X) > 0; B: H (X) = 0; C: valI (X) ∈
{1} = (X, 1) =MX ; D: valI (X) ∈ ∅.

x2 = false. Thus, the information contained in any belief that p is exactly equal to
1 bit, as we have

H (p) = −
((

1

2
log2

1

2

)
+

(
1

2
log2

1

2

))
= 1

and all the computations in information theory can be applied to beliefs; for instance,
we can compute the mutual information of two beliefs p and q. A KB becomes then
an information repository (just to use an usual label). In the absence of entropy with
respect to beliefs, we are back to a KB. See Figure 4.

The key word here that allows us to distinguish a KB Ξ from a database ∆ is, as
already mentioned above, belief : If X is taken as a mere random variable such that
H (X) = 0, then it is a datum, and any collection of data is a database; if, however,
X is taken as a belief, then H (X) = 0 indicates that X is a fact and any collection
of facts is a KB. Whenever H (X) > 0, we are in the realm of information, in which
it does not really matter whether one is dealing with facts or mere data: There is
uncertainty with respect to either.

An illustration: On personal identification cards, it is usually the case that the
age of the card holder is shown. Let us consider this to be expressible by the string
IsOld (x, y) where x stands for the individual and y for the age in years. Then, say,
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IsOld (john, 64) is a datum, i.e. a string of symbols resulting from an empirical col-
lection (John was asked how old he was by some public servant, or his age was verified
in some archive, etc.). If IsOld (john, 64) is a justified true belief (e.g., the archive is
highly reliable and John is indeed 64 years old), then there is an interpretation I that
makes this datum into a fact. Regardless of whether IsOld (john, 64) is a datum or
a fact, it becomes information when, for instance, an employer considers that John
might be too old for the job, or his physician considers whether to increase some
nutritional supplement intake.

In other words, and to sum up, both data and facts are inert as far as action is
concerned; every action entails a degree of uncertainty, and that is when data or facts
become pieces of information. The difference between data and facts is extrinsic to
action and is a purely formal one. The point then is to be certain that some piece
of information is indeed a fact, so as to secure rational action (when the agent is
a human), or the right action given the environment (for instance, in the case of a
robot). Such certainty is purely ideal, as it will be seen, but it sets the standards for
the design and construction of knowledge systems.

4 Knowledge Systems

KBs are typically not static structures: Besides exhibiting internal behavior of some
sort (e.g., by means of a fully automated calculus; see Augusto, 2020a), they typically
require more or less frequent external actions, namely updating and maintenance.
Although largely task-independent, they are designed with specific aims in view, often
the solution to some particular (class of) problems.20 To these ends, they require
both processes to be carried out over them and agents that carry them–all or a part
of them–out, i.e. they are components of a knowledge system.

A knowledge system (KS) is a triple

K = (K S ,K P,K A )

where K S is a collection of knowledge structures, K P is a collection of knowledge
processes, and K A is a collection of knowledge agents. Generally considered, namely
from a more behavioral perspective of both cognitive science and computer science, a
KS is some structure that upon knowledge-structured input outputs an appropriate
action. As already stated above, when the knowledge agent is a human, this is ex-
pected to be a rational action; for artificial agents one speaks of the right action given
the environment. In either case, it is assumed that only facts, atomic or complex, can
lead to the rational or the right action. Hence, facts, taken as justified true beliefs as

20This holds particularly at the ontological level. For instance, facts of the form Teaches (x, y, z)
where x stands for some faculty member, y does so for a course, and z for the respective level, are
more appropriate for a KB of instructors than Takes (x, y, z) where x stands for a student and y, z
are as above. In the first case, one may be interested in finding out who is teaching what at which
level, whereas in the second the problem might be to find out who is taking what at which level.
But minor as this distinction of domains might be, it already requires a good grasping of ontological
constructs. In effect, ontology is an essential component of knowledge systems, a topic which is
beyond the scope of this text, but see Limbaugh et al. (2020; this issue) for an account of how
ontology is associated with cognition in “intelligence systems” seen as knowledge systems, and see
Saba (2020; this issue) for some relations between ontology and natural language from the viewpoint
of commonsense and/or background knowledge.
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settled above, are the structures that account for the invariance of the term knowledge
in the three collections above: K S is a collection of facts, K P is a collection of
processes over facts, and K A is a collection of agents in possession of, or looking
for, facts. Thus, K can be realized in a plethora of systems–expert systems, neural-
network systems, intelligent systems, organizations, ...–including the human brain, as
long as they, being input facts by an agent (which has the responsibility of turning
data into facts), output rational, or the right, actions. Figure 5 shows the general
schema of a KS K; below, the components of this system are elaborated on.

Figure 5: A general KS.

Strictly defined, a KS K is a structure that generates new knowledge, i.e. new
facts. This is then the restricted case when action is the output of facts. I shall focus

on rule-based KSs, triples of the form K =
(−→

Ξ , O,A
)

, where
−→
Ξ = Ξ ∪Rul is a rule-

based KB, Rul = {ri}ni=1 is a set of rules of the form A ← B1, ..., Bk, O = {oj}mj=1

is a set of operations or processes on
−→
Ξ , and A = {ai}ki=1 is a set of agents.21 For

simplicity, I consider only |A| = 1. In particular, I shall be concerned with systems
such that O′ = {|=} ⊆ O, often called deduction systems. They are also called goal-
directed systems because they use backward-chaining reasoning, i.e. they reason from
goals to facts. In these systems, a rule has a strictly logical or declarative reading
(cf. DT and KGT): If all the Bi are true (or can be proved), then A is true (or
can be proved). Diagnostic systems and automated theorem provers are examples of
deduction systems.22

21The prototypical example of a KB
−→
Ξ is a Prolog program, in which Ξ ∪ Rul is stored in the

same locus.
22The other are called reactive systems and they often use forward-chaining reasoning: From

input facts they reason toward conclusions. In these, a rule has a procedural interpretation: If B1

and ... and Bk are the case, then DO A. Intelligent systems that interact with the environment are
typically reactive systems.
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4.1 Knowledge Processes

Although what I discuss next can hold for any KS generally taken (see Fig. 5), it
holds in particular for KSs as artificial intelligence (AI) constructs known as com-
puter programs. KSs require a few mundane actions be carried out, namely design,
construction, manipulation, and maintenance, but these are not the processes I shall
consider as knowledge processes (KPs) proper. Given a KB Ξ, there are four main
KPs over Ξ: Representation, Acquisition & Storage, Generation, and Access & Share.

In a KS of the deductive kind K =
(−→

Ξ , O,A
)

, these four processes actually

correspond to the set O = {tell, ask} ∪ {|=}, where O′′ = {tell, ask} contains the
basic operations that are in general common to KSs: tell is for adding new facts to
the system (and obviously storing them), which presupposes a representation medium
(a language), and ask for finding out (and sharing) what the system knows. For the
sake of generality, I assume that the representation language of the KB, which is here
L, and the interaction language of the agent are essentially the same, merely with the
extension OpL∪{., ?} such that“.” at the end of a well-formed string φ ∈ PL indicates
that φ is a fact, and φ? indicates a query to the KB. (For simplicity, I write “φ.” as φ
simply.) The operation {|=} = O′–which is in fact a relation but is here taken in its
natural association with the consequence operation (see Augusto, 2020d)–is specific to
deduction KSs. In this Subsection, I concentrate on the processes in which the agent
can be omitted (Representation) and which are internal to the KB (Generation). In
the next Subsection, I address the processes that require an agent, to wit, the two
remaining processes of the quadruple above.

Knowledge Representation – Knowledge can, in principle, be represented in many
media (e.g., graphs, frames, ...). If one’s choice falls on a formal language, then this
should be as high-level and as expressive as possible, a feature that has to be weighed
against its computational costs, in particular for logical languages. Let us consider
this to be the symbolic level of a KS. With respect to the first aspect, L can be used
to express virtually not only all assertions, but also all corresponding queries in any
natural language. This is accounted for by the ability of this language to express
such minor changes in meaning as in the propositions “It tastes like vanilla.” and “It
likes vanilla taste.”, which can be existentially formulated as ∃x∃y (TastesLike (x, y))
and ∃x∃y (LikesTaste (x, y)). Given these existential formulations, one can make
queries such as TastesLike (icecream, vanilla)? and LikesTaste (fritz, vanilla)? for
the very large domains corresponding to the different subjects expressed by the natural
language pronoun “it.” With respect to its computational features, L is essentially
decidable, as it does not have either function symbols or the identity symbol (=).
This said, it is not cost-free in terms of computational complexity; as a matter of
fact, it is still so costly that the trade-off between expressivity and complexity may
be negative on the latter side.23

But when choosing a representation language for knowledge one’s consideration
should not only fall on the symbolic level of the system, but also–or especially–on
what Newell (1982) called the knowledge level : A representation medium must not

23The decidability of L depends on other aspects, in particular on electing Herbrand semantics,
by means of which the “propositionalization” of a first-order language can be obtained. See Augusto
(2020a, c). For the trade-off between expressivity and complexity for (an extension of) the standard
first-order language, see Levesque & Brachman (1987), an early discussion of this topic.
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only be able to represent something (an object, a relation, a process, a state, ...), but
it must also embody the knowledge of the system about that thing. As seen above,
a construct of the kind R (t1, ..., tk) ∈ PL, known as an atom, does not only repre-
sent something (e.g., IsOlderThan (x, y) represents the age relation between some
unspecified individuals x and y), but if valI (R (c1, ..., ck)) = 1 for some interpreta-
tion I−→x−→c = I, then this atom actually embodies the knowledge about this thing in
an atomic fact (e.g., IsOlderThan (john,mary) .). The same holds for constructs of
the form A ← B1, ..., Bn, known as rules, where each of A,B1, ..., Bn is of the form
R (x1, ..., xk): If valI (

∧n
i=1Bi) = 1 and valI ((

∧n
i=1Bi)→ A) = 1, then valI (A) = 1

for some interpretation I−→x−→c = I, and we have both a complex fact and a new fact.
(Recall: Ex falso quodlibet is excluded with relation to facts.) This latter case entails
that the KB embodies more knowledge than that which is explicit in it. In this sense,
the purely formal concept of interpretation does indeed become an epistemic concept:
An interpretation of atoms and rules yields a representation of facts that go on to
embody the knowledge of a KS in a KB.

Still with relation to the knowledge level, if one extends L with the unary operator
K, read “it is known,” then one can reason about the knowledge embodied in a KS
K and the relation of agents to their own knowledge in the system. For instance,
the rule (p→ Kp)

K
expresses the case that if p is a fact in K then p is known in K,

and (Kap→ KaKap)
K

expresses the axiom that if an agent a knows p in K then a
knows (in K) that they know p in K. This extension, known as epistemic logic, not
only keeps all the classical tautologies expressible in L, but also has more tautologies;
this shows its increased expressive power (unfortunately at the cost of computational
efficiency; see above).

Finally, only a logical language gives us the assurance that our facts correspond
not only to true propositions, but also to justified beliefs; this it does by means of the
metalanguage operator |=. (One can also argue that human thinking is essentially
logical–e.g., Augusto, 2014–but I am leaving this out here.)

Knowledge Generation – Although very simple, ΞFlip allows the extraction of
knowledge by means of queries (the operation ask) such as Outcome (1, t)?, which
will output the result “no”, and Outcome (x, t)?, outputting x = 2, 3, 4, 7, 8. How-
ever, none of the replies we can obtain from this KB will generate new knowledge
or, more correctly, new facts. In order to obtain this we need rules. An illustra-
tion: Let us suppose that we have a KB of rescued birds in an avian center with facts
such as IsBird (hen, lolita) ., IsBird (turkey, peter) ., IsBird (canary, roberto) ., etc.
(Fig. 6 shows the complete KB in a Prolog implementation.) Although rescued,
not all the birds in the center are sick, in which case they are quarantined and ac-

cordingly entered in the KB
−→
ΞBirds as the fact IsQuarantined (x) . (for instance,

IsQuarantined (bob) .). Then, in order to find out which birds are sick it suffices to
design the rule

(r1) IsSick (y)← IsQuarantined (y) .

Note that the fact IsSick (bob) . is not explicitly in the KB; the difference here between
the operation tell, by means of which new facts can be added to the KB, is that
IsSick (bob) . is already implicitly in the KB, and thus it does not require the operation
tell to be carried out over the KB, namely by an agent outside the KB. In effect,
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IsSick (bob) . is an inferred fact, whereby it is meant

−→
ΞBirds |= IsSick (bob) .

and a set of operators O ⊇ |= is accordingly called an inference engine (over a KB
−→
Ξ ).

New facts are essential to output further new facts. For instance, suppose that
staff in the avian center are required to know which birds are sick, in order to provide
them with a special diet of their natural food. These new facts can be generated by
means of the rule

(r2) IsOnDiet (y, z)← IsBird (x, y) , sick (y) , eats (x, z) .

By means of this rule, the new facts IsOnDiet (roberto, seeds) . and IsOnDiet (bob, all) .
can be generated, as in fact we have, for instance,

−→
ΞBirds |= IsOnDiet (bob, all) .

bird (penguin, toto) .
bird (ostrich, sheila) .
bird (emu, tom) .
bird (turkey, sam) .
bird (turkey, sandra) .
bird (hen, lolita) .
bird (canary, roberto) .
bird (nightingale, sarita) .
bird (crow, bob) .
bird (woodpecker, lola) .
bird (duck, cassandra) .
bird (duck, samantha) .
quarantined (roberto) .
quarantined (bob) .
eats (penguin, fish) .
eats (ostrich, all) .
eats (emu, all) .
eats (turkey, seeds) .
eats (hen, all) .
eats (canary, seeds) .
eats (nightingale, seeds) .
eats (crow, all) .
eats (woodpecker, bugs) .
eats (duck, all) .
sick (Y) : −quarantined (Y) .
on diet (Y, Z) : −bird (X, Y) , sick (Y) , eats (X, Z) .

Figure 6: The KB
−→
ΞBirds. (Source: Augusto, 2020a.)

We are assured that this, read as “the fact IsOnDiet (bob, all) . holds in, or is

entailed by,
−→
ΞBirds”, is indeed epistemically the case (i.e. it is a justified true belief),

because a proof t = ` can be produced such that we have

−→
ΞBirds ` IsOnDiet (bob, all) .
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Figure 7: Proof tree for the inferred fact IsOnDiet (bob). (Source: Augusto, 2020a.)

where the metalanguage symbol ` denotes that the atom IsOnDiet (bob, all) . is deriv-

able from
−→
ΞBirds by means of a logical calculus–say, the resolution calculus–such that

a proof tree can be produced (see Fig. 7; σ denotes the substitution of bob for y, and
θ the simultaneous substitution crow for x and all for z ). In effect, the justifier
JS = (φ, |=) for a sentence φ is alone no longer a sufficient justification, as the met-
alanguage relation |=, now also seen as a consequence operation, can output fewer

facts than those entailable by the KB
−→
ΞBirds; in particular, it might be the case that

neither φ nor ¬φ is output. In other words, the KB may be incomplete. In order
to make a KB complete, we need to pair it with a logical calculus, implemented by
the inference engine, such that all the facts in it, and only the facts in it, are prov-
able. This justifier can be denoted by JS = (φ, |=`) where `, in turn, does not prove
falsities (i.e. ` is a sound relation of logical consequence). This, formalizable as

−→
Ξ |= φ iff

−→
Ξ ` φ

provides us with an adequate KB
−→
Ξ . Given this equivalence, we write henceforth

simply |= to denote an adequate consequence relation/operation.24

4.2 Knowledge Agents

Generally, a knowledge agent (KA) acting in an environment E is a triple

KAE = (ΞE , GoalsE , ActionsE)

where ΞE is the KB containing the facts relative to E, GoalsE = {gi}mi=1 is a set of

goals with respect to the environment E to be attained, and ActionsE = {actj}lj=1 is
a set of actions over E to be selected by the KA to pursue their goals in E. As already
seen above, the agent acts in the environment according to their goals by relying
on the facts in the KB; this can be generally called a rational agent. I leave here E
largely undefined as“the world.” In this, a KA can have goals as diverse as finding line

24More correctly, it is the logical system L = (L, |=) that is said to be adequate with respect to
−→
Ξ ⊆ PL, which is being here considered as a theory. See Augusto (2020d).
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connections in a metro network or diagnosing causes behind rare symptoms. Indeed,
for every goal–or problem–there is, or can be in principle, a KB by means of which
the KA can act rationally.

I omit here any considerations with respect to E, namely as far as data collec-
tion and actions are concerned, and consider a KA as a black box restricted to in-

putting facts into, and querying, a KB
−→
Ξ ; this agent can be given by the triple

KA−→
Ξ

=
(−→

Ξ , Goals−→
Ξ
, Actions−→

Ξ

)
. KA−→

Ξ
is so restricted that we have Actions−→

Ξ
=

{tell, ask}, where in fact {tell, ask} = O−→
Ξ
∩Actions−→

Ξ
. This KA is solely expected

to both “tell” the KB (and obviously store in it) the facts they have with respect to
E and “ask” the KB about the–possibly new–facts it possesses concerning E (often
with the aim of sharing them). I discuss these two operations from the viewpoint of
generality.

Henceforth, I abbreviate an (adequate) KB
−→
Ξ as Ξ.

Knowledge Acquisition & Storage – Formally, the operation tell is a mapping

tell : PL −→ P ′L ∪ P ′′L

for P ′L the subset of sentences of PL that are facts and P ′′L the subset of formulas of
PL that are rules, by means of which a KA tells the KB Ξ that sentence φ is a fact or
a rule. To simplify, I shall consider that P ′′L ⊆ P ′L, by seeing rules as uninstantiated
facts. The practical aspect with respect to the operation tell is that it increases a
KB by adding new facts to it. An additional operation, not shared with the processes
of Access & Share and to be applied only once, is the following:

begin () = Ξ0.

It is important to remark that Ξ0 6= ∅: Ξ0 contains all the rules of inference (and
possibly axioms) of a calculus and perhaps tautologies of a specific logical system, i.e.
consequences of the form |= ψ. In effect, Ξ0 is the inference engine, which contains
no facts about the environment but is solely designed with the operation |= in view.
The addition of a fact about the environment φ to Ξ0 by means of tell is given by

tell
(
φ,Ξ0

)
= Ξ1 = Ξ0 ∪ {φ}

so that for any i > 1 we have

tell
(
φ,Ξi−1

)
= Ξi =

i−1⋃
i

Ξ ∪ {φ}

and obviously |Ξi| = |Ξi−1|+1, where |Ξi| denotes the number of explicit facts (which
include uninstantiated rules) in Ξi.25

25Levesque & Lakemeyer (2000), which provides a comprehensive elaboration on the operations
tell and ask (as well as on additional operations; see Chapter 5), specifies this operation as
tell (φi, ei−1), where φi are the sentences to be added to the KB and ei−1 is the epistemic state
corresponding to the KB before this addition. This agrees with their adoption of Kripke semantics,
as is usual in the epistemic logic literature. I simplify by making each Ξi for i > 0 correspond to
what the KB “knows” after the addition of a new fact. For these “epistemic states” taken in a rather
loose sense, old Tarskian semantics should be enough. See Augusto (2019; 2020a, d).
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Despite the formal definition of the operation tell, the cardinality of Ξi is, in
principle, not a reliable measure of the knowledge contained in Ξi. In other words,
one cannot say that a KB with, say, 100 propositions does correspondingly have
100 facts. To begin with, Ξi might contain n implicit facts not factored in in |Ξi|;
additionally, as a result of the operation tell, it is often the case that both φ ∈ Ξi

and ¬φ ∈ Ξi (the KB is inconsistent), or neither φ ∈ Ξi nor ¬φ ∈ Ξi (the KB is
incomplete). These two latter scenarios are the result of misapplications of the tell

operation: For each atom φ, either tell
(
φ,Ξi−1

)
or tell

(
¬φ,Ξi−1

)
, and at least

one of tell
(
φ,Ξi−1

)
or tell

(
¬φ,Ξi−1

)
, should always be the case.26 To sum up, the

operation tell can cause the KB to be in one of four epistemic states with respect
to a proposition φ (see Table 2).

tell Epistemic state

tell
(
φ,Ξi−1

)
Ξi knows φ

tell
(
¬φ,Ξi−1

)
Ξi knows ¬φ

both tell
(
φ,Ξi−1

)
and tell

(
¬φ,Ξi−1

)
Ξi knows both φ and ¬φ

neither tell
(
φ,Ξi−1

)
nor tell

(
¬φ,Ξi−1

)
Ξi knows neither φ nor ¬φ

Table 2: Epistemic states of a KB as a result of the operation tell over it.

It should be obvious by now that the two last rows of Table 2 are not epistemic
states proper, as it is not possible to know both a sentence φ and its negation ¬φ
(e.g. “Penguins fly” and “Penguins do not fly”), and if one knows neither a sentence
φ nor its negation, then one simply has no knowledge with respect to φ , where “no
knowledge” does not here mean ignorance, which was defined above by the justifier
JU
S = (P, ∅). If a KB is inconsistent, any sentence whatsoever can be entailed by

it, a problem already mentioned above known as ex falso quodlibet, so that for an
inconsistent KB Ξ, the number of sentences entailed by it is greater than the number
of facts it does entail. If a KB is incomplete, then the reverse consequence is the case:
It entails fewer facts than it should.

Knowledge Access & Share – By this it is meant here that the agent queries the KB
with respect to what it knows. By replying to the query, the KB shares its knowledge
with the KA (and this can further share it with other KAs). In its simplest form, ask
is an operation that prompts the KB to a “Yes/No” answer, i.e.

ask
(
φ,Ξi

)
∈ {yes, no}

such that

ask
(
φ,Ξi

)
=

{
yes if φ ∈ Ξi

no otherwise
.

By querying the KB, the KA is actually setting in motion the operation |= by the
KB’s inference engine, so that we have:27

26Easier said than done, as negation in KBs by means of the operator ¬ is not a matter of fact.
See below a possible solution to this problem.

27For simplicity, I am not separating the inference engine from the KB. This is possible in Prolog
environments, in which the KB is in fact a program implementing a resolution calculus. See Augusto
(2020a), Chapter 9, for details.
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ask
(
φ,Ξi

)
=

{
yes if Ξi |= φ

no otherwise

Clearly, we have the equivalences yes ≡ 1 and no ≡ 0, so that in fact we can in-
terchange {no, yes} and {0, 1} = W2. Figure 8 shows the complete deductive KS at
hand.

Figure 8: A deduction KS.

However, it is rarely the case that KBs are so “crisp” (to use jargon from fuzzy
logics); as a matter of fact, a KB can hardly be expected to contain all the facts, and
only the facts, with respect to some environment E. In particular, sometimes we are
faced with sentences that are both true and false (a contradiction in classical logic; a
truth glut in many-valued logics), and with sentences that appear to be neither true
nor false (truth gaps). Moreover, the environment is in constant change, but KAs are
not always aware of this, and may enter contradictory sentences at different times;
also, it is more often than not the case that several KAs can use the operation tell

on a single KB, so that one KA can add the sentence φ to the KB while another adds
the sentence ¬φ. Finally, KAs are typically not omniscient, so that relevant facts are
often missing from KBs. The consequence of these scenarios is that KBs are often de
facto incomplete and/or inconsistent. Hence, it might prove useful to augment the set
{yes, no} with {both, none}, so that the KB can reply in the cases that both φ ∈ Ξi

and ¬φ ∈ Ξi, or neither φ ∈ Ξi nor ¬φ ∈ Ξi. In terms of truth-value set, we actually
have 2W = {∅, {0} , {1} , {0, 1}}, the power set of W2.

Recall that the KB only knows explicitly what it is told by the KA, and it knows
implicitly the facts that can be inferred by means of rules in the KB. Let us assume
that the KA can tell the KB “negative” facts (e.g., “Penguins do not fly.”).28 Then,
Table 3 (where superscripts are omitted in Ξ for simplicity) shows the different possible

28In fact, typically the KB cannot know “negative” facts, as the derivation of ¬φ is not without
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|= Reply Epistemic set Epistemic interpretation

Ξ |= φ yes {KΞφ,¬KΞ¬φ} Ξ knows φ

Ξ 2 φ no {¬KΞφ,KΞ¬φ} Ξ does not know φ

both Ξ |= φ and Ξ 2 φ both {KΞφ,KΞ¬φ} Ξ knows too much

neither Ξ |= φ nor Ξ 2 φ none {¬KΞφ,¬KΞ¬φ} Ξ does not know enough

Table 3: Replies of a KB to ask
(
φ,Ξi

)
with corresponding epistemic states and epistemic

interpretations.

cases with respect to the epistemic states of a KB, now represented by sets. (Recall
that the inference engine is considered here as an internal component of the KB, so
that the replies to ask are actually output by the engine.)

The pay-off of relinquishing the crispiness of classical logic is that a KB need not
be discarded just because it is incomplete or inconsistent; as said, it is often the case
that KBs are one or the other, or even both, and this solution allows us to reason
epistemically within a KS in the presence of inconsistency and incompleteness.

A good example of this kind of reasoning, which additionally provides a means
of reasoning about knowledge while avoiding the complications inherent to epistemic
logic (e.g., Hocutt, 1972), is provided in Belnap (1977), where information and knowl-
edge meet in the following interesting way: By replying “yes” to a query by the KA,
the KB is informing the KA that it has been told that φ is a fact or that φ is true
(abbr.: t), and by replying “no,” the KB is telling that it has been told that ¬φ is
a fact, or that φ is false (f); when replying “both” (b), the KB is informing that it
has been told that both φ and ¬φ are facts or true, and “none” (n) is the reply given
when the KB has been told nothing concerning the truth or falsity of φ. Then, and
by resorting to the simple semantics of truth tables based on a valuation val4I for
the superscript 4 denoting the truth-value set W4 = {n, f , t,b} (see Fig. 9), given
a proposition such as χ ∧ ψ where val4I (χ) = t and val4I (ψ) = b, we have it that
val4I (χ ∧ ψ) = b.

¬ ∧ b t f n ∨ b t f n

b b b b b f f b b t b t

t f t b t f n t t t t t

f t f f f f f f b t f n

n n n f n f n n t t n n

Figure 9: Truth tables for Belnap’s 4-valued logic.

Clearly, in face of this uncertainty, we are now in the context of information with
respect to the KA. In other words, the replies output by a KB based on a logical
language for whose interpretation there is a truth-value set Wk for k ≥ 3 are not
knowledge proper, but information in the sense that for each query concerning a
sentence φ the KB can only provide the information that it has been given with

problems in a KB; the inference engine can only make the entailment Ξi 2 φ, which may then be
interpreted as “Ξi |= ¬φ,” an interpretation known as negation as failure. Alternatively, Ξi 2 φ just
means that the KB does not know φ, so that φ is unknown, an interpretation known as closed world
assumption. For central literature, I refer the reader to Reiter (1978) and Shepherdson (1984).
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respect to φ. Because we have now X = {xi}4i=1 for the set W4 = {n, f , t,b} and
Pr (φ = xi) = 1/4, the entropy concerning φ is given by

H (φ) = −
4∑
i=1

pφ (xi) log2 pφ (xi) = 2

where pφ (xi) log2 pφ (xi) = −0.5. Unsurprisingly, the entropy of a sentence that can
be analyzed from the viewpoint of four equal probability outcomes is higher than that
of a bivalent one. We have the following result: For two logical systems Lm and Ln
with truth-value sets Wm and Wn, respectively, if m ≤ n, then

H (Lm) ≤ H (Ln)

if we consider m and n to be the equal probabilities that a sentence of these logics is
valuated as i ∈ Wm,n.29 Accordingly, for two KBs Ξm and Ξn in which a sentence φ
can be interpreted over the truth sets Wm and Wn, respectively, we have for m ≤ n:

H (Ξm) ≤ H (Ξn) .

However, it should be obvious that, when considered from the viewpoint of en-
tropy, if H (Ξ) > 0 then Ξ is not a KB proper, but rather an information repository.
Although only ideally does one have H (Ξ) = 0 for some KB Ξ, this remains as a
general measure of entropy for a KB proper that works as a distinguishing feature
between a KB and an information repository.

5 Conclusions and Further Work

The recent proliferation of the so-called knowledge communities brought about by
IoK requires a general but precise notion of knowledge that can be used uniformly
and consistently by all of them. IoK also brought with it a pernicious confusion of
data, information, and knowledge (DIK) that needs to be effectively dissolved. These
two problems are tackled in this original-research article.

In order to achieve the aimed-at generality the tools of mathematics are called for.
Because I here adopt and adapt the Platonic definition of knowledge as justified true
belief, whose foundation is the proposition, an admirable and intriguing merging of a
mathematical and a linguistic objects, mathematical logic is my main tool. By means
of this tool, a formal semantics for a logical language, coupled with an also formal
notion of epistemic justification, is elaborated on that allows for a precise distinction
between a datum φ = R (t1, ..., tk) and a fact with the same, or expressible in the
same, form. It is often said that knowledge is interpreted data and I take here this in
a wholly formal sense: φ is a fact if (i) for a relation symbol R (t1, ..., tk) ∈ RelL and
for every ti ∈ Ter, i = 0, 1, ..., k, it is the case that there is an interpretation I and a
corresponding valuation valI such that

valI (R (t1, ..., tk)) = Ψ (R) (valI (t1) , ..., valI (tk)) = 1

29More complex measures can be applied; for instance, Boričić (2017) uses countable partitions
of a truth-value set over formulas of some logic Lm, obtaining H (L2) ≤ 2 for classical logic and
H (L4) ≤ 3.61 for Belnap’s 4-valued logic.
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and hence there is a model Mφ = (φ, 1), and (ii) there is a justifier JS = (φ, J) such
that if J = |=, then both the model and the justifier for φ coincide. If one can be
assured that all the elements entered in a storage base are facts, then one is assured
that one has a knowledge base (KB); furthermore, if rules–special complex facts–are
added to this, one can obtain new facts by means of the operation |=, denoting
adequate (i.e. both sound and complete) logical consequence, and of instantiation.
Facts, atomic or complex, and KBs are thus the basic knowledge structures. (Models
and justifiers are knowledge structures, too, but at the“metaknowledge” level.) When
a KB is operated over by one or more knowledge agents (KAs) by means of operations
that are in fact knowledge processes (KPs), we have a knowledge system (KS).

This formal exploration of (meta-)knowledge structures needs to be enlarged to yet
other formal approaches, based, for instance, on order relations and their associated
lattices, as well as on other formal structures such as closure/kernel operators and
Galois connections. These have been shown to be naturally associated to the logical
notion of logical consequence (e.g., Augusto, 2020d; Bonnay & Westerst̊ahl, 2012;
Caspard & Montjardet, 2003; Hardgree, 2005; Humberstone, 1996; Metcalfe et al.,
2010), and they might provide further results with respect to knowledge–seen from
a formal perspective–and its computation in KSs. The modal logics are explicitly
based on order relations, but I only mentioned briefly one of the translations of their
operators for necessity and possibility, to wit, epistemic logic, as this is more typically
employed for reasoning about knowledge than for knowledge representation. However,
the description logics, also based on the modal logics, are particularly relevant to the
construction of a common representational ground for human and artificial KAs, so
that they impact directly on the design of KBs. Moreover, they might provide new
insights into the relations between probability/certainty and possibility/necessity as
far as conditional facts (and associated rules) are concerned (see, e.g., Badie, 2020b).

Both data and facts are here postulated to be inert in themselves. From a math-
ematical perspective, we may consider that they are the case when H (X) = 0 for
X some random variable that can in fact be a proposition when its truth value is
unknown. H (X) is in fact a quantification of uncertainty known as entropy, and
whenever H (X) > 0 it can be said that one is in the presence of information. In
particular, H (X) > 0 when some subject S, which is also a KA interacting with a
KB within a KS, is called to act in a specific environment E upon X. In effect, every
action entails some degree of uncertainty, with respect to either data or knowledge,
the latter alone contributing to the maximum goal of an agent, to wit, rational action.
Hence, and because KBs are often inconsistent and/or incomplete, it is also useful to
be able to quantify the entropy that their underlying systems entail. Although some
work has been done in this topic (e.g., Ellerman, 2018; Markechová et al., 2018), it
has only recently started and its very foundations still need to be established.

As said, this work aims at generality; as such it is essentially formal, and thus
does not discuss specific issues that arise from some of its contents. I next identify
some of these issues and briefly elaborate on them.

As mentioned above, knowledge is naturally associated to cognition, so that to
speak of a KA is often the same as speaking of a cognitive agent. Although a cognitive
agent does not necessarily deal with knowledge (for instance, in perception, especially
in early-stage perception), every KA is a cognitive agent, and this should be borne
in mind in what follows. To begin with, the KA in a KS was here left unspecified
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as to whether it is a human or an artificial agent, but this is a central topic with
repercussions in KBs. If the KA is a human, then it is reasonable to believe that
the facts they enter in a KB are mental representations (beliefs), so that a KB is in
fact a base of mental representations. This clearly determines the design of KBs, in
particular at the knowledge-representation level. Recent work in KSs or components
thereof emphasizes, or is actually based on, this aspect (e.g., Poldrack et al. 2011). If
a KA is to be designed as a wholly artificial cognitive agent, typically called a robot
or an autonomous KA (and an autonomous KS, by extension), this poses a plethora
of specific issues in knowledge representation that need to be tackled (e.g., Paulus &
Sun, 2019; Tenorth & Beetz, 2017; see Vernon, 2014, for a comprehensive discussion).

Agency issues also need addressing. From the narrower viewpoint of the Platonic
notion of knowledge as justified true belief that plays a central role in this work, the
question is posed of the responsibility of deciding that a datum is a fact and can be
“told” to a KB as such. As elaborated on above, both truth and epistemic justification
are largely independent of the KA–if seen from a formal perspective, as is the case
here–but it is in effect the KA that “tells” a KB the facts it contains. How this
formalism translates into “real” KAs, that is a topic for future work, and thus I leave
the KA here as a black box. This work is expected to be interdisciplinary, involving at
least epistemology and cognitive science, and mental representations will surely figure
prominently in it, as it is my personal stance that both philosophy and cognitive
science are largely–if not essentially–centered on the subject of mental representation
(e.g., Augusto, 2006; 2013; 2014).

Additionally, there is the responsibility associated to the KA’s action in the en-
vironment, which is supposed to be largely supported, if not motivated, by the KB.
With respect to these issues, it appears that Dennet’s (1987) humble intentional stance
needs an enlarged revision taking into consideration factors such as individuality and
normativity of agents (e.g., Barandiaran et al., 2009; Vermaas et al., 2013). Especially
relevant is the conception of a notion of values for autonomous KAs and the problem
of how to implement them as facts in a KB (e.g., Boissier et al., 2017; Dignum, 2017;
Hooker & Kim, 2019). Humans, in particular, are autonomous KAs whose epistemic
agency is however highly regimented by cultural and societal contexts, so that specific
ethical issues related to knowledge, its creation and transmission, are posed from eth-
nological and anthropological viewpoints (see, e.g., Josephides, 2015, for a collection
of discussions). No analysis of knowledge is complete without taking these aspects
into consideration. In effect, human society at large is the largest, most complex KS
of all.

Appendix: The Language L

A formal language is a structure of the type L = (A, G) where A is an alphabet, a
finite or infinite set of symbols

{αi}k≤∞i=1 =
⋃
Aj

where the Aj are disjoint subsets of A, and G is a grammar, a finite set of rules
{rj}mj=1 governing the formation of the legal, or well-formed, constructs (strings) of
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L .30 I shall be working with the formal language L such that AL, the alphabet of L,
is defined by

AL = Rel ∪ V ar ∪ Cons︸ ︷︷ ︸
Ter

∪Op ∪Qtf

whereRel is an infinite set of relation symbols/strings of arity n (e.g., Outcome(

n=2︷︸︸︷
x, y )),

V ar = {x,w, y, , ...} is an infinite set of individual variables, Cons is an infinite set of
symbols/strings denoting concrete entities (i.e. constants), Op =

{
¬1,∧2,∨2,→2

}
is

a finite set of m-ary operators, and Qtf = {∀,∃} is the set of the universal (∀, read
“for all”) and existential (∃, read “there is one”) quantifiers over which the variables
vary. Finally, a variable x or a constant c is a term t ∈ Ter. Because the elements of
Op and Qtf are logical constants, the formal language L is in fact a logical language.
More specifically, L is called a first-order language in logical jargon.31

The rules of GL concern the formation of expressions (strings of symbols) called
formulas. Strings of symbols from AL are said to be (well-formed) formulas if they
are built according to these rules of GL:

• An atom A is a relation symbol of arity k ≥ 0 written as R (t1, ..., tk) for k ≥ 1
and simply r when k = 0. (A relation symbol P of arity 0 is called a propositional
variable, and is commonly written in lower case as p.)

• An atom A is a formula φ.

• If φ is a formula, then ψ = ¬φ is also a formula.

• If φ, χ are formulas, then ψ = φ ∧ χ, ψ = φ ∨ χ, ψ = φ→ χ are also formulas.

• If φ is a formula and x a variable, then ψ = ∀xφ, ψ = ∃xφ are also formulas.

If we denote a set of formulas by P ⊆ L, then we can rewrite the above as p ∈ P,
A ∈ P, φ ∈ P, ¬φ ∈ P, etc.
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Markechová, D., Ebrahimzadeh, A., & Giski, Z. E. (2018). Logical entropy of dy-
namical systems. Advances in Difference Equations.

Metcalfe, G., Paoli, F., & Tsinakis, C. (2010). Ordered algebras and logic. In H.
Hosni & F. Montagna (eds.), Probability, uncertainty and rationality (pp. 3-
83). Pisa: Edizione della Normale.

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18, 87-127.

O’Donnell, J. J. (1992). Augustine: Confessions. Text and commentary. 3 vols.
Oxford: Oxford University Press.

Paulus, S. & Sun, Y. (2019). A survey of knowledge representation in service robots.
Robotics and Autonomous Systems, 118, 13-30.

Poldrack, R. A., Kittur, A., Kalar, D. et al. (2011). The Cognitive Atlas: Toward a
knowledge foundation for cognitive neuroscience. Frontiers in Neuroinformatics,
5.

Ragsdell, G., West, D., & Wilby, J. (eds.). (2002). Systems theory and practice in
the knowledge age. Boston, MA: Springer.

Reiter, R. (1978). On closed world data bases. In H. Gallaire & J. Minker (eds.),
Logic and data bases (pp. 55-76). New York: Plenum.

Saba, W. S. (2020). Language and its commonsense: Where formal semantics went
wrong, and where it can (and should) go. Journal of Knowledge Structures &
Systems, 1 (1), 40-62.

96 J. Knowl. Struct. Syst., 1 (1)



Original research A General Theory of Knowledge L. M. AUGUSTO

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System
Technical Journal, 27, 379-423, 623-656.

Shepherdson, J. C. (1984). Negation as failure: A comparison of Clark’s completed
data base and Reiter’s closed world assumption. Journal of Logic Programming,
1 (1), 51-79.

Tarski, A. (1944). The semantic conception of truth and the foundations of semantics.
Philosophy and Phenomenological Research, 4 (3), 341-376.

Tenorth, M. & Beetz, M. (2017). Representations for robot knowledge in the KNOW-
ROB framework. Artificial Intelligence, 247, 151-169.

Vermaas, P. E., Carrara, M., Borgo, S., & Garbacz, P. (2013). The design stance and
its artifacts. Synthese, 190, 1131-1152.

Vernon, D. (2014). Artificial cognitive systems: A primer. Cambridge, MA & Lon-
don, UK: The MIT Press.

Cite this paper as:

Augusto, L. M. (2020). Toward a general theory of knowledge. Journal of
Knowledge Structures & Systems, 1 (1), 63-97.

EDITORIAL INFORMATION

Editor-in-chief : Luis M. Augusto

Commentators:

Farshad Badie (Editor)

Walid S. Saba (Editor)

J. Knowl. Struct. Syst., 1 (1) 97


