Algorithmic Structuring of Cut-free Proofs*

Matthias Baaz*™ Richard Zach**

Technische Universitat Wien, Austria

Abstract. The problem of algorithmic structuring of proofs in the sequent
calculi LK and LKg (LK where blocks of quantifiers can be introduced in
one step) is investigated, where a distinction is made between linear proofs
and proofs in tree form. Tn this framework, structuring coincides with the
introduction of cuts into a proof. The algorithmic solvability of this problem
can be reduced to the question of k/l-compressibility:

“Given a proof of IT — A of length k, and I < k: Ts there is a proof

of IT — A of length <177
When restricted to proofs with nniversal or existential cuts, this problem is
shown to be (1) undecidable for linear or tree-like LK-proofs (corresponds
to the undecidability of second order unification), (2) undecidable for lin-
ear LKg-proofs (corresponds to the undecidability of semi-unification), and
(3) decidable for tree-like LKg-proofs (corresponds to a decidable subprob-
lem of semi-unification).

1 Introduction

Most classical algorithms in proof theory eliminate the structure of given proofs
to extract information, e.g., Herbrand disjunctions (as obtained via cut-elimination
or the e-theorem), or normal forms of functional interpretations. The problem of
structuring of proofs is inverse to these procedures: How to structure a proof by
decomposition and introduction of propositions?

In sequent calculi, structuring of proofs can be identified with the insertion of
cuts into a proof. This provides us with a general basis for formal approaches to the
problem above. All usual cut-elimination procedures for first order logic found in the
literature (such as those of GENTZEN [1934] and Ta1T [1968], where substitution is
the only operation on terms) produce cut-free proofs of increased term complexity
relative to the original proof. If we view the structuring problem as the inverse
problem to cut-elimination and restrict ourselves to such procedures, we can of
course find a simpler proof with cuts that yields the given proof after cut-elimination
if such a proof exists. Such procedures, however, depend on specific methods for cut-
elimination, and the view of proofs as literal objects.

Since we would actually like to disregard term structure in favour of proof struc-
ture (i.e., we would like to consider proofs as schemata of a certain form, and as
equivalent up to substitutions), we take a more general approach here: given a proof
and end sequent, we ask for a shorter proof with possibly increased structure. Tn
sequent calculus this corresponds to the introduction of stronger cuts (if the proof
cannot be abbreviated trivially, of course). We will be able to solve this problem if
we can construct a procedure that solves the following central question:

*in: E. Borger, G. Jiger, H. Kleine Biining, S. Martini, M. M. Richter (Eds.). Computer
Science Logic. Selected papers from (CSL°92, TNCS, Springer, Berlin, 1993, pp. 29 42
** Technische Universitat Wien, TInstitut fir Algebra und Diskrete Mathematik ©118.2,
Wiedner Hauptstrafie 8 10, A-1040 Wien, Austria, baaz@logic.tuwien.ac.at
*** Technische Universitat Wien, Tnstitut fiir Computersprachen F£185.2, Resselgasse 3/1,
A-1040 Wien, Austria, zach@logic.tuwien.ac.at

1.1. k/I-CoMPRESSIBILITY Given a proof of IT — A of length k, and I < k: Ts there
is a proof of IT — A of length <7

Tn what follows, we study proofs in LK and LKy (LK where blocks of quantifiers
can be introduced in one step) considered as acyclic graphs (not only tree-like proofs).
We restrict ourselves to the fragments with only universal or existential cuts (the
cut formulas are pure universal or existential formulas), denoted LK”” and LK{ ",
respectively. We show that k/l-compressibility is

(1) undecidable for LK™ -proofs,
(2) undecidable for linear LK{”-proofs, but is
(3) decidable for tree-like LKy ~-proofs.

Since we consider k/l-compressibility as central, and since bounds on cut elim-
ination do only depend on the length of the given proof, it makes no difference
whether the given proof is cut-free or not. However, structuring of cut-free proofs is
important to computer science, where deduction systems are usually quantifier-free.

Tn the following, we assume familiarity with Buss [1991] and KrAJTCEK and
PUDTAK [1988]

2 Basic definitions

We follow Buss [1991] in the definition of sequent, calculus LK, with the exception
that axioms and weakenings are restricted to atomic formulas.

The calculus LKy is LK with the rules (V:left) and (V:right) replaced by

Al) = A
(Vaq) ... (Ve) A(er, . 2), % — A
and
o — A A(by, .. b)) T
o — A (r) . (Ve) A,y TN
respectively (by, ..., b, must not occur in the lower sequent). (3-left) and (I-right)

are analogously replaced by (Fg-left) and (Fg-right).

2.1. DEFINITION A (linear) proof is a directed acyclic graph s.t.

(1) every node is labeled with a sequent and the name of a rule of inference,

(2) every node with indegree 0 is labeled by an axiom sequent,

(3) exactly one node has outdegree 0 (labeled by the end sequent),

(4) all other nodes have outdegree > 1, and

(5) if an edge connects a node labeled by sequent R to a node labeled by S, then R
is a premise to the inference associated with S, and the edge is labeled by . or
R according to whether R is the left or right premise of the rule, and unlabeled
if the rule has only one premise.

A proof 1s called tree-like if 1t is a tree, i.e., if every node has outdegree 1. The
length of a proof is the number of its nodes. For simplicity, we identify nodes with
the sequents they are labeled with.

2.2. DEFINITION A proof analysis is like a proof except that nodes are only labeled
with names of inference rules, and nodes corresponding to axioms and weakenings
additionally carry the corresponding predicate symbol.

A proof realizes a proof analysis P with end sequent IT — A, if there is a bijection
between the nodes and edges in the proof and the proof analysis s.t. corresponding

nodes are labeled by the same rule names, axioms and weakening formulas have the
predicate symbol determined by the corresponding label in P, corresponding edges
have the same labels, and the end sequent of the proof is IT — A. If there 1s such a
proof, P is called realizable with end sequent 1T — A.

The decision problem of whether a given proof analysis with end sequent can be
realized by a proof is called the realizability problem.

The decision problem of whether there is a proof of a given sequent of length < k
is called the k-provability problem.

2.3. Remark Tt is easily seen that the decidability of realizability implies decidability
of k-provability (enumerate all proof analyses up to length &), which in turn implies
the decidability of k/l-compressibility, but, the converse is not immediately obvious.
Consider the class of proof analyses with undecidable realizability problem given in
KrAJIGEK and PUDLAK [1988], §5: The end sequents 4 — A, P(s"0) are trivially
derivable by one weakening, and hence k-provability is decidable. To see that the un-
decidability of k-provability need not imply the undecidability of k/I-compressibility,
consider a system of first order logic with all true formulas as axioms and with sound
rules: k-provability is undecidable, but k/l-compressibility is decidable.

2.4. Remark The restriction to atomic axioms and weakenings makes the use of
proof analyses easier, since we can do without a number of case distinctions: In the
cut-free case, the end sequent determines the logical form of all formulas, but in the
presence of cuts and non-atomic axioms and weakenings, we only have a bound on the
logical complexity of the cut-formulas (by Parik# [1973], Theorem 2). Consequently
we have to add information on the logical form of cut-formulas to the proof analyses.

3 k/l-Compressibility is undecidable for LK"”

We derive the undecidability of k/I-compressibility for LK™ from the undecidabilty
of k-provability: To establish the undecidability of k-provability, we associate with
a non-recursive r.e. set X C w a sequence of proof analyses P; and end sequents
I, — /17;7 1€ w,s.t.

n € X <= P, is realizable with end sequent I7,, — A,

and, furthermore, that all proofs of I7,, — A, for n € w \ X are longer than P,.

In fact, there is a recursive supersett X* of X such that 17, — A, is provable for
all n € X*, since k-provability for cut-free proofs is decidable (cf. KRAJTGEK and
Punnix [1988], Theorem 6.1). Tf I7,, — A, is of the form 1T — A, A(5"(0)), then
X™* 1s even co-finite.

To show that k/l-compressibility is undecidable, it suffices to bound the length
of the proofs of IT,, — *,,. This is the statement of the following theorem, which can
be gathered from Buss [1991]:

3.1. THROREM For every r.e. set X # 0 there is a formula Ax(c) and k € w s.t.
n € X iff — Ax(s"(0)) has an LK~ (by construction LK"””-) proof of length k and
— A(s"(0)) has an LK~ (by construction LK"””-) proof of length k+1 for alln € w.

Proof. Every r.e. set X C w can be represented by a set §2 of partial substi-
tution equations obeying the special restriction s.t., n € X iff QU {8 = s7(0)}
has a solution (Buss [1991], Theorem 3). The proof of this fact is via Matijacevié’s
Theorem by encoding diophantine equations as partial substitution equations. Let
U LB = s"(0)} be the set of equations characterizing the r.e. set X.

Tn the proof of the Main Theorem of Buss [1991] a formula Ax (s”(0)) and an

integer N are constructed s.t. — Ax(s”(0)) has an LK-proof of < N steps iff the

above equations have a solution, and is provable in N 4+ 1 steps, if all but one of the
equations have a solution (Section 4, see in particular p. 93, first paragraph). The
first part of the theorem now follows from the fact that the system encodes X and
hence is solvable iff n € X. For the second part, we replace 3y by s7(0) for some
r € X, r # n. Then s7(0) = s7(0) is the only equation not satisfied (regardless of
whether n € X or not).

The proofs constructed are all tree-like, use only existential cuts, atomic axioms
and atomic weakenings. The central Propositon 8 of Buss [1991] (as noted there)
can be adapted to the non-tree-like case. Hence the arguments extend to the case of
linear LK "-proofs. O

3.2. CoroOTTLARY k/I-Compressibility is undecidable for LK " -proofs (whether Iin-
ear or tree-like).

3.3. Remark TIf the end sequent contains only unary function symbols, k/l-com-
pressibility is decidable: cf. PARIKH [1973], Theorem 1 for the case of one and FAR-
MER [1991], Corollary 5.20 for several unary function symbols. Tt is also decidable
if we are looking for shorter proofs with gquantifier-free cuts (cf. KRAIJTCEK and
PuDnnAK [1988], Section 2).

3.4. Remark The theorem shows that, in the worst case, we have to pay for intro-
duced structure by a significant in fact non-recursive increase in the term struc-
ture, even in decidable subcases. This situation could be alleviated by taking into
account known properties of the function symbols, such as associativity and com-
mutativity.

4 k/l-Compressibility is undecidable for linear LK "-proofs

To be able to deal with block inferences of quantifiers, we introduce the concept of
semi-unification:

4.1. DEFINTTTION (cf. Baa7 [1993], KFOURY et al. [1990], PUDT.AK [1988]) A substi-
tution & is called a semi-unifier of the semi-unification problem {(s1,%1),..., (sp,%p)}
iff there exist oy, ..., o, such that s16 =160y, ..., 5,0 =1,60,. In other words, a
semi-unifier makes the s; substitution instances of the corresponding #;.

4.2. FXAMPLE 6 = {f(r, Iz, T))/z} is a semi-unifier of (f(r, 2), [z, f(x, y))) be-

caluse

Fa,) G, flae,2)) /2 = Fla F) Gy fl)2} (e, 2) -

There is no semi-unifier of (f(r, v), flx, f(x, y))) , since no simultaneous substitution
will make the left side a substitution instance of the right side.

4.3. THROREM Realizability is undecidable for linear LK[,”-analyses.

This follows immediately from the undecidability of semi-unification (KFOURY et
al. [1990]) and the following proposition:

4.4. PrRoPOSITION Let the language contain a binary function symbol f. For every
semi-unification problem 2 = {(51 A1), (sp,tp)}, there is a proof analysis Pq
and a sequent [T — Ag, s.t. there is an LK -proof realizing Pg with end sequent
o — Ag iff 2 is solvable.

Proof. First note that the semi-unification problem can be reduced to a semi-
unification problem {(5’1",7‘,), o (s;,t)} with s7 = f(--- f(ai,, a;,) .. .s;)...a;,) and

t=f(---f(t1,12),...1,), where a;, are new free variables.
Tet Ag(ar,...,an) = P{)A ((P(?T) A A P(s;)) D @), where all free variables
are among aq, ..., a, and do not occur in Q. We sketch the construction of a proof

analysis as follows:

J propositional inferences

(a) An(ar, ... an)6 — Ag(aq, ... a,)b
(a+1) (Var) ... (Yen)Ap(2r, .. en) — Ap(ar, ... a,)é

propositional inferences including
propositional cuts from (a + 1)

(b) (Var) ... (Yen)An(er, .. 2,) — P(1)6
(b+1) (Vor)...(Ven)Ag(xr, - en) — (Y1) - (YY) R4, - - - Ym)

propositional inferences including
propositional cuts from (a + 1)

(¢) P(s1)6, ..., P(s;)& (Vay) ... (Ve Ag(zq, ... 2,) — @

p (Vg-left)-inferences, exchanges
and contractions from (¢)

(d) (V1) (V2)R (21, .. z5), (V) ... (V) A (2, 2n) — @
(e) (Vau)...(Vep)Ag(x, .. xn), (Ver) o (Ve A (e, ..) — @
(e+1) (Var) ... (Ve Ag(zr, .. 2n) — @
Here, (a + 1) is obtained from (a) by (Vg:left), (b + 1) from (b) by (Vg:right),
(e) from (b + 1) and (d) by cut, and (e + 1) from (&) by contraction. Note that
V1) o (Yym)B(y1y - - ym) = (Vz1) ... (V2) R/ (21, . . ., z5) by the cut rule and hence

6 1s forced to be a semi-unifier. The label (a +]) is ancestor of both sides of the cut,

the skeleton is therefore not in tree form. (The length of the skeleton is linear in n.)
O

4.5. Remark Tf p = 1, then the realizability of this analysis is decidable (¢f. Pun-
LAK [1988], Theorem (i)).

4.6. Remark Note that we do not, and indeed cannot, have a result like this:

For every r.e. set X C w there is a proof analysis Px and asequent ITx — Ax, Ax(a)
s.t. there is an LK [-proof realizing Px with end sequent ITx — Ax, Ax(s"(0)) iff
neX.

This follows from the fact that for every proof analysis P and every sequent /7T — A
with free variable a, there 1s a semi-unification problem

2 = {(s1(a).11(0)), .., (sy(a), 1o(a)) }

s.t. P is realizable by an LK 7-proof with end sequent (/T — A){s"(0)/a} iff
22{s"(0)/a} has a solution.

But £2{s"(0)/a} is either solvable for all n > m and unsolvable for n < m, or for
only one n. To see this, calculate the most general semi-unifier é of

{<.f(51) (]’)7 f(“) U’)>7 R <.f(spvn’)7 f(tpv (1))}

(see below, Proposition 5.4). & assigns to a either a term of the form s™(0) (one
solution for n = m) or one of the form s™(b) (a solution for every n > m) (cf.
Baaz [1993]).

For LK”” | such an undecidable proof analysis exists, ¢f. KRAJICEK and Pun-
TLAK [1988], Section 5.

4.7. TAROREM k/I-Compressibility is undecidable for linear LKJ”-proofs.

Proof. We exhibit a class C of semi-unification problems whose solvability is un-
decidable and then show that for 2 € C there is a sequent T, — Ag s.t.

(1) Ty — Ag has a proof (with cut) of length [iff £2 has a solution, and
(2) Ty — Ag has a proof of length [+ (.

Tet C consist of 2 = {(s1,1),(s2,1)} where

() (Yar, .. 2n)An(ey, . 2,) — Q is valid for Ag = P(1) A (P(S1)/\ P(s2) D Q),

(2) s, 11, to are pairwise not unifiable.

We have to prove that C has the desired property that the proof analysis in Propo-
sition 4.4 describes an optimal proof of (Va)Agq(2) — @ if §2 is solvable, and that
proofs are longer if {2 has no solution. Then we construct a longer proof analysis
that is realizable by an LK~ -proof with the same end sequent for all 2 € C.

First of all, C is undecidable because of the following: (a) By Theorem (ii) of
PUDTAK [1988], every semi-unification problem can be translated into a problem
of the form W = {(s},1'),(s,#')}. Every such problem can in turn be rewritten
as U = {(f(q(a), $1), f(a,t)), (f(h(n), $9), f(a,t))}, where a is a new variable. ¥/
obviously has the same solutions as ¥, but the components of the two equations are
pairwise not unifiable.

(b) Validity of (Va)Aqn(2) — @ is decidable. This follows from the fact that the
following resolution proof exists iff (Vo)A (2) — @ is valid:

{P)ort {=P(s1),7P(s2),Q}
{P(t)oa} {=P(s2)61,Q} 5
Q) ’ {Q}

O

o

1d

where o1, 09 are renamings of variables. Consequently the following equations hold:

P(f,)(f] (S] 62 = P(51)61 62
(since P(t)o161 = P(s1)61)
P(t)o98y = P(52)8169

The crucial point for the encoding of semi-unification problems by the proof analysis
and end sequent (Va)An(x) — @ is that (Va)An(2) is “produced” only once, i.e.,
that (@ + 1) is ancestor to both premises of the cut (d). We can force this to be
the case by replacing An(a) by =?"Agn(a), where r is sufficiently large to make a
separate deduction by copying the part of the analysis above (a + 1) too costly.

Let (V2)=?"Ag(x) — A’ be the sequent at (a+1). We have (1) =27 Ag(x)6 — A’
for some 8 and (2) @ has to be derived from A’. Take the shortest derivations of (1)
and (2). The shortest derivation of must contain a quantified cut, since s, s9, ¢
are pairwise not unifiable. If {(51 1), (52,7‘,)} is not semi-unifiable, one universal or
existential cut 18 not sufficient. The universal cut in the analysis given in the proof
of Proposition 4.4 is the simplest possible one(This is intuitively clear, a rigorous
proof would use analoga to Propositions 4 9 of Buss [1991]).

Now we show that there is a uniform way of deriving valid sequents
(V)= Ag() — Q

(which of course is longer than the one using the solution to the semi-unification
problem £2). Given o1, 3, 1, 83 from the ahove resolution deduction, the following
gives a proof:

propositional inferences

(a) = Alar, .. an) — Alar, ... an)
(a+1) (V1) .. (Yoo~ A2, .. 2n) — Alar, ..., an)

propositional inferences including
propositional cuts from (a + 1)

(b) (Vary) .. (V)= A, wn) — P(1)
(b+1) (V1) . (Yan) =" Ao, wn) — (Vi) - (Yym) P(2)
(()/) ()0’]6]62—>P()0’]6]62
(@ +1) (Vor) ... (Van) P(t) — P(t)o16162
(B) P(t)ra6y — P(t)oabs
(B+1) (V1) . (Vo) P(t) — P(t)oab,
(7) (Vo1) ... (Von) P(t) — P()a16165 A P(t)a6,

propositional inferences including
propositional cuts from (a + 1)

(0 Plo) () (0.2} Al o20) = @
(e4+1) (Fz)...(P(s1) /\P(SQ)),(V.m)...(an)—'QTAQ(mh...,mn)—>Q

propositional inferences

((S) P(S])(S] 62 A P(SQ)(S] 62 — P(S])(S1 62 A P(SQ)(S] 62
((S +]) P(S])(S] 62 A P(SQ)(S] 62 — (HT]) N (HTW)<P(S]) A P(82)>

cut from (y) and (6 + 1)
) (41) - (Vo) P(1) — () (Fa) (P(51) A P(s2))
two cuts from (b+ 1), (e + 1), (&)

(e) (Vz1)...(Ve)= " Ag(z1, .. . 20), (Y21) ... (Yo,)= Ag(z1, ..., 20) — Q
(e+ 1) (Va1) ... (Vo) =" Ag(zr, ... 20) — Q

For the cut resulting in (e), recall that P(1)o18165 = P(s1)6169 and P(t)o26s =
P(SQ)(S] 62. O

5 k/l-Compressibility is decidable for tree-like LK "-proofs

For tree-like LKR “-analyses there is a procedure to decide realizability, given the
analysis and end sequent. This procedure uses special semi-unification problems

to determine the term structure of the proof. These problems are decidable, and
furthermore a most general solution can be found, which guarantees term-minimal
proofs.

5.1. DEFINTTION A semi-unifier o of a semi-unification problem §2 is called most
general semi-unifier, if every semi-unifier ¢’ of §2 can be written as 76, for some
substitution 8. The most general semi-unifier is unique up to renaming of variables.

In contrast to second order unification, semi-unification has the property that
most general semi-unifiers exist, if any exist at all:

5.2. PROPOSITION There is an algorithm computing the most general semi-unifier
of a given semi-unification problem {2 if any semi-unifier for {2 exists.

See Baa7 [1993] or KFoURY et al. [1990] for details. The algorithm works roughly
as follows: Tet {(s1,11),...,(8n,1n)} be the given semi-unification problem, and let
a; be digjoint canonical renamings of the variables in ¢;. Unify #;c; with s;. Apply
the resulting unifier to the problem and repeat the process, until the unifier is only a
renaming of variables or until unification fails, in which case there is no semi-unifier.
The procedure will not always terminate, since semi-unification is undecidable, but
will produce a most general semi-unifier if there 1s any semi-unifier. In what follows
we will only use a decidable class of semi-unification problems for which the algorithm
terminates after one step:

5.3. DEFINTTION Let ¢ be a term and ay, ..., a, be a sequence of variables.
e lan, o an) = £ f(F() an) . ay)
5.4. PROPOSITION Let §2 be a semi-unification problem of the form

{(51 x{ar, ... a,),1 *(m,...,an)),...,(s?«*(m,...,an),m*(m,...,an))},

where the variablesin sy, ..., s, are amongay, ..., a,, and let «; be digjoint canon-
ical renamings of the variables int;. Let o be the most general unifier of

{(S1 * <(]'17' - '7(1’77,)71’1 * <(]'17' - '7(1’77,)()/1)7 R} (ST * <(]'17' - '7n’n>7t7‘ * <(]'17' - '7”’77,)0/7‘)}7
If o exists, then o is also a most general semi-unifier of {2, otherwise {2 is unsolvable.

Proof. o is also a most general unifier of {(s1,4109),..., (s, 1,.)}, where «
is a renaming of the variables occuring in #; other than ay, ..., a,. Let t; =
ti(ar, ... an, b1, ... by). Then

tic =ti(aro,.. . ano, by, .. by)
(by, ..., by donot occur in sy, ..., s.1) and
! !
sic =ti(aro,. . apo, biao, . bypato). O

5.5. PROPOSITION Let P be a tree-like proof analysis with given end sequent. If
there is an LKg-proof D realizing P, then there also is a proof 1) with the following
properties:

(1) D' is regular (no two strong quantifier inferences have the same eigenvariable
and eigenvariables do not occur in the end sequent).

(2) Tf P contains a sequence of applications of (¥g:left) to the same formula, then
D' introduces all quantifiers in the first of these applications, and all follow-
ing (Vg:left) inferences in the sequence are empty introductions. Similarly for
(I :right)

(3) If P contains a sequence of applications of (Vg :right) to the same formula, then
D' introduces all quantifiers in the last of these applications, and all preced-
ing (Vg :right) inferences in the sequence are empty introductions. Similarly for

(T -left)

Proof. (1) Tn a tree-like proof, eigenvariables can be renamed to ensure regularity.
(2), (3) Tf strong quantifier inferences are moved downwards and weak quantifier
inferences are moved upwards in a regular proof tree, the eigenvariable conditions
can be protected by renaming. 0O

5.6. THEOREM Realizability is decidable for tree-like LK} -proof analyses.

Proof. (iven a tree-like proof analysis P and an end sequent T — A, we construct
a preproof W(P,IT — A). A preproof is an assignment of formulas to the nodes of
the analysis P such that all inferences except quantifier inferences introducing cut-
formulas are in correct form (i.e., valid applications of the rules), and a substitution
for free variables will “correct” the cuts as well. ¥ is term-minimal,i.e.,if 1D is a proof
realizing P, then 1) can be written as W, for some substitution ¢. The construction
is similar to the construction of cut-free term-minimal tree-like proofs in Kra1iGrK
and PUDT.AK [1988], Section 2.

Constructing a preproof Since LK{ -analyses contain the names of predi-
cates in axioms and weakenings, the logical structure of a proof is uniquely deter-
mined (cf. Proposition 5.5) except for the quantifier prefix of the cut formulas in
universal and existential cuts. We index the universal and existential cuts by aq,
(65 FERNNN

(1) Determine the propositional structure of W from P. Use different free variables
for every term position in the predicates. For quantifier prefixes use special quan-
tifier prefix variables (Vg-ov;), (Ip-v;).

(2) Unify the end sequent of ¥ with T — A, and proceed upwards in the proof tree
as follows:

(a) Unify conclusions of propositional inferences, exchanges, contractions, and
weakenings with the respective premises.
(b) Tn strong quantifier inferences not introducing cut formulas, e.g.,

* = A A
: Vg:right
A V) () A(rr) (Verieht)
unify *, A with «’ A’ and A(ey,... ¢,) with A’ where ¢, ..., ¢, are

new free variables which are handled as constants to avoid substitution into
eigenvariables, similarly for (g:left).
(¢) Tn weak quantifier inferences not. introducing cut formulas, e.g.,

A/ I — A/
il (Vg:left)
(Var) .. (Ve) A, .), % — A
unify x , A with ", A’ and A(zy,.. ., z,) with A’ where zy, ..., z, are new

variables, similarly for (3g:right).
(d) Unify A and A" in axioms A — A’ and unify the cut formulasin the premises
of a cut.

As can easily be seen, the steps in the construction are all as general as possible and
the restrictions imposed by the unifications are all necessary. If the procedure fails
to find a preproof (i.e., one of the unifications fails or eigenvariable conditions are
violated), P is not realizable with end sequent IT — A.

To complete the preproof to a proof we now have to determine the quantifier
prefixes and the term structure of the universal and existential cut formulas. We
first illustrate this:

5.7. EXAMPLE

x> A1 , A
*
*1 — A] s (V]:;f()/)A

: As,*s — Ag Ay, %a — Ay
x9 — Ao, (VR-a) A, Ay . (FRa)Aiis — Az (Vp-a)A s — Ay
*o — Aq (Vp-a)A, (Vp-a) A
w2 — Ay, (Yp0) A (Vr-a)A, x5 — As
Ko, kg — Ao, Ay

Tet Py (Pa) denote the part of the preproof above the end sequent, and below * ().
Tf o is an extension of the preproof to a proof, then (a) the eigenvariables of (x) do
not occur in Pyo and (b) the eigenvariables of (x%) do not occur in Pyo. This leads
to the semiunification problem

{(Az s {a), Ay« {a)), (As =+ (a), Ar = (a)), (Aa * (a), A1+ (a) },

where a are the free variables in P;. Let §; be the most general semi-unifier. Next,
determine the most general semi-unifier 45 of

{(Asdr o (b), A161 % (b)), (Aady * (b), 4161 = (b))},

where b are the free variables in P26;. We obtain:

/415152:/4((‘17)

/425152:/4((]1((]17) --7.(]7‘((117---7(13))

Azbi162 = A(gi(t, .. ’»)7---7(]7‘“ yoets))

A46162:A(g1(7‘/]7 ..)7"'7(]7‘(7(771/9))
Since the ¢; do not occur in Pydyés, ¢; can be replaced by (]7((]1 v dy). Finally, re-
place (Vg-a)A by (Vz1 ... z:)A(g1(z1,- -, 25), -, gr(21, - - -, 25)). (Any permutation
of z1...z5 can be chosen.)

Correction of cuts To correct cuts in the general case, we associate with
each universal or existential cut «v; the set of strong propositional premises Prmg(ev;)
and weak propositional premises Prmy, (v;). Recall that ¥ (3)-introduction is strong
(weak) on the right side and weak (strong) on the left side. Thus, Prmg(a;) is the
set. of those formulas A; that are ancestors to the cut formula on the strong side
of the cut (A, A2 in Example 5.7), and Prmy, («;) is the set of those formulas A;
that are ancestors to the cut formula on the weak side of the cut (A4, Asz). Tet
D= Um Prmg(a;)

Define a partial order < on D, according to where in the proof A; is quantified
to yield the cut formula (Vp-a;)A: A; < A if A; is quantified below Ay (A < Ay).
The exclusion area D(A;) of the proof corresponding to A; is the part above the end
sequent and below the premise of this quantifier inference (D(A1) = Py, D(As) =
PQ).

10

Balancing cuts Select a maximal element A; € D and compute the most
general semi-unifier a; of the problem

{(Ak * <(117---7(]’n>7 Aj * <(]’17---7”’n>) | Ar € Pl‘mm(m:)}U
U {(Al w{ar, ... an), Aj x{ar, ... a,)) | Ar € Prmg(a), A; £ Al}

where A; € Prmg(oy) and aq, ... a, are the free variables in D(A;). Apply o; to
the preproof and repeat this process for D := (D \ A;)o; until D = 0.

Call a free variable in A; critical for A; if it does not occur in D(A;) and let
crit(Aj) be the set of all free variables critical for A;. A variable is critical for the
cut «; 1f 1t 1s critical for one of 1ts strong premises.

The critical variables of a strong premise A; of a; are the potential eigenvariables
for the introduction of quantifiers on A;: The above semi-unifications make all strong
and weak premises A" in D(A;) corresponding to the same cut as A; substitution
instances of A; (Aq is a substitution instance of Ay, and Az, A4 are substitution
instances of both Ay, As). By the *-construction in the semi-unification problems
above, if A’ = A;é for some substitution &, then & only acts on crit(A;). Note that
the critical variables fulfill the eigenvariable condition.

If A; and Ay are two premises of the cut a;, then the critical variables of A; do
not occur in Ay and vice versa (Tf ¢ € crit(A;) and A; < Aj then e occurs in D(Ay)
and hence cannot be critical for A;. If ¢ would occur in Ay, then it would also occur
in a weak premise of the cut (by the above semi-unifications), but this premise is
in D(Aj). Tf, on the other hand, Ay is in D(A;), then ¢ does not occur in Ay by
definition). Critical variables for one cut premise are not critical variables for any
other cut (For any two premises A; and Ay, either A; isin D(Ay) or vice versa).

Unifying premises Now let A;(c1,...,¢;) be one of the possibly several <-
minimal strong premises of the cut «a;, where ¢1, ..., ¢; are the critical variables
of A;. A; is the least general of the strong premises and therefore determines the
term structure of the cut formula (A5 in the example). Unify every other premise
A" of o; with A;6, where 4 is a a digjoint canonical renaming of the critical vari-
ables of A;. The unifier acts only on critical variables of this cut. This makes all
strong premises of a; equal up to renaming of critical variables. Recall that the
weak premises are substitution instances of A; and hence, are now of the form
A;(t, ..., 15). Replace the cut formula (V-a;)A by (Yor) ... (Vo) A(or, ..., 05) (Tn-
a;)A by (Fuy) ... (Fvg)A(v1, ..., v5)). Repeat this step for every cut in the preproof.
The resulting proof is uniquely determined up to the order of the quantifiers in cut
formulas.

The unifying of premises may influence other cuts, but since critical variables
are disgjoint for different cuts, this has no effect on other cuts being balanced or
unified. All correction steps with exception of the last one are most general and
forced by the information provided by the proof analysis and end sequent. Hence, if
the correction fails at any step, or if eigenvariable conditions on variables introduced
in the construction of the preproof are violated, there is no proof extending the
preproof. O

5.8. COROTTLARY k-Provability is decidable for LK{ ™.
5.9. COROTTLARY k/I-Compressibility is decidable for LKJ ™.

5.10. Remark The term depth d’ of the constructed proof can be very roughly
bounded by d' < d - 2"”], where d is the maximal term depth and m the num-
ber of quantified variables in the given end sequent 17 — A, and [is the length of
the proof analysis.

The construction of the preproof for IT — A introduces at most m new variables
in each step, and at most ml overall. The correction of a strong premise introduces at

11

most (I—1)v variables, where v is the current, number of variables. The disappearance
of a variable in a unification step increses the term depth at most by a factor of 2.
If every bound variable occurs only once in the end sequent, then d' = d.

6 Conclusion

Two fundamental distinctions have been made in this paper:

(a) The distinction between systems that introduce one (or any fixed number)
quantifier and systems that introduce blocks (an unknown number) of quantifiers of
the same type in one introduction. Our results show that a committment on the form
of these blocks of quantifiers, while irrelevant for cut elimination, is disadvantageous
for the algorithmic introduction of cuts into a given proof. This is generally the
case with constructions that depend on operations on the term structure, e.g. when
generalizing proofs, and is essentially due to the fact that second order unification
problems (that correspond to single introduction of gquantifiers) do not have most
general solutions, in contrast to semi-unification problems (that correspond to block
introduction of quantifiers, ¢f. Baaz [1993])

(b) The distinctions between linear and tree-like ways to write proofs. Until the
1950s, linear notation of proofs was commonplace in logic, but since then has almost
disappeared. Tn computer science, linear proofs have been reintroduced, cf. reso-
lution deductions where one and the same clause is used several times. The more
space efficient linear notation, however, has serious drawbacks when the relationship
between quantifiers in a given proof is investigated.

The problem of structuring of proofs itself will be of importance to computer
science, since it 1s closely related to structuring of programs. If we conceive of proof
complexity as the degree of entanglement (e.g., as the topological genus of the proof
analysis, cf. STATMAN [1974]), then structuring means algorithmic simplification.

For proof theory, the significance of the problem is that it enables us to separate
model-theoretically indistinguishable systems according to their structural proper-
ties (cf. (a), (b) above). For a detailed discussion of this aspect, cf. G. Kreisel’s
postscript to Baaz and Punrix [1993].

References

RBaaz, M.
[1993] Note on the existence of most general semi-unifiers. Tn Arithmetic, Proof
Theory and Computational Complexity, P. Clote and I. Krajicek, editors, pp.
19 28. Oxford University Press.

Baaz, M. and P. PUDLAK.
[1993] Kreisel’s conjecture for 1.31. Tn Arithmetic, Proof Theory and Computational
Complexity, P. Clote and J. Krajicek, editors, pp. 29 59. Oxford University
Press.

Russ, S. R.
[1991] The undecidability of k-provability. Ann. Pure Appl. Logic, 53, 75 102.
FaArRMER, W. M.

[1991] A unification-theoretic method for investigating the k-provability problem.
Ann. Pure Appl. Logic, 51, 173 214.

GGENTZEN, G.
[1934] Untersuchungen iiber das logische Schliefen T T1. Math. 7., 39, 176 210,
405 431.
Kroury, A. I., J. TlTuryN, and P. UrRzyCc7zVYN.
[1990] The undecidability of the semi-unification problem. Tn Proc. 22nd ACM
STOC, pp. 468 476. journal version to appear in Inf. Comp.

12

KraJi¢rK, J. and P. PUDLAK.
[1988] The number of proof lines and the size of proofs in first order logic. Arch.
Math. Logic, 27, 69 84.
ParkH, R. J.
[1973] Some results on the length of proofs. Trans. Am. Math. Soc., 177, 29 36.

PunrLAk, P.
[1988] On a unification problem related to Kreisel’s conjecture. Comm. Math. Univ.
Carol., 29(3), 551 556.
STATMAN, R.
[1974] Structural Complexity of Proofs. PhD thesis, Stanford University.
Tarr, W. W.
[1968] Normal derivability in classical logic. Tn The Syntax and Semantics of
Infinitary Languages, J. Barwise, editor, pp. 204 236. Springer, Berlin.

13

