
The van Wijngaarden Grammars:

A Syntax Primer with Decidable Restrictions

Luis M. Augusto*

Editor-in-Chief

October 2023

Vol.: 4 Issue: 2 Pages: 1-39

Abstract

Expressiveness and decidability are two core aspects of programming lan-
guages that should be thoroughly known by those who use them; this includes
knowledge of their metalanguages a.k.a. formal grammars. The van Wijngaar-
den grammars (WGs) are capable of generating all the languages in the Chomsky
hierarchy and beyond; this makes them a relevant tool in the design of (more)
expressive programming languages. But this expressiveness comes at a very high
cost: The syntax of WGs is extremely complex and the decision problem for the
generated languages is generally unsolvable. With this in mind, I provide here
a short primer of the syntax of WGs, which includes syntactic restrictions that
guarantee decidability for the corresponding generated languages.

Key words: van Wijngaarden Grammars; Chomsky Grammars; Generative
Power; Descriptive Power; The Membership Problem; The Parsing Problem

1 Introduction

Programming languages have been around for quite a long time now, but only recently
did scholars begin to be concerned with the problem of their knowledge, or how and to
what extent programmers understand the languages they create programs with (e.g.,
Clayton et al., 1998; Soloway & Ehrlich, 1984). This knowledge requires in turn that
their metalanguages, a.k.a. formal grammars, be thoroughly understood. Interest-
ingly, the same type of formal grammar can describe (many) different programming
languages, as is well known from the case of the context-free grammars (CFGs), by
which most contemporary programming languages can be described (e.g., Sebesta,

*
� luis.ml.augusto@gmail.com

1

Review van Wijngaarden Grammars Luis M. AUGUSTO

2012). By a slight abuse of terminology, we can in fact confuse generation and de-
scription, and we are thus justified in saying that these programming languages are
all context-free languages.

There is, however, a type of formal grammar that, despite being CFG-based, can
generate not only context-free languages, but also context-sensitive and recursively
enumerable languages, and even beyond, in the sense that it can handle infinite al-
phabets and infinite sets of production rules. I speak here of the van Wijngaarden
grammars (abbr.: WGs).1 These grammars were originally conceived by A. van Wi-
jngaarden as the metalanguage of the programming language algol 68 (van Wijn-
gaarden et al., 1969; van Wijngaarden et al., 1976), but were soon thereafter put into
relation with other programming languages (e.g., Bryant et al., 1988; Edupuganty &
Bryant, 1989), as well as other applications, such as in computational linguistics and
automated translation (e.g., Chastellier & Colmerauer, 1969). This generative power
is supported by a unique descriptive power that comes at a high cost as far as the
syntax is concerned: The syntax of WGs is extremely complex and its knowledge,
or adequate understanding, requires an extra effort, especially if one is concerned
with decidability issues. In order to facilitate this effort I give here a short primer
of the syntax of WGs. Additionally, I provide the main syntactic restrictions that
guarantee decidability of the languages generated by WGs while preserving their ex-
pressive potentialities. I refer the reader to Augusto (2023) for an elaboration on
WGs from the viewpoint of formal grammars, and to Cleaveland & Uzgalis (1977) for
a comprehensive discussion from the programming perspective.2

2 The Syntax of WGs

A presentation of WG syntax requires three aspects to be handled in tandem: (1)
The alphabet and the strings up to the words derived by means of (2) interacting
rewriting rules at/in (3) distinct levels and grammars. The terminology and notation
is partly that of the Chomsky grammars, of which a summary is given here.3 In order
to distinguish a WG from a Chomsky grammar G the former shall be denoted by G.

2.1 Formal Languages and Chomsky Grammars: Basic Terminology
and Notation

A formal language L is a set of strings of symbols specified by a formal grammar G.
Chomsky grammars are the paradigmatic formal grammars. A Chomsky grammar
is a 4-tuple G = (V, T, S,R), where V ∪ T = Σ ̸= ∅ for the finite disjoint sets V

1Another frequent abbreviation is “W-grammars”. WGs are also often confused with the two-level
grammars, of which in fact they are only a sub-class.

2This article has been submitted to reviewers in May 2023 and reports, when finally received, are
expected to motivate edits, as is usually the case in the review process. I write “finally,” because I
have been cut off from all online communication media by a lamer located in Calle Riojanos, 2, 1ª 4,
28018 Madrid. This lamer, who calls himself privately Zorra Negra, is being assisted in his activities
by the rest of his family (car plate: four five double-seven lfg). This prolonged event is also severely
disrupting further work of mine on WGs (e.g., Augusto, 2024 [forthcoming]).

3See Augusto (2021) for a textbook centered in the Chomsky hierarchy. I consider here the
Chomsky hierarchy as having the grammars of Type 0 at the top and the Type-3 grammars at the
bottom. This is thus a hierarchical perspective with full expressiveness located at the top.

2 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

and T of variable symbols and terminal symbols, respectively, is called the alphabet,
S ∈ V is the start symbol, and R is a finite set of production rules rP (abbr.: r) of
the form α → β, read “α is rewritten as β,” where α is the left-hand side of the rule

(abbr.: LHS), α ∈ (V ∪ T)
+
, |V (α) | ≥ 1, and β ∈ (V ∪ T)

∗
=
(
(V ∪ T)

+ ∪ {ϵ}
)
is

the right-hand side of the rule (RHS), so that the empty symbol “ϵ” is allowed only on
the RHS. Restrictions apply to this general, unrestricted, Type-0 definition for Types
1 through 3 of the Chomsky hierarchy, with 3 being the most restricted grammar
type. By a slight abuse of terminology, G is also called a generative system and the
language L generated by G is defined as

L (G) =
{
w ∈ T ∗|S ∗

=⇒
G

w
}

where “w = t1t2...tk” denotes a string of terminal symbols (the concatenation of the
terminal symbols t1, t2, ..., tk) called a word, “=⇒”denotes a derivation step such that

we have S
n

=⇒
G

ϑ for the sentential form ϑ ∈ (V ∪ T)
∗
in n derivation steps, and

“*” (Kleene star) denotes the reflexive and transitive closure of the relation =⇒
G

⊆

(V ∪ T)
+
. A derivation S

∗
=⇒
G

w in G can be leftmost (denoted by
∗

S =⇒l
G

w) or

rightmost (
∗

S =⇒r
G

w) depending on whether the leftmost or the rightmost variables,

respectively, are rewritten at each step of the derivation. A derivation of a word
w ∈ L (G) from S ∈ VG is thus a finite sequence of steps each of which is the

application of some production rule in {ri}ki=1 ⊆ RG:

Dw = S
1

=⇒
r1

ϑ1
2

=⇒
ri

ϑ2
3

=⇒
ri

...
n

=⇒
ri

w

The sequence of the k rules applied in n steps in a derivation Dw is called a parse
and is defined as:

Pw = r1,1ri,2ri,3...ri,n

Clearly, every derivation Dw corresponds to a parse Pw, and reciprocally. Other
similar correspondences are found for finite derivation trees Tw (then also called parse
trees) and finite computations by abstract machines Mw that accept or recognize w.
The Kleene star is a useful abstraction when we do not care to count the number of
derivation steps, because for practical ends it denotes a bounded sequence (differently
from the superscript ω, which denotes an infinite sequence). When applied over an
arbitrary set of symbols Σ, the Kleene star denotes the (possibly infinite) set of all
strings – including the empty string ϵ – over Σ; this set is denoted by Σ∗.

The Type-0 grammars generate the (class of) recursively enumerable languages
(RELs), the Type-1 grammars do so for the context-sensitive languages (CSLs), the
Type-2 grammars generate the context-free languages (CFLs) and the Type-3 gram-
mars generate the regular languages (REGs). We have the extended Chomsky hier-
archy, or class-inclusion relation

RGL ⊂ CFL ⊂ CSL ⊂ RCL ⊂ REL

where RCL denotes the class of recursive languages, for which no specific generating
grammar type is known to exist. The prototypical languages in the Chomsky hierarchy

J. Knowl. Struct. Syst., 4:2 3

Review van Wijngaarden Grammars Luis M. AUGUSTO

are: L ∈ RGL is L = {an|n > 0}, L ∈ CFL is L = {anbn|n > 0}, L ∈ CSL is
L = {anbncn|n > 0}, L ∈ REL is L =

{
a2

n |n ≥ 0
}
.

2.2 The Basic Components of WGs: Alphabet, Sequences, and Words

WGs are not Chomsky grammars, but they share with them many features; in par-
ticular, WGs can generate all the languages in the Chomsky hierarchy, reason why
the contents of Section 2.1 should be borne in mind throughout this article.

Definition 1. The alphabet Σ of a WG G is constituted by syntactic marks, namely
(i) small syntactic marks (“a”, “b”, “c”, ..., “y”, “z”, “(”, “)”), (ii) large syntactic marks
(“A”, “B”, “C”, ..., “Y”, “Z”, “0”, “1”, ..., “9”), and (iii) other syntactic marks (“.”, “,”,
“:”, “;”, “’”, “-”, “*”). An additional syntactic mark is ϵ, the empty syntactic mark.

The syntactic marks build finite sequences σ = σ1σ2...σn where σi may belong to
any of the three types above and there may be blank spaces between any σi and σj ,
i < j is a chain, i.e. there is no x such that i < x < j.

Definition 2. The finite sequences σ of syntactic marks of a WG such that |σ| ≥ 0 are
called notions and there are three types thereof, to wit, protonotions, metanotions,
and hypernotions.

The different sets of notions and their relation to the syntactic marks are shown
in Table 1. Just as in the case of sets of strings in Chomsky grammars, given a
set of sequences S = {σ1, ..., σi, ...} we write S∗ for S ∪ {ϵ} and we write S+ for
S − {ϵ}. V and T denote sets of protovariables and terminals, respectively. To
contrast with the members of V, metanotions in M can also be called metavariables.
In fact, metanotions can be either metavariables or metaterminals.

Table 1: Notions and syntactic marks. (SSM and LSM abbreviate respectively “small syn-
tactic marks” and “large syntactic marks”.)

NOTION & SET SSM LSM

Protonotion x ∈ [P ∗ = (V ∪ T)∗]: ✓
Protovariable v ∈ V

Terminal t ∈ T

Metanotion X ∈ M ✓

Hypernotion ⟨X ⟩ ∈ [N∗ = (M ∪ V)∗] ✓ ✓

Example 3. ’letter a’ is a protonotion, namely the protovariable letter a; ’letter a
symbol’ is a terminal protonotion, namely the typographical character a. “ALPHA” is
a metanotion, namely the metanotion ALPHA. “letter ALPHA symbol” is a terminal
metanotion, or metaterminal. ’reference to INTREAL’ is a hypernotion, namely the
hypernotion reference to INTREAL.

Blank spaces are added for readability: ’reference-to-INTREAL’ and ’reference-
toINTREAL’ are two equally admissible ways of writing the hypernotion ’reference to
INTREAL’. In the following example, and henceforth, the mention symbols (’.’ and
“.”) are omitted, the font sufficing to segregate WG notions from the main text.

4 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

Example 4. The word “age := 53” is formed by the terminal protonotions letter a
symbol, letter g symbol, letter e symbol, becomes symbol, digit five symbol, and digit
three symbol.

From Example 4, it should be understood that terminal protonotions always end
in the protonotion ’symbol’ and they are replaced by typographical characters in a
terminal sequence, i.e. a word.4 Every typographical character, including punctuation
and other symbols, is associated with a terminal protonotion in a representation table
(e.g., Table 2). This allows for the abbreviation of, say, letter a symbol as simply
a, where a is a typographical character.5 This association is actually a well-defined
function mapping directly protovariables and indirectly metavariables to terminals:

Definition 5. Let there be given the sets of notions M, V, and T. A (terminal) repre-
sentation function is defined as:

symbol : (M ∪ V) −→ T

Remark 6. The representation mapping for protovariables is direct, reason why we
can define it as

ς : V −→ T

where ς replaces symbol for convenience. It is, however, indirect for metanotions,
because it requires a composition ς ◦ ϱ where ϱ (also replacing symbol) is the function

ϱ : M −→ V.

Thus, ϱ is actually a substitution, or replacement, function mapping metavariables
and metaterminals to protovariables and it can instead be seen as a homomorphism
h (see below), reason why for practical ends one may ignore this functional definition
of ϱ.

2.3 Description Rules, Uniform Replacements, and Grammar Levels

As just seen, a terminal metanotion X symbol is not a terminal notion simpliciter. In
order for the (terminal) metanotion X to become the (terminal) protonotion letter x
(symbol), i.e. in order for the functions ϱ and ς to be applicable, two rules of type rM
and rV are required that describe the admissible replacement URRrV j

rM i (X, x), where
URR abbreviates “uniform replacement rule,” instructing that the metanotion X in
metarule rM i is replaced uniformly in hyper-rule rV j by the protonotion x.6

4The protonotion symbol designates a construct, namely a terminal notion. Protonotions that
designate constructs are called paranotions.

5This abbreviation in the WGs, which is only admissible for terminal protonotions, is typically
not used in programming languages based on WGs, namely in algol 68, the programming language
entirely defined as a WG. See, e.g., van Wijngaarden et al. (1976) and Cleaveland & Uzgalis (1977).

6Importantly, the term “uniformly” does not mean that a URR (X, x) must be applied to all the
hyper-rules in which X occurs; it only means that if X occurs more than once in a single hyper-rule,
then in that particular hyper-rule it has to be uniformly replaced by x. As it will be seen, this
is a major cause for ambiguity in WGs or even/consequently for undecidability of the languages
generated by WGs (WLs, in abbreviation). On the other hand, to force a URR (X, x) for given X and
x to be applied uniformly throughout the set of hyper-rules would severely diminish the expressive
capabilities of WGs. This “dilemma” will be discussed at length below.

J. Knowl. Struct. Syst., 4:2 5

Review van Wijngaarden Grammars Luis M. AUGUSTO

Table 2: A representation table.

Terminal Notation Typographical Character

colon symbol :

comma symbol ,
...

becomes symbol :=

letter a symbol a
...

...

letter z symbol z

digit zero symbol 0
...

...

digit nine symbol 9

Definition 7. These two rules are schematically defined as follows:7

� A metaproduction rule rM (abbr.: metarule) is a rule of the form

(rM) X0︸︷︷︸
LHS

:: X1;;Xn.︸ ︷︷ ︸
RHS

where X0 ∈ M and every meta-alternative Xi ∈ (M ∪ V)
∗
for 1 ≤ i ≤ n.

� A hyperproduction rule rV (abbr.: hyper-rule) is a rule of the form

(rV) ⟨X0⟩︸︷︷︸
LHS

: X̊1;; X̊m.︸ ︷︷ ︸
RHS

where ⟨X0⟩ ∈ N and X̊i ∈
[
(N ∪ T ∪ {, })∗ = (M ∪ P ∪ {, })∗

]
for 1 ≤ i ≤ m,

X̊i = (γ ⟨X ⟩ δ)i1 ... (γ ⟨X ⟩ δ)ik where γ, δ ∈ (T ∪ {, })∗ are the hyper-alternatives.8

Remark 8. The rules above in Def. 7 are extensions of the basic rules

X∈M :: Y∈(M∪V)∗

and
⟨X0⟩∈N+ : X̊∈(M∪P∪{,})∗

for metarules and hyper-rules, respectively. The extensions above are actually abbre-
viations, in the sense that the number of rules of a WG can be significantly reduced,
but the basic forms above are recruited for some computations.

Example 9. The terminal metanotion letter ALPHA symbol in Example 3 can be
replaced by any terminal protonotion letter x symbol such that x = a, b, ..., z as
described in the following two rules:

7As usually, LHS and RHS abbreviate “left-hand side” and “right-hand side.”
8The notation ⟨·⟩ is used here only for abstract rules, but the reader should note that it is often

used in concrete rules in the WG literature.

6 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

(rM) ALPHA :: a; b; c; ...; y; z.

(rV) ALPHA : letter ALPHA symbol;
ALPHA, letter ALPHA symbol.

Let us consider the two rules above as partly constituting the WG GAlpha1 (abbrevi-
ated as Alpha1). The hyper-rule can be abbreviated as follows:9

ALPHA : ALPHA ; ALPHA, ALPHA.

Obviously, in the first meta-alternative we have γ = ALPHA ∈ T , ⟨X ⟩ = ϵ, and
δ = ϵ; as for the second meta-alternative, we have γ = ϵ, ⟨X ⟩ = ALPHA ∈ M ,
and δ = (, ALPHA) ∈ (T ∪ {, }). But note that ALPHA still counts as a metan-
otion: The metarule rM defines the possible replacements for the metanotion ALPHA
(or ALPHA) and the hyper-rule rV specifies that ALPHA, when replaced by one of
the alternative definitions in rM – say, URRrV

rM (ALPHA, a) –, can be replaced either
indirectly by the typographical character a (via the representation function ς; first al-
ternative) or iteratively by the protovariable a concatenated (denoted by the comma)
with the typographical character a. In sum, whenever typographical symbols or “ter-
minal” metanotions feature in a rule rV , this is just a convenient abbreviation for x
symbol or X symbol, respectively.

The metarule and the hyper-rule above actually belong to two distinct levels of
the given WG such that we have

Level 2

Level 1
=

G2

G1
=

Hyper-level

Meta-level
=

RV

RM

where RM and RV are the sets of metarules and hyper-rules, respectively.10 This
justifies the membership of WGs in the class of two-level grammars, other members
of which are, for instance, the attribute grammars (see Augusto, 2024 [forthcoming]).

Definition 10. We have now the definition of a WG G as the 7-tuple

G =

M,V,RM︸ ︷︷ ︸,
G1

N,T, S,RV︸ ︷︷ ︸
G2


where S = {⟨s⟩}, S ⊆ N .

Def. 10 allows us to abbreviate the 7-tuple above as the pair G =
(
G1,G2

)
. For

practical reasons, we often consider G1 = (M,V,RM ,W), where W ∈ M . Also with
practicality in mind, every rule should be sequentially numbered as rM1, rM2, ..., rMn
and rV 1, rV 2, ..., rV m; this done, we write URRj

i where i, j abbreviate respectively
rM i, rV j (additionally, super-/subscripts of the form m, ..., k can be used to reuse a
single URR and super-/subscripts of the form m− k denote transitivity).

9Often found in the WG literature in the form “⟨ALPHA⟩ → ALPHA; ⟨ALPHA⟩ALPHA”.
10The subscript V denotes that this set is constituted by rules for variables, i.e. meta- and

protovariables alike.

J. Knowl. Struct. Syst., 4:2 7

Review van Wijngaarden Grammars Luis M. AUGUSTO

2.4 Homomorphisms, Grammars, and (Meta-)Languages

Definition 11. The set of all the URRs of a WG G is defined as

URRRV

RM
(G) =

n⋃
i=1

m⋃
j=1

URRj
i = U (G).

Recall that N = M ∪ V ; thus, G1 and G2 share sets M and V, it being the case
that we have M ∩ V = ∅. Hence, G1 and G2 interact by means of the metarules
and hyper-rules sharing these sets. Taken strictly mathematically, this interaction is
based on a homomorphism h ∈ Hom such that we have:

Hom (M,V,RM) = Hom
(
G1
)
= Ĝ =

=
{
h : M −→

⋃{
L
(
G1
)
|W ∈ M

}
|∀W ∈ M,h (W) ∈ L

(
G1
)}

Obviously, we have Ĝ = U (G). Recall now that a language L generated by a
formal grammar G = (V, T, S,R) is defined as

L (G) =
{
w ∈ T ∗|S ∗

=⇒
G

w
}

where S is the start symbol, “*” (Kleene star) denotes the reflexive and transitive
closure of the relation =⇒

G
⊆ (V ∪ T)

+
called (one-step) derivation, and R is the set

of production rules.

Definition 12. In the case of a WG G, we have the definition

L (G) =
{
w ∈ T ∗ ⊆ P | ⟨s⟩ ∗

=⇒̂
G

w

}
where ⟨s⟩ is the (abstract) start hypernotion.

In both cases, w = t1...tk is the word factorization into k > 0 typographical
characters; when k = 0, we have either L (G) = {ϵ} (as ϵ is not a typographical
character) or L (G) = ∅.
Example 13. The WG GAlpha1 , abbreviated as Alpha1, is given by the following num-
bered rules:

(rM1) ALPHA :: a; b; c; ...; y; z.

(rV 1) s : ALPHA.
(rV 2) ALPHA : letter ALPHA symbol;

ALPHA, letter ALPHA symbol.

These rules describe the generation of L (Alpha1) = {tn|n ≥ 1, t = a, b,, or z}.
For instance, by applying URR1,2

1 (ALPHA, a), the (rightmost) derivation of the word
aaa is as follows:

s =⇒
rV 1

a =⇒
rV 2

a, a︷ ︸︸ ︷
letter a symbol

=⇒
rV 2

a, a︷ ︸︸ ︷
letter a symbol

a =⇒
rV 2

a︷ ︸︸ ︷
letter a symbol

aa

Figure 1 shows the parse tree for this word.

8 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

Figure 1: Parse tree for the word aaa generated by the WG Alpha1. The complete parse
tree is on the left and its simplified version is on the right.

Definition 14. The definition of L (G) given above is more correctly reformulated as

L (G) =
{
w ∈ T ∗ ⊆ P | ⟨s⟩ ∗

=⇒̂
G

w

}
= L

(
GD
)

where GD denotes deep grammar.

In the case at hand we have Alpha1D given in Example 13 above. This coinage is
owed to the fact that any word w = t1...tk generated by Alpha1 has a unique parse
tree for arbitrary k. But strictly taken ⟨s⟩ ∗

=⇒̂
G

w is not a derivation proper: It is

rather the description of the *-step derivation from ⟨s⟩ to w based on Ĝ. In effect, Ĝ
describes the derivation, or generation, of any specific word |w| = k for k = 0, 1, 2,
in the sense that a URRj

i (X, x) applied simultaneously to all the hypernotions in rV j
containing the metanotion X derives a (strict) production rule rSl ∈ RS such that the
protonotion x is in rSl; when x occupies the LHS of a production rule it is called a
strict notion and is abstractly denoted by x′. The set of strict notions NS such that
|NS | = n is thus defined as:

NS =
⋃{

h (X) = x′ ∈ LHS (rSj)
n
j=1 |X ∈ N,h (X) ∈ P

}
We have now the set of production rules

RS =
⋃

RS (rV i)
k
i=1 =

∞⋃
j=1

rSj

where RS (rV i) denotes the derivation of a rule in RS from the i -th rule in RV .

Definition 15. We define a production rule of a WG G as a rule of the form

(rS) x′︸︷︷︸
LHS

: ẋ1; ...; ẋk.︸ ︷︷ ︸
RHS

where each strict alternative ẋi = x
(′)
i1

, ..., x
(′)
ik

∈ (P ∪ {, })∗.

J. Knowl. Struct. Syst., 4:2 9

Review van Wijngaarden Grammars Luis M. AUGUSTO

Example 16. Using the elaboration above, the following set RSx′ of abstract produc-
tion rules for any given strict notion x′ and where x abbreviates letter x symbol is
derived from Alpha1D:

RSx′ (Alpha1D) =

{
s : x′.
x′ : x ; x′, x .

}
Specifying x′ by means of U (Alpha1) and removing commas for the sake of simplifi-
cation gives the sets of concrete production rules

RSAlpha1
(rV 1) =


s : a.
s : b.

...
s : z.


and

RSAlpha1
(rV 2) =


a : a; aa.
b : b; bb.

...
z : z ; zz .

 .

In this Example, RSAlpha1
(rV 1) can be abbreviated as {s : a; b ; ...; z.}, so that we

have 27 (instead of 52) rules by |RSAlpha1
(rV 1) ∪ RSAlpha1

(rV 2) |. This union is the
surface grammar for Alpha1, denoted by Alpha1S ; this surface grammar is, in turn,
the union of all the strict subgrammars for each of the strict notions x′ = a, b, ..., z.
Formally:

Definition 17. The surface grammar of a WG G is the 4-tuple GS = (NS , T, s, RS)
where T is the set of terminal protonotions of G, s ∈ NS is the start strict notion
derived from ⟨s⟩ ∈ RV , and the remaining elements are defined as

NS =
⋃
i

{
x

′

i

}
and

RS =
⋃

RS
x
′
i

where RS
x
′
i

is the subset of strict production rules for x
′

i. We have it that the 4-tuple

Gx
′
i
=

(
NS

x
′
i

, T ′, s, RS
x
′
i

)
is the strict (sub-)grammar for the i -th strict notion x

′

i.

Table 3 summarizes the elaboration above. The language L (G) can now be defined:

Definition 18. Let G be a WG and let
∗

=⇒̂
G

be the reflexive and transitive closure of

the relation =⇒̂
G

⊆ P+. We have the derivation step α =⇒
Ĝ

β if there is a production

rule rS = x′
∈(NS)+

→ x∈P∗ and strings γ, δ ∈ P ∗ such that γ, x′, δ︸ ︷︷ ︸
α

→ γ, x, δ︸ ︷︷ ︸
β

, where

the commas denote concatenation. Then, the language generated by G is defined as

L (G) =
{
w ∈ T ∗|s ∗

=⇒̂
G

w

}
= L

(
GS
)

10 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

Table 3: Grammars and levels of a WG G with respective rules.

Grammar

& Level

Rule LHS RHS

GD.1 rM ∈ RM Metanotion W ∈ M Meta-alternatives

Xi ∈ (M ∪ V)∗

GD.2 rV ∈ RV Hypernotion ⟨X0⟩ ∈ N Hyper-alternatives

X̊i ∈ (N ∪ T ∪ {, })∗

GS rS ∈ RS Strict Notion x′ ∈ NS Strict Alternatives

ẋi ∈ (P ∪ {, })∗

where s ∈ NS is the start strict notion.

Leftmost and rightmost derivations, denoted by
∗

α =⇒l
Ĝ

β and
∗

α =⇒r
Ĝ

β, respec-

tively, can be specified whenever all the derivation steps are of the form α =⇒l
Ĝ

β or

α =⇒r
Ĝ

β. Because RS is a description of the uniform replacements admissible in the

metagrammar Ĝ that are implemented in the production rules it can be considered

as generating a metalanguage L
(
Ĝ
)
of L (G) such that we have:

L
(
Ĝ
)
= L

(
L
(
GD
))

= L
(
GS
)

Definition 19. Let x′ ∈ NS be a strict notion in a production rule rSx′ and such that
Gx′ is the strict grammar for x′.11 A string of terminal symbols derived from x′,
denoted by wx′ , such that we have x′ ∗

=⇒
GS

wx′ , is called a strict word. The set of all

the strict words that can be generated by rSx′ is called the strict language of x′, and
it is defined as:

Lx′
(
GS
)
=

{
wx′ ∈ T ∗|x′ ∗

=⇒
Gx′

wx′

}
The strict metalanguage of a WG G is then defined as

LNS
(G) =

⋃
Lx′ such that

⋂
Lx′ = ∅.

Example 20. The grammar Alpha1 generates twenty-six strict languages, one for each
of the letters of the Roman alphabet. In effect, we have:

L
(
GS
Alpha1

)
=

z⋃
x′=a,b,...

Lx′

We thus have the strict languages:

La = {an|n > 0}

Lb = {bn|n > 0}
11Note that the strict notion x′ can coincide with the strict start notion s.

J. Knowl. Struct. Syst., 4:2 11

Review van Wijngaarden Grammars Luis M. AUGUSTO

...

Lz = {zn|n > 0}

For instance, the URR2
1 (ALPHA, a) applied to the entire set RV of Alpha1 gives a

strict subgrammar, namely the set of strict productions RSa that generates the surface
strict language La

(
Alpha1S

)
= {an|n > 0}:

URR (ALPHA, a) = RSa =

{
s : a.
a : a; aa.

}
Because a is a typographical character to be retrieved in a representation table (cf.
Table 1), the language La = {an|n > 0} can also be called a representation language
for Alpha1S .12 The strict metalanguage of Alpha1 is thus the union of all the repre-
sentation languages for Alpha1S :

L
(
Âlpha1

)
= La ∪ Lb ∪ ... ∪ Lz = L

(
Alpha1S

)
= LNS

(
Alpha1S

)
3 The Generative Power of WGs: Handling Infinity

3.1 Infinite Productions

One of the main advantages of the syntax elaborated on above is that it gives WGs
the ability to handle infinite sets of production rules, an ability that is missing in
the Chomsky grammars; as seen, this allows for the generation of not only infinite
languages but also an infinite number of strict languages. In effect, if the set of
productions of a WG G is finite, then the language L (G) just is a Chomsky language.

Example 21. The language L (Alpha2) =
{
t2

n |n ≥ 0
}
can be generated by the fol-

lowing WG GD
Alpha2 :

(rM1) ALPHA :: a; b; c; ...; y; z.
(rM2) N :: ALPHA.

(rV 1) s : N.
(rV 2) N : NN; N symbol.

From RV a finite set of strict production rules can be derived as follows:

(rS1) s : x.
(rS2) x : xx ; x symbol.

Alpha2S is equivalent to a CFG and thus L
(
Alpha2S

)
is a CFL. In effect, the

production rules of Alpha2S mimic the (ambiguous) CFG G = ({S,A} , {a} , S,R)
where R is as follows:

12Baker (1972) extends this coinage to match grammar types with representation languages; e.g.,
L = {an|n > 0} is a representation language for both type-3 Chomsky grammars and WGs that
correspond to this Chomsky type.

12 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

Figure 2: Parse tree for the word a4 ∈ L
(
Alpha2S

)
.

R =

{
S → A

A → AA | a

}
Figure 2 shows the parse tree for the word a4 ∈ L

(
Alpha2S

)
.

Recall from Section 2.1 above that the prototypical Chomsky languages are based
on exponentiation over symbols of the alphabet. The WGs turn this feature into the
ability to generate infinite production rules. The unique ability of deriving an infinite
set of production rules at the surface level from a finite deep grammar is particularly
well concretized in metarules of the forms N :: an, N :: Nan, etc. or with notions
that denote different exponents (e.g., I :: ai, J :: aj). With these metanotions any
kind of exponentiation can in principle be implemented by a WG with an infinite
set of production rules. Some simple examples follow; see, e.g., Greibach (1974) and
Mateescu & Salomaa (1997) for further examples.

Example 22. The following WG GD
Alpha2n describes the generation of the language

L (Alpha2n) =
{
t2n|n ≥ 1, t = a, b,, or z

}
.

(rM1) ALPHA :: a; b; c; ...; y; z.
(rM2) N :: ALPHAn.

(rV 1) s : N.
(rV 2) N : N symbol, N symbol.

The simplifying strategy here relies on, say for the protonotion a, URR1,2
1−2 = (N, an).

The use of the terminal metanotion N symbol on the RHS of rV 2 guarantees that
the iteration over N both is finite and produces an exponent of 2n for a. The strict
grammar RSAlpha2n

for x = a, b, ..., z is constituted by the following production rules:

J. Knowl. Struct. Syst., 4:2 13

Review van Wijngaarden Grammars Luis M. AUGUSTO

(rS1) s : xn.
(rS2) xn : xnxn.

RSAlpha2n
is obviously an infinite set, as n ∈ N. However, the hyper-grammar

allows for the construction of a finite parse tree for arbitrary n. Figure 3 (left) shows
the parse tree of the string a8 ∈ L (Alpha2n). Note that if the RHS of rV 2 is only
N symbol, we have a simplified version of Alpha1 ; this simplification can actually be
optimized by making it so that there is a single production rule in RSAlpha1

, to wit,
s : xn by designing rV 1 as s : N symbol. Adapted to Alpha2n, this simplification
gives the single production rule s : x2n. This simplification requires that rV 2 be
redesigned as s : N symbol, N symbol. Figure 3 (right) shows the parse tree of
a8 ∈ L (Alpha2n) for this simplification, but care must be taken not to turn this and
the above simplification into oversimplifications that might significantly diminish the
expressive power of WGs. The frugal trees in Figure 3 might actually not be very
useful in practical terms, say, for a parser. Because exponentiation in this language
is based on the recursive function f (n) = 2n it can be rather impractical to decide
membership of a word to these oversimplified WGs.

Figure 3: Parse trees of the string a8 ∈ L (Alpha2n).

One way to simplify without oversimplifying is to have URRs of the abstract form
URR

(
W, tf(n)

)
for n ∈ N. This exponentiation strategy is particularly useful in the

case of recursive functions.

Example 23. The language L (Alpha2) of Example 21 is based on the recursive func-
tion

f (n) = 2n =

{
1 for n = 0

2 (f (n− 1)) for n ≥ 1
.

By changing rV 2 into N : N symbol, N; N symbol., we can design the set of strict
production rules to be constituted by the two rules (rS1) s : x. and (rS2) xf(n) :
x f(n−1)xf(n−1) ; x f(n). Let us call this WG Alpha2Imp, where “Imp” abbreviates
“improved.” Obviously, rule rS2 accounts for an infinite number of productions. For
the strict language La =

{
a2

n |n ≥ 0
}
for arbitrary n, we have the derivation

DL
a2

n = s =⇒
rS1

a =⇒
rS2

aa =⇒
rS2

aaaa =⇒
rS2

aaaaaaaa =⇒
rS2

...

=⇒
rS2

af(n−1)af(n−1) =⇒
rS2

af(n−1)af(n−1) = af(n)

14 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

where to terminate the word we apply the second strict alternative of rule rS2. (Note
also that this is a leftmost derivation.)

Another efficient strategy adopted for WGs to increase (possibly) infinitely their
generative power while keeping a limited number of rules is by numbering a given
metanotion (e.g., ALPHA1, ALPHA2, ..., ALPHAk); the objective is that of allowing
for the application of two or more different URRs on the same metanotion – the root
metanotion –, allowing thus for distinct definitions thereof in a single hyper-rule. This
actually corresponds to a variation of the form of metarules that can be formulated
as

(
rkM
)

METANOTION1, ...,METANOTIONk︸ ︷︷ ︸
LHS

:: X1;;Xn.︸ ︷︷ ︸
RHS

where the subscripts 1 < i ≤ k index different copies of the same root metanotion
and no two distinct copies on the LHS can be replaced simultaneously by the same
Xj , 1 ≤ j ≤ n, on the RHS. This variation is more often than not assumed implicitly
in the hyper-rules and if k is unbounded so that we have metarules of the form rωM,
then the descriptive power of a WG is virtually infinite.13

Example 24. Consider the language

LNoRep = {t1t2...tn = w ∈ T ∗|∀i, j = 1, 2, ..., n : ti ̸= tj whenever i ̸= j}

where T = {a, b, ..., z}. (“NoRep” abbreviates “Alpha No Repetition.”) The upper
bound for the number of CFG rules required to generate this language is 26+(26)(25)+
(26)(25)(24) + ... + 26!, an impossibly large number. The WG GNoRep requires only
the following rules in the deep grammar:

(rM1) ALPHA :: a; b; ...; z.
(rM2) LETTER :: letter ALPHA.
(rM3) TAG :: LETTER; TAG LETTER.
(rM4) EMPTY :: .
(rM5) NOTION :: ALPHA; NOTION ALPHA.
(rM6) NOTETY :: EMPTY; NOTETY ALPHA.

13An additional positive effect of this strategy is the elimination of ambiguity, as it fixes a
URR (Wi, v) for all the hyper-rules in a hyper-grammar.

J. Knowl. Struct. Syst., 4:2 15

Review van Wijngaarden Grammars Luis M. AUGUSTO

(rV1) s : TAG unique.
(rV2) LETTER TAG unique : LETTER symbol, TAG unique,

where LETTER is not in TAG.
(rV3) LETTER unique : LETTER symbol.
(rV4) where LETTER1 is not in

LETTER2 TAG
: where LETTER1 isnt

LETTER2, where LETTER1 is
not in TAG.

(rV5) where LETTER1 is not in
LETTER2

: where LETTER1 isnt
LETTER2.

(rV6) where letter ALPHA1 isnt
letter ALPHA2

: where ALPHA1 precedes
ALPHA2 in abcde...wxyz;
where ALPHA2 precedes
ALPHA1 in abcde...wxyz.

(rV7) where ALPHA1 precedes
ALPHA2 in NOTETY1

ALPHA1 NOTETY2
ALPHA2 NOTETY3

: EMPTY.

For simplicity, we consider a three-letter word generated by this WG, but it should
be obvious that words of arbitrary length |w| ≤ 26 – there being exactly 26! words
|w| = 26 – can be parsed with it. The strict language in consideration is thus:

Lfun

(
NoRepS

)
= {fun}

Figure 4 shows the parse tree for this strict language. In this example (from Cleaveland
& Uzgalis, 1977), use is made of protonotions beginning with ’where’.

Definition 25. Protonotions beginning with ’where’, ’unless’, ’is’, etc., are called pred-
icates.

When certain conditions are not met, predicates typically yield so-called blind
alleys, i.e. protonotions for which no production rule can be derived; otherwise, they
yield empty terminal productions.

3.2 Infinite Alphabets

WGs can not only handle infinite sets of production rules (as just seen), but also
infinite alphabets, what makes it that WL, the class of languages generated by WGs,
properly contains the languages of the Chomsky hierarchy.

Example 26. The following WG GAlphaK describes the generation of the language
AlphaK defined as:14

L (GAlphaK) = {tn1 ...tnk |n ≥ 0, k > 0,∀i, j = 1, ..., k : ti ̸= tj if i ̸= j} = Q

14Source: Grune & Jacobs (2008); with changes.

16 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

Figure 4: Parse tree Tfun of the string fun ∈ Lfun

(
NoRepS

)
.

(rM1) N :: n N; EMPTY.
(rM2) K :: i; i K.
(rM3) EMPTY :: .

(rV 1) s : N i tail.
(rV 2) N K tail : N K, N K i tail; EMPTY.
(rV 3) N n K : K symbol, N K.
(rV 4) K : EMPTY.

This grammar guarantees that a given terminal symbol occurs only (n times) in a
unique j -th position in w = t1...tk, j ∈ N, by “binding” it by means of a mapping
f : {j} −→ {i}j from the set of protonotions in the sequence σ1...σk into the set of
natural numbers such that we have URR2,3

2 (Kj , i) = ij ; by means of a composition

p = g ◦ f where g : {i}j −→ T ⊆ P ′ we obtain the set of typographical symbols
of a given word. The short word “ffuunn” is used here as an example. (The reader
is welcome to create an infinite alphabet – in any case, some |Σ| > 26 – and parse
words as long as their leisure might allow.) For this word, we have URR2,3

2 (f1, i) = i,
URR2,3

2 (u2, i) = ii, and URR2,3
2 (n3, i) = iii, such that we obtain p (i) = f symbol;

p (ii) = u symbol, and p (iii) = n symbol. Figure 5 shows the parse tree for this word of
grammar AlphaK. Note in this parse tree that rule rV 4 is omitted; this rule assures
us that if it is not applied after n occurrences of a given terminal protonotion, then
an error has been detected and the word cannot be parsed.

J. Knowl. Struct. Syst., 4:2 17

Review van Wijngaarden Grammars Luis M. AUGUSTO

Figure 5: Parse tree of the word “ffuunn” generated by GAlphaK .

4 The Undecidability of WLs

4.1 Turing Machines Deciding and Accepting Languages

Example 21 above shows a central feature of WGs, to wit, the ability to generate all
languages in the Chomsky hierarchy; this is an advantageous ability especially as we
go down in the hierarchy, because we have more and more decidable questions for
languages generated by WGs. In effect, when generated by a Chomsky grammar G,
the language L (G) =

{
t2

n |n ≥ 0
}

is not a CFL, because a CFG has no means to
define recursively any exponent over a symbol, but it can be a CFL when generated
by a WG, namely thanks to its ability to handle exponents in a very natural way.15

On the other hand, even very simple WLs are generally undecidable for reasons that
I discuss below.

Language decidability is a subject that recruits the highly intuitive Turing machine
in the following sense:16

15For instance, it takes a UG G = ({L,R,D} , {a} , S,R) with

R =



S → LaR
L → LD

Da → aaD
DR → R
L → ϵ
R → ϵ


to generate the language L (G) =

{
t2

n |n ≥ 0
}
. Compare with Example 21.

16See Augusto (2021) for an elaboration on Turing machines and core bibliography on the topics
briefly discussed in this Section.

18 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

Definition 27. A language L is said to be decidable, or a recursive language (abbr.:
RCL), if there is a Turing machine M that computes the characteristic function
χL : Σ∗ −→ {0, 1} defined for any given string w ∈ Σ∗ as

χL (w) =

{
1 if w ∈ L

0 otherwise

where x
?
∈ L is known as the membership problem. We then define L as

LDEC (M) = {w ∈ Σ∗|M computes χL (w)} .

The membership problem is so central in formal language theory that it is in fact
frequently spoken of as the decision problem (for a given language), and it suffices to
say that language is decidable to mean that the membership problem has a solution;
on the contrary, for other problems decidability is always a relative property, and we
say, for instance, the decision problem for emptiness is (un)decidable.

A decision procedure for M equivalent to the computation of the characteristic
function is the canonical enumeration of strings: Let an offline Turing machine M
start with an empty input tape; at the end of the computation by M, for every x ∈
L (M) at some point the contents of its one-way write-only tape with the left-marker
▷ will be ▷x1#x2#...#xn#x# for some n ≥ 0, x1, x2, ..., xn ∈ L (M), x1, x2, ..., xn, x
are all distinct, and there is nothing printed after the last # (the blank symbol) if
L is finite. This M enumerates L. If M enumerates all the strings of L in canonical
order, i.e. shorter strings precede longer strings and strings of the same length are
alphabetically ordered, then L (M) is said to be decidable (or recursive) and we write
LDEC (M). Fitting the inclusion relation RCL ⊆ REL in the Chomsky hierarchy,
a language is said to be semi-decidable, or recursively enumerable (r.e.), if there is a
Turing machine M that when given input x halts in an accepting state if x ∈ L (in
which case we say that M accepts x such that we have x ∈ LACC (M)). Formally,
we have the definition:

Definition 28. A language L is said to be accepted by a Turing machine M if, given
a string w ∈ L, M halts in an accepting state. Thus, the language accepted by M is
defined as

LACC (M) = {w ∈ Σ∗|q0, w ⊢∗
M qa, w

′}
where

q0, w︸ ︷︷ ︸
C0

⊢∗
M qa, w

′︸ ︷︷ ︸
Cf

denotes that starting in state 0 (q0) with the input word w (i.e. the initial configura-
tion C0) after zero or more steps the Turing machine M has finished processing the
input word and halts in an accepting state qa with the output string w′ ∈ Σ ∪ Γ, for
Γ the tape alphabet of M (Cf denotes “final configuration”).

However, M may loop forever if w /∈ L instead of outright rejecting it (by, say,
halting in a rejecting state). In other words, if a language is a REL we may end
up with no solution to the membership problem, but this is a central problem in
the theory of formal languages impacting on theoretical (e.g., scientific theories) and
practical (e.g., compilation) aspects alike.

J. Knowl. Struct. Syst., 4:2 19

Review van Wijngaarden Grammars Luis M. AUGUSTO

Figure 6: A total Turing machine that decides the language L =
{
02

n

|n ≥ 0
}

over the

alphabet Σ = {0}∗. (Source: Augusto, 2021.)

Example 29. Consider the language L =
{
02

n |n ≥ 0
}
over the alphabet Σ = {0}∗ (cf.

Example 23). The Turing machine M of Figure 6 with one accepting state (qa) and
one rejecting state (qr) decides L, despite not enumerating its strings itself: Given an
input of m zeros followed by #, M either accepts it or rejects it; thus, with the help
of M we can both enumerate the strings of L by increasing length such that we have
the enumeration

L (M) = {0, 00, 0000, 00000000, ...}

and enumerate the strings that are not in L so that we have

L (M) = Σ∗ − L (M) = {ϵ, 000, 00000, 000000, 0000000, ...} .

M halts on every input string x ∈ Σ∗, i.e. it is a total Turing machine, and this
L (M) is a RCL.

A language L that is not decidable (or recursive) or semi-decidable (or r.e.) is an
undecidable language; this means that it is impossible to design a Turing machine M
that accepts or recognizes the strings of either L or L. As the number of Turing ma-
chines is countably infinite (more precisely, there are ℵ0 Turing machines), but there
are 2ℵ0 languages, this leaves us with an uncountably infinite number of undecidable
languages.17

17More strictly, there are exactly ℵ0 partial recursive functions and there are exactly ℵ0 recursive
functions, but the number of functions is 2ℵ0 .

20 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

4.2 Recursiveness and Language (Un)Decidability

Taken strictly (in the WG sense), the language

Lfun

(
AlphaKS

)
= {fun,ffuunn,fffuuunnn, ...}

of Example 26 is in the Chomsky language class REL. This result – i.e. REL ⊆ WL
– was proven early on in the history of WGs (e.g., Janssen, 1975; Sintzoff, 1967; van
Wijngaarden, 1974). While the RELs are already quite expressive with comparison to
those languages below them in the Chomsky hierarchy, they are generally undecidable,
namely due to infinity. This is in agreement with results formulated by E. Post on
recursively enumerable (r.e.) sets of positive integers and their decision problems
(Post, 1944). In this article, Post established the following crucial results in recursion
theory for sets of positive integers:

Proposition 30. The decision problem (DP) of a r.e. set is solvable or unsolvable
according as the set is, or is not, recursive.

Proof. Cf. Post (1944).

Theorem 31. (Post’s Complementation Theorem) A set of positive integers is recursive
iff both it and its complement with respect to Z+ are r.e.

Proof. Cf. Post (1944).

Corollary 32. The DP of a r.e. set is recursively solvable iff its complement is r.e.

Proof. Cf. Post (1944).

Fact 33. R.e. sets that are not recursive are always infinite.

The above results hold for any set whose elements can be represented over the
positive integers (e.g., by means of Gödel numbers or, more simply, by string length),
so the extension of Post’s results to languages is natural and we have the following
crucial results with respect to RELs:

Theorem 34. There is a REL L that is not recursive.

Proof. By Theorem 31, this means that there is a REL L whose complement L is not a
REL. In effect, given an input alphabet Σ = {a}, there are countably infinitely-many

Turing machines {Mi}ℵ0

i=1 such that there is some Mi associated to each REL L (Mi)
over Σ. Consider now a new language L such that, for each i ≥ 1, with respect to
string ai we have

ai ∈ L iff ai ∈ L (Mi) .

Consider now the complement of L:

(1) L =
{
ai|ai /∈ L (Mi)

}
Both L and L are well defined, but the latter is not r.e. This can be shown by
contradiction. We assume that L is r.e. Then, there must be some Mj such that:

(2) L = L (Mj)

J. Knowl. Struct. Syst., 4:2 21

Review van Wijngaarden Grammars Luis M. AUGUSTO

Let us consider now a string aj . If aj ∈ L, then by (2) aj ∈ L (Mj) which entails by
(1) that aj /∈ L; if aj ∈ L, then aj /∈ L, which by (2) entails that aj /∈ L (Mj), which
by (1) entails that aj ∈ L. In either case, we reach a contradiction, so we conclude
that L is not r.e. Proving that L is a REL is easy and I leave this part of the proof
as an exercise.

Corollary 35. There is a REL whose DP is recursively unsolvable.

4.3 Decidability and the Parsing Problem for WGs

The central result in the theory of WGs was expressed in Sintzoff (1967) and it follows
directly from Corollary 35 immediately above:

Theorem 36. The DP for a given WG G is recursively unsolvable.

The brief elaboration in 4.1-2 above is meant to convey the fact that the Turing
machine establishes the theoretical measure of decidability in formal languages taken
as sets of strings; this is known as the Church-Turing Thesis. For practical ends,
however, we may (need to) relax this measure and ask instead for the existence of at
least one parse.

Definition 37. Given a pair (w,G), we wish to find the set {Pw,i}ki=1 of parses for
string w and grammar G such that w ∈ L (G). This query is the parsing problem.

For convenience, I shall consider any of a finite sequence of configurations of a
machine Mw that recognizes w, a finite tree Tw, or a finite derivation Dw as equivalent
to a parse Pw.

Example 38. Given the language L (M) =
{
02

n |n ≥ 0
}
for the Turing machine M of

Figure 6 with input alphabet Σ = {0} , tape alphabet Γ = Σ ∪ {X,#} and halting
set H = {qa, qr}, the following is the finite sequence of configurations of M when
accepting the string 0000:18

q0, 0000##︸ ︷︷ ︸
C0

⊢ q1,#000## ⊢ q2,#X00## ⊢ q3,#X00##

q2,#X0X## ⊢ q4,#X0X## ⊢ q4,#X0X## ⊢ q4,#X0X##

q1,#XXX## ⊢ q1,#X0X## ⊢ q1#X0X## ⊢ q2,#XXX## ⊢ q2,#XXX##

q4,#XXX## ⊢ q4,#XXX## ⊢ q4,#XXX## ⊢ q1,#XXX## ⊢ q1,#XXX##

q1,#XXX## ⊢ q1,#XXX## ⊢ q1,#XXX## ⊢ qa,#XXX##︸ ︷︷ ︸
Cf

It is important to remark that the parse of a word generated by a WG G is completed
over the set of hyper-rules in G2, and not over the set RS in GS . But whereas, just as
in the case of CFGs, in GS we have it that there is a one-one correspondence between

18Underlined (blank) symbols are those that M is currently reading. ⊢M is abbreviated as ⊢. It
is assumed that the tape of M is infinite to the right and terminates on the left in the first symbol
of the string.

22 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

Figure 7: Parse tree of the word fun ∈ L
(
NoRepS

)
showing metanotion propagation for

URR (ALPHA, f) in broken directed lines (in red).

leftmost derivations and left parses, in G2 this does not hold, an aspect that I will
discuss and exemplify below. Moreover, the fact that a parse can be constructed for
a word generated by a WG does not by itself guarantee that the corresponding WL
is decidable, namely because of the complexity of the parse.

Example 39. Figure 7 shows the parse tree of the word fun ∈ L
(
NoRepS

)
by taking

into consideration the direction of the propagation of metanotions, a topic elaborated
on in Williams (1985). I give only the propagation of the metanotion ALPHA as given
in URR (ALPHA, f). The reader can easily do the same for the letters “u” and “n”
and then compare with Figure 4 above.

Besides high levels of word-parse complexity, WGs are prone to a plethora of causes
for ambiguity (see below). In order to eliminate ambiguity we may require that the
parser output at most one parse, namely at most one left parse PL

w for the leftmost
derivation DL

w . This restriction is particularly relevant for WGs given the following
negative result:

Theorem 40. (Wegner, 1980) It is undecidable whether an arbitrary WG G has at
most one left parse for each leftmost derivation.

This result in fact dictates the undecidability of WGs expressed in Theorem 36
above. Before giving the proof for this theorem, it will prove useful to provide an
example.

J. Knowl. Struct. Syst., 4:2 23

Review van Wijngaarden Grammars Luis M. AUGUSTO

Example 41. Consider the following sets of (abstract) meta- and hyper-rules for a
given WG G in which n ≥ 1:

RM =

{
(1) A → aA; a.
(2) B → A.

}

RV =


(1) s → A;B.
(2) A → an.
(3) B → an.
(4) an → a.


Obviously, by hyper-rule 4 this WG has a single strict language such that La = {a}.
Then, there are infinitely many leftmost derivations for the single left parse PL

a =
rV 1, rV 2, rV 4:

s =⇒
rV 1

l A =⇒
rV 2

l a =⇒
rV 4

l a

s =⇒
rV 1

l A =⇒
rV 2

l a
2 =⇒

rV 4
l a

...

s =⇒
rV 1

l A =⇒
rV 2

l a
i =⇒

rV 4
l a

...

Conversely, there are two left parses for the leftmost derivation DL
a = s

2
=⇒l a

i
=⇒l

ai =⇒l a, to wit: (
PL

a

)
1
= rV 1, rV 2, rV 4(

PL
a

)
2
= rV 1, rV 3, rV 4

The proof of Theorem 40 can now be given:

Proof. Let us consider two arbitrary CFGsG1 = (V1, T1, S1, R1) andG2 = (V2, T2, S2, R2)
such that

G =

V1 ∪ V2︸ ︷︷ ︸
M

, T1 ∪ T2 ∪ {s}︸ ︷︷ ︸
V

, R1 ∪R2︸ ︷︷ ︸
RM︸ ︷︷ ︸

G1

, {⟨s⟩ , ⟨S1⟩ , ⟨S2⟩}︸ ︷︷ ︸
N

, {a}︸︷︷︸
T

, ⟨s⟩ , RV

︸ ︷︷ ︸
G2


where

RV =

 ⟨s⟩ → S1

⟨S1⟩ → a
⟨S2⟩ → a


is a WG. Then, there is a (leftmost) derivation with more than one left parse iff
L (G1) ∩ L (G2) ̸= ∅, but this is known to be an undecidable problem for CFGs.

The inverse property that for each left parse there is exactly one leftmost derivation
is also generally undecidable and shown with a similar construction.

24 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

5 Taming the Generative Power of WGs: Decidable Re-
strictions

Given the inclusion relation above and their ability to handle both infinite sets of pro-
duction rules and infinite alphabets, we have it that WLs are potential candidates to
undecidability. In effect, the language L

(
AlphaKS

)
segregates the class of languages

generated by WGs from the Chomsky languages in the sense that the WGs extend the
expressive capabilities of the Chomsky grammars. Type-0 grammars, the most pow-
erful Chomsky grammars and the generators of the RELs, are not capable of handling
set Q above; more specifically, Q is not a r.e. set if taken in the framework of these
grammars, so that we have the inclusion relation REL ⊂ WL (Grune, 1993): Given
an infinite alphabet Σω = {a1, a2, ...} = {ai}

ω
i=1, where the subscript notation “i” is

used to distinguish these subscripts from those in tn1 ...t
n
k , every terminal character tj

in t1...tk, 1 ≤ j ≤ k ∈ N, is in the range of a total function mapping elements of
N to names of terminal symbols that are given in a representation table. Be it as it
may – i.e. whether we have REL ⊆ WL or REL ⊂ WL –, this language inclusion
relation indicates that the WLs are largely undecidable. So, the question is how to
guarantee decidability while preserving the high expressiveness and generative power
of WGs. Luckily, we have at hand a few syntactic restrictions to WGs that give us
this desideratum in the sense that restricted-WG generated strings can be effectively
and unambiguously parsed. In particular, eliminating ambiguity and ϵ-productions
in WGs has proven to generally give us decidability for WLs, but there are other
methods that I also discuss below.

5.1 Staying within the Types 3 through 1 of the Chomsky Hierarchy

As seen above, sets that are r.e. but not recursive are always infinite (cf. Fact 33);
however, infinity alone does not suffice for undecidability. One of the advantages of
using grammars of such high complexity as the WGs is that of having infinite sets of
production rules that are recursive. The easiest way to be assured of decidability for
WLs is by restricting them syntactically to Chomsky grammars of Types 3 through
1: As is well known, the membership problem for the languages generated by these
grammars is decidable, if with increasing computational complexity. Decidability can
be secured by means of some syntactic restrictions that have mainly to do with the
occurrence of specific notions in the rules of a WG.

The Chomsky class CSL is particularly of interest for its expressive capabilities
– which, however, in the strict framework of the Chomsky hierarchy dictate their
inefficient parsing. Recall that in a CSG every production is of a form α → β such
that |β| ≥ |α|, i.e. no production is length-decreasing, reason why in γAδ → γXδ
we have X ∈ (V ∪ T)

+
; in other words, a CSG is typically an ϵ-free grammar, with

ϵ being exceptionally allowed in a rule S → ϵ if S does not occur in the RHS of any
other rule in the production set of the grammar – which obviously either gives us the
uninteresting CSL L = {ϵ} or a redundant rule. In the terminology of WGs, this
property can be defined as below for the hypernotions (exclusively) in a hyper-rule.
This requires some abbreviations that will be recurrent in other places below. Recall
from Remark 8 the basic form of a hyper-rule.

J. Knowl. Struct. Syst., 4:2 25

Review van Wijngaarden Grammars Luis M. AUGUSTO

Remark 42. Given a hyper-rule

(rV j) ⟨Xj,0⟩ → X̊j,1; X̊j,2; ...; X̊j,m

for each i -th meta-alternative in
{
X̊j,i

}m

i=1
we have

(rV ji) ⟨Xj,0⟩ → γ ⟨Xj,i1⟩ δ...γ ⟨Xj,ik⟩ δ

if the i -th meta-alternative of rV ji has a sequence of k non-empty hypernotions, k ≥ 1
(if k = 0, we have a hyper-rule of the form ⟨X⟩ → ϵ). To simplify, I omit the subscripts
for rule j and write simply ⟨X0⟩ → ⟨X1⟩ ... ⟨Xk⟩, given that γ, δ are not factored in
in the following computations.

Definition 43. A WG G is said to be lossless if for each hyper-rule ⟨X0⟩ ̸=⟨s⟩ →
⟨X1⟩ ... ⟨Xk⟩ we have

ℓV (⟨X0⟩) ≤ ℓV

(
k∑

i=1

⟨Xi⟩

)
where ℓV denotes the length of constituents with respect to the set V (i.e. ignoring
metavariables)19 and for each W ∈ ⟨X0⟩ we have

|⟨X0⟩|W ≤
∣∣∣(⟨Xi⟩)ki=1

∣∣∣
W

where |⟨Xi⟩|W denotes the number of occurrences of W in a hypernotion ⟨Xi⟩ ∈ N+.

For the computation above, it should be obvious why the start hypernotion ⟨s⟩
is removed; in any case, we consider a hyper-rule with ⟨s⟩ on the LHS to be lossless
as long as the RHS is not empty or we have X̊ ∈ N+. In effect, the solvability of
the decision problem for lossless WGs lies on the fact that sentential form ϑi in a
derivation Dw is of at least the same length as ϑi−1.

Example 44. It can be easily verified that Alpha2Imp (cf. Example 23) is a lossless
WG. The WG NoRep of Example 24 is not lossless, despite its hyper-rules rV 1 through
rV 6 being lossless: In effect, no WG with a hyper-rule of the form ⟨X⟩ → ϵ is lossless.

Theorem 45. (Baker, 1970) The family of languages generated by lossless WGs is
precisely the family of CSLs.

Proof. (Idea) The proof requires the construction of a special Turing machine: Any
rewriting system such that each derivation step is non-decreasing and there is a mul-
titape Turing machine that can imitate each step w1 =⇒ w2 by using no more than
|w2| tape cells yields a CSL.

Greibach (1974) discusses a family of WGs – the normal regular-based WGs, de-
noted by NRB – that are also included in CSL.

Definition 46. A WG G is said to be normal if a hyper-rule rV i satisfies the conditions

⟨X0⟩rV i = W ∈ M or v ∈ V

and
RHS (rV i) = Y ∈ N+.

19Alternatively, one can consider the total number of occurring protovariables.

26 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

1. A normal WG G is said to be factored if (i) for W ∈ M we have it that LW ̸= ∅,
(ii) for all Wi,Wj ∈ M it is the case that either LWi = LWj or LWi ∩ LWj = ∅,
and (iii) if ⟨X⟩ ∈ N

+

occurs in any hyper-rule, then there is a W ∈ M such

that L⟨X⟩ ⊆ LW where L⟨X⟩ =
{
h (Wi) | {Wi}ki=1 ⊆ M

}
.

Consider now a grammar G to be regular if every production is of the form X → uY
or X → v, where X,Y ∈ V , u ∈ T ∗, and v ∈ T+.

Definition 47. A WG G whose metagrammar G1 simulates a regular grammar G,
denoted by G1

R, is called a regular-based WG.

In order to carry out this simulation we may have the G1
R combinations shown in

Table 4.

Table 4: G1
R-rule forms for a regular-based WG.

LHS RHS

Wi :: xWj

W :: v

Definition 48. A WG G that is both normal and regular-based is a normal regular-
based WG (abbr.: NRB).

The following result follows obviously:

Proposition 49. CFG ⊂ NRB.

Proof. Left as an exercise.

Theorem 50. Given a NRB G, we can construct a lossless factored NRB G′ such that
L
(
GS
)
= L

(
G′S).

Corollary 51. If G is a NRB, then L
(
GS
)
is context-sensitive.

Corollary 52. If G is a NRB, then membership in L
(
GS
)
is decidable.

Recall that the class CSL is decidable only for membership. The reader should note
that the proper inclusion in Proposition 49 provides the languages in the class NRB
with the additional decidability properties for the class CFG, to wit, membership,
finiteness, and emptiness. Thus, and by Theorem 53 below, the class NRB gives us
CSLs that are also decidable for finiteness and emptiness by an extension of corollary
52. For the subject of the present article, the following is the crucial result:

Theorem 53. NRB ⊂ CSL.

Proof. A CSL L (G) for a CSG G can be recognized (in linear space and time) by a
non-deterministic Turing machine M that needs at most |w| tape squares to accept
w. M equally recognizes a NRB language L

(
GS
)
for a NRB grammar G.

Example 54. Grammar Alpha2Imp of Example 23 is a NRB.

J. Knowl. Struct. Syst., 4:2 27

Review van Wijngaarden Grammars Luis M. AUGUSTO

5.2 (Strict) Boundedness and Recursiveness

P. Deussen and K. Melhorn (Deussen, 1975; Deussen & Melhorn, 1977) devised some
restrictions that guarantee that the generated sets of words constitute decidable lan-
guages. Remark 42 holds in the following discussion.

Definition 55. We say that a hyper-rule ⟨X0⟩̸=⟨s⟩ → ⟨X1⟩ ... ⟨Xk⟩ is:

1. left-bounded (right-bounded) iff for anyW ∈ M if |⟨X0⟩|W ≥ 1 (if
∣∣∣(⟨Xi⟩)ki=1

∣∣∣
W

≥

1), then
∣∣∣(⟨Xi⟩)ki=1

∣∣∣
W

≥ 1 (|⟨X0⟩|W ≥ 1, respectively);

2. strict left-bounded (strict right-bounded) if for all W ∈ M we have

|⟨X0⟩|W ≤
∣∣∣(⟨Xi⟩)ki=1

∣∣∣
W(

|⟨X0⟩|W ≥
∣∣∣(⟨Xi⟩)ki=1

∣∣∣
W

, respectively
)

and moreover

ℓV (⟨X0⟩) ≤ ℓV

(
k∑

i=1

⟨Xi⟩

)
(
ℓV (⟨X0⟩) ≥ ℓV

(
k∑

i=1

⟨Xi⟩

)
, respectively

)
.

The above properties are abbreviated as lb, rb, slb, and srb, respectively.20

Definition 56. A WG G is said to be of type L (R) iff their hyper-rules are (i) ϵ-free
and (ii) lb (rb, respectively), and (iii) all their hyper-rules of the form ⟨X0⟩ → ⟨X1⟩
are slb (srb, respectively).21

WLs of type L (R) are denoted by LL(LR, respectively).

Theorem 57. The WLs of types LLand LRare decidable.

Proof. (Idea) The cited authors show that these WLs are acceptable by an offline
Turing machine in exponential time.

5.3 Handling ϵ-rules

Although they are generally very useful and in some cases even indispensable, ϵ-
productions are a cause for ambiguity in CFGs; for WGs, ϵ-rules are seen by some
authors (e.g., Visser, 1997) as one of the causes of WL undecidability. In particular,
they may impact negatively on the construction of parses.

Definition 58. A parse tree Tw is said to be an ϵ-tree, denoted by Tw,ϵ, if it has empty
leaves or interior nodes with no descendants.

20Note that a strict left-bounded WG just is a lossless WG (see Def. 43 above).
21See below for the elimination of ϵ-rules.

28 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

While ϵ-trees have nothing wrong in themselves, they typically cause trouble in
compiling CFGs, and, as said, may dictate the undecidability of the parsing problem
for WGs. In any case, a parse tree Tw is an ϵ-tree iff there is at least one ϵ-hyper-rule
rV j ∈ RV .

Definition 59. A hyper-rule rV j is said to be an ϵ-hyper-rule if it has the form ⟨Xj,0⟩ →
ϵ for one of its 1 ≤ i ≤ m hyper-alternatives.

Example 60. The parse tree Tfun for string fun ∈ L
(
N̂oRep

)
(cf. Example 24) is

actually a tree Tfun,ϵ. This ϵ-tree property is caused by the application of ϵ-hyper-
rule rV 7, which is required by the predicates in LHS (rV 7) for checking that a word
w = t1t2...tk does indeed satisfy the property that ti ̸= tj whenever i ̸= j, 1 ≤ i, j ≤ k.

Predicates do indeed require ϵ to be in the RHS of some hyper-rule of the WG
in which they feature. However, often ϵ-hyper-alternatives can be eliminated while
preserving the language generated by the WG.

The proof of the following theorem provides a simple algorithm to remove ϵ-hyper-
rules:

Theorem 61. For every WG G there is a WG G′ such that L (G) = L (G′) and G′ is
ϵ-free.

Proof. For every ϵ-hyper-rule ⟨Xj,0⟩ → ϵ in G2 select a hyper-rule rV l, j ̸= l, with
a hypernotion ⟨Xl,i⟩i=1,...,k containing or equal to ⟨Xj,0⟩. Then, (1) add to rV l the

hyper-alternative ⟨Xl,k+1⟩ − ⟨Xj,0⟩ and (2) remove ⟨Xj,0⟩ → ϵ from G2.

This simple algorithm is guaranteed to work only for hyper-rules that are context-
free; beyond that, it is ineffectual.

Example 62. In the WG AlphaK of Example 26 it is easy to identify rV 4 as an ϵ-
hyper-rule. We have ⟨X0⟩rV 4 = K, it being the case that the metanotion K occurs on
RHS (rV 2) and RHS (rV 3). By applying the simple algorithm in the proof of Theo-
rem 61 we obtain the following set of hyper-rules with the added hyper-alternatives
(underlined for easy identification):

(rV 1) s : N i tail.
(rV 2) N K tail : N K, N K i tail; N,N tail;

EMPTY.
(rV 3) N n K : K symbol, N K; N.

But the occurrence of yet another ϵ-hyper-rule, to wit, rV 2, makes the first handled
ϵ-hyper-rule rather superfluous. Moreover, the hyper-alternatives N for rV 2-3 and N
tail for rV 2 make no sense, as N denotes merely a number of occurrences (of no letter).
This is remedied by an ϵ-metarule (see below) such that we have URR (N, ϵ). Clearly,
the hyper-rules of this grammar are not context-free, reason why the ϵ-elimination
given in the algorithmic proof above fails – even though the grammar could be saved
by this last URR, but this is a solution that increases to a great extent the complexity
of word parsing for this grammar.

However, identification of empty hyper-alternatives is not always so obvious, rea-
son why following Wegner (1980) we can speak of hidden ϵ-hyper-rules.

J. Knowl. Struct. Syst., 4:2 29

Review van Wijngaarden Grammars Luis M. AUGUSTO

Definition 63. Given a hyper-rule ⟨X0⟩ → ⟨X1⟩ ... ⟨Xk⟩, for 1 ≤ i ≤ k we say that
⟨Xi⟩ has a hidden empty notion if there is a URRrV

rM (W, ϵ) for W ∈ ⟨Xi⟩.

Example 64. The grammar AlphaK of Example 26 has a hidden empty notion such
that we have URR1,2,3

1 (N, ϵ).

The main problem with hidden ϵ-notions is that we can get two leftmost derivations
for a left parse, as the following example from Wegner (1980) shows:22

Example 65. The WL L
(
GS
AB

)
= {a, ab} can be generated by the following WG GD

AB :

(rM1) BETY :: b; EMPTY.
(rM2) EMPTY :: .

(rV 1) s : a BETY.
(rV 2) a : a symbol, BETY.
(rV 3) b : b symbol.

Consider the strict language Lab = {ab}. Recall from footnote 6 that a URR (Wi, v)
holds for hyper-rules taken individually, and not for the whole set RV . In this partic-
ular case, the parse PL

ab gives rise to the two following leftmost derivations depend-
ing on whether one chooses URR1

1 (BETY, b) or URR1
1 (BETY, ϵ), but one selects

URR2
1 (BETY, b): (

DL
ab

)
1
= s =⇒

rV 1
a EMPTY =⇒

rV 2
a, b =⇒

rV 3
ab

(
DL

ab

)
2
= s =⇒

rV 1
a b =⇒

rV 2
a, b =⇒

rV 3
ab

The proof of the following theorem gives us an algorithm to eliminate hidden
empty notions.

Theorem 66. (Wegner, 1980) For every WG G there is a WG G′ such that L (G) =
L (G′) and G′ is free of hidden empty notions.

Proof. Let G = (M,V,RM , N, T, S,RV) and G′ =
(
M ′, V ′, R

′

M , N ′, T ′, S′, R
′

V

)
. Set

V ′ = V ∪ {†} where V ∩ {†} = ∅. Let M = M ′, RM = R
′

M , T = T ′, and make

N ′ = {⟨†X⟩ | ⟨X⟩ ∈ N} .

In order to obtain the equality L (G) = L (G′) stated in the theorem proceed in the
following way: (1) Make R

′

V the set of hyper-rules obtained from RV by replacing each

hypernotion ⟨X⟩ ∈ N by the corresponding ⟨†X⟩ ∈ N ′; (2) add to R
′

V a hyper-rule
⟨†⟩ → ϵ; and (3) set S′ = {⟨†s⟩}.

22I slightly changed Wegner’s example.

30 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

5.4 Eliminating Ambiguity

5.4.1 Some General Remarks on WG Ambiguity

Just as in the case of CFLs, we shall consider a WL to be ambiguous if there are more
than one leftmost derivation for a given string. Formally:

Definition 67. A WG G is said to be ambiguous if there is a string w ∈ L (G) with
two or more derivations DL

w in G. Otherwise, G is unambiguous.

The causes for ambiguity in WGs are many and possibly not all identified, but a
few rules of thumb can be given. To begin with, if both X and Y are metanotions, then
XY (or YX) should not be a third different notion, so as not to be confused with the
concatenation of X and Y. For instance, if NOTION and EMPTY are two metanotions
defined as usually, i.e. as a token (letter, digit, etc.) and as the empty syntactic mark
ϵ, then the third metanotion NOTIONEMPTY will originate ambiguity, regardless of
how it is defined in the WG.

Besides concatenation, prefixes and suffixes can be a source of ambiguity. As an
affix grammar, a WG uses both prefixation and suffixation.

Example 68. Consider a WG G with the metarules “NOTION :: a; b.” and “EMPTY
:: .”. In the following two hyper-rules the paranotion option is used both as a prefix
(in the first hyper-rule) and as a suffix (in the second hyper-rule):

� option NOTION : NOTION; EMPTY.

� NOTION option : NOTION; EMPTY.

Given a URR (NOTION, x) for x = a, b, from the first hyper-rule, we can derive the
production rules

RS =

{
option a : a; .
option b : b; .

}
.

Let us now change prefixation into suffixation: From the second hyper-rule, we can
derive the production rules

RS =

{
a option : a; .
b option : b; .

}
.

With the avoidance of ambiguity in mind intermixing prefixes and suffixes should
not be allowed, as shown in the following example.

Example 69. Consider the following two hyper-rules of a WG:

� option NOTION : NOTION; EMPTY.

� NOTION pack : left parenthesis symbol, NOTION, right parenthesis symbol.

J. Knowl. Struct. Syst., 4:2 31

Review van Wijngaarden Grammars Luis M. AUGUSTO

Figure 8: Two parse trees for the string “(a)”.

By applying a URR (NOTION, token) simultaneously to the LHSs of both hyper-rules
we obtain the protonotion option token pack. Then, there are two ways to parse the
protonotion option token pack, to wit, as

option token pack
⧸ ⧹

option token pack

or
option token pack

⧸ ⧹
option token pack

In the first case, we have an optional set of balanced parentheses with a token (a letter)
inside, and in the second case we have an optional token inside balanced parentheses.
Figure 8 shows the two different parse trees for the string “(a)”. Clearly, this WG is
ambiguous.

In the case of the CFGs, one way to avoid ambiguity is to establish leftmost
derivation (vs. rightmost derivation) as the default parsing. In the same way, WGs
must opt for prefixation or suffixation, with the latter being preferred in the literature
(e.g., Cleaveland & Uzgalis, 1977; van Weingaarden et al., 1976).

However, these and the above ambiguity restrictions do not suffice to guarantee
decidability with respect to a WL.

5.4.2 Wegner’s Algorithm

Wegner (1980) provides a means to secure decidability via parsing by actually setting
out from the property of (strict) boundedness discussed in Section 5.2 above. Wegner’s
core concept is that of a locally unambiguous WG defined as follows:

Definition 70. A WG G is said to be locally unambiguous if, given the pair (w,G):

1. For every DL
w there is exactly one PL

w and given DL
w we can effectively find PL

w .

2. For every PL
w there is exactly one DL

w and given PL
w we can effectively find DL

w .

32 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

Recall that the RHS of an ϵ-free hyper-rule rV j is constituted by m ≥ 1 hyper-

alternatives
{
X̊j,i

}m

i=1
⊆
(
(N ∪ T)

+ ∪ {, }
)
. Local unambiguity turns the inherent

non-determinism in any generative rewriting system into a choice between the hyper-

alternatives in
{
X̊j,i

}m

i=1
= RHS (rV j) (rather than multiple partitions of strict no-

tions or choices resulting from unbound metanotions).
The conditions that suffice for local unambiguity in a WG G free from hidden

ϵ-notions (see Section 5.3 above) are (1) boundedness, (2) unique assignability, and
(3) disjointness. Boundedness was discussed in Section 5.2 above and I now approach
the two remaining properties as elaborated on – but with some changes in notation
– in Wegner (1980). A somewhat long series of definitions and statements will be
required, in order to grasp Wegner’s Algorithm, which provides a decision procedure
for the DP of locally unambiguous WGs.

Definition 71. Let H ∈ N+ contain the metanotions W1,W2, ...,Wn. A hypernotion
system associated to H is a 4-tuple H = (M,V,RM , H) where H is the hypernotion
axiom. The language of H is defined as:

L (H) =
{
h (H) |h (v) = v for v ∈ V, h (Wi)

n
i=1 ∈ L

(
G1
)}

H = (M,V,RM , ⟨X0⟩) is a LHS hypernotion system and H = (M,V,RM ,H), H =
H1H2...Hk ∈ (M ∪ P ∪ {, })∗, is a RHS hypernotion system.

Definition 72. Let H be a hypernotion system where H = X1X2...Xn for Xi ∈ N+,
1 ≤ i ≤ n. H is said to be uniquely assignable (abbr.: ua) if for all w ∈ L (H) there
is exactly one partition (w1, w2, ..., wn) such that we have the word factorization
w1w2...wn = w and h (Xi) = wi.

Example 73. Consider the following set of (abstract) metarules:

RM =

 A → aA; a.
A1 → A.
A2 → A.


We have, for instance, the following hypernotion systems:

H1 = ({A} , {a} , RM ,AA)

H2 = ({A} , {a} , RM ,A1A2)

H3 = ({A} , {a} , RM ,A1A2A1)

H4 = ({A} , {a, b} , RM ,A1bA2A1)

We have it that H1 and H4 are ua; H2 and H3 are not ua.

As a preliminary result, hypernotion systems have already some interesting decid-
ability properties:

Proposition 74. (Wegner, 1980) Let L (H) be the language of a hypernotion system

H. Then, the problems w
?
∈ L (H) and L (H)

?
= ∅ are decidable. The problems

L (H1) ∩ L (H2)
?
= ∅ and L (H1)

?
= L (H2) are in general undecidable for hypernotion

systems with context-free metarules.

J. Knowl. Struct. Syst., 4:2 33

Review van Wijngaarden Grammars Luis M. AUGUSTO

Further decidability results in Wegner (1980) are as follows:

Proposition 75. For an arbitrary hypernotion system H = (M,V,RM , H) it is (1)
undecidable whether H is ua if RM is context-free, and (2) decidable whether H is ua
if RM is regular and no metanotion occurs more than once in H.

Propositions 74 and 75 are left unproven in Wegner (1980). I build up now on the
property of being uniquely assignable for a WG:

Definition 76. A WG G is said to be LHS uniquely assignable (abbr.: LHSua) if in
every hyper-rule ⟨X0⟩ → X̊ the LHS hypernotion system H = (M,V,RM , ⟨X0⟩) is
ua. G is said to be RHS uniquely assignable (abbr.: RHSua) if in every hyper-rule

⟨X0⟩ →
(
X̊ = H

)
, the RHS hypernotion system H = (M,V,RM ,H) is ua.

I now move forward to the concept of disjointness.

Definition 77. For someWG G, let rV i, rV j ∈ RV ,i ̸= j and LHS (rV i; rV j) ̸= s. Then,
rV i and rV j are said to be disjoint if RS (rV i)∩RS (rV j) = ∅. G is said to be disjoint
if for all pairs of hyper-rules (rV i, rV j) we have it that RS (rV i) ∩RS (rV j) = ∅.

Intuitively, this means that in a disjoint WG there is at most one hyper-rule rV k
for any given strict production rule rSl such that rSl ∈ RS (rV k) for some k ≥ 2
if LHS (rV 1) = s. The following further specifications assure us that no two strict
production rules have the same LHS unless they are derived from two hyper-rules
with the same LHS but with different RHSs, and – a stronger restriction – the RHSs
of strict production rules derived from different hyper-rules are different.

Definition 78. A WG G is left-disjoint if for any pair of hyper-rules (rV i, rV j), i ̸= j
and LHS (rV i; rV j) ̸= s, we have:

1. If (X0)rV i ̸= (X0)rV j , (α → β) ∈ RS (rV i) and (γ → δ) ∈ RS (rV j), then α ̸= γ;

2. If (X0)rV i = (X0)rV j , (α → β) ∈ RS (rV i) and (γ → δ) ∈ RS (rV j), then β ̸= δ.

G is right-disjoint if for all hyper-rule pairs (rV i, rV j) with i ̸= j, and for all (α → β) ∈
RS (rV i), (γ → δ) ∈ RS (rV j) we have β ̸= δ.

And the important results follow:

Theorem 79. (Wegner, 1980) If a WG G is disjoint, free of hidden empty notions,
and either (a) LHSua and lb, or (b) RHSua and rb, then G is locally unambiguous.

Proof. Cf. Wegner (1980).

Theorem 80. (Wegner, 1980) For every WG G, we can construct a locally unambigu-
ous WG G′ such that L (G) = L (G′).

Proof. (Idea; cf. Wegner, 1980) For a givenWG G the corresponding non-deterministic
Turing machine M is constructed (see Baker, 1972); in turn, the equivalent Chomsky
grammar G is constructed for M. Then, G is made to be left-disjoint by adding a
unique label to each hypernotion and each hypernotion is made to be ua by inserting
some marker (e.g., $); two hyper-rules are added to move the marker to the left and
to the right. Denote this modified grammar by G′. G′ is locally unambiguous and it
can easily be shown that L (G) = L (G′).

34 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

Neither of these two theorems, however, is the main result in Wegner (1980); the
following theorem is:

Theorem 81. If G is a locally unambiguous WG and S is the proper and unambiguous
skeleton grammar of G, then G is unambiguous.

Proof. The proof will follow easily from the contents below.

The property of local unambiguity was discussed above; I approach now the skele-
ton grammar of a WG G. What is aimed at with the complex procedure to be
explained below is a canonical CFG G that models, or simulates, under certain re-
strictions, the derivations in a WG G, so that we are assured of the solvability of DP.
The aimed at CFG is constructed from cross-references:

Definition 82. Given a pair (r,G) where r = rV l is a hyper-rule in G2 with the usual ab-

stract form ⟨X0⟩ →
(
X̊ = H

)
, the cross-reference of r is the k -tuple (x1, x2, ..., xk) = x

such that:

1. if Hi ∈ T for 1 ≤ i ≤ k, then xi = Hi; otherwise,

(a) xi =
〈
X

′

0

〉
for some LHS (r) such that r ∈ RV , or

(b) xi = ϵ if ϵ ∈ L (M,V,RM , Hi);

2. L (M,V,RM ,H) ∩ L (M,V,RM , x′) ̸= ∅, where x
′

i in x′ is obtained from xi in
x by renaming metanotions in xi such that they are distinct from those in xj ,
i ̸= j, 1 ≤ i, j ≤ k.

Intuitively, we say that xi refers to
〈
X

′

0

〉
or Hi in H, 1 ≤ i, j ≤ k.

Definition 83. The skeleton grammar S associated to G is the CFGGG = (V, T ′, S′, R′) =
S where:

� V =
{
⟨X0⟩ |

(
⟨X0⟩ → X̊

)
∈ RV

}
⊆ N

� T ′ = T

� S′ = S

� R′ =
⋃
r̃ =

⋃
RS (r) where

RS (r) =

⟨X0⟩ → x︸ ︷︷ ︸
r̃

|r = (⟨X0⟩ → H) ∈ RV


where Hi ∈ (N ∪ T) and x = (xi)

k
i=1 is a cross-reference.

Definition 84. Let S be the skeleton grammar of a WG G. Then, we say that S is
proper iff for all r, r′ ∈ RV such that r ̸= r′ we have RS (r) ∩RS (r′) = ∅.

J. Knowl. Struct. Syst., 4:2 35

Review van Wijngaarden Grammars Luis M. AUGUSTO

Lemma 85. S is proper iff all rules r = (⟨X0⟩ → H) and r′ =
(〈

X
′

0

〉
→ H′

)
with

⟨X0⟩ =
〈
X

′

0

〉
in RV of a WG G have pairwise distinct cross-references.

Proof. (a) Obviously, we have RS (r) ∩ RS (r′) = ∅ if ⟨X0⟩ ̸=
〈
X

′

0

〉
and (b) only

identical LHS combinations give identical RHSs in S.

The relevance of working with a proper skeleton grammar is that, given a parse
PS,L

w in S, abbreviated as P̃L
w , we can uniquely determine a sequence of hyper-

rules in G and from PL
w we can uniquely determine a derivation DL

w if G is locally

unambiguous. The following definition establishes the link between P̃L
w and PL

w :

Definition 86. Given a pair (G,S) of a WG G and its associated skeleton grammar S,
let PL

w = ri1 , ri2 , ..., rin be a left parse of w ∈ L (G) and P̃L
w = r̃i1 , r̃i2 , ..., r̃in be a

left parse of w ∈ L (S). Then, we speak of P̃L
w as corresponding to PL

w if we have
r̃ij ∈ RS

(
rij
)
for all 1 ≤ j ≤ n.

Theorem 87. For any pair (G,S) of a WG G and its associated skeleton grammar S,
for a parse PL

w in G there is exactly one corresponding parse P̃L
w in S.

Proof. Obvious from the above.

With respect to this theorem, it is important to emphasize that G must be free of
hidden empty notions (cf. Section 5.3 above). The following example shows that this
theorem might not hold if G contains empty notions.

Example 88. Consider again the WG GAB of Example 65. The rules in the set RS
obtained from RV of GAB are as follows:

RS (rV 1) =

{
(r̃1.1) s → a.
(r̃1.2) s → a b.

}

RS (rV 2) =

{
(r̃2.1) a → a.
(r̃2.2) a → a b.

}
RS (rV 3) =

{
(r̃3) b → b.

}
For PL

ab = rV 1, rV 2, rV 3 there are at least two corresponding left parses, to wit,(
P̃L

ab

)
1
= r̃1.1, r̃2.2, r̃3 and

(
P̃L

ab

)
2
= r̃1.2, r̃2.1, r̃3.

Corollary 89. For any pair (G,S) of a WG G and its associated skeleton grammar S
we have L (G) ⊆ L (S).

Proof. Follows easily from the above.

Corollary 90. For any pair (G,S) such that S is a proper skeleton grammar associated
to the WG G, for two parses

(
PL

w

)
1
and

(
PL

w

)
2
we have:(

PL
w

)
1
=
(
PL

w

)
2

holds iff
(
P̃L

w

)
1
=
(
P̃L

w

)
2

36 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

Proof. (⇒) Since S is proper, every application of a rule r̃ (i.e. every parse step in
P̃L

w) determines uniquely a hyper-rule application in PL
w . (⇐) Follows trivially from

Theorem 87.

Algorithm 1 is Wegner’s Algorithm or the Skeleton-Grammar Parsing Algorithm.23

Algorithm 1 Wegner’s Parsing Algorithm

Input: The 3-tuple (G,S, w) where G is a locally unambiguous WG, S is the proper and
unambiguous skeleton grammar associated with it, and w ∈ T ∗

Output: “Yes” if w ∈ L (G); “No” otherwise

Step 1: Obtain P̃L
w by applying any of the parsing algorithms for CFGs to S.a If w /∈ L (G),

then output “No.”

Step 2: Obtain PL
w starting either (i) from ⟨s⟩ (if G is LHSua and rb) such that we have

a derivation
DL

w = (⟨s⟩ = α0) =⇒l ... =⇒l αi... =⇒l (αn = w ∈ T ∗)

or (ii) from w (if G is RHSua and lb) such that we have a derivation

DL
w = (w ∈ T ∗ = αn) =⇒l ... =⇒l αi... =⇒l (α0 = ⟨s⟩)

Apply hyper-rule r to those strict notions corresponding to the sentential form α ∈ (V ∪ T)
in the derivation step in which the skeleton rule r̃i ∈ RS (r) was applied. G is locally
unambiguous, so it suffices to give the handle and hyper-rule to (i) reduce αi to αi−1 or,
respectively, (ii) to extend αi to αi+1. If r cannot be applied, then output “No” and stop;
otherwise, output “Yes” and stop.

aFor example, the CYK algorithm. See Augusto (2021).

And the final result, stating that Wegner’s Algorithm provides a decision procedure
for the DP of WGs, follows:

Theorem 91. (Wegner, 1980) For arbitrary w ∈ T ∗, the Skeleton-Grammar Parsing
Algorithm correctly determines in a backtrack-free way whether w ∈ L (G) or w /∈
L (G).

Proof. Because (by Theorem 81) G is unambiguous there is at most one derivation
DL

w for w ∈ T ∗. Suppose now that the parse PL
w obtained from P̃L

w in S is not the

left parse for w, i.e. there is a parse
(
PL

w

)′
such that

(
PL

w

)′ ̸=PL
w . By Corollary 90,

there is a parse
(
P̃L

w

)′
such that

(
PL

w

)′ ̸= (P̃L
w

)′
, but then there are two left parses

for w, contradicting the fact that S is unambiguous.

Wegner (1980) provides the step-by-step example of the application of Algorithm
1 to a WG.

23Recall that a derivation of the form

Dw = (w ∈ T ∗ = αn) =⇒l ... =⇒l αi... =⇒l (α0 = ⟨s⟩)

is more correctly called a reduction and a parser carrying out a reduction requires handles (see
Augusto, 2021).

J. Knowl. Struct. Syst., 4:2 37

Review van Wijngaarden Grammars Luis M. AUGUSTO

References

Augusto, L. M. (2021). Languages, machines, and classical computation. 3rd ed.
London: College Publications.

Augusto, L. M. (2023). Two-level grammars: Some interesting properties of van
Wijngaarden grammars. Omega - Journal of Formal Languages, 1, 3-34.

Augusto, L. M. (2024; forthcoming). Little ado about meaning: The intrinsic se-
mantics of van Wijngaarden grammars. Omega - Journal of Formal Languages,
2.

Baker, J. L. (1970). Some formal properties of the syntax of algol 68. Ph.D.
Dissertation. University of Washington.

Baker, J. L. (1972). Grammars with structured vocabulary: A model for the algol-
68 definition. Information and Control, 20, 351-395.

Bryant, B. R., Edupuganty, B., Sundararaghavan, K. R., & Takaoka, T. (1988). Two-
level grammar: Data flow English for functional and logic programming. In
Proceedings of the 1988 ACM 16th Annual Conference on Computer Science
(pp. 469-474). New York, NY: ACM.

Clayton, R., Rugaber, S., & Wills, L. (1998). On the knowledge required to under-
stand a program. In Proceedings of the Fifth Working Conference on Reverse
Engineering (pp. 69-78). IEEE.

Cleaveland, J. C. & Uzgalis, R. C. (1977). Grammars for programming languages.
New York & Oxford: North Holland.

de Chastellier, G. & Colmerauer, A. (1969). W-grammar. In Proceedings of the 24th
National Conference ACM ’69 (pp. 511-518). New York, NY: ACM.

Deussen, P. (1975). A decidability criterion for van Wijngaarden grammars. Acta
Informatica, 5, 353-375.

Deussen, P. & Melhorn, K. (1977). Van Wijngaarden grammars and space complexity
class EXSPACE. Acta Informatica, 8, 193-199.

Edupuganty, B. & Bryant, B. R. (1989). Two-level grammar as a functional pro-
gramming language. The Computer Journal, 32 (1), 36-44.

Greibach, S. (1974). Some restrictions on W-grammars. International Journal of
Computer and Information Science, 3, 289-327.

Grune, D. (1993). Two-level grammars are more expressive than type 0 grammars.
Or are they? SIGPLAN Notices, 28 (8), 43-45.

Grune, D. & Jacobs, C. J. H. (2008). Parsing techniques: A practical guide. 2nd ed.
New York, NY: Springer.

38 J. Knowl. Struct. Syst., 4:2

Review van Wijngaarden Grammars Luis M. AUGUSTO

Janssen, T. M. V. (1975). An arithmetization of van Wijngaarden grammar. Report
ZW 44/75. Amsterdam: Mathematical Centre.

Mateescu, A. & Salomaa, A. (1997). Aspects of classical language theory. In G.
Rozenberg & A. Salomaa (eds.), Handbook of formal languages. Vol. 1: Word,
language, grammar (pp. 175-251). Berlin & Heidelberg: Springer.

Post, E. L. (1944). Recursively enumerable sets of positive integers and their decision
problems. Bulletin of the American Mathematical Society, 50, 284-316.

Sebesta, R. W. (2012). Concepts of programming languages. 10th ed. Boston, etc.:
Pearson.

Sintzoff, M. (1967). Existence of a Van Wijngaarden system for every recursively
enumerable set. Annales de la Société Scientifique de Bruxelles, 81, 115-118.

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming knowledge.
IEEE Transactions on Software Engineering, SE-10 (5), 595-609.

van Wijngaarden, A. (1974). The generative power of two-level grammars. In J.
Loeckx (ed.), Automata, languages and programming. ICALP 1974 (pp. 9-16).
Lecture Notes in Computer Science 14. Berlin: Springer.

van Wijngaarden (ed.), A., Mailloux, B. J., Peck, J. E. L., & Koster, C. H. A. (1969).
Report on the algorithmic language algol 68. Numerical Mathematics, 14,
79-218.

van Wijngaarden, A., Mailloux, B. J., Peck, J. E. L., Koster, C. H. A., Sintzoff, M.,
Lindsey, C. H., Meertens, L. G. L. T., & Fisker, R. G. (eds.) (1976). Revised
report on the algorithmic language ALGOL 68. Berlin, etc.: Springer.

Wegner, L. M. (1980). On parsing two-level grammars. Acta Informatica, 14, 175-
193.

Williams, M. H. (1985). Structuring two-level grammar specifications. Computer
Journal, 28 (3), 250-256.

Cite this article as:a

Augusto, Luis M. (2023). The van Wijngaarden grammars: A syntax primer with
decidable restrictions. Journal of Knowledge Structures & Systems, 4 (2), 1-39.

EDITORIAL INFORMATION

Editor-in-chief : Luis M. Augusto

Received: May 2023; Reviewed: Awaiting review reports

aThis article may undergo editing in the next few months. See footnote 2 for an account.

J. Knowl. Struct. Syst., 4:2 39

