
Two-Level Grammars: Some Interesting

Properties of van Wijngaarden Grammars

Luis M. AUGUSTO*

Editor-in-Chief

Ω ::= Journal of Formal Languages

January 2023 Volume 1

Abstract

The van Wijngaarden grammars are two-level grammars that present many
interesting properties. In the present article I elaborate on six of these properties,
to wit, (i) their being constituted by two grammars, (ii) their ability to generate
(possibly infinitely many) strict languages and their own metalanguage, (iii)
their context-sensitivity, (iv) their high descriptive power, (v) their productivity,
or the ability to generate an infinite number of production rules, and (vi) their
equivalence with the unrestricted, or Type-0, Chomsky grammars.

Key words: Two-Level Grammar; van Wijngaarden Grammar; Deep Gram-
mar and Surface Grammar; Strict Language and Strict Metalanguage; Descrip-
tive Power; Productivity

1 Introduction

Formal languages are at the heart of a large plethora of computing applications, such
as programming, compiling, etc. As is well known, formal languages are generated by
formal grammars, which are essentially rewriting systems. Two-level grammars are
formal grammars that are a combination G2

G1
= Level 2

Level 1 of two grammars G1 and G2 in

two levels, lower and upper, respectively denoted by G1 and G2; grammars G1 and G2

can be of the same or of different type in the (extended) Chomsky hierarchy. Many
central computational applications in both theory and practice have been found for
these grammars (e.g., Bryant & Lee, 2002; Bryant et al., 1988; Edupuganty & Bryant,
1989; Kupka, 1980; Ma luszyńsky, 1984; Visser, 1997).

*
� luis.ml.augusto@gmail.com

3

Review van Wijngaarden Grammars L. M. AUGUSTO

There are several kinds of two-level grammars, all of which share similar formal
properties, parsing problems, and implementation techniques (Koster, 1993). Among
these, the van Wijngaarden grammars (abbr.: WGs), grammars of two-level type
CFG
CFG , present many interesting properties, of which I explore here six, to wit, (i)
their being equipped with a deep grammar and a surface grammar, (ii) their ability
to generate (infinitely) many strict languages and their own strict metalanguage, (iii)
their context-sensitivity, (iv) their high descriptive power, (v) their productivity, or the
ability to generate an infinite number of production rules, and (vi) their equivalence
with the unrestricted, or type-0 grammars. Thus, although these grammars do not
belong to the Chomsky hierarchy they capture essential properties of the context-
free grammars (CFGs; type 2), the context-sensitive grammars (CSGs; type 1), and
the unrestricted grammars (UGs; type 0).1 The class WL of the van Wijngaarden
languages properly includes all the languages in the Chomsky hierarchy, so that we
have

RGL ⊂ CFL ⊂ CSL ⊂ REL︸ ︷︷ ︸
Chomsky Hierarchy

⊂ WL

where the Chomsky classes of regular languages, context-free languages, context-
sensitive languages, and recursively enumerable languages are respectively denoted
by RGL, CFL, CSL, and REL. However, the WGs are not members of the Chom-
sky grammar hierarchy, so that this language-inclusion relation naturally raises our
interest, namely with respect to their syntactic properties.2

WGs were invented by A. van Wijngaarden (1965; 1969) as the syntax and se-
mantics of the programming language algol 68.3 Despite their many interesting
properties the literature on WGs is not abundant and their study has not been as
constant and consistent as that of other formal grammars, namely the CFGs; in ef-
fect, it seems to have (almost) ceased around 1995. Their equivalence with the UGs,
established early on in Sintzoff (1967), makes them a hard subject to study, and this
scarcity and difficulty is what motivates this review article. It is hoped that the
reader will be convinced of both the interesting properties of WGs and their various
(potential) applications in classical computing, in particular in programming:4 For in-
stance, Edupuganty & Bryant (1989) listed “readability, implementability, referential
transparency, and the capability for data and procedure abstraction” as the primary
advantages of WG-based programs over other programming languages, and Grune &
Jacobs (2008) wrote with respect to WG-based programming that if it “becomes a

1Other abbreviations common in the literature are “W-grammar,” “VW-grammar,” and even
“TLG,” because two-level grammars are frequently identified with WGs. Although relatively scarce,
the literature on WGs presents many variations to the notation and even to the terminology, making
it even more difficult to approach these grammars. Aiming at uniformity, I adopt, with minor adap-
tations, the original (not intuitive) notation and terminology in van Wijngaarden et al. (1976) and
Cleaveland & Uzgalis (1977). These two references provide treatments of WGs from the program-
ming viewpoint; in this review I focus on the strictly formal-grammar perspective. Familiarity with
the basic aspects of the theory of formal languages, including the Chomsky hierarchy, is assumed;
Augusto (2021) provides a treatment of this subject clearly centered in the Chomsky hierarchy.

2De Graaf & Ollongren (1984) show that the two-level type CFG
RGG

, where “RGG” abbreviates
“regular grammar” (Type 3), is sufficiently general to generate each member of WL.

3See Lindsey (1996). I refer the reader interested in programming with algol 68 to Lindsey &
van der Meulen (1977). A recent extension and implementation of algol 68 called Algol 68 Genie
is available at [1].

4See Augusto (2021) for the meaning of the expression “classical computing.”

4 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

full-fledged paradigm, we will no doubt find the style presented here as archaic as we
find today machine code of the 1950s.” I add that a good grasping of these grammars
can help us to understand better the CSGs and the UGs, thus potentially contribut-
ing to the design of (more efficient) compiling algorithms for the languages generated
by them; in effect, compiling the CSLs is still a difficult and inefficient process, and
no compilation algorithms have been devised for the RELs. All these objectives are
expected to pay off for the extra effort of learning the verbose terminology and the
highly complex syntax of the WGs.

The aim of a review article is rarely that of providing novel results; in accordance
with this typology, I largely restrict the discussion to already published contents.5

However, I introduce novel or adapted concepts and formal definitions (e.g., surface
vs. deep grammar/language; strict metalanguage) that in my view contribute to a
better systematization of these grammars and foster thus their further development.

2 The Syntax of van Wijngaarden Grammars

As is well known, formal languages have two main components to them, to wit,
syntax and semantics, and they can be approached via accepting systems (typically
automata) and/or generating systems (typically grammars). The latter approach is
adopted here, with only the odd reference to automata, and the focus of this work is on
the syntax of the WGs: This review falls on the syntactic aspects of these grammars
that account for the language-inclusion relation above. The WGs have relations with
many other classes of grammars, but here they will be put into relation only with the
class of the Chomsky grammars, i.e. the formal grammars in the Chomsky hierarchy.

Recall that a Chomsky grammar is a 4-tuple G = (V, T, S,R), where V ∪ T =
Σ ̸= ∅ for the finite disjoint sets V and T of variable symbols and terminal symbols,
respectively, is called the alphabet, S ∈ V is the start symbol, and R is a finite
set of production rules rP of the form α → β, read “α is rewritten as β,” where
α is the left-hand side of the rule (abbr.: LHS), α ∈ (V ∪ T)

+
, |V (α) | ≥ 1, and

β ∈ (V ∪ T)
∗

=
(

(V ∪ T)
+ ∪ {ϵ}

)
is the right-hand side of the rule (RHS), so that

the empty symbol “ϵ” is allowed only on the RHS. Restrictions apply to this general,
unrestricted, type-0 definition for types 1 - 3 of the Chomsky hierarchy.

By a slight abuse of terminology, G is also called a generative system and the
language L generated by G is defined as

L (G) =
{
w ∈ T ∗|S ∗

=⇒
G

w
}

where “w = t1t2...tk” denotes a string of terminal symbols (the concatenation of the
terminal symbols t1, t2, ..., tk) called word, “=⇒” denotes a derivation step such that

we have S
n

=⇒
G

ϑ for the sentential form ϑ ∈ (V ∪ T)
∗

in n derivation steps, and

“*” (Kleene star) denotes the reflexive and transitive closure of the relation =⇒
G

⊆

(V ∪ T)
+

. A derivation S
∗

=⇒
G

w in G can be leftmost (denoted by
∗

S =⇒l
G

w) or

5Cleaveland & Uzgalis (1977), in particular, is a major source for this article. “Old” as it is, this
book remains an essential source for the study of WGs, even if their notion of the two levels differs
largely from that of the standard literature (see below).

Ω - J. Form. Lang., 1 5

Review van Wijngaarden Grammars L. M. AUGUSTO

rightmost (
∗

S =⇒r
G

w) depending on whether the leftmost or the rightmost variables,

respectively, are rewritten at each step of the derivation. When applied over an
arbitrary set of symbols Σ, the Kleene star denotes the set of all strings – including
the empty string ϵ – over Σ; this set is denoted by Σ∗.6 Another, less abstract, way
to define a language in set-theoretic terms is as

L (G) = {w ∈ T ∗|w satisfies P}

where P is some property (e.g., no letter of the Roman alphabet occurs more than
once).

A Chomsky grammar G = (V, T, S,R) where for strings α, β ∈ Σ∗ we have α → β
if there exist strings x, y, u, v ∈ Σ∗ such that α = xuy, β = xvy, is equivalent to a
string rewriting system, or semi-Thue system Γ = (Σ∗, R) where Σ is (usually) finite
and R is a set of binary relations →⊆ Σ∗ × Σ∗.

2.1 Syntactic Marks, Notions, and Typographical Characters

To avoid confusion, a formal grammar G that is a WG will be denoted by G. Con-
trasting with the above simplicity of a Chomsky grammar G, a WG G is a 7-tuple
whose components are not so straightforwardly defined; this requires some prelimi-
nary definitions and notation.7 To begin with, a WG uses sequences of symbols called
syntactic marks.

Definition 1. The syntactic marks of a WG are of three types:

1. Small syntactic marks, written as “a”, “b”, “c”, ..., “y”, “z”, “(”, “)”.

2. Large syntactic marks, written as “A”, “B”, “C”, ..., “Y”, “Z”, “0”, “1”, ..., “9”.

3. Other syntactic marks, written as “.” (“point”), “,” (“comma”), “:” (“colon”), “;”
(“semicolon”), “ ’ ” (“apostrophe”), “-” (“hyphen”), “*” (“asterisk”).

The empty syntactic mark is denoted by ϵ. Note that the parentheses – “(” and “)” –
are considered small syntactic marks, not being included in the class of other syntactic
marks. The digits “0”, “1”, ..., “9” are considered large syntactic marks, but they can
also be written with small syntactic marks (“zero”, “one”, ..., “nine”).

Instead of symbols a WG G uses finite sequences σ = σ1σ2...σn of syntactic marks
where σi may belong to any of the three types above and there may be blank spaces
between any σi and σj , i < j is a chain, i.e. there is no x such that i < x < j. Just as
in a Chomsky grammar G, a WG G has a set V of variables (also called protovariables)
and a set T of terminals, but these do not exhaust the sets of sequences of syntactic
marks of a WG G.8

6Recall that more generally for some set S of strings we have S0 := {ϵ}, S∗ :=
⋃

i∈N,i≥0 S
i, and

S+ :=
⋃

i∈N,i≥1 S
i, where the concatenation SS...S︸ ︷︷ ︸

i times

= Si denotes the i-th power of S such that

Si+1 = SiS.
7See Table 5 at the end of Section 3.2 for a quick reference.
8Typically, (single) symbols, such as those used in Definition 2, are used only in abstract rules

and formal statements. The term “sequence” is preferable to “string,” because commas (denoting
concatenation) and blank spaces are allowed in σ. But terminal sequences of symbols are called
words.

6 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

Definition 2. The finite sequences σ of syntactic marks of a WG such that |σ| ≥ 0 are
called notions and their respective sets are defined as follows:

1. A protonotion x ∈ P is a (possibly empty) sequence of small syntactic marks.
A non-empty protonotion x ending with ’symbol’ is a terminal t ∈ T ; otherwise,
it is a protovariable v ∈ V .

2. A metanotion X ∈ M is a non-empty sequence of large syntactic marks. A
metanotion ending with ’symbol’ is a terminal metanotion, or metaterminal.
The sets of metanotions and metaterminals MT ⊆ M are respectively defined
as

M = {W1, ...,Wl}

and
MT = {“X symbol”|X ∈ M} .

3. A hypernotion ⟨X ⟩ is a (possibly empty) sequence of protonotions and/or metan-
otions. The finite set of non-empty hypernotions N is defined as

N =
{
⟨X⟩ |X ∈ (M ∪ V)

+
}
.

A metanotion X ∈ M , often denoted by W(i), can be called a metavariable, especially
to distinguish it from a hypernotion ⟨X⟩ that is/has a protovariable v ∈ V ; in effect, we
have M ∩V = ∅. Protonotions can be either variables or terminals, i.e. P ⊇ (V ∪ T);
to denote P⧹T I shall write P ′. From this and the above definitions, it can be inferred
that V ⊇ (P ′ ∪ (N⧹M)). As it will be seen, MT is not straightforwardly a set of
terminals in a full-fledged WG, requiring the application of simultaneous substitutions
to the members of M.

Example 3. The string of small syntactic marks ’variable point’ is a protonotion,
namely the protonotion variable point. ’variable point numeral’ is a notion, namely
the notion variable point numeral. “INTREAL” is a metanotion, namely the metan-
otion INTREAL. ’reference to INTREAL’ is a hypernotion, namely the hypernotion
reference to INTREAL. ’letter a symbol’ is a terminal protonotion, namely the typo-
graphical character a. ’letter ALPHA symbol’ is a terminal metanotion, namely the
terminal protonotions ’letter a symbol’, ’letter b symbol’, ..., ’letter z symbol’, i.e. the
typographical characters a, b, ..., z. The blank spaces and hyphens are added for the
sake of readability: ’reference-to-INTREAL’ and ’referencetoINTREAL’ are two equally
admissible ways of writing the hypernotion ’reference to INTREAL’.

The correspondence between the terminal protonotions of a WG and the typo-
graphical characters of terminal strings is typically given by a representation table.
Table 1 gives the most commonly used terminal protonotions in a WG and the cor-
responding typographical characters.

2.2 Two Description Rules and an Ad-Hoc Definition of L (G)
As recalled above, a Chomsky grammar G has a single set R of production rules that

generate directly the words of a given language L (G) =
{
w ∈ T ∗|S ∗

=⇒
G

w
}

, where the

Ω - J. Form. Lang., 1 7

Review van Wijngaarden Grammars L. M. AUGUSTO

Table 1: A representation table.

Terminal Notation Typographical

Character

colon symbol :

semicolon symbol ;

comma symbol ,

period symbol .

becomes symbol :=

left parenthesis symbol (

right parenthesis symbol)

letter a symbol a
...

...

letter z symbol z

digit zero symbol 0
...

...

digit nine symbol 9

words w are taken in the strictly generative sense as ∗-step derivations from the start
symbol S. As seen, an alternative definition is L (G) = {w ∈ T ∗|w satisfies P}, but
P is not described in the production rules. This description of P is a unique feature
of WGs: A WG G has description rules in the sense that they are designed first and
foremost to describe a language L (G), rather than to generate directly the words of
L (G)– although they can also be used for this end. In the following definitions, it is
assumed that there may be more than one RHS for the same LHS, i.e. we may have
k rules α → β1, ..., α → βk, which is abbreviated in a single rule as α → β1 ; ... ; βk

where “;” denotes alternative RHSs and thus replaces the symbol “|” typically used in
Chomsky-grammar production rules.

Definition 4. A metaproduction rule rM (abbr.: metarule) is a rule of the form

X0 → X1;X2; ...;Xn

where X0 ∈ M , Xi ∈ (M ∪ V)
∗

for 1 ≤ i ≤ n. RM ⊆ M × (M ∪ V)
∗

is the finite set
of metarules. The metarule symbol for “→” is “::” and the semicolon separates the Xi

meta-alternatives.

Let W denote an arbitrary metanotion. In practical terms, a metarule describes
what (alternative) substitutions of Xi ∈

[
(M ∪ V)

∗
= (M ∪ P ′)

∗]
, 1 ≤ i ≤ n, are

allowed for X0 ∈
(
M ⊇ {Wi}li=1

)
.

Example 5. The following is a metarule:

� INTREAL :: SIZETY integral; SIZETY real.

This metarule specifies that the metanotion “INTREAL” can be substituted by the
metanotion“SIZETY”concatenated with either the protonotion ’integral’ or the protono-
tion ’real’.

8 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

From this example, it can be easily seen that a metarule consists of the follow-
ing ordered items: A non-empty sequence W of large syntactic marks on the LHS,
two colons (the metaproduction symbol) separating the LHS and the RHS, a (pos-
sibly empty) sequence of Xi meta-alternatives constituted by protonotions and/or
metanotions separated by semicolons, and a period.9 Schematically, we have:

(rM) METANOTION︸ ︷︷ ︸
LHS

:: X1;;Xn.︸ ︷︷ ︸
RHS

where the RHS actually corresponds to the definition of the metanotion on the LHS.

Definition 6. A hyperproduction rule rV (abbr.: hyper-rule) is a rule of the form

⟨X0⟩ → X̊1; X̊2; ...; X̊m

where ⟨X0⟩ ∈ N and X̊i ∈
[
(N ∪ T ∪ {, })

∗
= (M ∪ P ∪ {, })

∗]
for 1 ≤ i ≤ m, X̊i =

(γ ⟨X ⟩ δ)i1 ... (γ ⟨X ⟩ δ)ik where γ, δ ∈ (T ∪ {, })
∗
. The finite set of hyper-rules is the

set RV ⊆ N × (N ∪ T)
∗
. The hyper-rule symbol for “→” is “:” and the semicolon

separates the X̊i hyper-alternatives.
10

In practical terms, a hyper-rule describes what (alternative) terminal substitutions
on the RHS (i.e. the X̊i, 1 ≤ i ≤ m) for the LHS (i.e. ⟨X0⟩ ∈ N) are allowed. Terminal
substitutions are either (meta)terminals or protonotions.

Example 7. The following hyper-rule specifies that the hyper-notion ’NOTION se-
quence’ can be substituted either by the metanotion “NOTION” or by the sequence
of metanotions and protonotions ’NOTION, NOTION sequence’, where the comma
denotes concatenation:

� NOTION sequence : NOTION; NOTION, NOTION sequence.

From this example it can be easily seen that the constituents of a hyper-rule are,
in order, a non-empty hypernotion on the LHS, a colon (the hyper-rule symbol),
and a RHS with a (possibly empty) sequence of hyper-alternatives constituted by
(terminal) protonotions and/or (terminal) metanotions (the X̊i possibly containing
one or more commas to denote concatenation) separated by semicolons, and a period.
Schematically, we have:

(rV) HyperNotion︸ ︷︷ ︸
LHS

: X̊1;; X̊m.︸ ︷︷ ︸
RHS

Note how distinguishing marks (quotes, apostrophes, or hyphens) are wholly removed
from the rules above; they are used only in metanotions and hypernotions that stand
for themselves (see Example 3), but we can relax this convention whenever there is

9An empty RHS is typically the case only for the metarule for the metanotion“EMPTY”, to wit,
EMPTY :: .

10In the WGs given below, I shall dispense with this formal notation, but the reader should be
aware that it is, or variations thereof are, very frequent in the literature.

Ω - J. Form. Lang., 1 9

Review van Wijngaarden Grammars L. M. AUGUSTO

Table 2: Components of metarules and hyper-rules of a WG.

Rule LHS RHS

rM ∈ RM Metanotion W ∈ M Meta-alternatives

Xi ∈ (M ∪ V)∗

rV ∈ RV Hypernotion ⟨X0⟩ ∈ N Hyper-alternatives

X̊i ∈ (N ∪ T ∪ {, })∗

no risk of ambiguity, the different font and the size of the syntactic marks sufficing
for the identification of the kind of notion.11

Table 2 summarizes the above. The definitions of a WG G and of the language
L (G) generated by G can now be given.

Definition 8. A van Wijngaarden grammar is a 7-tuple G = (M,V,N, T,RM , RV , S)
where the finite sets M, V, N, T, RM , RV are as above, S = ⟨s⟩ ∈ N such that s ∈ V +

is the start notion, and concatenation is the sole string operation.

This allows for a preliminary ad-hoc definition of a language generated by a WG:

Definition 9. Let G be a WG and let
∗

=⇒
G

be the reflexive and transitive closure of

the relation =⇒
G

⊆ (N ∪ T)
+

= H. We have the derivation step α =⇒
G

β (α =⇒l
G

β

or α =⇒r
G

β for a leftmost or rightmost derivation step, respectively) if there is a

hyper-rule rV j =
〈
X0j

〉
→ X̊1j ; X̊2j ; ...; X̊mj and strings γ, δ ∈ (N ∪ T)

∗
such that

γ,
〈
X0j

〉
, δ︸ ︷︷ ︸

α

→ γ,
◦

Xij , δ︸ ︷︷ ︸
β

, where the commas denote concatenation. Then, the hyper-

language generated by G is defined as:

LH (G) =

{
w ∈ T ∗ ⊆ P | ⟨s⟩ ∗

=⇒
G

w

}
Leftmost and rightmost derivations, denoted by

∗
α =⇒l

G
β and

∗
α =⇒r

G
β, respectively,

can be specified whenever all the derivation steps are of the form α =⇒l
G

β or α =⇒r
G

β.

Example 10. Beginning with a very simple language will prove useful for pedagogi-
cal reasons. I shall be working with the WG conveniently called GAlpha1 , abbrevi-
ated as Alpha1 whenever there is no risk of confusion. The following rules generate
LH (Alpha1) = {tn|n ≥ 1, t = a, b,, or z}:12

11Strictly, one should write, for instance, ‘x ’ ∈ P (Def. 2.1) and “W ” ∈ M (Def. 2.2) to denote
the facts that x is an arbitrary sequence of small syntactic marks and W is an arbitrary sequence of
large syntactic marks. However, this would significantly increase the complexity of the notation and
I therefore relax this practice when denoting arbitrary sequences of either small or large syntactic
marks.

12Abbreviations such as “a; b; c; ...; y; z” should be used with care in programming with WGs, i.e.
they should be either altogether avoided or defined in the program.

10 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

(rM1) ALPHA :: a; b; c; ...; y; z.

(rV 1) s : ALPHA.
(rV 2) ALPHA : letter ALPHA symbol;

ALPHA, letter ALPHA symbol.

The derivation of the word aaa ∈ LH (Alpha1) is as follows:

s =⇒
rV 1

a =⇒
rV 2

a, a︷ ︸︸ ︷
letter a symbol

=⇒
rV 2

a, a︷ ︸︸ ︷
letter a symbol

a =⇒
rV 2

a︷ ︸︸ ︷
letter a symbol

aa

This is obviously a rightmost derivation, denoted by s =⇒r aaa; in order to
obtain a leftmost derivation, i.e. s =⇒l aaa, the two alternatives of rV 2 must change
positions in the RHS. Figure 1 shows the parse tree for the word aaa generated by
Alpha1. In this, as in all parse trees of words generated by WGs, the terminals are
given in a representation table (see Table 1), reason why terminals can be represented
directly in the leaves of the parse tree (Fig. 1, right).13

Figure 1: Parse tree for the word aaa generated by the WG Alpha1. The complete parse
tree is on the left and its simplified version is on the right.

In the very first step of the derivation above, we have s =⇒
rV 1

a by applying rM1, i.e.

the metanotion ALPHA was replaced by the very first meta-alternative in the RHS of
this rule. This replacement constitutes one of the core aspects of a WG and it will be
adequately formalized below.

13I apply this simplification in the parse trees below.

Ω - J. Form. Lang., 1 11

Review van Wijngaarden Grammars L. M. AUGUSTO

3 Six Interesting Properties

3.1 Two-Level and Two-Grammar Grammars

A WG can be generally characterized as a finite specification of a possibly infinite set of
context-free production rules (e.g., Baker, 1972).14 The levels of the finite specification
and the possibly infinite set of production rules are thus both distinguishable and
interactive, but this is not what is meant when we say that a WG is a two-level
grammar: Firstly, a WG is constituted by two CFGs that, when combined as CFG

CFG =
Level 2
Level 1 , result in a CFG, a CSG, or a UG; these two CFGs correspond then to two
levels of the WGs in the sense that in one of the levels (the first) the non-terminal
elements of the other level (the second) are defined. These two levels, denoted by G1

and G2, correspond respectively to the two kinds of rules of a WG discussed above,
to wit, the metarules in the set RM and the hyper-rules in the set RV , and their
associated sets. They can thus be seen as constituting two subgrammars, to wit,
the metagrammar and the hypergrammar, respectively, so that in a WG we have the
level distinction Level 2

Level 1 = G2

G1
= Hyper-level

Meta-level . As seen in Example 10, this combination
generates what I called above the hyper-language of a WG, denoted by LH (G). This
coinage was purely ad hoc and will soon be replaced by another term. Together, and
to borrow a well known distinction in linguistics, these two kinds of rules constitute
the deep level or grammar upon which the surface level or grammar is based.15 I
shall denote these two levels or grammars by GD and GS , respectively. In order to
avoid confusion I shall reserve the term “level” for the above distinction and speak of
grammars when meaning this latter distinction. This latter two-grammar distinction
is accounted for by the fact that there is a single parse tree in GD for the (possibly
infinitely many) different words of a WG generated by the production rules in GS ;
the parse tree in GD is thus seen as the deep structure that accounts for the (possibly
infinitely many) terminal strings of a WG taken as surface structures.

We have the two-level/grammar structure of a WG decomposable as shown in Ta-
ble 3.16 I next elaborate on the contents of this table. Let us retake Definition 8; this
corresponds in fact to grammar GD, so that we have GD = (M,V,N, T,RM , RV , S).
The two levels G1 and G2 can be segregated as follows:

Definition 11. Let GD be the deep grammar of a WG G. Then:

1. The metagrammar of G is the 3-tuple G1 = (M,V,RM).

14Recall that in a CFG for a rule α → β we have α ∈ V , |V (α) | = 1, and β ∈ (V ∪ T)∗.
15The borrowing is more directly from Chomsky (1964), in which deep and surface structures

are distinguished as two levels in which a string can be analyzed in a generative grammar, and
more indirectly from Hockett (1958), which distinguishes deep and surface grammars. The former
borrowing was already found in de Chastellier & Colmerauer (1969).

16There is no uniformity in the literature as to what the two levels are, but it is obviously certain
that there are two levels. For instance, Cleaveland & Uzgalis (1977) consider a lower or first level
constituted by the hyperproduction and the metaproduction rules together and an upper or second
level constituted by the production rules; roughly the distinction here proposed between deep gram-
mar and surface grammar, respectively. Koster (1974) also considers these two levels, but appears to
invert the hierarchy, seeing the production rules as the first level of a WG. Greibach (1974) reserves
the two-level distinction to the metarules (level 1) and the hyper-rules (level 2), a practice adopted
by other authors. Considering the distinction of two levels and two grammars as proposed above
largely captures the usual distinctions.

12 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

Table 3: Grammars and levels of a WG G and corresponding rules.

Grammar Subgrammar Level Rules

Deep (GD) Metagrammar G1 Metarules

Hypergrammar G2 Hyper-rules

Surface (GS) Strict Grammars G
x
′
i

Production rules

2. The hypergrammar of G is the 4-tuple G2 = (N,T,RV , S) = ((M ∪ V) , T,RV , S).

For practical reasons, one often considers G1 = (M,V,RM ,W), where W ∈ M . This
definition shows that the sets common to both G1 and G2 are M and V. In Example
10, we have“ALPHA”as both a metanotion in RM and a metaterminal in RV (since we
have ’letter ALPHA symbol’, i.e. ({ALPHA} ⊆ M)∪{symbol}). However, the terminal

symbols of the language L
(
GD
Alpha1

)
= {tn|n ≥ 1, t = a, b,, or z} are a, b, ..., z,

whose corresponding protonotions x ∈ V are precisely the meta-alternatives a, b, ...,
z given for ALPHA, so that there is an interaction between RM and RV implicating
the sets M and V.17 This interaction is in fact a replacement defined as follows.

Definition 12. Let G be a WG. Then, the set of all the homomorphisms h ∈ Hom
(“choice functions”) assigning to each metavariable W ∈ M an element of the language
determined by it and the metarules

Hom (M,V,RM) = Hom
(
G1

)
= Ĝ =

=
{
h : M −→

⋃{
L
(
G1

)
|W ∈ M

}
|∀W ∈ M,h (W) ∈ L

(
G1

)}
is called the universal assignment to metavariables and the homomorphism h (W) is
referred to as uniform replacement. The rule that applies this uniform replacement is
called uniform replacement rule (URR).

Example 13. Consider the following set of (abstract) metarules of a given WG G:

RM =

 R → S ; ϵ
S → r ; rS
X → a; b ; c


Then, we have Hom ({R,S,X} , {a, b, c, r} , RM) = Ĝ if and only if we have h (R) ∈
{rn|n ≥ 0}, h (S) ∈ {rn|n > 0}, and h (X) ∈ {a, b, c}.

Hom
(
G1

)
= Ĝ can thus be seen as a metagrammar with respect to G2 in the

sense that it specifies the allowed uniform replacements h (W) for every W ∈ M in
the hyper-rules of G. In practice, URR is applied only when there are two or more
occurrences of the same metanotion in a hyper-rule, in which case each occurrence of
that metanotion is replaced with the same (terminal) meta-alternative; for a metan-
otion that occurs only once in a hyper-rule, it suffices to replace it with a (terminal)
meta-alternative. I shall denote the application of URR to a metanotion W in a

17The above ad-hoc language LH (G) is replaced by L
(
GD

)
.

Ω - J. Form. Lang., 1 13

Review van Wijngaarden Grammars L. M. AUGUSTO

Table 4: Rules, notions, and grammar levels in a WG.

Rules Non-Terminals Terminals Grammar and

Level

rM ∈ RM Metanotions Protonotions GD.1

rV ∈ RV Hypernotions Hypernotions GD.2

rS ∈ RS Protonotions (Strict

Notions)

Protonotions ending

in ’symbol’

GS

hyper-rule rV i where W is replaced by the protonotion x as defined in the metarule
rM j by URRrV i

rM j (W,x) (abbreviated as URRi
j (W,x)); if transitivity of replacement is

the case, I write URRrV i
rM j−k (W,x), where rM j and rMk, j < l ≤ k, are the metarules

in the transitive replacement. Once one has applied URR (or made a simple replace-
ment for a single-occurrence metanotion) to all the metanotions of a hyper-rule, one
or more production rules have been derived. The following definition formalizes this
derivation.

Definition 14. Let G be a WG and rV j =
(〈

X0j

〉
→ X̊1j ;X̊2j ; ...; X̊mj

)
a hyper-rule

with the n ≥ 1 metanotions W1,W2, ...,Wn. The set RS of strict production rules of
rV j is defined as

RS (rV j) =⋃{
h
(〈
X0j

〉)
→ h

(
X̊1j

)
;h

(
X̊2j

)
; ...;h

(
X̊mj

)
|h

(
Xij

)
= URRrV j

RM
(Wl, x)

}
where h (v) = v, v ∈ V ∪ {, }, h (⟨X0⟩) = x′ ̸= ϵ is a strict notion, and h (Wl) ∈
L ((M,V,RM ,Wl)). Equally, one says that x′ = h

(
Xij

)
∈ RHS (rSk), i = 1, ...,m,

k = 1, ..., s, Xi /∈ T , is a strict notion if there is a production rule rSj such that
h
(
Xij

)
∈ LHS (rSj), j = 1, ..., s, and the set of (strict) notions is defined as:

NS =
⋃{

h (X) = x′ ∈ LHS (rSj)
s
j=1 |X ∈ N,h (X) ∈ P

}
For some Xi, i ̸= 0, if we have the paranotion ’h (Xi) symbol’ = x, then x is called a
terminal (strict) notion.

Intuitively, a strict production rule rS is derived from a hyper-rule rV if one
can turn a copy of the latter into a copy of the former by means of a consistent
substitution in such a way that the hypernotions in rV are turned into protonotions
in rS . These replaced hypernotions, called strict notions, contain protonotions that
are replacing metanotions in rV for which there is a terminal metarule rM , and the
derived production rule describes precisely this replacement by means of a terminal
production. Thus, and more formally, we have RS =

⋃
RS (rV i)

k
i=1, i.e. the set of

strict production rules of a WG G is the union of all the derivations via Ĝ from the
set RV = {rV i}ki=1. Table 4 gives a summary of all the above in terms of notions.

A definition of a surface grammar GS can now be given:

Definition 15. The surface grammar of a WG G is the 4-tuple GS = (NS , T, s, RS)
where T is the set of terminal protonotions of G, s ∈ NS is the start strict notion

14 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

derived from ⟨s⟩ ∈ RV , and the remaining elements are defined as

NS =
⋃
i

{
x

′

i

}
and

RS =
⋃

RS
x
′
i

where RS
x
′
i

is the subset of strict production rules for x
′

i. We have it that the 4-tuple

Gx
′
i

=

(
NS

x
′
i

, T ′, s, RS
x
′
i

)
is the strict (sub-)grammar for the i -th strict notion x

′

i.
18

We thus can say, by a slight abuse of terminology, that the surface grammar GS

of a WG G is the union of all its strict (sub-)grammars.

Example 16. In G2
Alpha1 , which can be abbreviated as Alpha1 2, the meta-alternatives

of the metanotion ALPHA are a, b, ..., z; applying URR to the first rule in RV for
each of the meta-alternatives, i.e. URR1

1 (ALPHA,x) for x = a, b, ..., z, we have the
following twenty-six production rules:

RSAlpha1
(rV 1) =


s : a.
s : b.

...
s : z.


Or, equivalently, the single production rule with twenty-six alternatives:

RSAlpha1
(rV 1) = {s : a; b ; ...; z.}

It is easy to see that this single production rule corresponds exactly to the single rule
in RMAlpha1

, i.e. in Alpha1 1. Applying now URR on the metanotion ALPHA on the
second rule in RV for the protonotion ’a’ we obtain:

URR2
1 (ALPHA, a) = a : letter a symbol; a, letter a symbol.

By means of the application of URR for all the a, b, ..., z, twenty-six production rules
with two alternatives of the form

x ′ : letter x symbol︸ ︷︷ ︸
A1

; x ′, letter x symbol︸ ︷︷ ︸
A2

.

can be derived from the second rule in RV :

RSAlpha1
(rV 2) =


a : letter a symbol; a, letter a symbol.
b : letter b symbol; b, letter b symbol.

...
z : letter z symbol; z, letter z symbol.


18Henceforth, I abbreviate “strict production rule” as “production rule”; the context disambiguates

whether “production rule” refers to a rule in a Chomsky grammar or a strict production rule in a

WG, denoted respectively by rP and rS . Additionally, I abbreviate “x
′
i” as “x′”.

Ω - J. Form. Lang., 1 15

Review van Wijngaarden Grammars L. M. AUGUSTO

We thus have |RSAlpha1
| = 52, i.e. the grammar Alpha1S has fifty-two production

rules. If RSAlpha1
(rV 1) is abbreviated as above, then we end up with twenty-seven

production rules in Alpha1S . But Alpha1S corresponds in fact to the single abstract
strict grammar GSx′ =

(
{x′} , {x} , s, RSx′

)
where the set of strict production rules is

RSx′ =

 s :x′.
x′ : letter x symbol;

x′, letter x symbol.


from which twenty-six disjoint patterns of words (for a, b, ..., z) can be derived.

3.2 Languages, Strict Languages, and Strict Metalanguages

Derivations in a WG G and the language generated by G can now – and replacing
Def. 9 – be defined as follows:

Definition 17. Let G be a WG and let
∗

=⇒̂
G

be the reflexive and transitive closure of the

relation =⇒̂
G

⊆ P+. We have the derivation step α =⇒
Ĝ

β if there is a production rule

rS = x′ ∈ (NS)
+ → x ∈ P ∗ and strings γ, δ ∈ P ∗ such that γ, x′, δ︸ ︷︷ ︸

α

→ γ, x, δ︸ ︷︷ ︸
β

, where

the commas denote concatenation.19 Then, the language generated by G is defined as

L (G) =

{
w ∈ T ∗|s ∗

=⇒̂
G

w

}
= L

(
GS

)
where s ∈ NS is the start strict notion.

Because RS is a description of the uniform replacements admissible in the meta-
grammar Ĝ that are implemented in the production rules it can be considered as

generating a metalanguage L
(
Ĝ
)

of L (G) such that

L
(
Ĝ
)

= L
(
L
(
GD

))
= L

(
GS

)
.

Example 18. Let us retake the grammar GAlpha1 . The URR2
1 (ALPHA, a) applied to

the entire set RV gives a strict subgrammar, namely the set of strict productions RSa

that generates the surface language La

(
Alpha1S

)
= {an|n > 0}:

URR (ALPHA, a) = RSa =

 s : a.
a : letter a symbol;

a, letter a symbol.


19Just as in the case of Def. 9, leftmost and rightmost derivations, denoted by

∗
α =⇒l

Ĝ
β and

∗
α =⇒r

Ĝ
β, respectively, can be specified whenever all the derivation steps are of the form α =⇒l

Ĝ
β or

α =⇒r
Ĝ

β.

16 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

The terminal string an is generated by the subgrammar RSa of GAlpha1 in the following

rightmost derivation s
n+1

=⇒ r
Ĝ

an:

s =⇒ a =⇒r
A2

a,

letter a symbol︸ ︷︷ ︸
a =⇒r

A2

a,

letter a symbol︸ ︷︷ ︸
a a =⇒r

A2

... =⇒r
A2

a,

n−1︷ ︸︸ ︷
aaa...a =⇒r

A1

an

where in the last step of the derivation the first alternative (A1) of the production
rule for ’a’ is applied. We could easily obtain a leftmost derivation by formulating the
second alternative A2 as ’letter a symbol, a’. The word an is infinite, denotable by aω,
if the first alternative A1 of this production rule is never applied.

It is easy to see that RSa corresponds to the CFG GAlpha1(a) = ({A} , {a} , S,R)
where

R =

{
S → A |SA
A → a | ϵ

}
but whereas 26 separate CFGs are required to produce strings of the form tn, it
suffices to have a single strict grammar Gx′ in the case of a WG G. Thus, the surface
language L

(
GS

)
can be more than a single (possibly infinite) set of terminal strings;

it can actually be a (possibly infinite) set of languages, namely the union of all the
sets of words that can be generated for the different strict notions in RS . This, in
turn, requires a union of subgrammars, as seen above.

Definition 19. Let x′ ∈ NS be a strict notion in a production rule rSx′ and such that
Gx′ is the strict grammar for x′.20 A string of terminal symbols derived from x′,
denoted by wx′ , such that we have x′ ∗

=⇒
GS

wx′ , is called a strict word. The set of all

the strict words that can be generated by rSx′ is called the strict language of x′, and
it is defined as:

Lx′
(
GS

)
=

{
wx′ ∈ T ∗|x′ ∗

=⇒ wx′

}
The strict metalanguage of a WG G is then defined as

LNS
(G) =

⋃
Lx′ such that

⋂
Lx′ = ∅.

Lx′
(
GS

)
and LNS

(G) are abbreviated as Lx′ and LĜ , respectively. The latter

abbreviation denotes the fact that L
(
GS

)
and LNS

(G) coincide for a WG G. I shall
abbreviate “strict word” as “word” whenever there is no risk of confusion.

Example 20. The grammar Alpha1 generates twenty-six strict languages, one for each
of the letters of the Roman alphabet. In effect, we have:

L
(
GS
Alpha1

)
=

z⋃
x′=a,b,...

Lx′

20Note that the strict notion x′ can coincide with the strict start notion s.

Ω - J. Form. Lang., 1 17

Review van Wijngaarden Grammars L. M. AUGUSTO

We thus have the strict languages:

La = {an|n > 0}

Lb = {bn|n > 0}

...

Lz = {zn|n > 0}

The strict metalanguage of Alpha1 is thus:

L
Âlpha1

= La ∪ Lb ∪ ... ∪ Lz = L
(
Alpha1S

)
= LNS

(
Alpha1S

)

=


La = {an|n > 0}
Lb = {bn|n > 0}

...
Lz = {zn|n > 0}


This completes the elaboration on all the basic components of a WG, all of which

are given with examples on Table 5.

3.3 Infinite Productivity

WGs exhibit the interesting property that GD, which contains a finite number of rules,
can derive an infinite number of production rules in GS . This contrasts with, and thus
segregates them from, the CFGs. These latter grammars can generate (languages of)
infinite words w ∈ Σω (or w ∈ (Σ∗ ∪ Σω)),21 known in the literature as ω-words and
where the superscript ω denotes the operation over some set S ⊆ Σ∗ defined as

Sω := {t1t2...ti...|i ∈ N, ti ∈ S − {ϵ}}

but the number of rules in their production sets is per force finite. A language of
ω-words is called an ω-language, but it is not a necessary condition that a language
be an ω-language to be an infinite language. I give the example of a complete WG
for the CFG generating the CFL L = {anbn|n > 0}. This CFL can be generated by
a simple CFG: The grammar GAlpha2 = (V, T, S,R) with V = {S}, T = {a, b}, and
R = {rP 1, rP 2}, where rP 1 = S → aSb and rP 2 = S → ab. By applying n− 1 times
rule rP 1 and then rP 2 we obtain the derivation

S =⇒ aSb =⇒ a2Sb2 =⇒ ... =⇒ an−1Sbn−1︸ ︷︷ ︸
(n−1)rP 1

=⇒ anbn︸ ︷︷ ︸
rP 2

.

While n can be arbitrarily large, the terminal string anbn is per force finite, namely
by the application of rP 2 in the final step of the derivation. However, the language
L (GAlpha2) need not be finite, as long as no upper bound for n is specified, in which
case we may have L (GAlpha2) =

{
ab, a2b2, ..., aibi, ...

}
. This infinite generativity

21Clearly, w ∈ Σω is a special case of w ∈ (Σ∗ ∪ Σω).

18 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO
T
a
b
le

5
:
C
o
m
p
o
n
en
ts

o
f
a
W

G
w
it
h
ex
a
m
p
le
s
fr
o
m

G A
lp

h
a
1
.

T
er
m

S
y
m
b
ol

S
et

D
es
cr
ip
ti
on

E
x
am

p
le

P
ro
to
n
o
ti
o
n

x
P

∗
S
eq
u
en

ce
|σ
|≥

0
o
f
sm

a
ll

sy
n
ta
ct
ic

m
a
rk
s

a;
le
tt
er

a
sy
m
b
o
l

T
er
m
in
a
l
(S
ym

bo
l)

t
T

⊂
P

P
ro
to
n
o
ti
o
n
|σ
|≥

1
en

d
in
g

in
’s
ym

b
o
l’

le
tt
er

a
sy
m
b
o
l

(P
ro
to
-)
V
a
ri
a
bl
e

v
V

⊆
P

N
o
n
-t
er
m
in
a
l
p
ro
to
n
o
ti
o
n

|σ
|≥

1

s;
a

S
tr
ic
t
N
o
ti
o
n

x
′

N
S
⊂

P
′

P
ro
to
n
o
ti
o
n
|σ
|≥

1
in

th
e

L
H
S
o
f
a
p
ro
d
u
ct
io
n
ru
le

s;
a

M
et
a
n
o
ti
o
n

W
M

S
eq
u
en

ce
|σ
|≥

1
o
f
la
rg
e

sy
n
ta
ct
ic

m
a
rk
s

A
L
P
H
A

H
yp
er
n
o
ti
o
n

⟨X
⟩

N
⊆

(M
∪
P
)∗

S
eq
u
en

ce
|σ
|≥

0
o
f
la
rg
e

a
n
d
/
o
r
sm

a
ll
sy
n
ta
ct
ic

m
a
rk
s

A
L
P
H
A
;
le
tt
er

A
L
P
H
A

sy
m
b
o
l

W
o
rd

w
L
(GD

)
A

(p
a
tt
er
n
o
f
a
)
fi
n
it
e

se
q
u
en

ce
o
f
ty
p
o
g
ra
p
h
ic
a
l

ch
a
ra
ct
er
s
t 1
t 2
..
.t
k

tn
|n

>
0
,t

∈
{a

,b
,.
..
,z
};

a
a
a

S
tr
ic
t
W

o
rd

w
x
′

L
(GS

)
A

w
o
rd

d
er
iv
ed

fr
o
m

a

st
ri
ct

n
o
ti
o
n
x
′

a
a
a

M
et
a
ru
le

r M
R

M
D
efi

n
it
io
n
o
f
a
m
et
a
n
o
ti
o
n

A
L
P
H
A

::
a;

b
;
..
.;
z.

H
yp
er
-r
u
le

r V
R

V
A

p
ro
d
u
ct
io
n
p
a
tt
er
n

s
:
A
L
P
H
A
.

S
tr
ic
t
P
ro
d
u
ct
io
n

ru
le

r S
R

S
W
o
rd
-g
en

er
a
ti
o
n
ru
le

a
:
le
tt
er

a
sy
m
b
o
l.

D
ee
p
L
a
n
gu

a
ge

L
G

L
(GD

)
S
et

o
f
w
o
rd

p
a
tt
er
n
s

L
A
lp

h
a
1
=

{t
n
|n

>
0
,n

∈
{a

,b
,.
..
,z
}}

S
tr
ic
t
L
a
n
gu

a
ge

L
N

S
L

x
′
(GS

)
S
et

o
f
w
o
rd
s
fo
r
x
′

L
a

(A
lp
h
a
1
S
) =

{a
n
|n

>
0
}

S
u
rf
a
ce

L
a
n
gu

a
ge
,

S
tr
ic
t
M
et
a
la
n
gu

a
ge

L
Ĝ

L
(GS

)
T
h
e
u
n
io
n
⋃ k i=

1
L

x
′ i

(GS
) o

f

th
e
st
ri
ct

la
n
g
u
a
g
es

L
Â
lp

h
a
1
=

        L
a
=

{a
n
|n

>
0
}

L
b
=

{b
n
|n

>
0
}

. . .
L

z
=

{z
n
|n

>
0
}

        

Ω - J. Form. Lang., 1 19

Review van Wijngaarden Grammars L. M. AUGUSTO

needs thus to be distinguished from the infinite productivity of the WGs, whose pro-
duction set can actually have an infinite number of rules, namely one rule for each of
the infinitely many words that can be generated by the grammar. The ω-languages
are theoretically a messy matter (e.g., Staiger, 1997), so a simpler means to allow for
the generation of an infinite number of terminal strings is welcome in the field of for-
mal languages for practical ends. A WG G allows precisely for this by the derivation
from GD of an infinite number of production rules in GS such that we have

RS =

ω⋃
i=1

rSw
i

where w denotes a terminal string such that i < j if |w|rSi < |w|rSj , |w|rSi denotes
the length (i.e. number of typographical characters) of the word w generated by the
production rule rSi.

Example 21. The following rules constitute the WG GAlpha2 (abbreviated as Alpha2)
that generates the CFL L (Alpha2) = {anbn|n > 0}:

(rM1) N :: n; Nn.

(rV 1) s : Na, Nb.
(rV 2) nNa : letter a symbol, Na.
(rV 3) nNb : letter b symbol, Nb.
(rV 4) na : letter a symbol.
(rV 5) nb : letter b symbol.

Rule rM1 allows for the generation of a string of n ’n’ as long as desired by the
application of the second meta-alternative n − 1 times. Suppose we want n = 5;
applying four times the second meta-alternative of this rule will generate the sequence
’Nnnnn’. We can see the first meta-alternative of this rule as a URR1

1 (N, n), so that by
applying this URR to ’Nnnnn’ we obtain the desired sequence ’nnnnn’. By proceeding
in this way, we obtain the following infinite set of production rules for the strict start
notion from rV 1:

RSAlpha2
(rV 1) =



s : na, nb.
s : nna, nnb.

s : nnna, nnnb.
s : nnnna, nnnnb.

...


Once the required number of n is obtained, say, five (s : nnnnna, nnnnnb.), one has to
start“eating up”the n to the left of a and b and replace it by these letters. By applying
URR2,3

1 (N, n) repeatedly on hyper-rules rV 2 and rV 3 we obtain the production rules

nnnnn︸︷︷︸
A

a : letter a symbol, nnnn︸︷︷︸
A

a.

20 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

Figure 2: Parse tree for the word aaabbb generated by the WG Alpha2 .

and
nnnnn︸︷︷︸
A

b : letter b symbol, nnnn︸︷︷︸
A

b.

where A stands for URR
(
N, nn−1

)
. By decreasingly iterating on nn−1 until n0 = ϵ –

and thus “eating up” one n every time a terminal a is generated – we obtain the se-
quence naaaaa,nbbbbb.22 The conclusion of the derivation of the word aaaaabbbbb
requires the application of the production rules directly derived from the hyper-
rules rV 4 and rV 5. We have the following set of production rules for GAlpha2 where[
nn−1

]♯
=

[
nn−1

]0
n−1

denotes decreasing iteration:

(rS1) s : nn−1a, nn−1b.

(rS2) n
[
nn−1

]♯
a : letter a symbol,

[
nn−1

]♯
a.

(rS3) n
[
nn−1

]♯
b : letter b symbol,

[
nn−1

]♯
b.

(rS4) na : letter a symbol.
(rS5) nb : letter b symbol.

Because n ∈ N, RSAlpha2
is in fact an infinite set of production rules. Figure 2 shows

the parse tree for the word aaabbb generated by this grammar. Note in this parse tree
that the nodes other than leaves are labeled with strict notions of the form nna, but
the rules that are indicated are the hyper-rules. This allows for the construction of a
parse tree from a finite number of rules; otherwise, the construction of the parse tree
can be impractical or even intractable. However, as in the case at hand, a production
tree – instead of a parse tree – can be constructed from the production rules whenever
they are abstracted in a finite way, but this is mostly for illustrative ends; given a
WG, a parser always constructs a parse tree from the hyper-rules in RV .

22By a “decreasing iteration” it is meant that for the i-th iteration over n, denoted by ni, we have
ni < nj for j < i. This corresponds to a decreasing (for) loop in programming jargon.

Ω - J. Form. Lang., 1 21

Review van Wijngaarden Grammars L. M. AUGUSTO

The above strategy of creating replacements of the form URR (N, nn) allows for the
efficient generation of WGs with infinite sets of production rules for many languages
with exponentiation.

Example 22. The following rules – note the metanotion EMPTY – generate the lan-
guage L (G) =

{
anb2n|n > 0

}
:

(rM1) N :: nn.
(rM2) EMPTY :: .

(rV 1) s : Na, NNb.
(rV 2) Na : letter a symbol.
(rV 3) NNb : letter b symbol, letter b symbol.
(rV 4) a : EMPTY.
(rV 5) b : EMPTY.

Let [nn]
♯♯

denote the repetition of a decreasing iteration step over n twice; then, the
following production rules can be derived:

(rS1) s : nna, n2nb.

(rS2) [nn]
♯a : letter a symbol.

(rS3)
[
n2n

]♯♯
b : letter b symbol, letter b symbol.

(rS4) a : .
(rS5) b : .

As a matter of fact, with this strategy, which can be even more efficient by means
of metarules of the forms N :: an, N :: Nan, etc. or with notions that denote differ-
ent exponents (e.g., I :: ai, J :: aj), any kind of exponentiation can in principle be
implemented by a WG with an infinite set of production rules (e.g., Greibach, 1974;
Mateescu & Salomaa, 1997). Examples of such languages are:

L (G) =
{
an

2

|n > 1
}

L (G) = {an|n ≥ 4, n is not prime}

L (G) = {an|n is in the Fibonacci sequence}

L (G) =
{
anbmck|n,m > 0, k = gcd (n,m)

}
22 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

3.4 Context Sensitivity

It is easy to see that the WG Alpha1 is constituted by two CFGs whose combination
as CFG

CFG results in a CFG – if we consider the set of production rules as being finite
for any given n. Interestingly enough, this same combination can result in a WG
with context sensitivity. Recall that in a CSG G = (V, T, S,R) each production rule
rP i ∈ R, i = 1, 2, ..., k, has the form γAδ → γXδ, where A ∈ V , γ, δ ∈ (V ∪ T)

∗
, and

X ∈ (V ∪ T)
+

. The informal explanation for the label “context-sensitive” is that the
production γAδ → γXδ allows the rewriting of A by X only in the context “γ . . . δ”.

In terms of the Chomsky hierarchy we have CFL ⊊ CSL: There are CSGs that
are not CFGs. The language L (G) = {anbncn|n > 0} is not a CFL, and thus it
cannot be generated by a CFG or type-2 grammar; in effect, this language is a CSL
generated by a CSG or type-1 grammar.

Example 23. The CSG GAlpha3 = ({S,X} , {a, b, c} , S,R), where P is the following
set of production rules

RAlpha3 =

 S → abc | aSX
bXc → bbcc
cX → Xc

 ,

generates the CSL L (GAlpha3) = {anbncn|n > 0}. The reader can work out the parse
of any word anbncn to verify this.

The strict class containment CFL ⊂ CSL means that we cannot obtain the CSL
L (GAlpha3) = {anbncn|n > 0} from the CFL L (GAlpha2) = {anbn|n > 0} by making
changes to the CFG GAlpha2 , but actually have to construct a wholly new grammar.
A WG allows us precisely to extend a given CFG into a CSG. The following example
shows how to extend the basic WG Alpha2 generating L (GAlpha2) = {anbn|n > 0} so
that it generates the CSL L (GAlpha3) = {anbncn|n > 0}.

Example 24. Consider the WG GAlpha2 of Example 21. In order for it to gener-
ate the CSL L (GAlpha3) = {anbncn|n > 0} we require first of all a second metarule:
ABC :: a; b; c. Given this metarule, a simple addition in rV 1 for the additional ter-
minal c and the inclusion of the metanotion ABC in the remaining hyper-rules give
us the following WG GAlpha3 :

(rM1) N :: n; Nn.
(rM2) ABC :: a; b; c.

(rV 1) s : Na, Nb, Nc.
(rV 2) nN ABC : letter ABC symbol, N ABC.
(rV 3) n ABC : letter ABC symbol.

By applying URR3
2 (ABC,x) for x= a, b, c we derive the following additional hyper-

rules:

(rV 4) na : letter a symbol.

Ω - J. Form. Lang., 1 23

Review van Wijngaarden Grammars L. M. AUGUSTO

Figure 3: Production tree of the word aaabbbccc generated by the WG Alpha3.

(rV 5) nb : letter b symbol.

(rV 6) nc : letter c symbol.

These three hyper-rules are responsible for the termination of a word. Adding them
to the grammar would be superfluous, though, because by applying URR2

2 (ABC,x)
for x= a, b, c we obtain the production rules

n nnnn︸︷︷︸[
URR

(
N, nn−1

)]
=A

a : letter a symbol, nnnn︸︷︷︸
A

a.

nnnnn︸︷︷︸
A

b : letter b symbol, nnnn︸︷︷︸
A

b.

and
nnnnn︸︷︷︸
A

c : letter c symbol, nnnn︸︷︷︸
A

c.

By applying URR1
1 (N, n) as above, we obtain the following infinite set of initial pro-

duction rules for Alpha3 :

RS (s) =



s : na, nb, nc.
s : nna, nnb, nnc.

s : nnna, nnnb, nnnc.
s : nnnna, nnnnb, nnnnc.

...


The reader can now easily derive the whole set of production rules for this WG. Figure
3 shows the parse tree for the word aaabbbccc generated by Alpha3. It is easy to see
that only rules rV 1 through rV 3 are used in it.

Recall now that in a CSG every production is of a form α → β such that |β| ≥ |α|,
i.e. no production is length-decreasing, reason why in γAδ → γXδ we have X ∈
(V ∪ T)

+
. In the terminology of WGs, this property can be defined as follows:

24 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

Definition 25. A WG is said to be lossless if for each hyper-rule ⟨X0⟩ → X̊1; ...; X̊m

we have

| ⟨X0⟩ | ≤ |X̊i|mi=1

and for each W ∈ ⟨X0⟩ we have | ⟨X0⟩ |W ≤ |X̊i|W , where | ⟨X0⟩ |W (|X̊i|W) de-
notes the length of the hypernotion X0 (respectively of the hypernotion(s) (in) X̊i =
(γ ⟨X ⟩ δ)i1 ... (γ ⟨X ⟩ δ)ik where γ, δ ∈ (T ∪ {, })

∗
) in which W occurs.

The reader can easily verify that Alpha3 is a lossless WG. Baker (1970) proved that
the family of languages generated by lossless WGs is precisely the family of CSLs. The
proof requires the construction of a special Turing machine: Any rewriting system such
that each derivation step is non-decreasing and there is a multitape Turing machine
that can imitate each step w1 =⇒ w2 by using no more than |w2| tape cells yields
a CSL. (Compare this with the CSLs, which are accepted by linear-bounded Turing
machines.23)

3.5 High Descriptive Power

Another property of interest of the WGs is their high descriptive power, or their
capability of describing highly complex languages by employing a rather small – in
any case finite – number of rules. Consider the following language:

LAlphaNoRep = {t1t2...tn = w ∈ T ∗|∀i, j = 1, 2, ..., n : ti ̸= tj whenever i ̸= j}

where T = {a, b, ..., z} and w is an alphabetic word in which no letter of the Roman
alphabet occurs more than once. (AlphaNoRep abbreviates Alphabetic Words with No
Repeated Letters.) The upper bound for the number of CFG rules required to generate
this language is 26 + (26)(25) + (26)(25)(24) + ... + 26!, an impossibly large number.
This impracticality is easily overcome by a WG equipped with the two techniques I
next elaborate on.

An efficient strategy adopted for WGs to increase (possibly infinitely) their de-
scriptive power while keeping a finite set of rules in the deep grammar is by numbering
a given metanotion (e.g., ALPHA1, ALPHA2, ..., ALPHAk); the objective is that of
allowing for the application of two or more different URRs on the same metanotion
(the root metanotion), allowing thus for distinct definitions thereof in a single hyper-
rule. This actually corresponds to a variation of the form of metarules that can be
formulated as(

rkM
)

METANOTION1, ...,METANOTIONk︸ ︷︷ ︸
LHS

:: X1;;Xn.︸ ︷︷ ︸
RHS

where the subscripts 1 < i ≤ k index different copies of the same root metanotion
and no two distinct copies on the LHS can be replaced simultaneously by the same
Xj , 1 ≤ j ≤ n, on the RHS. This variation, which is strictly conceived a condensation
of k metarules of the form Wi → W where the Wi are the specific metanotions (cf.
Meertens, 1969), is more often than not assumed implicitly in the hyper-rules and if

23See also Baker (1972) for a proof of the above result recruiting these Turing machines.

Ω - J. Form. Lang., 1 25

Review van Wijngaarden Grammars L. M. AUGUSTO

k is unbounded so that we have metarules of the form rωM , then the descriptive power
of a WG is virtually infinite.24

Another technique to keep the set of deep-grammar rules of a WG to a minimum
while allowing for high descriptive power is the use of predicates, i.e. protonotions
beginning with ’where’, ’unless’, ’is’, etc. When certain conditions are not met, pred-
icates typically yield so-called blind alleys, i.e. protonotions for which no production
rule can be derived; otherwise, they yield empty terminal productions. Predicates are
thus particularly well-suited to enforce specific restrictions on the syntax of a WG
(e.g., the unique occurrence of terminal symbols in a word).

Example 26. For graphical convenience, I further abbreviate AlphaNoRep as NoRep.
Below, I give the rules of the WG GNoRep that generates the language NoRep.25 For
simplicity, I consider a three-letter word generated by this WG, but it should be
obvious that words of arbitrary length |w| ≤ 26 can be parsed with it. The strict
language in consideration is Lfun

(
NoRepS

)
= {fun}.

(rM1) ALPHA :: a; b; ...; z.
(rM2) LETTER :: letter ALPHA.
(rM3) TAG :: LETTER; TAG LETTER.
(rM4) EMPTY :: .
(rM5) NOTION :: ALPHA; NOTION ALPHA.
(rM6) NOTETY :: EMPTY; NOTETY ALPHA.

(rV 1) s : TAG unique.
(rV 2) LETTER TAG unique : LETTER symbol, TAG unique,

where LETTER is not in TAG.
(rV 3) LETTER unique : LETTER symbol.
(rV 4) where LETTER1 is not in

LETTER2 TAG
: where LETTER1 isnt

LETTER2, where LETTER1 is
not in TAG.

(rV 5) where LETTER1 is not in
LETTER2

: where LETTER1 isnt
LETTER2.

(rV 6) where letter ALPHA1 isnt
letter ALPHA2

: where ALPHA1 precedes
ALPHA2 in abcde...wxyz;
where ALPHA2 precedes
ALPHA1 in abcde...wxyz.

(rV 7) where ALPHA1 precedes
ALPHA2 in NOTETY1

ALPHA1 NOTETY2
ALPHA2 NOTETY3

: EMPTY.

24Consider the root metanotion ’MODE’ such that the LHS of a metarule r3M is MODE1, MODE2,
MODE3. Then, this entails (implicitly) the rules for the specific metanotions MODE1 :: MODE , ...,
MODE3 :: MODE.

25This example is from Cleaveland & Uzgalis (1977). Because of the large size of this grammar I
give the metarules and the hyper-rules in separate tables. For graphical convenience the sequence of
the 26 letters of the Roman alphabet is abbreviated as abcde...wxyz in the RHS of rule rV 6.

26 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

I next describe in detail the derivation of the production rules to generate the word
“fun”. (The reader is invited to try their hand at constructing the parse tree for the
word “funny”, in order to verify that this word cannot be parsed by GNoRep, i.e. we
have Lfunny

(
NoRepS

)
= ∅.)

� By transitivity of replacement over the metarules rM1 through rM3 we obtain
URR1

1−3 (TAG, letter x), where x is any of the 26 letters of the Roman alphabet.
This URR applied on rV 1 gives the specific start production rule for this word:

(rS1) s : letter f letter u letter n unique.

� From rV 2 and from rS1 we now derive the production rule:

(rS2) letter f letter u letter n unique :

letter f symbol︸ ︷︷ ︸
A

, letter u letter n unique︸ ︷︷ ︸
B

,

where letter f is not in letter u letter n︸ ︷︷ ︸
C

.

� Applying the strict alternative A in rS2 generates directly the terminal symbol
“f ”. Strict alternative B gives us recursively

(rS2′) letter u letter n unique :

letter u symbol︸ ︷︷ ︸
A′

, letter n unique︸ ︷︷ ︸
B′

,

where letter u is not in letter n︸ ︷︷ ︸
C′

.

and C (a predicate) gives from rV 4:

(rS4) where letter f is not in letter u letter n :

where letter f isnt letter u︸ ︷︷ ︸
D

,where letter f is not in letter n︸ ︷︷ ︸
E

.

� A′ of rS2′ gives us the terminal symbol “u” and B′ gives recursively

(rS3) letter n unique : letter n symbol.

which gives directly the terminal symbol “n”. By now the leftmost three leaves
of the parse tree contain precisely the word “fun”; the remaining nodes to the
right of this word will test for repeated symbols, and the tree will be complete
only if all the corresponding leaves are empty; otherwise, there will be blind
alleys and the tree will be incomplete. The rules with predicates allow for this
testing.

� C′ in rS2′ produces the following production rule, which corresponds to rV 5:

(rS5) where letter u is not in letter n :

where letter u isnt letter n.

Ω - J. Form. Lang., 1 27

Review van Wijngaarden Grammars L. M. AUGUSTO

� From the RHS of rS5, and corresponding to rV 6, we obtain the production rule:

(rS6) where letter u isnt letter n :

where n precedes u in abc...xyz.

� From the RHS of this production rule and from rV 7 we obtain:

(rS7) where n precedes u in abc...xyz : .

The production process now retakes rightwards from rS4, but the above detailed
explanation suffices to show how to construct the parse tree of the word“fun”(see Fig.
4). Note that the leaves are empty upon application of hyper-rule rV 7. (The reader
can try to build the parse tree for the illegal word “funny” to check the descriptive
power of the hyper-rules rV 4 − rV 7.)

3.6 Equivalence with Type-0 Grammars

A Chomsky grammar G = (V, T, S,R) of type 0, or a UG, was defined above in
Subsection 2.1. Just like CSGs, UGs allow for productions in which a variable may
depend on the context; for instance, the production rule Bc → bc allows the substitu-
tion of the variable B by the terminal b only if B is immediately followed by c on the
LHS. In particular, given a UG G, the assumption S

∗
=⇒
G

xAy
∗

=⇒
G

v no longer implies

that v = xuy for some terminal string v ; this makes of a UG a semi-Thue system. A
language L ⊆ T ∗ is a recursively enumerable language (REL) if and only if there is a
UG G such that L = L (G).

Example 27. The language L (GAlpha3) = {anbncn|n > 0}, where GAlpha3 is a gram-
mar of type 0, is a REL. This is how L (Alpha3) can be generated (contrast with
Example 23): We begin by creating a variable L denoting “left end of a string.” We
then require production rules that (i) allow us to obtain strings of the form L (ABC)

n
,

and (ii) allow for an alphabetical (re)arrangement of the variables A, B, and C. These
productions are as follows:

(i) R1 = {S → SABC | LABC}

(ii) R2 = {BA → AB;CB → BC;CA → AC}

Now, of course, we need productions that (iii) allow us to replace variables that are
already in alphabetic order by terminals:

(iii) R3 = {LA → a; aA → aa; aB → ab; bB → bb; bC → bc; cC → cc}

The set of type-0 production rules for L (Alpha3) is R =
⋃3

i=1 Ri. (The reader can
try to work out the derivation of any word anbncn.) Because the LHS of production
rules in a UG typically has more than one symbol and moreover the sentential forms in
a derivation can vary greatly in length, at times increasing and decreasing, we cannot

28 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

F
ig
u
re

4
:
P
a
rs
e
tr
ee

o
f
th
e
w
o
rd

“
fu
n
”
g
en

er
a
te
d
b
y
th
e
W

G
G N

o
R
e
p
.

Ω - J. Form. Lang., 1 29

Review van Wijngaarden Grammars L. M. AUGUSTO

construct parse trees for words of RELs.26 In effect, the parsing problem for these
languages is known to be unsolvable. To put it briefly, the generative capability of UGs
is too strong – literally: unrestricted – for most current computational applications
of formal grammars.

WGs allow us not only to explore this generative power in a more “restricted” way,
but also to extend it. WGs have been shown to be equivalent to UGs in the sense that
REL ⊆ WL (Sintzoff, 1967) and WL ⊇ REL (Janssen, 1975), so that adding a third
level does not increase their generative power;27 actually, a single metanotion suffices
to generate every REL, as shown by A. van Wijngaarden himself (van Wijngaarden,
1974).

But in fact WGs are even more expressive than UGs, in the sense that we have the
strict inclusion REL ⊂ WL (cf. Grune, 1993); in particular, a UG cannot generate
the language consisting of an unbounded number k of different terminal characters
each occurring the same number n of times in succession, i.e. the language AlphaK :28

L (GAlphaK) = {tn1 ...tnk |n ≥ 0, k > 0,∀i, j = 1, ..., k : ti ̸= tj if i ̸= j} = Q

Of course, the word a3b3c3 belongs to the language AlphaK, but so do, say, z5f5q5t5

or p125q125a125, or also a6
5
a6
3
a6
1
a6
159

a6
20

if we choose – as we must, because k is an

unbounded number – to have an infinite alphabet Σω = {a1, a2, ...} = {ai}
ω
i=1, where

the subscript notation “i” is used to distinguish these subscripts from those in tn1 ...t
n
k .

It must be remarked that Q is not a well-defined set from the viewpoint of a UG,
because the ti are not specified as being members of a given set; in particular, this set
cannot be the Roman alphabet, as this set is clearly bounded. On the contrary, from
the viewpoint of a WG the set Q is well defined, because each ti in a terminal string
w = tn1 t

n
2 ...t

n
k is to be replaced by some typographical character in a representation

table (cf. Table 1 for an example). This entails also a difference with respect to
Q as a recursively enumerable set. The reader should recall that a set A ⊆ N is
said to be recursively enumerable if there is an effective algorithmic procedure (e.g.,
a Turing machine) for enumerating all its elements; more specifically, a set A ⊆ N
is a recursively enumerable set if there is a computable function f such that A =
{f (1) , f (2) , ...} = range (f). While Q is a non-recursively enumerable set if taken
in the perspective of a UG, since a UG cannot have an unbounded set of terminals,
it is a recursively enumerable set from the viewpoint of a WG, because in this every
terminal character tj in t1...tk, 1 ≤ j ≤ k, is in the range of a total function mapping
elements of N to names of terminal symbols.

Example 28. The following WG GAlphaK describes the generation of the language
AlphaK :29

26But a directed-graph representation, called derivation graph, is possible (see Augusto, 2021).
27Some restrictions and/or specifications (normal forms) apply for this result (e.g., Greibach,

1974; Turakainen, 1978); see van Leeuwen (1977) for a short review. See also Deussen (1975). Note,
however, that there is a class of restricted WGs for which the parsing problem is solvable without
loss of descriptive power; see Moritz (1989).

28The notation “tni ” abbreviates “(ti)
n”.

29Source: Grune & Jacobs (2008); with changes.

30 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

(rM1) N :: n N; EMPTY.
(rM2) K :: i; i K.
(rM3) EMPTY :: .

(rV 1) s : N i tail.
(rV 2) N K tail : N K, N K i tail; EMPTY.
(rV 3) N n K : K symbol, N K.
(rV 4) K : EMPTY.

The strategy in this WG is to make every tj , 1 ≤ j ≤ k, in Q correspond to the
protonotion σj = ’ij symbol’, in order to provide a finite mapping of symbol names
to terminal symbols. This is done by means of a composition p = g ◦ f of the
function f : {j} −→ {i}j where j ∈ N is the subscript of some σ in the sequence

σ1...σk, and the function g : {i}j −→ T where T ∈ G. For instance, for the word
a3b3c3 ∈ L

(
AlphaKS

)
corresponding to t31t

3
2t

3
3 we make the following mapping:

p(i) = a, p (ii) = b, p (iii) = c

We thus have i symbol = a symbol, ii symbol = b symbol, and iii symbol = c symbol and
we apply the right side of the identities in the production rules. For the word“fun”the
mapping is i symbol = f symbol, ii symbol = u symbol, and iii symbol = n symbol. Note
that it is impossible to have the word“funny”, because the terminal symbol n is bound
to t3 in funny = t1t2t3t4t5. With this simple strategy we get a mapping that not only
is finite but also hinders the repetition of any terminal symbol, since each terminal is
so to say bound to a unique position in the sequence t1...tk. With this, the hyper-rules
are easily explained: rV 1 describes the production of a sequence of Ki symbols each
n times, rV 2 does so for a sequence of K symbols each n times concatenated with Ki
symbol n times, etc.

Acknowledgments

I thank the reviewer for thoroughly reading the submitted manuscript and suggesting ways
to improve it. My thanks also to W. S. Saba, a member of the AEB, for handling the
blind-review process.

References

Augusto, L. M. (2021). Languages, machines, and classical computation. 3rd ed.
London: College Publications.

Baker, J. L. (1970). Some formal properties of the syntax of algol 68. Ph.D.
Dissertation. University of Washington.

Baker, J. L. (1972). Grammars with structured vocabulary: A model for the algol-
68 definition. Information and Control, 20, 351-395.

Ω - J. Form. Lang., 1 31

Review van Wijngaarden Grammars L. M. AUGUSTO

Bryant, B. R. & Lee, B.-S. (2002). Two-level grammar as an object-oriented require-
ments specification language. In R. H. Sprague, Jr. (ed.), Proceedings of the
35th Annual Hawaii International Conference on System Sciences (pp. 3627-
3636). Los Alamos, CA: IEEE Computer Society.

Bryant, B. R., Edupuganty, B., Sundararaghavan, K. R., & Takaoka, T. (1988). Two-
level grammar: Data flow English for functional and logic programming. In
Proceedings of the 1988 ACM 16th Annual Conference on Computer Science
(pp. 469-474). New York, NY: ACM.

Chomsky, N. (1964). Current issues in linguistic theory. The Hague & Paris: Muton.

Cleaveland, J. C. & Uzgalis, R. C. (1977). Grammars for programming languages.
New York & Oxford: North Holland.

de Chastellier, G. & Colmerauer, A. (1969). W-grammar. In Proceedings of the 24th
National Conference ACM ’69 (pp. 511-518). New York, NY: ACM.

De Graaf, J. & Ollongren, A. (1984). On two-level grammars. International Journal
of Computer Mathematics, 15 (1-4), 269-288.

Deussen, P. (1975). A decidability criterion for van Wijngaarden grammars. Acta
Informatica, 5, 353–375.

Edupuganty, B. & Bryant, B. R. (1989). Two-level grammar as a functional pro-
gramming language. The Computer Journal, 32 (1), 36-44.

Greibach, S. (1974). Some restrictions on W-grammars. International Journal of
Computer and Information Science, 3, 289-327.

Grune, D. (1993). Two-level grammars are more expressive than type 0 grammars.
Or are they? SIGPLAN Notices, 28 (8), 43-45.

Grune, D. & Jacobs, C. J. H. (2008). Parsing techniques: A practical guide. 2nd ed.
New York, NY: Springer.

Hockett, C. F. (1958). A course in modern linguistics. New York: Macmillan.

Janssen, T. M. V. (1975). An arithmetization of van Wijngaarden grammar. Report
ZW 44/75. Amsterdam: Mathematical Centre.

Koster, C. H. A. (1974). Two-level grammars. In G. Goos & J. Hartmanis (eds.),
Compiler construction: An advanced course (pp. 146-156). Lecture Notes in
Computer Science 21. Berlin: Springer.

Koster, C. H. A. (1993). Informatics and syntax. In J. Darski & Z. Vetulani (eds.),
Akten des 26. Linguistischen Kolloquiums, Poznań 1992. (pp. 43-54). Tübin-
gen: Max Niemeyer Verlag.

Kupka, I. (1980). van Wijngaarden grammars as a special information processing
model. In P. Dembińsky (ed.), Mathematical foundations of computer science,
MFCS 1980 (pp. 387-401). Berlin & Heidelberg: Springer.

32 Ω - J. Form. Lang., 1

Review van Wijngaarden Grammars L. M. AUGUSTO

Lindsey, C. H. (1996). A history of algol 68. In T. J. Bergin & R. G. Gibson (eds.),
History of programming languages. Vol. II (pp. 27-96). New York: ACM Press.

Lindsey, C. H. & van der Meulen, S. G. (1977). Informal introduction to algol 68.
2nd ed. Amsterdam, etc.: North-Holland.

Ma luszyńsky, J. (1984). Towards a programming language based on the notion of
two-level grammar. Theoretical Computer Science, 28, 13-43.

Mateescu, A. & Salomaa, A. (1997). Aspects of classical language theory. In In G.
Rozenberg & A. Salomaa (eds.), Handbook of formal languages. Vol. 1: Word,
language, grammar (pp. 175-251). Berlin & Heidelberg: Springer.

Meertens, L. (1969). On the generation of algol 68 programs involving infinite
modes. Algol Bulletin, 30, 90-92.

Moritz, M. (1989). Description and analysis of static semantics by fixed point equa-
tions. Ph.D. thesis. Nijmegen: Bloembergen Santee bv [printer].

Sintzoff, M. (1967). Existence of a Van Wijngaarden system for every recursively
enumerable set. Annales de la Société Scientifique de Bruxelles, 81, 115-118.

Staiger, L. (1997). ω-languages. In G. Rozenberg & A. Salomaa (eds.), Handbook of
formal languages. Vol. 3: Beyond words (pp. 339-387). Berlin & Heidelberg:
Springer.

Turakainen, P. (1978). On characterization of recursively enumerable languages in
terms of linear languages and VW-grammars. Indagationes Mathematicae, 40,
145-153.

van Leeuwen, J. (1977). Recursively enumerable languages and van Wijngaarden
grammars. Indagationes Mathematicae, 39, 29-39.

van Wijngaarden, A. (1965). Orthogonal design and description of a formal language.
Report MR 76. Amsterdam: Stichting Mathematisch Centrum.

van Wijngaarden, A. (ed.) (1969). Report on the algorithmic language ALGOL 68.
Berlin, etc.: Springer. (Reprint of article in Numerische Mathematik, 14, 79-
218.)

van Wijngaarden, A. (1974). The generative power of two-level grammars. In J.
Loeckx (ed.), Automata, languages and programming. ICALP 1974 (pp. 9-16).
Lecture Notes in Computer Science 14. Berlin: Springer.

van Wijngaarden, A., Mailloux, B. J., Peck, J. E. L., Koster, C. H. A., Sintzoff, M.,
Lindsey, C. H., Meertens, L. G. L. T., & Fisker, R. G. (eds.) (1976). Revised
report on the algorithmic language ALGOL 68. Berlin, etc.: Springer.

Visser, E. (1997). Polymorphic syntax definition. Report P9701 of the Programming
Research Group of the University of Amsterdam.

Ω - J. Form. Lang., 1 33

Review van Wijngaarden Grammars L. M. AUGUSTO

Online Resources

[1] https://jmvdveer.home.xs4all.nl/en.index.html

Cite this article as:

Augusto, L. M. (2023). Two-level grammars: Some interesting properties of van
Wijngaarden grammars. Omega - Journal of Formal Languages, 1, 3-34.

EDITORIAL INFORMATION

Editor-in-chief : Luis M. Augusto

Reviewer:a Anonymous

Received: Nov. 1, 2022; Accepted: Dec. 18, 2022

Edited on April 18th, 2023: the sentence “the family of languages generated by WGs is

precisely the family of lossless CSLs” was corrected as “the family of languages generated by

lossless WGs is precisely the family of CSLs.”

aBlind review

34 Ω - J. Form. Lang., 1

