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Abstract. The first-order temporal logics with O and © of time structures
isomorphic to w (discrete linear time) and trees of w-segments (linear time
with branching gaps) and some of its fragments are compared: The first is
not recursively axiomatizable. For the second, a cut-free complete sequent
calculus is given, and from this, a resolution system is derived by the method

of Maslov.

1 Introduction

In recent years, various temporal logics have been studied and applied to the de-
scription and analysis of dynamic properties of programs [7]. The investigations
have focussed on discrete, linearly ordered, well-founded temporal structures be-
cause temporal states can then be identified with program states. It turns out that
the first-order logics corresponding to this semantics are not recursively axiomati-
zable if O (henceforth always) and O (nexttime) are present in the language: Tt is
possible to characterize the set of natural numbers by =0-U (), where U(z) holds
for exactly one domain element at each state and is determined by a recursion in
O (see [8]). This incompleteness result is based on a standard model of linear time;
if similarity types are allowed , one can obtain completeness results for first order
temporal logic relative to classes of models of linear time (see [1]). With a change
in the semantics (branching time gaps), however, a complete first-order logic can
be obtained; this 1s the subject of the present paper. Our proof of completeness
can be carried over to several types of future-oriented temporal operators (see [8]);
there may be problems however if future- and past-oriented operators are present
simultaneously.

For simplicity, we consider here only languages with O and O as the only tem-
poral operators, and constants as the only function symbols. We compare the logic
of discrete linear time TL to the logic of discrete linear time with branching time
gaps TB. In both logics, the semantics of the temporal operators are as usual: a
formula O A is true at a time point ¢, iff A is true at every time point > t; a formula
OA is true at ¢, iffl A is true at ¢ + 1. The difference lies in the admitted time
structures: for TL, this is the class of structures order isomorphic to w. We call
such a structure an w-segment. In such a segment, there is always an earliest point,
for every point there is a unique next point, and every point can be reached from
the earliest point by passing finitely often to the next point. For TB, the admitted
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structures are isomorphic to (possibly infinitary) well-founded trees of w-segments.
There is always a unique earliest next point in time, but also points “after the gap”
(which cannot be reached by successively passing on to the next point) which are
initial states in the next w-segments themselves, etc.

We give a sequent calculus for TB, which is shown to be cut-free complete by an
extension of Schiutte’s reduction tree method. The rules of the calculus constructed
are not analytic in the sense that the formulas in the premises are not proper sub-
formulas of the conclusion. Therefore, cut-free proofs in general lack the subformula
property, a property essential for usual methods of proof search. The completeness
proof shows, however, that we can salvage a large part of analyticity, enough to
be able to construct a resolution system for the logic: Every valid sequent has a
cut-free proof which uses only formulas A and OA, where A is a subformula of the
end-sequent. Exploiting this property, we construct a complete resolution method
for TB using the method of Maslov [9, 11].

In a sense then, the investigations of TB can also be seen as a case study in
(a) how far the completeness proof of Schiitte can be carried, and (b) how to over-
come mild forms of non-analyticity. It also sheds some light on necessary conditions
for the resolution calculus to be sound (completeness is not problematic).

The paper is organized as follows: In Section 2, the semantical structures un-
derlying the logics TL and TB are introduced, and a proof of non-axiomatizability
of TL 1s sketched. In Section 3 we present the sequent calculus LB for TB. The
completeness proof for LB is presented in Section 4. Section 5 contains some re-
marks comparing (fragments of) TL and TB. The resolution system for TB is
developed in Section 6. Finally, we conclude with a discussion of the significance of
the completeness result for future applications.

2 First-order Temporal Logics

We consider the following first-order language: free variables: a, b, ¢, a1, .. .; bound
variables: z, y, z, x1, ...; constant symbols: f, ¢, h, f1, ...; predicate symbols of
arbitrary arity: P, @, R, P, ...; propositional connectives: A, V, D, —; quantifiers:

¥, 3; and the temporal operators: O (always), O (next time). Formulas are built up
from the symbols as usual. The sometime operator < is introduced by definition:
OA=-0-A If A= %1%, B, where #; is either O or O, then *; - - - %, Is called
the temporal prefiz of A. The semantics of a first-order temporal logic is defined as
follows:

Definition 2.1. Let 7' be a denumerable partially ordered set. T" belongs to the
class £ of linear discrete orders iff 1t 1s order isomorphic to w; it belongs to the
class B of linear discrete orders with branching gaps iff 1t is order isomorphic to a
well-founded tree of w-segments.

Definition 2.2. Let 7 be £ or B, and let Frm(L) be the set of formulas
over some first-order temporal language L. A structure K for L is a tuple
(T {Ditier, {Sitier), where T € 7, D; is a set called the domain at state i,
Dy C D;ifi < j, 8; is a function mapping free variables and constant symbols
to elements of D;, and n-ary predicate symbols to functions from D to {T, L}.

We define the valuation functions K; from Frm(L) to {T, L} as follows: Let A
be a temporal formula, and not, and, or, impl be the truth functions for negation,
conjunction, disjunction, and implication, respectively.

()AEP(tl,.. t)_ ( ) ( Y(Si(t1), ..., Si(tn))



(4) A= BVvC: K;(A) = or(K;(B),K;(C))

(5) A= B D C: K;(A) = impl(K;(B),K;((C))

(6) A= (Vo)B(z): K;(4) = T if K;[d/z](A(d)) = T for every d € D;, and = L
otherwise

(7) A= (F2)B(x): K;(A) = T if K;[d/z](A(d)) = T for some d € D; and = L
otherwise

(8) A=0B: K;(A) =T if K;(B) =T for every j > i and = L otherwise

(9) A=O0B: K;(A) =T if K;41(B) =T and = L otherwise

A formula A is satisfied in a temporal structure K, K = A, iff Ko(A) = T. A is valid
in a class of temporal structures 7, 7 | A, iff every K = (T, {D; }ier, {Si }ier)
with T € 7 satisfies A.

Definition 2.3. The logic of linear discrete time TL is the set of all formulas
A€ Frm(L) s.t. L | A. The logic of linear discrete time with branching gaps TB
is the set of all formulas 4 € Frm(L) s.t. B = A.

Example 2.4. In TL, the formula 00A = OOA is valid. In TB, however,
only ©OOA O OOA holds. The other direction OO A O OOA does not hold in

general, as can be seen by evaluating the formula on the countermodel K =
(w4 w, {Ds icwtw, {Si ticwtw), where Si,(A) = L and S;(4) =T for i < w, i > w.

The semantics considered here is usually called inttial semantics. Normal se-
mantics 1s defined via truth in all states, not only in K. We will need the following
lemma later on:

Lemma 2.5. Let A be a formula.

(1) = A iff A is true in every world in every temporal structure.
(2) EAfEDA
(3) EAiff =04

Proof. (1) 1If: trivial. Only if: Let T be a temporal structure in which A4 is not
true at a state i. Consider 7" = {j € T' | j > i}: T' is also a temporal structure,
and, since our logics contain no operators acting backwards in time, A is true at
state 7 in 7" if it was true in state ¢ in 7". But 7 is the initial state in T".

(2) If: by the truth definition of O. Only if: immediate by (1)

(3) 1If: Let T be a structure where A is false in the initial world. Consider
T =T U0 with 0’ < 0, and Sy = Sg. The addition of a state before the initial
state does not change the truth of formulasin 7". But in 7”7, O A is false in the initial
world. Only if: immediate by (1). O

Remark 2.6. The logics we consider differ from the ones in the literature in that we
do not use global and local variables, but the interpretation of predicate symbols can
vary over the states. This is more in keeping with the tradition in quantificational
modal logics. However, by using the Barcan formulas for O and O, definable two-
sortedness and other expressible concepts, most effects of global and local variables
can be simulated. Another minor difference is in the definition of O: Kroger’s O
is defined via truth in all later worlds; in Kroger’s logic, our O can be defined by
OA A A, his O can be expressed by ©OA in TL.

As indicated in the introduction, the logic TL is not axiomatizable. This was
shown for the original formulation of Kroger by Szalas [12] and Kroger [8]. Two bi-
nary function symbols have to be present for the results to hold. If the operator until
1s also present, or if quantification over local variables is allowed, then the empty



signature suffices, as was shown by Szalas and Holenderski [13] and Kroger [8], re-
spectively.

Following Szalas [12] and Kroger [8] we sketch a proof for the incompleteness re-
sult for TL with equality, where the signature contains two binary function symbols
(equivalently, two ternary predicate symbols):

Let ’ designate the successor function, and the constant 0 the number zero.
Consider the formula axiomatizing the predicate U,

U(0) AO(Y2) (U(2) = (y) (y = ' AOU(y)) ) AD(Va)(¥y) (U(2) AU(y) D = = ).

In every model, OU () represents exactly the set of natural numbers. If the lan-
guage 1s expressive enough, we can write down the usual axioms for addition and
multiplication (e.g., Robinson’s @). A sentence of arithmetic is true in the natu-
ral numbers iff its relativization to CGU(z) follows in TL from these axioms. The
non-axiomatizability of TL thus follows from Godel’s Incompleteness Theorems.

3 A Sequent Calculus for TB

In the standard definition a sequent i1s an expression of the form
Al,...,Ak —>Bl,...,Bz

where the A; and B; are first-order formulas. For the purpose of completeness proofs
it is more convenient to use instead infinite sequents (see, e.g., Takeuti’s book [14,
Ch. 1.8]). More precisely, the completeness theorem requires a generalization of
finite sequences of formulas to countably infinite well-ordered sequences. We will
use this more general notion of sequents and indicate the use of finite sequents
explicitly.

Let A be a countable (possibly finite) well-ordered sequence. If A is order iso-
morphic to the well-ordered set of numbers o via a mapping ¢ s.t. ¢(i) = A; for
i € o then we write A = (A;)icq.

Definition 3.1. A sequent is an expression of the form I" — A, where I and A are
countable well-ordered sequences of first-order temporal formulas.

Definition 3.2. The sequence (A4;);eq is called a subsequence of (A;);ep if « C
and there exists an order-preserving 1-1 mapping ¥: o — 3. If the sequences are
finite and 8 = {1,...,n} then « is of the form {i1,..., i} C {1,...,n}. A sequent
I'" — A is called a subsequent of I' — A if I'" and A’ are subsequences of I' and
A, respectively.

Definition 3.3. Let (S;);cw be a sequence of sequents s.t. S; = I1; — A; for i € w.
Then the sequent S = (IT;)icw — (A;)iew is called the union sequent of (S;)sew

Note that the order type of (I1;);e, is characterized by the property: if i < j and
«;, orj are the well-ordered sets of numbers corresponding to II; and II; respectively
then all elements of o; are smaller than all elements of «;.

The validity of finite sequents is defined as usual: Ay,..., Ay — By,..., By is
validin TL (TB) iff (A1 A...AAL) D (B1 V...V B;)is valid in TL (TB). A finite
sequent is provable if it has a derivation in a suitable calculus.

The concepts of provability (defined for finite sequents originally) can be ex-
tended to the infinite case via the usual compactness condition:

Definition 3.4. A (not necessarily finite!) sequent S is called provable if there exists
a finite subsequent of S which is provable.



It is only a matter of convention that we use the term “provable” for infinite
sequents, as LB works only on finite sequents. This convention is, however, of es-
sential advantage in completeness proofs. In our completeness proof we do not need
the semantics of infinite sequents; particularly we do not speak about (semantic)
compactness (i.e. about the property that an infinite sequent is valid iff there exists
a finite subsequent which is valid).

As basis for the sequent calculus LB for TB we take a variant of Gentzen’s
calculus LK for classical predicate logic. The rules of LK are well-known and can
be found in, e.g., [14]. We use a weakening friendly formulation of the rules: The
side formulas in the premises of the rules (A:right), (V:left), and (D:left) are not
required to be identical, e.g.,

I'—AA I'" - A B I'—-AA I'—AB
r'— A A AAB  instead of I'—= A ANB

LB consists of the rules of LK plus the following rules for © and O:

ACOA T — A I'—AA I"— A OO0A O-right
e i Tl
04, — A Dileft T 1 — A A OA 8
L=4 Or'—A ..
O -—0OA o' — 04

Note that LB (like LK) is defined for finite sequents only. If I' is Aq,..., Ap,
then OI" denotes the sequence OA;, ..., OA, (similarly for OI"). The notations
OI and O can be extended to infinite sequents in a straightforward way (e.g.,
O(Ai)iea = (OAj)icq). Note that, unlike the rules of LK, the rules (O:left) and
(O:right) are not analytic (i.e., the subformula property does not hold). The rule
(nex) works on the left and right sides of the sequent simultaneously (but is ana-
lytic) and (nec) is “context dependent.” Tt is clear that (nec) corresponds to the
necessitation rule common in Hilbert-style modal calculi. When using rules with
two auxiliary formulas in one premise (i.e., (D:right) or (O:left)), the inference is
admitted even if only one formula is actually present (implicit weakening). Alter-
natively, we could have split the rule into two, in a similar way as the (V:right) and
(A:left) rules. Otherwise the notion of proof is the standard one (cf. [14, Ch.1, § 2]).
In particular, recall that initial sequents are of the form A — A (A any formula)
and cut-free provable means having a proof not containing an application of the cut
rule. The sequent appearing at the root of the proof tree is called end-sequent.

Proposition 3.5. If a sequent is LB-provable, then a (non-empty) subsequent is
provable without weakenings.

Proof.  This is easily seen by induction on the length of the proof, and is due to
the special formulation of the rules. 0O

Example 3.6. We give an LB-proof of the formula ©0A4 5 OO0A.

A—A
oA— 4 7l
oo4 o4 &
=8 Oileft
A— A O loft 04 —0A4 nec
04— A4 € 04 — 004

n nex
ooA4A —-0A oo4 — 0004 .
O:right

Ooo4,004 — 004
ooA —-0O0A
— 004 HOOA4

contr:left
D:right



Note that, on the right branch of the proof, we introduced OA twice on the left-
hand side of a sequent. This is necessary because of the way (nex) introduces O in
all formulas of the sequent.

Theorem 3.7. LB is sound for TB, i.e., every finite LB-provable sequent is valid
in TB.

Proof. It 1s sufficient to prove the soundness of the LB-rules. The soundness of the
LK-part 1s proved as usual. The soundness of the rules O:left and O:right follows
from the “recursion” equivalence of DA and OOA A A in the TB-semantics. The
soundness of (nex) follows from Lemma 2.5(3) and from the fact that O distributes
over the propositional connectives (e.g., O(A A B) is equivalent to OA A OB). The
soundness of (nec) follows from Lemma 2.5(2), from the TB-equivalence of 0A and
O0A, from the distributivity of O over A, and from the fact that O(A4 D B) implies
0A>OB. O

If we look closely at the rules of LB we notice that (O:left) and (O:right) are
not strictly analytical. Therefore 1t is convenient to extend the usual notion of
subformula. Note that we have disjoint sets of free and bound variables. A ferm
is defined as usual but subject to the restriction that it may only contain free
variables; if also bound variables are allowed to occur we speak about semi-terms.
Similarly we distinguish between formulas and semi-formulas. The concept of strict
sub-semi-formula represents the intuitive notion of subformula, while the definition
of semi-formulas takes care about the nonanalytic behaviour of O and O.

Definition 3.8. Let F' be a formula. The set ssf(F) of strict sub-semi-formulas
of I is defined as ssf(F') = {F'} U Z(F), where

{F} if F'is atomic
sy = J ) it F'=#A for + € {~,0,0)
T ) ssf(A)Ussf(B) if F= A« B forxe{AV,D}
ssf(A(z)) if ' =(Qx)A(z) for Q € {V,3}

The set sub(F') of sub-semi-formulas of F' is defined by
sub(F) = ssf(F)U{O0A | OA € ssf(F)}

By sub™(F') we denote the set of formulas obtained from sub(F') by replacing bound
variables without matching quantifier in each member of sub(F') by free variables
or constant symbols (i.e., we obtain actual subformulas corresponding to the semi-
formulas).

4 Completeness of LB

The main result of this paper is the following theorem.

Theorem 4.1. LB s complete for TB: Every finite TB-valid sequent S has a cut-
free LB-proof from atomic axioms.

The proof requires some additional definitions and technical lemmata. In order
to emphasize the main lines of the argument we give a rough sketch of the proof in
advance:

The proof uses a variant of Schutte’s method of reduction trees as modified
for intuitionistic logic with Kripke semantics by [14, Ch. 1, § 8]. Tt proceeds by
exhibiting a countermodel for any given unprovable sequent in the following way:
Let us assume that S:I" — A is unprovable. We first generate a reduction tree



by reverse application of all the rules of LB except (nex) and (nec). This tree
contains a branch B(S) consisting of unprovable sequents only. We form the union
sequent of B(S) and extract from it the subsequent OI'y — O Ap consisting of all
formulas of the form OA. By reverse application of (nex) we arrive at the sequent
I's — Apg, which is unprovable as well. For this sequent, we repeat the construction
of a reduction tree. By iterating this procedure we obtain an infinite sequence N of
reduction branches, all of them containing unprovable sequents only. Now we take
the union sequent of the sequence of all sequents contained in these branches. In
turn, we extract a subsequent 07y — OApn consisting of all formulas of the form
OA, but with the following restriction: OA is in DAy only if it occurs in infinitely
many reduction branches of the sequence N. If OApy is the empty sequence we have
completed our construction and obtain a countermodel, otherwise we continue as
follows: By construction, O/ y — OApx is unprovable, and so is any subsequent
of the form O7'y — OA, for any formula OA occurring in OAy. We then repeat
the whole construction for all sequents OI'y — A (note that these are unprovable
too). This gives us a possibly infinite and possibly infinitary tree of infinite chains
of reduction branches containing unprovable sequents only. This tree is contained
in B and we obtain from it a countermodel for the original sequent S: " — A.

Definition 4.2. The reduction tree R(S) of a sequent S:I' — A is an infinite,
infinitary tree (i.e., the nodes may be of infinite degree) s.t. the set of nodes is a set
of (occurrences of ) sequents. R(S) is defined in stages as follows:

Stage 0: Ry consists of S alone (S is the root node of R(S)).

Stage k£ + 1: Suppose that the reduction tree R has already been constructed.
In order to construct Rjy1 we need some additional terminology. Let B be a branch
(i.e., a maximal path starting from the root) in Rj. We call B closed if it is finite
and its end sequent I — A contains an atomic formula which is contained in both
I and A; otherwise B is called open. The free variables occurring in the sequents
of a branch B are called the available variables of B; if there are none, pick any free
variable and call it available. Note that our sequents may be infinite and thus there
may be infinitely many free variables even on a finite branch. Since in the definition
of Rj4+1 there may be nodes of uncountable degree we need an uncountable supply
of free variables (note that this poses no problem, as R(S) is a semantic structure
and not an actual proof tree). Constants occurring in S (by construction no new
constants are generated) are treated like available variables. The reduction applies
to any top sequent (i.e., leaf sequent) of Rj. The method is a generalization of
the first-order case (which applies to =, A, V, D, V¥, 3) by extending it to the
case of O. For the time being, we postpone treatment of O. Concerning formulas
with outermost logical symbols among —, A, V, D, V, 3 we proceed as in [14]. We
present only some typical cases and omit most of the details. The principle is that
of decomposing formulas according to their outermost logical symbol. In order to
avoid reducing formulas more often than needed, we mark formulas as “treated”
once the reduction has been applied to them.

In the first step the root sequent contains only unmarked formulas. So let us
assume that S: I[I — A is a leaf node of a branch B in Rj.

(al) Outermost logical symbol A (left reduction)
Let (A; A B;)ico be the subsequence of IT consisting of unmarked formulas with
outermost logical symbol A. Then we define S”:(4;, Bi)ica, II — A and add
the edge (5, 5”) to Ry. Mark the thus reduced formulas (4; A B;)ieq in S”.
(a2) Outermost logical symbol A (right reduction):
Here let (A; A B;)ica be the subsequence of A consisting of all unmarked for-
mulas with outermost logical symbol A. Let A(S") = {IT — A, (Ci)ica | Cs =
A; or C; = B;}. For every S € A(S’) add S” and the edge (5, 5") to Ry and



mark the formulas (4; A B;)icq therein. Note that the node S’ has an uncount-
able degree in the new tree Rj41 if v is an infinite ordinal.

We skip the definition for the other propositional connectives and refer the reader
to [14].

(b1) Outermost logical symbol ¥ (left reduction):
Let <(in)Ai(xi))iea be the subsequence of IT consisting of all unmarked for-
mulas with outermost logical symbol V. Let (ai);es be a sequence consisting
of all free variables on the branch B from S to S’. Note that all sequents are
countable and the length of B is finite; thus 3 is a countable ordinal again. We
define S"': «Ai(aj))jeﬁ)iea’ II — A and add S and the edge (57, 5") to Ry.
(b2) Outermost logical symbol V¥ (right reduction):
Let <(in)Ai(xi))iea be the subsequence of A consisting of all unmarked for-
mulas with outermost logical symbol V. Create a sequence (b;)jcq of free
variables which do not occur in any sequent constructed so far. We define
S I — A, (Ai(bi))iea and add S” and the edge (S',5") to Ri. Mark the

formulas (Vz;)A(%;) for i € o in the consequent of the new sequent S”.

The construction for 3 is completely symmetric to the case of V.

(c1) Outermost logical symbol O (left reduction):
Let (OA;);eq be the subsequence of all formulas in /7 which are unmarked and
have O as outermost symbol. Let S”: (A;, O0A;);cq, I — A and add S and
the the edge (57, 5") to Rj. Mark all formulas OA; for ¢ € « in IT of S”.
Note that, like in the other cases, the form of S is obtained by applying O:left
“backwards.”

(c¢2) Outermost logical symbol O (right reduction):
Let (OA;)jeq be the subsequence of all formulas in A which are unmarked and
have O as outermost logical symbol. Let p(S") = {II — A,(Cslica | Ci =
Ajor C; = O0A;} and add S and the edge (57,5”) to Ry for every S €
#(S"). Note that, like in case (a2) above, the degree of the node S" in Rj4q is
uncountable provided « is infinite. Finally, mark the formulas OA; for ¢ € « in

Aof 5”.

As already indicated we do not introduce reduction rules for O here. Suppose none
of the reduction rules for =, A, vV, D, ¥, 3 or O apply and the branch B (from S to S’)
is open. Then we simply add a copy S of S’ and the edge (5', S}) to Ri. (Note that
we work with occurrences of sequents, not merely sequents. The reduction therefore
indeed produces a tree, and not a cyclic graph.)

In order to guarantee that all formulas in the sequents are eventually processed,
we postulate a “clockwise” order in reducing —, A, Vv, D, V, 3, O. If we take the
order as given, we reduce — first, then A, etc. After having reduced O on all sequents
we start with — again. Since reduced formulas in (¥:right) (and (3:left) reductions
are not marked, these formulas can be reduced infinitely often. Without postulating
such a clockwise order, open branches would not define countermodels in general.

By the above construction we obtain an (infinite) sequence of trees which is
monotonic. Thus, by taking the union over the sets of vertices and edges, we obtain
the limit tree R,,. R, is precisely the tree R(S) we intended to construct.

Note that our construction, if applied to formulas neither containing © nor O,
yields the familiar construction of a counterexample in classical predicate logic.
Indeed, if A is such a formula which is not valid (in the standard first-order se-
mantics) we obtain an infinite open branch B representing a counterexample. Our
construction, however, is not completed so far. In fact, we may obtain open branches



in R(S) even for sequents valid in TB. Note that in the construction of R(S) itself
we cannot obtain infinite sequents provided the root sequent is finite. But in some
further constructions we will obtain infinite sequents out of infinite branches and
apply the method of reduction trees to these sequents as well. Let us illustrate the
construction of R(S) by a simple example (cf. also Example 3.6):

Example 4.3. Let S be — O0A4 D OOA. The tree R(S) is given below:

OCoA—-0O0A o044 —-0A

ODALODOA ODALOA
. O:right red
O0A4—004
1T D :right red
— 004 H>00A4

R(S) possesses two open infinite branches. As O0OA D 004 is TB-valid, these
open branches do not represent counterexamples. On the other hand we will prove
that for unprovable sequents there are always branches in the reduction tree con-
taining unprovable sequents only. Take for example S’: — 0O A D OO A. We already
know that S is not TB-valid. R(S’) is the following tree consisting of one infinite
branch only:

0A4,0004—-004
OA,ODOALODA
1 (O: right) red
0oA—-00A
1 (D : right) red
—00A4 > OOA

It is easy to verify that the branch contains only sequents which are not valid in TB.
Clearly, by soundness of LB, these sequents are all unprovable.

In the case of LK, finite sequents, and an unprovable end-sequent S we obtain a
tree R(S) with the following property: If S’ is an unprovable sequent in R(S), then
there is a successor of S’ in R(.S) which is also unprovable. As R(.S) must be infinite
and its node degree finite, there 1s an infinite branch by Konig’s Lemma. This infinite
branch consist of unprovable sequents only and represents a counterexample. This
argument obviously yields the completeness of LK.

In the case of infinite sequents S there may be nodes in R(S) of uncountable
degree. This phenomenon occurs if, in a sequent S’ occurring in R(S), we have
infinitely many formulas containing an outermost logical operator with a binary
reduction rule (e.g., (A:right) or (O:right)). Tt is, however, still possible to prove the
existence of an infinite branch containing unprovable sequents. For this purpose we
will use a generalization of Konig’s Lemma due to Takeuti [14].

Definition 4.4. Let « be a set and {W; }ico be a family of sets indexed by «.
If f € [lica, Wi and a1 C « then fis called a partial function (over o) with
domain dom f = «y. If dom f = « then f is called fotal. If f and ¢ are partial
functions s.t. dom f = Dy C domyg and f(x) = g(z) for all x € Dy, then we call ¢
an extension of f and write f < g and f =g | Dy.



Theorem 4.5. (Takeuti [14], p. 51f) Let « be a set and {W;}ico be a family of
finite sets. Let P be a property of partial functions over « s.t.

(1) P(f) holds iff there exists a finite subset N C «a, s.t. P(f M N) holds.
(2) P(f) holds for every total f.

Then there exists a finite subset Ny C o s.t. P(f) holds for every f with Ng C dom f.

Lemma 4.6. Let R(S) be the reduction tree of a (possibly infinite) unprovable se-
quent S. Then R(S) has a branch B(S) containing unprovable sequents only. Such
a branch is called a reduction branch of R(S).

Proof.  We have to show that, in R(S), a sequent S’ is unprovable iff there exists
a successor S of S’ s.t. S” is unprovable. Equivalently:

(*) If all successors of a sequent node S’ are provable then S’ itself is provable.

Using transfinite induction on trees (by ordering trees according to the standard
subset relation) we derive from (*): If S is unprovable, then there exists an infi-
nite reduction branch in R(S) (every maximal finite branch must end in a provable
sequent). Thus, by (*), every path leading to an unprovable sequent can be ex-
tended). Note again that the degree of some nodes in R(S) may be uncountable,
but branches in R(S) are always countable! Thus it remains to prove (*):

Case 1: 5" is of degree 1: The rule used for the reduction of S” has only one
premise, e.g., (V:right), (3:left), (O:left). Then S’ has only one successor S”. Let us
assume that S” is provable. By definition of provability (of infinite sequents) there
exists a finite subsequent S{ of S which is provable too. Now let By, ..., By be
the formulas in S obtained by reduction using some rule (let us call it p). Then,
by repeated application of p on the B; combined with contractions and exchanges,
we obtain a finite subsequent S, of S’ which is provable too; the proof of S/ can be
easily extended to a proof of Sj.

Case 2: S’ is of degree > 1 (possibly of uncountable degree): The rule corre-
sponding the reduction of this node must be binary , e.g., (V:left), (O:right). By
definition of a reduction tree the successors of S’ must be of the form

HHA,(Cj,,i)iEoz or (C]’“i)iEa,HﬁA

where for all i € o we have j; € {0, 1} depending on which (of the two) subformulas
occurs on position 7. Moreover, for every sequence (j;)ico there exists a successor
corresponding to this sequence. In the argument to follow it does not matter whether
the rule under consideration is a left or a right rule. Thus, we restrict attention to
the case where p is a right rule and the reduced sequent is IT — A, (C}, :)ica-

Now let W; = {0, 1} for every ¢ € a and f denote functions in [[,., Wi (=
{0,1}%). Let us assume that all successors of S’ are provable. Then to every suc-
cessor S of 5" there corresponds exactly one f € {0,1}%. Thus if 5" corresponds
to f we write S” = S”[f]. Since S”[f] is provable there exists a finite subsequent
SY1f] of S”[f] which is provable too. This means, for every total f (see Defini-
tion 4.4) there is a finite subsequent S§[f] of S”[f] s.t. S{[f] is provable. Hence, for
S =1 — A (Cj,:)ica and every f € {0,1}* we obtain a finite provable subse-
quent S{[f] of the form

' — A (G idieas

where a7 1s a finite subset of «.
Let oy = {i1,...,i,} be an arbitrary finite subset of @ and let f € {0, 1}
Then we call the finite sequence of formulas

(Cf(il),ila ey Cf(ln)yln)
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selected for f if there are finite subsequences II1, Af of IT, A, respectively, s.t. II1 —
Af (Ct(i),i)iga, is provable. By the explications above, there are such subsequences
for every f. Hence, there exist selected sequences for every total f.

In order to apply Takeuti’s theorem we have to define a property P of partial
functions over R. We choose:

P(f) <= (@n€w)(Fir,...,in €dom ) (Criyyiys - Crin)in) 18 selected

P(f) obviously satisfies both conditions (1) and (2) of Theorem 4.5. Thus, Takeuti’s
theorem applies and there exists a finite set ag = {r1,..., 7} C as.t. if ¢y C dom f

then P(f) holds. We define
F=1{f | dom /= av}

Then F' is a finite set and P(f) holds for all f € F. But this means that for
every f € F there exists s1, ..., s € Ry (= dom f) s.t. (Cf(s1),81a . ~~aCf(sk),sk) is
selected, i.e., there exists a finite subsequence I, A of IT, A s.t.

I — A Crisysns - Crisn) o

is provable. Now the set {0,1}° is isomorphic to {0, 1}1%+¢} the set of all binary
sequences of length £. Thus for every such binary sequence 8 = (41,...,4¢) there
exist finite subsequences IT?, A? of IT, A s.t.

SﬁHﬁ _>Aﬁaci1,7‘1""acil,7‘l

is provable. We see that the Cj, .., ..., Ci,, for (iy,...,i;) € {0, 1}{1 (=
By) are exactly the reduction formulas obtained from the reduction of the finite
subsequent S§: g — Ao, Cry, ..., Cy, where IIj is the union sequence of (Hﬁ)ﬁeB[
and Ag is the union sequence of (/1@)@63[. By repeated application of the binary
rule p under consideration we can derive S} from the sequents S?. Together with
the respective LB-proofs of the S# we obtain a proof of 5. But S) is a finite
subsequence of S’ and thus S5 is provable. O

Note that in order to prove lemma 4.6 we made use of the compactness of the
provability concept (which holds by definition). We did not use (semantic) com-
pactness of the logic TB and do not even claim that TB is indeed compact.

So far we know that for unprovable sequents S, there must be an infinite branch
containing only unprovable sequents (i.e., a reduction branch) in R(S). In our next
step we “pass” the ordinal w in our construction and obtain infinite sequents out of
finite ones (note that, if S is finite, then R(S) contains only finite sequents). The
basic idea is to construct (infinite) unprovable sequents out of reduction branches
and iterate this procedure infinitely often.

Definition 4.7. Let S be an unprovable sequent and B be a reduction branch
in R(S). Let S’ be the union sequent of B (see Definition 3.3) and S}: (O4;)icq —
(OBj)jep be the subsequent of 57 consisting of all formulas in S” with outermost
logical symbol O. Let S{ be (A4;)ica — (Bj)jep (This is the sequent S} “stripped”
of its outermost O’s). Then S is called the successor of S w.r.1. B.

Lemma 4.8. Let S be an unprovable sequent and B be a reduction branch in R(S)
and let S’ be the successor of S w.r.i. B. Then S’ is unprovable.

Remark 4.9. By lemma4.6 we know that R(S) must have a reduction branch; thus
the assumption of the lemma can always be fulfilled and 5’ exists.

11



Proof.  Let S" be (Ai)ica — (Bj)jes. Assume, by way of contradiction, that S’ is
provable. By definition of provability, there is a finite subsequent S”: A

Bj,,...,Bj, of S" which is LB-provable. But from S” we can derive (in one step),
using (nex), the sequent SY:OA4; ,...,04;, — OB;,,...,OB;,. Since 5’ is the
successor of S w.r.t. B, by Definition 4.7, S} is a finite subsequent of the union
sequent U(B) of B. Thus if B = (5;);ew there exists a finite initial segment B’ =
(S1,...,5y) of B, with S; = S and so that the union sequent U(B’) of B’ contains
SY. Let left(IT — A) denote the set of all formulas in I7, and right(I7] — A) denote
the set of all formulasin A. By construction of R(S) we have that left(S;) C left(S;)
and right(S;) C right(S;) for 1 < i < j < n. Hence, left(U(B’)) = left(S,) and
right(U(B’)) = right(S,). In other words, Sy is a finite subsequent of S,. SY is
provable and thus S, 1s provable, too. But this is impossible because S is a reduction
branch. Hence, S’ must be unprovable. O

iy ey Aiy —

i1

Definition 4.10. Let S; be an unprovable sequent. A nexi-time sequence is an
infinite sequence of reduction branches (B;);e, s.t. By is a reduction branch of Sy,
and for every ¢ > 2, B; is a reduction branch of a successor S; of S;_y w.r.t. B;_1.
All variables occurring in B; are available for the construction of B;y1 (i.e., for the
reductions V:left and J:right).

Note that, by Lemma 4.8, next-time sequences exist for all unprovable sequents.
This is easily seen by induction.

Example 4.11. We construct a next-time sequence N(S7) corresponding to the
sequent S:00A — OOA. The following sequence is a reduction branch in R(S;):

Bljsl;OA’ODOA’DOAHODA;OA’ODOA’DOAHODA;,,,

The union sequent of By is ©A4, 0004 004 — OOA. Therefore the successor of
Sy w.r.t. By is
S.: A, 004 — 0OA

For S5 we obtain a reduction branch of the form
B5:55; 4,004 — 00A4;04,0004, 4,004 — O0A;. ..

with the union sequent ©A, OO0 A A OOA — OOA. The successor of Sy w.r.t. By
is

Sy =S8, = A,00A — OA
In general, S; = So = A,00A4 — OA and B; = B; for i > 3.

The sequents in a next-time sequence represent necessary conditions for a se-
quent S to be true: If S 1s true at time point 0, then Sy 1s true at point 1, .55 at 2, etc.
But these conditions are not sufficient. Let us look at the sequent S1: 00 A — OOA.
We know that S is not TB-valid. Let us assume that S; is true at time point 1.
Then the sequent Ss: A,00A — OA is true at time point 2 and at time k we would
have 4,004 — OA being true. According to our semantics there is a counterex-
ample to the sequent Sy at every time point & € w. But recall that at time point w
we may set A to false. Note that w is not a successor ordinal. Thus in order to
construct counterexamples to sequents we have to “jump” across time gaps; this
jump will be performed via reverse application of the necessitation rule.

Definition 4.12. Let S be an unprovable sequent. A gapjump tree G(S) for S is a
tree with nodes consisting of next-time sequences satisfying the following conditions:

(1) The root of G(S) is a next-time sequence of S.

12



(2) Let N be a next-time sequence in G(S) corresponding to a sequent S’'. Then
(N, N;), i € o, are edges in G(S) if the N; are constructed as follows:
Let N = (B;)iep and I’ — A’ be the union sequent of N (i.e. II' — A’ is the
union sequent of the union sequents of the B;). Let Oy be the subsequence of
all formulas in IT” with outermost logical symbol O. OAp is a subsequence of A’
obtained in the following way: delete all formulas in A’ except formulas of the
form OA, where OA occurs in the right hand sides of infinitely many successor
sequents in V. Thus we obtain a sequent of the form

O/lly — 0OAxy = DHN—>(DAZ')Z'EQ

and define a next-time sequence N; for every Oy — A; (i € «), provided
Olly — A; is unprovable.
If OAx is empty then N is a leaf in G(S5).

In the definition of the next-time sequence N; all free variables available for the
construction of N are available for the construction of N; too (for the V:left and
J:right reduction in the reduction branches).

If OAN 1s empty then, according to definition 4.12, the node corresponding to N
must be a leaf. But even if OApx 18 nonempty it might be the case that the sequents
O/ln — A; are provable and thus do not define new next-time sequences. We will
see in Lemma 4.14 that such a case cannot occur.

Example 4.13. We construct a gapjump tree with root N(S1), where N(S1) is the
next-time sequence of Example 4.11. For N = (Bi)i21 we had B; = By for i > 2
and

By: A,00A4 — 0OA: A, 004 — O0A; 04,0004, A,00A — OOA: ...
By starts with OO A — OOA, so we obtain as union sequent of N:
O00A, A,04,0004,00A4,... 04,004, ...

where formulas (if we do not use contraction) may be repeated infinitely many times.
Note that in all the successors S;y1 w.r.t. B; we have S;41 = A, 004 — OA for
t € w and thus OA occurs infinitely often on the right side. Hence, O/lny — OAn =
0O0A — OA. We have to consider only the single sequent S”: 00 A — A. The only
edge leaving N(S1) in G(S1) is (N(S1), N(S")). A next-time sequence N(S') for
S’ is easily obtained. We construct the reduction tree for S’ and find a reduction
branch By with successor sequent S”': A, 00A —. It is immediately clear that the
successor sequents will be repeated infinitely often. A next-time sequence for S’ is
N(S") = (Bi)icw where

By =004 — A;04,0004,004 — A;...

By = A 004 —;04 OCOA,A,004 —; ...

B;=B; foralli>1

N(S") is a leaf node of the gapjump tree, since there is no formula of the form 0OA
occurring in infinitely many successor sequents on the right hand side (in fact, there
are no such formulas at all).

In defining the gapjump tree we have constructed a sequent of the form
S0l — OApxy where OAyx contains only formulas appearing infinitely many
times. S’ can be “extracted” from the next-time sequence N, which is also a node
in the tree. If the consequent of S’ is empty then clearly N is a leaf in the gapjump
tree. Otherwise we obtain sequents of the form OIly — A;, where OA; occurs
in OAxn. We call S* the O-extract of N and every sequent S”:0Ty — A for OA
in OAy a right reduct of S”. (The term “right reduct” should not be confused with
the (O:right) reduction of S’, which has a different form.)
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Lemma 4.14. Let N be a node in a gapjump tree G(S") for unprovable S’ and S
be the O-extract of N. If the consequent of S is not empty then every right reduct
of S 1s unprovable.

Remark 4.15. A consequence of this lemma is that every right reduct defines a
next-time sequence and thus a successor node of N.

Proof. Let S:0Ily — OAp be the O-extract of N s.t. DAy 1s not empty, and let
0OA be a formulain OAp.

Assume, by way of contradiction, that S":OITy — A is provable. By definition
of provability there is a finite subsequent S”: 01T} — A% of S s.t. 5" is provable.

v 1s either empty or A alone.

If A’ is empty then 5" is a subsequent of the union sequent of N (recall that N is
a next-time sequence). We show that there exists a successor sequent S; of a branch
B;_1 in N s.t. O} is a subsequence of the antecedent of S;: Let OC' be a formula
in O/74. OC occurs in some sequent S¢ in a reduction branch B in N. By definition
of a reduction branch, ©OC must occur in almost all descendents of S¢ and thus
also in the union sequent ((O:left) reduction). By definition of a successor sequent,
the successor w.r.t. B must contain OC' in the antecedent. Moreover, OC must occur
in all further successor sequents in N. As OITY; is a finite sequence there must be
a successor sequent S; of a reduction branch B;_; s.t. OII} is subsequence of the
antecedent of S;. But then S; would be provable, which contradicts Lemma 4.8.

If A% = A then, like in the case where A%y is empty above, we obtain a successor
sequent S; in N s.t. OIl} is a subsequence of the antecedent of S;. By definition
of a O-extract, the formula OA must occur in infinitely many S;’s. Observe that
DII}, is a subsequent of the antecedents of all S; for j > i. Therefore, there must
be a k s.t. O}, — OA is a subsequent of Si. If S”: 0Ty — A is, as we assumed,
provable, then so is S”": O}, — OA by application of the rule (nec). Since S is a
subsequent of Sy, S; were provable too, again contradicting Lemma 4.8. 0O

Corollary 4.16. If N is a leaf in a gapjump tree then the consequent of the O-
extract of N 1s empty.

Proof.  Assume that the O-extract S of N were not empty. Then S would have
right reducts. Any such right reduct S’ is unprovable by Lemma 4.14. But then
there would be a next-time sequence N(S) for S and and an edge (N, N(S)). O

Proof of the Completeness Theorem 4.1.

We have to show that finite unprovable sequents are not valid. More precisely, if S is
a finite sequent which is unprovable in LB, then there exists a TB-interpretation K
for S which falsifies 5.

Let G(S) be a gapjump tree for S. We define the following TB-interpretation
K= <T, {DB}BET, {SB}BET> where

(1) T is the set of all occurrences of reduction branches (in the next-time sequences)
in G(S5). For the remaining part of this proof we use the letter B for occurrences
of branches and B for the branch corresponding to B. Moreover we introduce
the following partial order:

If B and B’ are two occurrences within the same next-time sequence (3; )sew
then there are 1,7 € w s.t. B = §; and B/ = B;. Weset B < B'if i < j and
B' < Bif j <. Clearly B= B’ for i = j.

If B, B" are occurrences in different next-time sequences N, N’ (which are nodes
of G(5)) then B < B’ iff there is a path from N to N’ in G(S). Evidently, the
order type of < isin 7.
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(2) For every B € T, Dp is the set of all free variables V(B) occurring in B. Note
that by the definitions of a next-time sequence (4.10) and of a gapjump tree
(4.12), V(B) C V(B')if B < B'. Thus we obtain Dg C Dps for B < B’ (second
condition of Definition 2.2)

(3) Definition of the evaluation function Sp for B € T
Set Sp(a) = a for a € Dp (note that elements of Dp are available as constant
symbolsin the extended language). If A is an atomic formula, we define Sp(A) =
T if A occurs in the antecedent of a sequent occurring in B and = L otherwise.

We have to show that this truth assignment is consistent, i.e., that it is impossible
that an atomic formula A occurs in an antecedent and in a consequent of a sequent
in B. Thus let B = (S;);ew. By construction of a reduction tree we have sub™(.5;) C
sub™(S;) for i < j (see definition 3.8). In particular, all atomic formulas occurring in
the antecedent (consequent) of S; also occur in the antecedent (consequent) of S;.
Thus if A occurs in the antecedent of S; and in the consequent of 5; it must occur
in both sides in Sy for & > max(é, 7). This, however, contradicts the definition of
reduction branches in a reduction tree (Definition 4.2), as B would be closed. So
Sp is consistently defined.

It remains to show that K, as defined above, is indeed a countermodel to 5.
Tt suffices to show the following: (x) If F' is a formula occurring in the antecedent
(consequent) of a sequent in a reduction branch B (in a next-time sequence N oc-
curring as a node in G(5)) then Kg(F) =T (Kg(F) = L). Then, by Definition 2.2
and by the finiteness of S, (the implication corresponding to) S is falsified in K, as
Kp,(S) = L (B being the first reduction branch in the root of G(S5)). Note that
F' cannot occur in an antecedent of S and in a consequent of S’ for two sequents
S, S§" in B. The reasons are the same as for atomic formulas described above. We
prove () by induction on the logical complexity of F.

If Fis an atomic formula (logical complexity 0), then () follows from Kp(F') =
Sp(F) and the definition of Sp. Suppose that (*) has been shown for all formulas
of logical complexity < n. Let F' be a formula of logical complexity n 4+ 1. If the
outermost logical symbol is not a temporal operator (O, O) then the reduction to
the case < n follows exactly the classical first-order case (see [14], Ch. 1, § 8). Tt
remains to handle the cases F = OF’ and F' = OF" for some formula F’.

(1) F=0Opr":

Let us assume that F' occurs in the antecedent (consequent) of a reduction

branch B. Because B is a branch in a next-time sequence there is a succes-

sor S w.r.t. B (see Definition 4.7) on which the next reduction branch starts

(see Definition 4.10). By definition of successor, F’ occurs in the antecedent

(consequent) of S7; which is the first sequent of the successor branch B’. By

the induction hypothesis, Kp/(F') = T (Kp/(F') = 1). By Definition 2.2,

Kg(F) = Kg(OF') = Kg/(F'). As F must occur on the same side as F’ we

conclude that () holds for F.

(2) F=0F"

(a) F occurs in the antecedent of a sequent in a reduction branch B in the
next-time sequence N:
By the semantics of O we have Kg(F') = T iff for all B’ s.t. B < B’ it holds
that Kp/(F’) = T. So let us assume that F' occurs in the antecedent of the
sequent S; in B. Then OOF’ must occur in (the antecedent of) a sequent .S;
for some j > i. By definition of a next-time sequence N, OF’ must occur
in (the antecedent of) the successor of B. By induction, OF" occurs in the
antecedent of every sequent in every reduction branch in this next-time
sequence. Hence, OF' occurs in the union OJI' and in the antecedent of the
O-extract of N. By definition of right reducts and the gapjump tree then,

15



OF" also occurs in the antecedents of all (initial) reduction branches in the
successor nodes N’ of N in G(S). By the same arguments as before, we
have that OF’ occurs in the antecedent of every sequent in every reduction
branch B’ > B. Every reduction branch containing OF” in the antecedent
of some sequent also contains F’ in the antecedent of some sequent (by
(O:left) reduction). Hence, by the induction hypothesis, Kg/(F') = T for
all B > B and therefore Kp(F) = T.

(b) F occurs in the consequent of a sequent in a reduction branch B in the
next-time sequence N:
By definition of (O:right) reduction , which is binary, there is a sequent in B
which either contains (in the consequent) F’ or OO F". In the former case we
have immediately, by the induction hypothesis, that Kp(F’) = L and hence
Kp(F) = L. Otherwise, observe that the successor of B contains OF" in the
consequent. We have two cases: (i) either all reduction branches > B in N
contain OOF’ or (ii) some branch B’ contains F” in the consequent of some
sequent. The former holds if at every (O:right) reduction of F in N the right
premise lies on the reduction branch, the latter if in some reduction the left
premise does. Case (ii) is handled as above. For case (i), observe that OF’
occurs (in the consequent of) every successor sequent of branches B’ > B
in N. Thus, by definition of the O-extract O/Ty — OApn of N, OF’ belongs
to OAx. Then there is some right reduct of N of the form Oy — F’. By
Lemma 4.14 this right reduct 1s unprovable and thus is the initial sequent of
the first reduction branch B’ of some successor node N’ of N in G(S). By
the induction hypothesis, Kp/(F') = L. Since B < B’ the semantics of O
gives us Kp(OF') = L.

This concludes the proof of (x) and we have shown that K falsifies S. a

Remark 4.17. If the original sequents may be infinite, in particular, of unbounded
logical complexity, then we no longer have a well-founded ordering on the sequents.
On the other hand, the reduction steps which yield infinite sequents in the proof
keep the logical complexity of formulas occurring in the sequents bounded. Hence,
if the starting sequent is of bounded logical complexity (in particular, if it is finite),
we have a well-founded order. Otherwise, the induction proof is problematic.

5 TL versus TB

It should be interesting to compare the two logics TL and TB. A comparison
from the viewpoint of expressibility would clarify the possible application of TB
in a program specification and verification environment. Such an analysis, however,
would go beyond the scope of the present article. An analysis from a logical point
of view can be given more easily. Here the comparison centers around the induction
rule in propositional TL (see [7]),

A—-B A—-0A . q
108 n

and the weaker necessitation rule of TB.

Proposition 5.1. (1) The propositional fragment of TB is decidable.

(2) The fragment of TB without O is equal to S4.

(3) The monadic fragments of TL and TB are undecidable.

(4) The fragment of TB without O is aziomatizable by LK plus (nez).

(5) The fragment of TB without O is equal to the fragment of TL without O.
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Proof. (1) sub™(I' — A) is finite. (2) LB without O collapses to the sequent
calculus for 84 given in [4]. (3) Follows from the undecidability of monadic modal
predicate logic; see below. (4) A cut-free proof can contain (O:left), (O:right), or
(nec) only if O occurs in the end-sequent. (5) By (4), a proof has to be found before
jumping over the first gap iff one exists. O

In contrast to (3) above, the monadic fragment of TB without O (and hence,
by (5), the fragment of TL without O) is decidable:

Proposition 5.2. It is decidable if a monadic temporal formula containing no O’s
15 satisfiable.

Proof. Note that O distributes over all propositional connectives. Hence, any
formula F' containing no O’s is equivalent to a formula of the form \/j K; where

Kj=N\ELANA]

k l
E] = O™ (@r) \ 0¥ Li s(x)
] = 0" (¥2) \/ O™ Ly (x)

where L; ; 18 a negated or unnegated atomic formula. I’ is satisfiable iff K is sat-
isfiable for some j. Consider the set I'(K) = I't (K) U I's(K) with

Fl(]{) = {/\ Oek-l—e”kLiyk(tk) | k‘}

IxK):{VWW”””LNUHILk&kSaﬁ

where t; are constant symbols, and OvLiyk(tl) is considered as a propositional literal
LY, ;0 K is satisfiable iff I'(K) is satisfiable in classical propositional logic. O

So already the monadic fragments containing O but not O are undecidable.
It is worth to recapitulate the construction of the proof of Kripke [6]: A binary
predicate P(x,y) can be encoded in monadic temporal logic as P'(x,y) = O(Pr(x)A
P5(y)). Let I be a formula in the language of predicate logic, and F’ be obtained
from it by replacing n-ary predicates P(x1,...,25) by O(Pi(z1)A. . .APy(2)). If F
is valid, then F’ is too, it being a substitution instance of F'. If F' is not valid, then
we construct a temporal countermodel for F’: Let M be a (first-order) structure in
which F is not satisfied. By the Lowenheim-Skolem Theorem, we can assume M to
be countable. We can enumerate all n-tuples of elements of the domain M using a
function e. Let 7' be w, and S;(F;) = {a} iff a is the i-th component of the j-th
(in e) n-tuple of M. So O(Pr(ai)A.. . APy(ay))istruein {w,{D; = M }icw, {Siticw)
iff M P(ay, ..., an).

As remarked above, the undecidability of the monadic fragments of TL and TB
follows from the undecidability of dyadic predicate logic and the above construc-
tion. We have two immediate consequences: First, the monadic fragment of TL
(with O) is not even aziomatizable, since we can replace the function symbols 0,
. 4, - by (a unary, a binary, and two ternary) predicate symbols. These predicate
symbols can in turn be replaced by temporal constructions of the kind used above;
so non-axiomatizability follows from the non-axiomatizability of the full logic (see
Section 2). A second interesting consequence is that already the fragment with only
one monadic predicate symbol (but including O) is undecidable: With some adjust-
ment to the construction of the countermodel in the proof above, a binary predicate
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can also be encoded by O(P(z) A OP(y)). We do not know, however, whether the
corresponding fragment of TL is still not axiomatizable.

Even without a deep analysis it is obvious that propositional TL is decidable by
embedding it into the the monadic second order logic of one successor of Biichi [3].
(A decision method based on a similar reduction method as the one used here for TB
can be found in [2].) For the same reason, the quantified propositional variant of TL
is decidable. We do not know whether quantified propositional TB is decidable. Note
that even though propositional TB — O equals S84, the propositionally quantified
logics differ. Hence, the result of Kremer [5, TII.1], i.e., that propositional S4 is
recursively isomorphic to second-order logic, is of no help here. We conjecture,
however, that quantified propositional TB is not axiomatizable as well. In summary,
we have the following situation:

TL TB
propositional decidable decidable
monadic w/o O equal and decidable
monadic not axiomatizable undecidable
quantified propositional decidable not axiomatizable?
full first-order not axiomatizable axiomatizable

6 Resolution for TB

A practical consequence of the cui-free completeness of LB is the ability to construct
a resolution calculus. The exact relationship between cut-free proofs in sequent
calculus and resolution proofs has been investigated at length by Mints [10, 11]. This
relationship is also the starting point for very fruitful investigations into resolution
systems and strategies for other non-classical logics, e.g., linear logic (see [15]).

The resolution procedure for TB works as follows: The formula F' to be proved
(=F to be refuted) is translated to clause form via translation rules based on the
calculus LB. The translation is structure preserving, and the literals have the form
(")[Al(ay, ..., an), where A is the sub-semi-formula corresponding to this literal,
and ay, ..., a, are free variables or constant symbols. A clause 1s an expression of
the form C', where C' is a set of literals. A clause may carry a variable restriction,
denoted C'*, meaning that a resolution involving C' is only allowed if a does not
occur in the resulting clause and if @ is not substituted into. The rules are the
resolution and factoring rules, plus two rules corresponding to the (nec) and (nex)
rules. By Lemma 2.5 and replacement of free variables with constant symbols, we
can assume that F' is closed and does not start with O or O.

Definition 6.1. Let F' be a semi-formula, and let «q, ..., a, be all the constant
symbols and bound variables without matching quantifier in order of occurrence.
Then the code of F is defined as [F](«ay0,. .., an0), where [F] is an n-ary predicate
symbol, and ¢ is a canonical renaming, mapping «;, ..., a, to new free variables.

The aziom set Az(F') is defined as the smallest set satisfying the following: Let
P(ag,...,an) and P(f1, ..., Bn) be two atomic sub-semi-formulas of F' with the

same predicate symbol. Then
the clause {=[P(@)](71,--,7n), [P(A] (71, .-, 7m)} € Az(F), where v; = a;00,
with o the renaming as above and ¥ a most general unifier of (ay0,..., ay0) and
(Bro, ..., Bno).

The clause translation CI(F') is the following set of clauses: CI(F') = | {Cr(A4) |
A € sub(F)} U Az(F) U {{=[F](ai0,...,a,0}}, where Cr(A) is given by the
following table:
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A occurrence Cr(A)
-B pos [{IB]. [-B1}}

-B neg {{-[B],-[-BI]}}
BAC pos {{-[B],-[C].[BACT}}
BAC neg {{[B],-[B A CT}.{IC],-[B A CT}}
BvC pos {{-[B],[B Vv Cl} {-IC].[BVCI}}
BvC neg {{IB1.[C],~[B Vv CT}}
B> C pos {{[B1.,[B > C1}.{-IC].[B > C1}}
B> C neg {{-[B].IC],~[B > C1}}
(Va)B pos {{-[B(®)](a), [(Vz)B(x)]}*}
(Va)B neg {{[B(x)](a), =[(V2)B(x)]} }
(3z)B pos {{-[Bl(a), [(3z)B()]}}
(3z)B neg {{[Bl(a), =[(3z)B(x)]}*)}
w3 pos {{-[B],-[©0B],[0B]}}
aB neg {{[B],-[oB]}, {{[°oB],-[OB]}}

Here, a stands for oz in the code for A(z), o is the same for all literals in a clause
in Cr(A), and positive and negative occurrences are defined as usual.

Note that there are no translation rules for formulas with outermost symbol O,
just as there are no introduction rules (without restrictions) for © in LB. This is
clear, since there is no relation between A and OA which depends only on A.

Definition 6.2. The degree deg(A) of a semi-formula A is the number of occur-
rences of logical symbols except O and O in A. The degree of a clause is

_J oo iftC=90
deg(C) = {max{deg(A) | [A] € C or =[A] € C} otherwise

Note that max{deg(A) | A € (sub(F)\ {F})} < deg(F), since F is assumed to be
prefix-free (see the comments above).
The resolution calculus for TB consists of the the following rules:

CU{[Al(a1,...,an), [A](b1,...,bn)}
CoU{[Al(a1,...,an)0}

CU{-[Al(a1, ..., an)} C"U{[A](b1,...,bn)}
(C’ \ {-[Al(aq, ..., an)})a U (C” \ {TA] (b1, .. .,bn)})a
where ¢ is the most general unifier of (ay,...,a,) and (b, ..., b,) and it is assumed
that the resolved clauses are variable disjoint (i.e., by renaming variables). The
resolution rule is subject to the following restrictions:
(1) deg(C'UC”) > min(deg(C U {=[A]}), deg(C” U{[AI}))

(2) if one of the two resolved clauses is restricted on the variable a, then o(a) = a

and a does not occur in (C'\ {=[A](a1,...,a,)})o U (C'\ {[A](b1,...,bn)})c

fact

res

(=[], -~ (B - 1B
{(-[0A],...,~[OA], [OBi], ..., [OB: ]}

{=[OA4],...,~[OA],[B]}
{=[044],...,—~[04,],[OB]}

The application of the rules (nex,) and (nec,) is restricted so that the resulting
literals are still within sub(F"). The calculus, therefore, depends on F'; we actually
are giving a construction schema for resolution calculi for each F.

The following should be noted about the variable restriction:

r
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Proposition 6.3. In any resolution inference,

(a) there is never a restriction on more than one variable in any one clause, and
(b) at most one of the two premises carries a restriction.

Proof.  (a) Resolution removes all restricted variables (condition (2) above) from
the resolvent, and the property holds of all input clauses.

(b) First of all, restricted clauses are input clauses in CI(F') corresponding to
positive occurrences of V or negative occurrences of 3 (or are derived from them
by applications of (nex, ), but not using other rules; cf. (a)). A resolution inference
with two premises which both carry restrictions would be (up to leading O’s) of the
form

CIA@) e, b,0), [(Yo) A {TAGDIE, o, &), ~[B2) AT
{[(Va)A(x)]o, ~[(32") A(z")]o }

Other constellations are ruled out by the degree restriction on resolution. Since
neither a nor a’ may be substituted into by the unifier o, they cannot stand opposite
each other. Instead, they must unify with two other variables b’ and b, respectively,
ie,, o(b') = a and o(b) = &'. But then the restricted variables would occur in the
resulting clause, violating condition (2) of resolution. O

(]

Example 6.4. Consider the formula OO(Vz)A(z) D (Vo)OOA(z). The sub-semi-
formulas are:

S1 = A(w) Sa = OA(x)

S5 = OO0 A(x) Sy = 00 A(x)

S; = (V)OO A(x) S = (Va)A(x)

S7 = 000(Yz)A(x) Ss = O(Vz)A(x)

Sy = 00(Va)A(z) Sio=00(Ve)A(z) D (Ve)OOA(x)

A resolution proof is given by:

{=[56],[S:](a)} nex
{[Ss], =[5:1r  {-[5s], [S21(a)} res
{=[Ss], [521(a)} nec
{=[5s], [S4](a)} T {A[841(0), [551}" ros
{=[5s], [S101} {=[S-1, [S:1} res
{=[5s],[S10]} {[5s], [S10]} ros
{[S10]} {=[510]} ros
[}

T

Example 6.5. By contrast, consider the formula F' = P(f) D (Y&)P(z), which is
not valid. Without the eigenvariable condition, we would have the following deriva-
tion of the empty clause:

{[P@I®), ~LPEI®)} APEIO)LIFI®) |
{2LP@)1(@), [(V2) P} {[P(=)I(8), [F1()}
{[(ve)P()] IFI0)) (=l P@LIFI@}
i 0[] rF1ey
0

For the resolution step (res*) to work, either o(a) = b, or (b) = a. The former
case 1s expressly forbidden, in the latter case the restricted variable would appear
in the resulting clause.

Theorem 6.6. The resolution calculus for TB is sound: If 0 is derivable from
CI(F), then E F.
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Proof.  We show how a resolution derivation p not using the goal clause {=[F]}
can be translated to an LB-derivation. Associate to each clause C' in p the
substitution A¢ = o6, where o is the original renaming of the bound vari-
ables and constants in subsemiformulas of F' whose code occurs in C'| and 6 is
the cumulative substitution of the subderivation in p ending in C. In effect, if
[A(z)](a) is a literal in C', then A(x)Ac is the formula A(a). If p ends in a clause
C: {~[Ai](ar), ..., =~[An](@n), [Bi](b1), - - ., [Bm](bm)} we obtain an LB-proof of
Sc:AlAe, ..., ALAc — BiAc,...,Bl,Ac. If C carries a variable restriction, the
restricted variable is bound by a weak quantifier in S¢. We argue by induction on
the length of p:

h = 1. p consists of a clause C' from CI(F) \ {-[F]} only: If C' € Az(F), say,
C = {-[P(a&)](a), [P(3)](a)}, the sequent P(a) — P(a) is the corresponding axiom.
If C'= Cp(A), where A € sub(F'), then we construct an LB-proof of S¢. We present
here only some cases:

(1) C = {{~[A],~[B],[A A B]}}. The corresponding proof is:

A—A B—B
A B—AAB

Acright

(2) C = {{~[A(2)](a), [(Vz)A(x)]}*}. The corresponding proof is:
(V) A(z) — (Va) A(z)
(3) C = {{[A()](a), ~[(Yz)A(2)]}}. The corresponding proof is:

Ala) — A(a)
(Va)A(z) — A(a)

V:left

(4) ¢ ={{[C0A4],-[0A]}. The corresponding proof is:

Oo04 — O0OA

D.
04— ooA Jeft

h > 1: We distinguish cases according to the last inference in p. Let N denote
the negative and P the positive set of literals in a clause, and I'y and Ap its
translations, respectively.

(1) The last inference in p is a resolution where the premises do not carry a variable
restriction:

C:~-NUPU{[A](@)} C":=~N'U P U{-[A](b)}
-NoU-N'cUPoU Plo

res

By induction hypothesis, we have LB-proofs m, 7’ of Iy — Ap, AXc(a) and

AXer(b), Ty — Ap:. The unifier ¢ does not substitute into eigenvariables of ©
or 7'. We obtain a proof:

To o
IIno — Apo, A(a)o A(I;)U, o — Apio
HNO', HNIO' —>/1PO',/1NIO'

cut

2 The last inference iIl iS a resolution Where one remise contains the restricted
p p
variable a:

SN UPU{[A](a)}* —-N"UP U{-[A](b)}
-NoU-N'ocUPoUPoc

res

By Proposition 6.3, a resolution involving restricted variables can only take this
form. By induction hypothesis, we have LB-proofs 7, 7’ of Iy — Ap, A(a)
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and (Vz)A(z), In+ — Aps. The unifier o does not substitute into restricted
variables (i.e., eigenvariables of , 7'). Since a is restricted, we have o(a) = a
and o(b) = a, so b cannot occur in the resulting clause. Hence, it satisfies the
eigenvariable condition. We obtain a proof:

To
IIno — Apo, A(b)o ) c o
V:right :
IIno — Apo, (Y2)A(z)o (Ve)A(z), Ino — Apio
HNO', HNIO' — APO', APIO'

cut

(3) The last inference in p is (fact):

~NU P U{()[A](a), ()[AT()}
~NoUNo U {(=)[A](a)c}

fact

By induction hypothesis, we have a proof 7 of IIy — Ap, A(a), A(b) (or

A(a), A(b), IIn — Ap). Since there are no restrictions on variables, we can

rename b via o(b;) = a; in . With contraction, we obtain a proof of IInyo —
Apo, A(a) (or A(a), Iyoc — Ano).

(4) The last inference in p is (nec, ). Add a (nec)-inference to the LB-proof.

(5) The last inference in p is (nex,). Add a (nex)-inference to the LB-proof. O

If there were a resolution proof of §) which does not use the goal clause {=[F]}, then
we could translate that into an LB-proof of the empty sequent —. Such a proof, of
course, is impossible. Hence, any resolution derivation of () must use the goal clause
{=[F]}. By the degree restriction, the last inference in such a derivation must be
a resolution between {[F]} and {—[F]}. A resolution derivation of {[F]} can, as
above, be translated into an LB-proof of — F'.

Remark 6.7. Observe that the degree restriction on the resolution rule is necessary
for soundness. Otherwise, e.g., P D OP would have the following proof:

(-IPoOPY) {IPLIP2OPY
P (-IP>OPY (AOPLIPDOPY
{=P]) BRI
0

In fact, a formula —=F has a refutation without degree restriction iff = OF, but
E OF is not equivalent to |= F' (in contrast to O and O; cf. Lemma 2.5).

Theorem 6.8. The resolution calculus for TB is complete: If |= F, then 0 is deriv-
able from CI(F).

Proof. We give, for each LB-proof 7 of a sequent — F', a resolution proof of (§
from CI(F"). By Theorem 4.1, we can assume that 7 is cut-free, analytic, that its
axioms are atomic, and by Proposition 3.5 that it contains no weakenings. Let
II — A be a sequent in 7. As can easily be seen, a formula A occurs positively
(negatively) in IT — A iff it occurs positively (negatively) in F'. Furthermore, every
formula A in 7 corresponds to exactly one sub-semi-formula A’ of F', which can be
determined by tracing the formula A downwards through . We translate = to a
resolution proof p of {[F]} by induction on its subproofs #': If 7’ ends in IT — A,
then p’ ends in ~ Ny U Py, where the semi-formulas whose codes occur in IT' U A’
are those sub-semi-formulas of F' corresponding to the formulas in I7 — A. There
is no variable restriction on the last clause in p’. We present here some cases:
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(1) ' is an axiom:
Translate P(a) — P(a) to a clause {=[P(a)](a), [P(3)](a)}, where P(a) (P(8))
is the sub-semi-formula of F' corresponding to the left (right) P(a). (This clause
isin Az(F).)

(2) 7' ends in a contraction on a formula A:
By induction hypothesis, we have a resolution proof of —-Np U P4 U
{[A"](@), [A'](b)} without restriction of variables. (A’ is the sub-semi-formula
of I corresponding to A.) Apply (fact).

(3) 7 ends in (A:right):
By induction hypothesis, we have resolution proofs ending in =Ny U P, U{[A']}
and =N U Py U {[B]}. The clause {=[A’], -~[B], [A’ A B']} is in CI(F). We

obtain a resolution proof:

{=[A], -[B'].[A"A B']} —~Ngu P/:1 U{[AT} :
ﬁNHUPAU{[[A//\B/]],—'[[B/]]} ﬁNH/UPA/U{[[B/]]}
=N U=Np UPAUPA/U{[[A//\B/]]}

(4) 7 ends in (V:left):
By induction hypothesis, we have a resolution proof ending in {=[A'(z)](a)} U
- N U Pa}. The clause {[A(2)](b), -[(¥V=)A'(x)]} is in CI(F'). We obtain a

resolution proof:

A @)@} U N, Pa {[A(2)](6), 2 [(Fa) A" ()]}
{=l(va)A"(2)]} U =N U Py

(5) 7 ends in (V:right):
By induction hypothesis, we have a resolution proof of =17 U AU {[A(x)](a)}}.
The clause {=[A(z)](b), [(Vz)A(2)]}® is in CI(F). We obtain the resolution
proof:

N U Py U:{[[A(l‘)]](a)} {-[A@)0), [(Yr) A=)}
— N U Py U{[(Vo) A(2)]}

Note that the conditions on & in the right premise are met, since a satisfies the
eigenvariable condition.

(6) 7' ends in (DO:left):
By induction hypothesis, we have a resolution proof of {=[A],-[COA]} U
- N UPy4. The clauses {[A'], 7[DA']} and {[OTA'], -[OA]} are in CI(F'). We

obtain a resolution proof:

{41, ﬁ[[ODA:']]} U-Ng U Py {[A], -[BAT}
{-[©0AT, ~[OAT}U-Ng U Py {[c0A’], -[BA]}
{ﬁ[[DA/]]} U-NgU Py

(7) 7' ends in (nex):

Append a (nex, )inference to the resolution proof to obtain p’.
(8) 7 ends in (nec):
Append a (nec,) inference to the resolution proof to obtain p'.
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Note that in the translation to resolution, the restriction on the rules are all satisfied.
The unifiers can be chosen so that only the variables in the clauses from CI(F') are
substituted into. Given a proof # of — F' we thus have a resolution proof p of {[F]}
from clauses in CI(F). By resolving with {=[F]} € CI(F), we obtain §. O

The translation above shows actually that a refinement of resolution is complete,
namely where every resolution step has to involve at least one input clause, i.e., a
clause form CI(F"). The resolution method developed here differs significantly from
the resolution method of Robinson developed for classical clause logic, hence the
fact that “input resolution” is complete is not a contradiction to the well-known
fact that input resolution in the classical case is not complete.

7 Conclusion

We have seen how the passage from a non-axiomatizable temporal semantics to
an axiomatizable one is paralleled by an extension of the completeness proof of
the propositional logic. The point where the proof fails for TL is where a true
formula starting with O is reduced, even infinitely often, but no derivation can be
obtained. The extension of the semantics 18 prompted by this phenomenon, and
makes a complete reduction of the formula possible. The reduction discussed here 1s
very similar to Kroger’s completeness proof for propositional TL. This prompts the
question of how to extend similar propositional completeness proofs to the first-order
case by avoiding non-axiomatizability of the standard semantics by extension of the
semantics itself. A candidate for such investigations would be, e.g., infinite-valued
Lukasiewicz logic. It also prompts the question for a characterization of classes of
formulas, where a sequent calculus is complete for the original semantics, say, as
those formulas where the reduction works.

It is quite natural to ask, whether the predicate logic of linear time with gaps
(the structures being sequences of w-segments) is axiomatizable or not; let us call
this logic TLG. Indeed even the pure O-part of TLG is not axiomatizable. This
result can be obtained by reducing the problem to the nonaxiomatizability of the
infinite-valued Godel logic with truth values from the set {1|n € N — {0}} U {0}.
However the proof of this result is quite involved, placing it outside the scope of
this paper. It will be presented elsewhere.

Another problem which has not been addressed in depth so far is the corre-
spondence between temporal logics discussed here, and number theory. The proof
of non-axiomatizability of TL by reduction to arithmetic, and the “induction” rule
of propositional TL suggest that there is a close relation. This suggestion is sup-
ported by our result: the semantics of TB 1s a “non-standard” semantics, similar
to non-standard models of arithmetic. Viewed this way, it is not as surprising that
TB would have a complete axiomatization.
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