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Abstract� The �rst�order temporal logics with � and � of time structures
isomorphic to � �discrete linear time� and trees of ��segments �linear time
with branching gaps� and some of its fragments are compared� The �rst is
not recursively axiomatizable� For the second� a cut�free complete sequent
calculus is given� and from this� a resolution system is derived by the method
of Maslov�

� Introduction

In recent years� various temporal logics have been studied and applied to the de�
scription and analysis of dynamic properties of programs ���� The investigations
have focussed on discrete� linearly ordered� well�founded temporal structures be�
cause temporal states can then be identi�ed with program states� It turns out that
the �rst�order logics corresponding to this semantics are not recursively axiomati�
zable if � 	henceforth always
 and � 	nexttime
 are present in the language� It is
possible to characterize the set of natural numbers by ���U 	x
� where U 	x
 holds
for exactly one domain element at each state and is determined by a recursion in
� 	see ���
� This incompleteness result is based on a standard model of linear time

if similarity types are allowed � one can obtain completeness results for �rst order
temporal logic relative to classes of models of linear time 	see ���
� With a change
in the semantics 	branching time gaps
� however� a complete �rst�order logic can
be obtained
 this is the subject of the present paper� Our proof of completeness
can be carried over to several types of future�oriented temporal operators 	see ���


there may be problems however if future� and past�oriented operators are present
simultaneously�

For simplicity� we consider here only languages with � and � as the only tem�
poral operators� and constants as the only function symbols� We compare the logic
of discrete linear time TL to the logic of discrete linear time with branching time
gaps TB� In both logics� the semantics of the temporal operators are as usual� a
formula �A is true at a time point t� i� A is true at every time point � t
 a formula
�A is true at t� i� A is true at t � �� The di�erence lies in the admitted time
structures� for TL� this is the class of structures order isomorphic to �� We call
such a structure an ��segment� In such a segment� there is always an earliest point�
for every point there is a unique next point� and every point can be reached from
the earliest point by passing �nitely often to the next point� For TB� the admitted
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structures are isomorphic to 	possibly in�nitary
 well�founded trees of ��segments�
There is always a unique earliest next point in time� but also points �after the gap�
	which cannot be reached by successively passing on to the next point
 which are
initial states in the next ��segments themselves� etc�

We give a sequent calculus for TB� which is shown to be cut�free complete by an
extension of Sch�utte�s reduction tree method� The rules of the calculus constructed
are not analytic in the sense that the formulas in the premises are not proper sub�
formulas of the conclusion� Therefore� cut�free proofs in general lack the subformula
property� a property essential for usual methods of proof search� The completeness
proof shows� however� that we can salvage a large part of analyticity� enough to
be able to construct a resolution system for the logic� Every valid sequent has a
cut�free proof which uses only formulas A and �A� where A is a subformula of the
end�sequent� Exploiting this property� we construct a complete resolution method
for TB using the method of Maslov ��� ����

In a sense then� the investigations of TB can also be seen as a case study in
	a
 how far the completeness proof of Sch�utte can be carried� and 	b
 how to over�
come mild forms of non�analyticity� It also sheds some light on necessary conditions
for the resolution calculus to be sound 	completeness is not problematic
�

The paper is organized as follows� In Section �� the semantical structures un�
derlying the logics TL and TB are introduced� and a proof of non�axiomatizability
of TL is sketched� In Section � we present the sequent calculus LB for TB� The
completeness proof for LB is presented in Section �� Section � contains some re�
marks comparing 	fragments of
 TL and TB� The resolution system for TB is
developed in Section �� Finally� we conclude with a discussion of the signi�cance of
the completeness result for future applications�

� First�order Temporal Logics

We consider the following �rst�order language� free variables� a� b� c� a�� � � � 
 bound
variables� x� y� z� x�� � � � 
 constant symbols� f � g� h� f�� � � � 
 predicate symbols of
arbitrary arity� P � Q� R� P�� � � � 
 propositional connectives� �� �� �� �
 quanti�ers�
�� �
 and the temporal operators� � 	always
� � 	next time
� Formulas are built up
from the symbols as usual� The sometime operator � is introduced by de�nition�
�A � ���A� If A � 	� 
 
 
 	n B� where 	i is either � or �� then 	� 
 
 
 	n is called
the temporal pre�x of A� The semantics of a �rst�order temporal logic is de�ned as
follows�

De�nition ���� Let T be a denumerable partially ordered set� T belongs to the
class L of linear discrete orders i� it is order isomorphic to �
 it belongs to the
class B of linear discrete orders with branching gaps i� it is order isomorphic to a
well�founded tree of ��segments�

De�nition ���� Let T be L or B� and let Frm	L
 be the set of formulas
over some �rst�order temporal language L� A structure K for L is a tuple
hT� fDigi�T � fSigi�T i� where T � T � Di is a set called the domain at state i�
Di � Dj if i 
 j� Si is a function mapping free variables and constant symbols
to elements of Di� and n�ary predicate symbols to functions from Dn

i to f���g�
We de�ne the valuation functions Ki from Frm	L
 to f���g as follows� Let A

be a temporal formula� and not� and� or� impl be the truth functions for negation�
conjunction� disjunction� and implication� respectively�

	�
 A � P 	t�� � � � � tn
� Ki	A
 � Si	P 

�
Si	t�
� � � � �Si	tn


�
	�
 A � �B� Ki	A
 � not	Ki	B


	�
 A � B �C� Ki	A
 � and	Ki	B
�Ki	C



�



	�
 A � B �C� Ki	A
 � or	Ki	B
�Ki	C


	�
 A � B � C� Ki	A
 � impl	Ki	B
�Ki	C


	�
 A � 	�x
B	x
� Ki	A
 � � if Ki�d�x�	A	d

 � � for every d � Di� and � �

otherwise
	�
 A � 	�x
B	x
� Ki	A
 � � if Ki�d�x�	A	d

 � � for some d � Di and � �

otherwise
	�
 A � �B� Ki	A
 � � if Kj	B
 � � for every j � i and � � otherwise
	�
 A � �B� Ki	A
 � � if Ki��	B
 � � and � � otherwise

A formulaA is satis�ed in a temporal structure K�K j� A� i�K�	A
 � ��A is valid
in a class of temporal structures T � T j� A� i� every K � hT� fDigi�T � fSigi�T i
with T � T satis�es A�

De�nition ���� The logic of linear discrete time TL is the set of all formulas
A � Frm	L
 s�t� L j� A� The logic of linear discrete time with branching gaps TB
is the set of all formulas A � Frm	L
 s�t� B j� A�

Example ���� In TL� the formula ��A � ��A is valid� In TB� however�
only ��A � ��A holds� The other direction ��A � ��A does not hold in
general� as can be seen by evaluating the formula on the countermodel K �
h� � �� fDigi����� fSigi����i� where S�	A
 � � and Si	A
 � � for i � �� i � ��

The semantics considered here is usually called initial semantics� Normal se�
mantics is de�ned via truth in all states� not only in K�� We will need the following
lemma later on�

Lemma ���� Let A be a formula�

��� j� A i� A is true in every world in every temporal structure�
��� j� A i� j� �A
�	� j� A i� j� �A

Proof� 	�
 If� trivial� Only if� Let T be a temporal structure in which A is not
true at a state i� Consider T � � fj � T j j � ig� T � is also a temporal structure�
and� since our logics contain no operators acting backwards in time� A is true at
state i in T � if it was true in state i in T � But i is the initial state in T ��

	�
 If� by the truth de�nition of �� Only if� immediate by 	�

	�
 If� Let T be a structure where A is false in the initial world� Consider

T � � T � �� with �� � �� and S�� � S�� The addition of a state before the initial
state does not change the truth of formulas in T � But in T �� �A is false in the initial
world� Only if� immediate by 	�
� �

Remark ��
� The logics we consider di�er from the ones in the literature in that we
do not use global and local variables� but the interpretation of predicate symbols can
vary over the states� This is more in keeping with the tradition in quanti�cational
modal logics� However� by using the Barcan formulas for � and �� de�nable two�
sortedness and other expressible concepts� most e�ects of global and local variables
can be simulated� Another minor di�erence is in the de�nition of �� Kr�oger�s �
is de�ned via truth in all later worlds
 in Kr�oger�s logic� our � can be de�ned by
�A �A� his � can be expressed by ��A in TL�

As indicated in the introduction� the logic TL is not axiomatizable� This was
shown for the original formulation of Kr�oger by Szalas ���� and Kr�oger ���� Two bi�
nary function symbols have to be present for the results to hold� If the operator until
is also present� or if quanti�cation over local variables is allowed� then the empty
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signature su�ces� as was shown by Szalas and Holenderski ���� and Kr�oger ���� re�
spectively�

Following Szalas ���� and Kr�oger ��� we sketch a proof for the incompleteness re�
sult for TL with equality� where the signature contains two binary function symbols
	equivalently� two ternary predicate symbols
�

Let � designate the successor function� and the constant � the number zero�
Consider the formula axiomatizing the predicate U �

U 	�
 ��	�x

�
U 	x
 � 	�y


�
y � x� ��U 	y


��
��	�x
	�y


�
U 	x
 � U 	y
 � x � y

�
�

In every model� �U 	x
 represents exactly the set of natural numbers� If the lan�
guage is expressive enough� we can write down the usual axioms for addition and
multiplication 	e�g�� Robinson�s Q
� A sentence of arithmetic is true in the natu�
ral numbers i� its relativization to �U 	x
 follows in TL from these axioms� The
non�axiomatizability of TL thus follows from G�odel�s Incompleteness Theorems�

� A Sequent Calculus for TB

In the standard de�nition a sequent is an expression of the form

A�� � � � � Ak � B�� � � � � B�

where the Ai and Bj are �rst�order formulas� For the purpose of completeness proofs
it is more convenient to use instead in�nite sequents 	see� e�g�� Takeuti�s book ����
Ch� ����
� More precisely� the completeness theorem requires a generalization of
�nite sequences of formulas to countably in�nite well�ordered sequences� We will
use this more general notion of sequents and indicate the use of �nite sequents
explicitly�

Let � be a countable 	possibly �nite
 well�ordered sequence� If � is order iso�
morphic to the well�ordered set of numbers 	 via a mapping 
 s�t� 
	i
 � Ai for
i � 	 then we write � � 	Ai
i���

De�nition ���� A sequent is an expression of the form � � �� where � and � are
countable well�ordered sequences of �rst�order temporal formulas�

De�nition ���� The sequence 	Ai
i�� is called a subsequence of 	Ai
i�� if 	 � �
and there exists an order�preserving ��� mapping 
�	 � �� If the sequences are
�nite and � � f�� � � � � ng then 	 is of the form fi�� � � � � ikg � f�� � � � � ng� A sequent
� � � �� is called a subsequent of � � � if � � and �� are subsequences of � and
�� respectively�

De�nition ���� Let 	Si
i�� be a sequence of sequents s�t� Si � �i � �i for i � ��
Then the sequent S � 	�i
i�� � 	�i
i�� is called the union sequent of 	Si
i��

Note that the order type of 	�i
i�� is characterized by the property� if i � j and
	i� 	j are the well�ordered sets of numbers corresponding to �i and �j respectively
then all elements of 	i are smaller than all elements of 	j�

The validity of �nite sequents is de�ned as usual� A�� � � � � Ak � B�� � � � � Bk is
valid in TL 	TB
 i� 	A� � � � ��Ak
 � 	B� � � � ��Bl
 is valid in TL 	TB
� A �nite
sequent is provable if it has a derivation in a suitable calculus�

The concepts of provability 	de�ned for �nite sequents originally
 can be ex�
tended to the in�nite case via the usual compactness condition�

De�nition ���� A 	not necessarily �nite�
 sequent S is called provable if there exists
a �nite subsequent of S which is provable�
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It is only a matter of convention that we use the term �provable� for in�nite
sequents� as LB works only on �nite sequents� This convention is� however� of es�
sential advantage in completeness proofs� In our completeness proof we do not need
the semantics of in�nite sequents
 particularly we do not speak about 	semantic

compactness 	i�e� about the property that an in�nite sequent is valid i� there exists
a �nite subsequent which is valid
�

As basis for the sequent calculus LB for TB we take a variant of Gentzen�s
calculus LK for classical predicate logic� The rules of LK are well�known and can
be found in� e�g�� ����� We use a weakening friendly formulation of the rules� The
side formulas in the premises of the rules 	��right
� 	��left
� and 	��left
 are not
required to be identical� e�g��

� � ��A � � � ��� B

�� � �� ����� A �B instead of

� � ��A � � ��B

� � ��A �B

LB consists of the rules of LK plus the following rules for � and ��

A���A�� � �

�A�� � �
��left

� � ��A � �� �����A

�� � �� ������A
��right

� � �
�� � ��

nex �� � A
�� � �A

nec

Note that LB 	like LK
 is de�ned for �nite sequents only� If � is A�� � � � � An�
then �� denotes the sequence �A�� � � � ��An 	similarly for �� 
� The notations
�� and �� can be extended to in�nite sequents in a straightforward way 	e�g��
�	Ai
i�� � 	�Ai
i��
� Note that� unlike the rules of LK� the rules 	��left
 and
	��right
 are not analytic 	i�e�� the subformula property does not hold
� The rule
	nex
 works on the left and right sides of the sequent simultaneously 	but is ana�
lytic
 and 	nec
 is �context dependent�� It is clear that 	nec
 corresponds to the
necessitation rule common in Hilbert�style modal calculi� When using rules with
two auxiliary formulas in one premise 	i�e�� 	��right
 or 	��left

� the inference is
admitted even if only one formula is actually present 	implicit weakening
� Alter�
natively� we could have split the rule into two� in a similar way as the 	��right
 and
	��left
 rules� Otherwise the notion of proof is the standard one 	cf� ���� Ch��� x ��
�
In particular� recall that initial sequents are of the form A � A 	A any formula

and cut�free provable means having a proof not containing an application of the cut
rule� The sequent appearing at the root of the proof tree is called end�sequent�

Proposition ���� If a sequent is LB�provable� then a �non�empty� subsequent is
provable without weakenings�

Proof� This is easily seen by induction on the length of the proof� and is due to
the special formulation of the rules� �

Example ��	� We give an LB�proof of the formula ��A � ��A�

A� A
�A� A

��left

��A� �A
nex

A� A
�A� A

��left

��A� �A
nex

�A� �A
��left

�A� ��A
nec

��A� ���A
nex

��A���A� ��A
��right

��A� ��A
contr�left

� ��A � ��A
��right

�



Note that� on the right branch of the proof� we introduced �A twice on the left�
hand side of a sequent� This is necessary because of the way 	nex
 introduces � in
all formulas of the sequent�

Theorem ��
� LB is sound for TB� i�e�� every �nite LB�provable sequent is valid
in TB�

Proof� It is su�cient to prove the soundness of the LB�rules� The soundness of the
LK�part is proved as usual� The soundness of the rules ��left and ��right follows
from the �recursion� equivalence of �A and ��A � A in the TB�semantics� The
soundness of 	nex
 follows from Lemma ���	�
 and from the fact that � distributes
over the propositional connectives 	e�g�� �	A �B
 is equivalent to �A ��B
� The
soundness of 	nec
 follows from Lemma ���	�
� from the TB�equivalence of �A and
��A� from the distributivity of � over �� and from the fact that �	A � B
 implies
�A � �B� �

If we look closely at the rules of LB we notice that 	��left
 and 	��right
 are
not strictly analytical� Therefore it is convenient to extend the usual notion of
subformula� Note that we have disjoint sets of free and bound variables� A term
is de�ned as usual but subject to the restriction that it may only contain free
variables
 if also bound variables are allowed to occur we speak about semi�terms�
Similarly we distinguish between formulas and semi�formulas� The concept of strict
sub�semi�formula represents the intuitive notion of subformula� while the de�nition
of semi�formulas takes care about the nonanalytic behaviour of � and ��

De�nition ���� Let F be a formula� The set ssf	F 
 of strict sub�semi�formulas
of F is de�ned as ssf	F 
 � fFg ��	F 
� where

�	F 
 �

���
��
fFg if F is atomic
ssf	A
 if F � 	A for 	 � f�����g
ssf	A
 � ssf	B
 if F � A 	B for 	 � f�����g
ssf	A	x

 if F � 	Qx
A	x
 for Q � f�� �g

The set sub	F 
 of sub�semi�formulas of F is de�ned by

sub	F 
 � ssf	F 
 � f��A j �A � ssf	F 
g

By sub�	F 
 we denote the set of formulas obtained from sub	F 
 by replacing bound
variables without matching quanti�er in each member of sub	F 
 by free variables
or constant symbols 	i�e�� we obtain actual subformulas corresponding to the semi�
formulas
�

� Completeness of LB

The main result of this paper is the following theorem�

Theorem ���� LB is complete for TB
 Every �nite TB�valid sequent S has a cut�
free LB�proof from atomic axioms�

The proof requires some additional de�nitions and technical lemmata� In order
to emphasize the main lines of the argument we give a rough sketch of the proof in
advance�

The proof uses a variant of Sch�utte�s method of reduction trees as modi�ed
for intuitionistic logic with Kripke semantics by ���� Ch� �� x ��� It proceeds by
exhibiting a countermodel for any given unprovable sequent in the following way�
Let us assume that S�� � � is unprovable� We �rst generate a reduction tree

�



by reverse application of all the rules of LB except �nex� and �nec�� This tree
contains a branch B	S
 consisting of unprovable sequents only� We form the union
sequent of B	S
 and extract from it the subsequent ��B � ��B consisting of all
formulas of the form �A� By reverse application of 	nex
 we arrive at the sequent
�B � �B� which is unprovable as well� For this sequent� we repeat the construction
of a reduction tree� By iterating this procedure we obtain an in�nite sequence N of
reduction branches� all of them containing unprovable sequents only� Now we take
the union sequent of the sequence of all sequents contained in these branches� In
turn� we extract a subsequent ��N � ��N consisting of all formulas of the form
�A� but with the following restriction� �A is in ��N only if it occurs in in�nitely
many reduction branches of the sequence N � If ��N is the empty sequence we have
completed our construction and obtain a countermodel� otherwise we continue as
follows� By construction� ��N � ��N is unprovable� and so is any subsequent
of the form ��N � �A� for any formula �A occurring in ��N � We then repeat
the whole construction for all sequents ��N � A 	note that these are unprovable
too
� This gives us a possibly in�nite and possibly in�nitary tree of in�nite chains
of reduction branches containing unprovable sequents only� This tree is contained
in B and we obtain from it a countermodel for the original sequent S�� � ��

De�nition ���� The reduction tree R	S
 of a sequent S�� � � is an in�nite�
in�nitary tree 	i�e�� the nodes may be of in�nite degree
 s�t� the set of nodes is a set
of 	occurrences of
 sequents� R	S
 is de�ned in stages as follows�

Stage �� R� consists of S alone 	S is the root node of R	S

�
Stage k � �� Suppose that the reduction tree Rk has already been constructed�

In order to construct Rk�� we need some additional terminology� Let B be a branch
	i�e�� a maximal path starting from the root
 in Rk� We call B closed if it is �nite
and its end sequent � � � contains an atomic formula which is contained in both
� and �
 otherwise B is called open� The free variables occurring in the sequents
of a branch B are called the available variables of B
 if there are none� pick any free
variable and call it available� Note that our sequents may be in�nite and thus there
may be in�nitely many free variables even on a �nite branch� Since in the de�nition
of Rk�� there may be nodes of uncountable degree we need an uncountable supply
of free variables 	note that this poses no problem� as R	S
 is a semantic structure
and not an actual proof tree
� Constants occurring in S 	by construction no new
constants are generated
 are treated like available variables� The reduction applies
to any top sequent 	i�e�� leaf sequent
 of Rk� The method is a generalization of
the �rst�order case 	which applies to �� �� �� �� �� �
 by extending it to the
case of �� For the time being� we postpone treatment of �� Concerning formulas
with outermost logical symbols among �� �� �� �� �� � we proceed as in ����� We
present only some typical cases and omit most of the details� The principle is that
of decomposing formulas according to their outermost logical symbol� In order to
avoid reducing formulas more often than needed� we mark formulas as �treated�
once the reduction has been applied to them�

In the �rst step the root sequent contains only unmarked formulas� So let us
assume that S��� � � is a leaf node of a branch B in Rk�

	a�
 Outermost logical symbol � 	left reduction

Let 	Ai�Bi
i�� be the subsequence of � consisting of unmarked formulas with
outermost logical symbol �� Then we de�ne S��� 	Ai� Bi
i���� � � and add
the edge 	S�� S��
 to Rk� Mark the thus reduced formulas 	Ai �Bi
i�� in S���

	a�
 Outermost logical symbol � 	right reduction
�
Here let 	Ai � Bi
i�� be the subsequence of � consisting of all unmarked for�
mulas with outermost logical symbol �� Let �	S�
 � f� � �� 	Ci
i�� j Ci �
Ai or Ci � Big� For every S�� � �	S�
 add S�� and the edge 	S�� S��
 to Rk and

�



mark the formulas 	Ai �Bi
i�� therein� Note that the node S� has an uncount�
able degree in the new tree Rk�� if 	 is an in�nite ordinal�

We skip the de�nition for the other propositional connectives and refer the reader
to �����

	b�
 Outermost logical symbol � 	left reduction
�
Let

�
	�xi
Ai	xi


�
i��

be the subsequence of � consisting of all unmarked for�

mulas with outermost logical symbol �� Let 	ai
i�� be a sequence consisting
of all free variables on the branch B from S to S�� Note that all sequents are
countable and the length of B is �nite
 thus � is a countable ordinal again� We
de�ne S���

��
Ai	aj


�
j��

�
i��

�� � � and add S�� and the edge 	S�� S��
 to Rk�

	b�
 Outermost logical symbol � 	right reduction
�
Let

�
	�xi
Ai	xi


�
i��

be the subsequence of � consisting of all unmarked for�

mulas with outermost logical symbol �� Create a sequence 	bi
i�� of free
variables which do not occur in any sequent constructed so far� We de�ne
S���� � ��

�
Ai	bi


�
i��

and add S�� and the edge 	S�� S��
 to Rk� Mark the

formulas 	�xi
A	xi
 for i � 	 in the consequent of the new sequent S���

The construction for � is completely symmetric to the case of ��

	c�
 Outermost logical symbol � 	left reduction
�
Let 	�Ai
i�� be the subsequence of all formulas in � which are unmarked and
have � as outermost symbol� Let S��� 	Ai���Ai
i���� � � and add S�� and
the the edge 	S�� S��
 to Rk� Mark all formulas �Ai for i � 	 in � of S���
Note that� like in the other cases� the form of S�� is obtained by applying ��left
�backwards��

	c�
 Outermost logical symbol � 	right reduction
�
Let 	�Ai
i�� be the subsequence of all formulas in � which are unmarked and
have � as outermost logical symbol� Let �	S�
 � f� � �� 	Ci
i�� j Ci �
Ai or Ci � ��Aig and add S�� and the edge 	S�� S��
 to Rk for every S�� �
�	S�
� Note that� like in case 	a�
 above� the degree of the node S� in Rk�� is
uncountable provided 	 is in�nite� Finally� mark the formulas �Ai for i � 	 in
� of S���

As already indicated we do not introduce reduction rules for � here� Suppose none
of the reduction rules for �� �� ���� �� � or � apply and the branch B 	from S to S�

is open� Then we simply add a copy S�� of S

� and the edge 	S�� S��
 to Rk� 	Note that
we work with occurrences of sequents� not merely sequents� The reduction therefore
indeed produces a tree� and not a cyclic graph�


In order to guarantee that all formulas in the sequents are eventually processed�
we postulate a �clockwise� order in reducing �� �� �� �� �� �� �� If we take the
order as given� we reduce � �rst� then �� etc� After having reduced � on all sequents
we start with � again� Since reduced formulas in 	��right
 	and 	��left
 reductions
are not marked� these formulas can be reduced in�nitely often� Without postulating
such a clockwise order� open branches would not de�ne countermodels in general�

By the above construction we obtain an 	in�nite
 sequence of trees which is
monotonic� Thus� by taking the union over the sets of vertices and edges� we obtain
the limit tree R�� R� is precisely the tree R	S
 we intended to construct�

Note that our construction� if applied to formulas neither containing � nor ��
yields the familiar construction of a counterexample in classical predicate logic�
Indeed� if A is such a formula which is not valid 	in the standard �rst�order se�
mantics
 we obtain an in�nite open branch B representing a counterexample� Our
construction� however� is not completed so far� In fact� we may obtain open branches

�



in R	S
 even for sequents valid in TB� Note that in the construction of R	S
 itself
we cannot obtain in�nite sequents provided the root sequent is �nite� But in some
further constructions we will obtain in�nite sequents out of in�nite branches and
apply the method of reduction trees to these sequents as well� Let us illustrate the
construction of R	S
 by a simple example 	cf� also Example ���
�

Example ���� Let S be � ��A � ��A� The tree R	S
 is given below�

���
���

��A����A ��A��A
� �

��A����A ��A��A
� �� right red �

��A���A
� � � right red
���A � ��A

R	S
 possesses two open in�nite branches� As ��A � ��A is TB�valid� these
open branches do not represent counterexamples� On the other hand we will prove
that for unprovable sequents there are always branches in the reduction tree con�
taining unprovable sequents only� Take for example S��� ��A � ��A� We already
know that S� is not TB�valid� R	S�
 is the following tree consisting of one in�nite
branch only�

���
�A����A���A

�
�A����A���A

� 	�� right
 red
��A���A

� 	� � right
 red
���A � ��A

It is easy to verify that the branch contains only sequents which are not valid in TB�
Clearly� by soundness of LB� these sequents are all unprovable�

In the case of LK� �nite sequents� and an unprovable end�sequent S we obtain a
tree R	S
 with the following property� If S� is an unprovable sequent in R	S
� then
there is a successor of S� in R	S
 which is also unprovable� As R	S
 must be in�nite
and its node degree �nite� there is an in�nite branch by K�onig�s Lemma�This in�nite
branch consist of unprovable sequents only and represents a counterexample� This
argument obviously yields the completeness of LK�

In the case of in�nite sequents S there may be nodes in R	S
 of uncountable
degree� This phenomenon occurs if� in a sequent S� occurring in R	S
� we have
in�nitely many formulas containing an outermost logical operator with a binary
reduction rule 	e�g�� 	��right
 or 	��right

� It is� however� still possible to prove the
existence of an in�nite branch containing unprovable sequents� For this purpose we
will use a generalization of K�onig�s Lemma due to Takeuti �����

De�nition ���� Let 	 be a set and fWigi�� be a family of sets indexed by 	�
If f �

Q
i���

Wi and 	� � 	 then f is called a partial function �over 	� with
domain domf � 	�� If domf � 	 then f is called total� If f and g are partial
functions s�t� dom f � D� � domg and f	x
 � g	x
 for all x � D�� then we call g
an extension of f and write f � g and f � g jn D��

�



Theorem ���� 	Takeuti ����� p� ��f
 Let 	 be a set and fWigi�� be a family of
�nite sets� Let P be a property of partial functions over 	 s�t�

��� P 	f
 holds i� there exists a �nite subset N � 	� s�t� P 	f jn N 
 holds�
��� P 	f
 holds for every total f �

Then there exists a �nite subset N� � 	 s�t� P 	f
 holds for every f with N� � domf �

Lemma ��	� Let R	S
 be the reduction tree of a �possibly in�nite� unprovable se�
quent S� Then R	S
 has a branch B	S
 containing unprovable sequents only� Such
a branch is called a reduction branch of R	S
�

Proof� We have to show that� in R	S
� a sequent S� is unprovable i� there exists
a successor S�� of S� s�t� S�� is unprovable� Equivalently�

	�
 If all successors of a sequent node S� are provable then S� itself is provable�

Using trans�nite induction on trees 	by ordering trees according to the standard
subset relation
 we derive from 	�
� If S is unprovable� then there exists an in��
nite reduction branch in R	S
 	every maximal �nite branch must end in a provable
sequent
� Thus� by 	�
� every path leading to an unprovable sequent can be ex�
tended
� Note again that the degree of some nodes in R	S
 may be uncountable�
but branches in R	S
 are always countable� Thus it remains to prove 	�
�

Case �� S� is of degree �� The rule used for the reduction of S� has only one
premise� e�g�� 	��right
� 	��left
� 	��left
� Then S� has only one successor S��� Let us
assume that S�� is provable� By de�nition of provability 	of in�nite sequents
 there
exists a �nite subsequent S��� of S�� which is provable too� Now let B�� � � � � Bm be
the formulas in S��� obtained by reduction using some rule 	let us call it �
� Then�
by repeated application of � on the Bi combined with contractions and exchanges�
we obtain a �nite subsequent S�� of S� which is provable too
 the proof of S��� can be
easily extended to a proof of S���

Case �� S� is of degree � � 	possibly of uncountable degree
� The rule corre�
sponding the reduction of this node must be binary � e�g�� 	��left
� 	��right
� By
de�nition of a reduction tree the successors of S� must be of the form

� � �� 	Cji�i
i�� or 	Cji�i
i���� � �

where for all i � 	 we have ji � f�� �g depending on which 	of the two
 subformulas
occurs on position i� Moreover� for every sequence 	ji
i�� there exists a successor
corresponding to this sequence� In the argument to follow it does not matter whether
the rule under consideration is a left or a right rule� Thus� we restrict attention to
the case where � is a right rule and the reduced sequent is � � �� 	Cji�i
i���

Now let Wi � f�� �g for every i � 	 and f denote functions in
Q

i��Wi 	�
f�� �g�
� Let us assume that all successors of S� are provable� Then to every suc�
cessor S�� of S� there corresponds exactly one f � f�� �g�� Thus if S�� corresponds
to f we write S�� � S���f �� Since S���f � is provable there exists a �nite subsequent
S��� �f � of S

���f � which is provable too� This means� for every total f 	see De�ni�
tion ���
 there is a �nite subsequent S��� �f � of S

���f � s�t� S��� �f � is provable� Hence� for
S� � � � �� 	Cji�i
i�� and every f � f�� �g� we obtain a �nite provable subse�
quent S��� �f � of the form

�f � �f � 	Cji�i
i���

where 	� is a �nite subset of 	�
Let 	� � fi�� � � � � ing be an arbitrary �nite subset of 	 and let f � f�� �g���

Then we call the �nite sequence of formulas
�
Cf�i���i� � � � � � Cf�in��in

�

��



selected for f if there are �nite subsequences �f � �f of�� �� respectively� s�t��f �
�f � 	Cf�i��i
i��� is provable� By the explications above� there are such subsequences
for every f � Hence� there exist selected sequences for every total f �

In order to apply Takeuti�s theorem we have to de�ne a property P of partial
functions over R� We choose�

P 	f
 �� 	�n � �
	�i�� � � � � in � domf
	Cf�i���i� � � � � � Cf�in��in
 is selected

P 	f
 obviously satis�es both conditions 	�
 and 	�
 of Theorem ���� Thus� Takeuti�s
theorem applies and there exists a �nite set 	� � fr�� � � � � r�g � 	 s�t� if 	� � domf
then P 	f
 holds� We de�ne

F � ff j domf � 	�g

Then F is a �nite set and P 	f
 holds for all f � F � But this means that for
every f � F there exists s�� � � � � sk � R� 	� domf
 s�t�

�
Cf�s���s� � � � � � Cf�sk��sk

�
is

selected� i�e�� there exists a �nite subsequence �f � �f of ��� s�t�

�f � �f � Cf�s���s�� � � � � Cf�sk��sk

is provable� Now the set f�� �g�� is isomorphic to f�� �gf�������g� the set of all binary
sequences of length �� Thus for every such binary sequence � � 	i�� � � � � i�
 there
exist �nite subsequences �� � �� of ��� s�t�

S� ��� � �� � Ci��r� � � � � � Ci��r�

is provable� We see that the Ci��r� � � � � � Ci��r� for 	i�� � � � � i�
 � f�� �gf�������g 	�
B�
 are exactly the reduction formulas obtained from the reduction of the �nite
subsequent S����� � ��� Cr� � � � � � Cr� where �� is the union sequence of 	��
��B�

and �� is the union sequence of 	��
��B�
� By repeated application of the binary

rule � under consideration we can derive S�� from the sequents S� � Together with
the respective LB�proofs of the S� we obtain a proof of S��� But S�� is a �nite
subsequence of S� and thus S� is provable� �

Note that in order to prove lemma ��� we made use of the compactness of the
provability concept 	which holds by de�nition
� We did not use 	semantic
 com�
pactness of the logic TB and do not even claim that TB is indeed compact�

So far we know that for unprovable sequents S� there must be an in�nite branch
containing only unprovable sequents 	i�e�� a reduction branch
 in R	S
� In our next
step we �pass� the ordinal � in our construction and obtain in�nite sequents out of
�nite ones 	note that� if S is �nite� then R	S
 contains only �nite sequents
� The
basic idea is to construct 	in�nite
 unprovable sequents out of reduction branches
and iterate this procedure in�nitely often�

De�nition ��
� Let S be an unprovable sequent and B be a reduction branch
in R	S
� Let S� be the union sequent of B 	see De�nition ���
 and S��� 	�Ai
i�� �
	�Bj
j�� be the subsequent of S� consisting of all formulas in S� with outermost
logical symbol �� Let S��� be 	Ai
i�� � 	Bj
j�� 	This is the sequent S�� �stripped�
of its outermost ��s
� Then S��� is called the successor of S w�r�t� B�

Lemma ���� Let S be an unprovable sequent and B be a reduction branch in R	S

and let S� be the successor of S w�r�t� B� Then S� is unprovable�

Remark ���� By lemma ��� we know that R	S
 must have a reduction branch
 thus
the assumption of the lemma can always be ful�lled and S� exists�

��



Proof� Let S� be 	Ai
i�� � 	Bj
j��� Assume� by way of contradiction� that S� is
provable� By de�nition of provability� there is a �nite subsequent S���Ai� � � � � � Aik �
Bj� � � � � � Bj� of S� which is LB�provable� But from S�� we can derive 	in one step
�
using 	nex
� the sequent S��� ��Ai� � � � � ��Aik � �Bj� � � � � ��Bj� � Since S� is the
successor of S w�r�t� B� by De�nition ���� S��� is a �nite subsequent of the union
sequent U 	B
 of B� Thus if B � 	Si
i�� there exists a �nite initial segment B� �
	S�� � � � � Sn
 of B� with S� � S and so that the union sequent U 	B�
 of B� contains
S��� � Let left	� � �
 denote the set of all formulas in �� and right	� � �
 denote
the set of all formulas in �� By construction of R	S
 we have that left	Si
 � left	Sj

and right	Si
 � right	Sj
 for � 
 i 
 j 
 n� Hence� left	U 	B�

 � left	Sn
 and
right	U 	B�

 � right	Sn
� In other words� S��� is a �nite subsequent of Sn� S

��
� is

provable and thus Sn is provable� too� But this is impossible because S is a reduction
branch� Hence� S� must be unprovable� �

De�nition ����� Let S� be an unprovable sequent� A next�time sequence is an
in�nite sequence of reduction branches 	Bi
i�� s�t� B� is a reduction branch of S��
and for every i � �� Bi is a reduction branch of a successor Si of Si�� w�r�t� Bi���
All variables occurring in Bi are available for the construction of Bi�� 	i�e�� for the
reductions ��left and ��right
�

Note that� by Lemma ���� next�time sequences exist for all unprovable sequents�
This is easily seen by induction�

Example ����� We construct a next�time sequence N 	S�
 corresponding to the
sequent S���A� ��A� The following sequence is a reduction branch in R	S�
�

B��S�
�A����A���A� ��A
�A����A���A� ��A
 � � �

The union sequent of B� is �A����A���A � ��A� Therefore the successor of
S� w�r�t� B� is

S��A���A� �A

For S� we obtain a reduction branch of the form

B��S�
A���A� ��A
�A����A�A���A� ��A
 � � �

with the union sequent �A����A�A���A� ��A� The successor of S� w�r�t� B�

is
S� � S� � A���A� �A

In general� Si � S� � A���A� �A and Bi � B� for i � ��

The sequents in a next�time sequence represent necessary conditions for a se�
quent S to be true� If S is true at time point �� then S� is true at point �� S� at �� etc�
But these conditions are not su�cient� Let us look at the sequent S����A� ��A�
We know that S� is not TB�valid� Let us assume that S� is true at time point ��
Then the sequent S��A���A� �A is true at time point � and at time k we would
have A���A � �A being true� According to our semantics there is a counterex�
ample to the sequent S� at every time point k � �� But recall that at time point �
we may set A to false� Note that � is not a successor ordinal� Thus in order to
construct counterexamples to sequents we have to �jump� across time gaps
 this
jump will be performed via reverse application of the necessitation rule�

De�nition ����� Let S be an unprovable sequent� A gapjump tree G	S
 for S is a
tree with nodes consisting of next�time sequences satisfying the following conditions�

	�
 The root of G	S
 is a next�time sequence of S�

��



	�
 Let N be a next�time sequence in G	S
 corresponding to a sequent S�� Then
	N�Ni
� i � 	� are edges in G	S
 if the Ni are constructed as follows�
Let N � 	Bi
i�� and �� � �� be the union sequent of N 	i�e� �� � �� is the
union sequent of the union sequents of the Bi
� Let ��N be the subsequence of
all formulas in �� with outermost logical symbol �� ��N is a subsequence of ��

obtained in the following way� delete all formulas in �� except formulas of the
form �A� where �A occurs in the right hand sides of in�nitely many successor
sequents in N � Thus we obtain a sequent of the form

��N � ��N � ��N � 	�Ai
i��

and de�ne a next�time sequence Ni for every ��N � Ai 	i � 	
� provided
��N � Ai is unprovable�
If ��N is empty then N is a leaf in G	S
�

In the de�nition of the next�time sequence Ni all free variables available for the
construction of N are available for the construction of Ni too 	for the ��left and
��right reduction in the reduction branches
�

If ��N is empty then� according to de�nition ����� the node corresponding to N
must be a leaf� But even if ��N is nonempty it might be the case that the sequents
��N � Ai are provable and thus do not de�ne new next�time sequences� We will
see in Lemma ���� that such a case cannot occur�

Example ����� We construct a gapjump tree with root N 	S�
� where N 	S�
 is the
next�time sequence of Example ����� For N � 	Bi
i�� we had Bi � B� for i � �
and

B��A���A� �A
A���A� ��A
�A����A�A���A� ��A
 � � �

B� starts with ��A� ��A� so we obtain as union sequent of N �

��A�A��A����A���A� � � �� �A���A� � � �

where formulas 	if we do not use contraction
 may be repeated in�nitely many times�
Note that in all the successors Si�� w�r�t� Bi we have Si�� � A���A � �A for
i � � and thus �A occurs in�nitely often on the right side� Hence� ��N � ��N �
��A � �A� We have to consider only the single sequent S����A� A� The only
edge leaving N 	S�
 in G	S�
 is 	N 	S�
� N 	S�

� A next�time sequence N 	S�
 for
S� is easily obtained� We construct the reduction tree for S� and �nd a reduction
branch B� with successor sequent S���A���A �� It is immediately clear that the
successor sequents will be repeated in�nitely often� A next�time sequence for S� is
N 	S�
 � 	Bi
i�� where

B� � ��A� A
�A����A���A� A
 � � �

B� � A���A�
�A���A�A���A�
 � � �

Bi � B� for all i � �

N 	S�
 is a leaf node of the gapjump tree� since there is no formula of the form �A
occurring in in�nitely many successor sequents on the right hand side 	in fact� there
are no such formulas at all
�

In de�ning the gapjump tree we have constructed a sequent of the form
S����N � ��N where ��N contains only formulas appearing in�nitely many
times� S� can be �extracted� from the next�time sequence N � which is also a node
in the tree� If the consequent of S� is empty then clearly N is a leaf in the gapjump
tree� Otherwise we obtain sequents of the form ��N � Ai� where �Ai occurs
in ��N � We call S� the ��extract of N and every sequent S�����N � A for �A
in ��N a right reduct of S�� 	The term �right reduct� should not be confused with
the 	��right
 reduction of S�� which has a di�erent form�


��



Lemma ����� Let N be a node in a gapjump tree G	S�
 for unprovable S� and S
be the ��extract of N � If the consequent of S is not empty then every right reduct
of S is unprovable�

Remark ����� A consequence of this lemma is that every right reduct de�nes a
next�time sequence and thus a successor node of N �

Proof� Let S���N � ��N be the ��extract of N s�t� ��N is not empty� and let
�A be a formula in ��N �

Assume� by way of contradiction� that S����N � A is provable� By de�nition
of provability there is a �nite subsequent S������

N � ��N of S� s�t� S�� is provable�
��N is either empty or A alone�

If ��N is empty then S�� is a subsequent of the union sequent of N 	recall that N is
a next�time sequence
� We show that there exists a successor sequent Si of a branch
Bi�� in N s�t� �� �

N is a subsequence of the antecedent of Si� Let �C be a formula
in �� �

N � �C occurs in some sequent SC in a reduction branch B in N � By de�nition
of a reduction branch� ��C must occur in almost all descendents of SC and thus
also in the union sequent 		��left
 reduction
� By de�nition of a successor sequent�
the successor w�r�t�B must contain �C in the antecedent� Moreover� �C must occur
in all further successor sequents in N � As �� �

N is a �nite sequence there must be
a successor sequent Sj of a reduction branch Bj�� s�t� ���

N is subsequence of the
antecedent of Sj � But then Sj would be provable� which contradicts Lemma ����

If ��N � A then� like in the case where ��N is empty above� we obtain a successor
sequent Si in N s�t� ���

N is a subsequence of the antecedent of Si� By de�nition
of a ��extract� the formula �A must occur in in�nitely many Sj �s� Observe that
���

N is a subsequent of the antecedents of all Sj for j � i� Therefore� there must
be a k s�t� �� �

N � �A is a subsequent of Sk� If S����� �
N � A is� as we assumed�

provable� then so is S�������
N � �A by application of the rule 	nec
� Since S��� is a

subsequent of Sk� Sk were provable too� again contradicting Lemma ���� �

Corollary ���	� If N is a leaf in a gapjump tree then the consequent of the ��
extract of N is empty�

Proof� Assume that the ��extract S of N were not empty� Then S would have
right reducts� Any such right reduct S� is unprovable by Lemma ����� But then
there would be a next�time sequence N 	S�
 for S� and and an edge 	N�N 	S�

� �

Proof of the Completeness Theorem ����

We have to show that �nite unprovable sequents are not valid� More precisely� if S is
a �nite sequent which is unprovable in LB� then there exists a TB�interpretation K
for S which falsi�es S�

Let G	S
 be a gapjump tree for S� We de�ne the following TB�interpretation
K � hT� fDBgB�T � fSBgB�T i where

	�
 T is the set of all occurrences of reduction branches 	in the next�time sequences

in G	S
� For the remaining part of this proof we use the letter B for occurrences
of branches and  B for the branch corresponding to B� Moreover we introduce
the following partial order�
If B and B� are two occurrences within the same next�time sequence 	�i
i��
then there are i� j � � s�t�  B � �i and  B� � �j � We set B � B� if i � j and
B� � B if j � i� Clearly B � B� for i � j�
If B�B� are occurrences in di�erent next�time sequences N � N � 	which are nodes
of G	S

 then B � B� i� there is a path from N to N � in G	S
� Evidently� the
order type of � is in T �

��



	�
 For every B � T � DB is the set of all free variables V 	B
 occurring in  B� Note
that by the de�nitions of a next�time sequence 	����
 and of a gapjump tree
	����
� V 	B
 � V 	B�
 if B � B�� Thus we obtainDB � DB� for B � B� 	second
condition of De�nition ���


	�
 De�nition of the evaluation function SB for B � T �
Set SB	a
 � a for a � DB 	note that elements of DB are available as constant
symbols in the extended language
� IfA is an atomic formula�we de�ne SB	A
 �
� if A occurs in the antecedent of a sequent occurring in B and � � otherwise�

We have to show that this truth assignment is consistent� i�e�� that it is impossible
that an atomic formulaA occurs in an antecedent and in a consequent of a sequent
in B� Thus let B � 	Si
i��� By construction of a reduction tree we have sub�	Si
 �
sub�	Sj
 for i � j 	see de�nition ���
� In particular� all atomic formulas occurring in
the antecedent 	consequent
 of Si also occur in the antecedent 	consequent
 of Sj�
Thus if A occurs in the antecedent of Si and in the consequent of Sj it must occur
in both sides in Sk for k � max	i� j
� This� however� contradicts the de�nition of
reduction branches in a reduction tree 	De�nition ���
� as B would be closed� So
SB is consistently de�ned�

It remains to show that K� as de�ned above� is indeed a countermodel to S�
It su�ces to show the following� 		
 If F is a formula occurring in the antecedent
	consequent
 of a sequent in a reduction branch  B 	in a next�time sequence N oc�
curring as a node in G	S

 then KB	F 
 � � 	KB	F 
 � �
� Then� by De�nition ���
and by the �niteness of S� 	the implication corresponding to
 S is falsi�ed in K� as
KB�

	S
 � � 	B� being the �rst reduction branch in the root of G	S

� Note that
F cannot occur in an antecedent of S and in a consequent of S� for two sequents
S� S� in B� The reasons are the same as for atomic formulas described above� We
prove 		
 by induction on the logical complexity of F �

If F is an atomic formula 	logical complexity �
� then 		
 follows fromKB	F 
 �
SB	F 
 and the de�nition of SB� Suppose that 	�
 has been shown for all formulas
of logical complexity 
 n� Let F be a formula of logical complexity n � �� If the
outermost logical symbol is not a temporal operator 	�� �
 then the reduction to
the case 
 n follows exactly the classical �rst�order case 	see ����� Ch� �� x �
� It
remains to handle the cases F � �F � and F � �F � for some formula F ��

	�
 F � �F ��
Let us assume that F occurs in the antecedent 	consequent
 of a reduction
branch B� Because B is a branch in a next�time sequence there is a succes�
sor S� w�r�t� B 	see De�nition ���
 on which the next reduction branch starts
	see De�nition ����
� By de�nition of successor� F � occurs in the antecedent
	consequent
 of S�� which is the �rst sequent of the successor branch B�� By
the induction hypothesis� KB� 	F �
 � � 	KB� 	F �
 � �
� By De�nition ����
KB	F 
 � KB	�F

�
 � KB� 	F �
� As F must occur on the same side as F � we
conclude that 		
 holds for F �

	�
 F � �F ��
	a
 F occurs in the antecedent of a sequent in a reduction branch B in the

next�time sequence N �
By the semantics of � we haveKB	F 
 � � i� for all B� s�t� B 
 B� it holds
that KB� 	F �
 � �� So let us assume that F occurs in the antecedent of the
sequent Si in B� Then ��F � must occur in 	the antecedent of
 a sequent Sj
for some j � i� By de�nition of a next�time sequence N � �F � must occur
in 	the antecedent of
 the successor of B� By induction� �F � occurs in the
antecedent of every sequent in every reduction branch in this next�time
sequence� Hence� �F � occurs in the union �� � and in the antecedent of the
��extract of N � By de�nition of right reducts and the gapjump tree then�

��



�F � also occurs in the antecedents of all 	initial
 reduction branches in the
successor nodes N � of N in G	S
� By the same arguments as before� we
have that �F � occurs in the antecedent of every sequent in every reduction
branch B� � B� Every reduction branch containing �F � in the antecedent
of some sequent also contains F � in the antecedent of some sequent 	by
	��left
 reduction
� Hence� by the induction hypothesis� KB� 	F �
 � � for
all B� � B and therefore KB	F 
 � ��

	b
 F occurs in the consequent of a sequent in a reduction branch B in the
next�time sequence N �
By de�nition of 	��right
 reduction � which is binary� there is a sequent in B
which either contains 	in the consequent
 F � or ��F �� In the former case we
have immediately� by the induction hypothesis� thatKB	F

�
 � � and hence
KB	F 
 � �� Otherwise� observe that the successor of B contains �F � in the
consequent� We have two cases� 	i
 either all reduction branches � B in N
contain ��F �� or 	ii
 some branch B� contains F � in the consequent of some
sequent� The former holds if at every 	��right
 reduction of F in N the right
premise lies on the reduction branch� the latter if in some reduction the left
premise does� Case 	ii
 is handled as above� For case 	i
� observe that �F �

occurs 	in the consequent of
 every successor sequent of branches B� � B
in N � Thus� by de�nition of the ��extract ��N � ��N of N � �F � belongs
to ��N � Then there is some right reduct of N of the form ��N � F �� By
Lemma ���� this right reduct is unprovable and thus is the initial sequent of
the �rst reduction branch B� of some successor node N � of N in G	S
� By
the induction hypothesis� KB� 	F �
 � �� Since B � B� the semantics of �
gives us KB	�F

�
 � ��

This concludes the proof of 		
 and we have shown that K falsi�es S� �

Remark ����� If the original sequents may be in�nite� in particular� of unbounded
logical complexity� then we no longer have a well�founded ordering on the sequents�
On the other hand� the reduction steps which yield in�nite sequents in the proof
keep the logical complexity of formulas occurring in the sequents bounded� Hence�
if the starting sequent is of bounded logical complexity 	in particular� if it is �nite
�
we have a well�founded order� Otherwise� the induction proof is problematic�

� TL versus TB

It should be interesting to compare the two logics TL and TB� A comparison
from the viewpoint of expressibility would clarify the possible application of TB
in a program speci�cation and veri�cation environment� Such an analysis� however�
would go beyond the scope of the present article� An analysis from a logical point
of view can be given more easily� Here the comparison centers around the induction
rule in propositional TL 	see ���
�

A� B A� �A
A� �B

ind

and the weaker necessitation rule of TB�

Proposition ���� ��� The propositional fragment of TB is decidable�
��� The fragment of TB without � is equal to S��
�	� The monadic fragments of TL and TB are undecidable�
��� The fragment of TB without � is axiomatizable by LK plus �nex��
��� The fragment of TB without � is equal to the fragment of TL without ��

��



Proof� 	�
 sub�	� � �
 is �nite� 	�
 LB without � collapses to the sequent
calculus for S� given in ���� 	�
 Follows from the undecidability of monadic modal
predicate logic
 see below� 	�
 A cut�free proof can contain 	��left
� 	��right
� or
	nec
 only if � occurs in the end�sequent� 	�
 By 	�
� a proof has to be found before
jumping over the �rst gap i� one exists� �

In contrast to 	�
 above� the monadic fragment of TB without � 	and hence�
by 	�
� the fragment of TL without �
 is decidable�

Proposition ���� It is decidable if a monadic temporal formula containing no ��s
is satis�able�

Proof� Note that � distributes over all propositional connectives� Hence� any
formula F containing no ��s is equivalent to a formula of the form

W
jKj where

Kj �
	
k

Ej
k �

	
l

Aj
l

Ej
k � �ek

	�x

	
i

�e�i�kLi�k	x


Aj
l �

�al	�x



i

�a�i�lLi�l	x


where Lij�k is a negated or unnegated atomic formula� F is satis�able i� Kj is sat�
is�able for some j� Consider the set � 	K
 � ��	K
 � ��	K
 with

��	K
 � f
	
i

�ek�e
�
i�kLi�k	tk
 j kg

��	K
 � f


i

�al�a
�
i�lLi�l	tk
 j l� k� ek 
 alg

where tk are constant symbols� and �v
Li�k	tl
 is considered as a propositional literal

Lvi�k�l� K is satis�able i� � 	K
 is satis�able in classical propositional logic� �

So already the monadic fragments containing � but not � are undecidable�
It is worth to recapitulate the construction of the proof of Kripke ���� A binary
predicate P 	x� y
 can be encoded in monadic temporal logic as P �	x� y
 � �	P�	x
�
P�	y

� Let F be a formula in the language of predicate logic� and F � be obtained
from it by replacing n�ary predicates P 	x�� � � � � xn
 by �	P�	x�
�� � ��Pn	xn

� If F
is valid� then F � is too� it being a substitution instance of F � If F is not valid� then
we construct a temporal countermodel for F �� Let M be a 	�rst�order
 structure in
which F is not satis�ed� By the L�owenheim�Skolem Theorem� we can assume M to
be countable� We can enumerate all n�tuples of elements of the domainM using a
function e� Let T be �� and Sj	Pi
 � fag i� a is the i�th component of the j�th
	in e
 n�tuple ofM � So �	P�	a�
�� � ��Pn	an

 is true in h�� fDi � Mgi��� fSigi��i
i� M j� P 	a�� � � � � an
�

As remarked above� the undecidability of the monadic fragments of TL and TB
follows from the undecidability of dyadic predicate logic and the above construc�
tion� We have two immediate consequences� First� the monadic fragment of TL
	with �
 is not even axiomatizable� since we can replace the function symbols ��
�� �� 
 by 	a unary� a binary� and two ternary
 predicate symbols� These predicate
symbols can in turn be replaced by temporal constructions of the kind used above

so non�axiomatizability follows from the non�axiomatizability of the full logic 	see
Section �
� A second interesting consequence is that already the fragment with only
one monadic predicate symbol 	but including �
 is undecidable� With some adjust�
ment to the construction of the countermodel in the proof above� a binary predicate

��



can also be encoded by �	P 	x
 � �P 	y

� We do not know� however� whether the
corresponding fragment of TL is still not axiomatizable�

Even without a deep analysis it is obvious that propositional TL is decidable by
embedding it into the the monadic second order logic of one successor of B�uchi ����
	A decision method based on a similar reduction method as the one used here forTB
can be found in ����
 For the same reason� the quanti�ed propositional variant of TL
is decidable� We do not know whether quanti�ed propositionalTB is decidable� Note
that even though propositional TB � � equals S�� the propositionally quanti�ed
logics di�er� Hence� the result of Kremer ��� III���� i�e�� that propositional S� is
recursively isomorphic to second�order logic� is of no help here� We conjecture�
however� that quanti�ed propositionalTB is not axiomatizable as well� In summary�
we have the following situation�

TL TB

propositional decidable decidable
monadic w!o � equal and decidable
monadic not axiomatizable undecidable
quanti�ed propositional decidable not axiomatizable"
full �rst�order not axiomatizable axiomatizable

� Resolution for TB

A practical consequence of the cut�free completeness of LB is the ability to construct
a resolution calculus� The exact relationship between cut�free proofs in sequent
calculus and resolution proofs has been investigated at length by Mints ���� ���� This
relationship is also the starting point for very fruitful investigations into resolution
systems and strategies for other non�classical logics� e�g�� linear logic 	see ����
�

The resolution procedure for TB works as follows� The formula F to be proved
	�F to be refuted
 is translated to clause form via translation rules based on the
calculus LB� The translation is structure preserving� and the literals have the form
	�
��A��	a�� � � � � an
� where A is the sub�semi�formula corresponding to this literal�
and a�� � � � � an are free variables or constant symbols� A clause is an expression of
the form C� where C is a set of literals� A clause may carry a variable restriction�
denoted Ca� meaning that a resolution involving C is only allowed if a does not
occur in the resulting clause and if a is not substituted into� The rules are the
resolution and factoring rules� plus two rules corresponding to the 	nec
 and 	nex

rules� By Lemma ��� and replacement of free variables with constant symbols� we
can assume that F is closed and does not start with � or ��

De�nition 	��� Let F be a semi�formula� and let 	�� � � � � 	n be all the constant
symbols and bound variables without matching quanti�er in order of occurrence�
Then the code of F is de�ned as ��F ��		��� � � � � 	n�
� where ��F �� is an n�ary predicate
symbol� and � is a canonical renaming� mapping 	�� � � � � 	n to new free variables�

The axiom set Ax 	F 
 is de�ned as the smallest set satisfying the following� Let
P 		�� � � � � 	n
 and P 	��� � � � � �n
 be two atomic sub�semi�formulas of F with the
same predicate symbol� Then
the clause f���P 	 	
��	��� � � � � �n
� ��P 	  �
��	��� � � � � �n
g � Ax 	F 
� where �i � 	i���
with � the renaming as above and � a most general uni�er of 		��� � � � � 	n�
 and
	���� � � � � �n�
�

The clause translation Cl	F 
 is the following set of clauses� Cl	F 
 �
S
fCF 	A
 j

A � sub	F 
g � Ax 	F 
 �
�
f���F ��		��� � � � � 	n�g

�
� where CF 	A
 is given by the

following table�

��



A occurrence CF 	A

�B pos

�
f��B��� ���B��g

�
�B neg

�
f���B�������B��g

�
B �C pos

�
f���B������C��� ��B �C��g

�
B �C neg

�
f��B������B � C��g� f��C������B �C��g

�
B �C pos

�
f���B��� ��B � C��g� f���C��� ��B �C��g

�
B �C neg

�
f��B��� ��C������B �C��g

�
B � C pos

�
f��B��� ��B � C��g� f���C��� ��B � C��g

�
B � C neg

�
f���B��� ��C������B � C��g

�
	�x
B pos

�
f���B	x
��	a
� ��	�x
B	x
��ga

�
	�x
B neg

�
f��B	x
��	a
����	�x
B	x
��g

�
	�x
B pos

�
f���B��	a
� ��	�x
B	x
��g

�
	�x
B neg

�
f��B��	a
����	�x
B	x
��ga


�
�B pos

�
f���B��������B��� ���B��g

�
�B neg

�
f��B�������B��g� ff����B�������B��g

�

Here� a stands for �x in the code for A	x
� � is the same for all literals in a clause
in CF 	A
� and positive and negative occurrences are de�ned as usual�

Note that there are no translation rules for formulas with outermost symbol ��
just as there are no introduction rules 	without restrictions
 for � in LB� This is
clear� since there is no relation between A and �A which depends only on A�

De�nition 	��� The degree deg	A
 of a semi�formula A is the number of occur�
rences of logical symbols except � and � in A� The degree of a clause is

deg	C
 �



� if C � �
maxfdeg	A
 j ��A�� � C or ���A�� � Cg otherwise

Note that maxfdeg	A
 j A � 	sub	F 
 n fFg
g � deg	F 
� since F is assumed to be
pre�x�free 	see the comments above
�

The resolution calculus for TB consists of the the following rules�

C � f��A��	a�� � � � � an
� ��A��	b�� � � � � bn
g

C� � f��A��	a�� � � � � an
�g
fact

C � f���A��	a�� � � � � an
g C� � f��A��	b�� � � � � bn
g�
C n f���A��	a�� � � � � an
g

�
� �

�
C� n f��A��	b�� � � � � bn
g

�
�

res

where � is the most general uni�er of 	a�� � � � � an
 and 	b�� � � � � bn
 and it is assumed
that the resolved clauses are variable disjoint 	i�e�� by renaming variables
� The
resolution rule is subject to the following restrictions�

	�
 deg	C �C�
 � min
�
deg	C � f���A��g
� deg	C� � f��A��g


�
	�
 if one of the two resolved clauses is restricted on the variable a� then �	a
 � a

and a does not occur in
�
C n f���A��	a�� � � � � an
g

�
� �

�
C� n f��A��	b�� � � � � bn
g

�
�

f���A���� � � � ����A���� ��B���� � � � � ��B���g�a�

f����A���� � � � �����A���� ���B���� � � � � ���B���g�a�
nexr

f����A���� � � � �����A���� ��B��g

f����A���� � � � �����A���� ���B��g
necr

The application of the rules 	nexr
 and 	necr 
 is restricted so that the resulting
literals are still within sub	F 
� The calculus� therefore� depends on F 
 we actually
are giving a construction schema for resolution calculi for each F �

The following should be noted about the variable restriction�

��



Proposition 	��� In any resolution inference�

�a� there is never a restriction on more than one variable in any one clause� and
�b� at most one of the two premises carries a restriction�

Proof� 	a
 Resolution removes all restricted variables 	condition 	�
 above
 from
the resolvent� and the property holds of all input clauses�

	b
 First of all� restricted clauses are input clauses in Cl	F 
 corresponding to
positive occurrences of � or negative occurrences of � 	or are derived from them
by applications of 	nexr
� but not using other rules
 cf� 	a

� A resolution inference
with two premises which both carry restrictions would be 	up to leading ��s
 of the
form

f���A	x
��	a� b�  c
� ��	�x
A	x
��ga f��A	x�
��	b�� a��  c�
����	�x�
A	x�
��ga
�

f��	�x
A	x
�������	�x�
A	x�
���g
res

Other constellations are ruled out by the degree restriction on resolution� Since
neither a nor a� may be substituted into by the uni�er �� they cannot stand opposite
each other� Instead� they must unify with two other variables b� and b� respectively�
i�e�� �	b�
 � a and �	b
 � a�� But then the restricted variables would occur in the
resulting clause� violating condition 	�
 of resolution� �

Example 	��� Consider the formula ��	�x
A	x
 � 	�x
��A	x
� The sub�semi�
formulas are�

S� � A	x
 S� � �A	x

S� � ���A	x
 S� � ��A	x

S	 � 	�x
��A	x
 S
 � 	�x
A	x

S� � ���	�x
A	x
 S� � �	�x
A	x

S
 � ��	�x
A	x
 S�� � ��	�x
A	x
 � 	�x
��A	x


A resolution proof is given by�

f���S���� ��S�� ��g

f��S� ������S���g

f���S� ��� ��S� ���a�g

f���S� ��� ��S� ���a�g
nexr

f���S���� ��S� ���a�g
res

f���S���� ��S� ���a�g
necr

f���S� ���b�� ��S� ��g
b

f���S���� ��S� ��g
res

f���S� ��� ��S����g
res

f��S���� ��S�� ��g

f��S�� ��g
res

f���S�� ��g

�
res

Example 	��� By contrast� consider the formula F � P 	f
 � 	�x
P 	x
� which is
not valid� Without the eigenvariable condition� we would have the following deriva�
tion of the empty clause�

f���F ���e�g

f���P �x����a�� ���	x�P �x���ga
f��P �x����b�����P �c����b�g f��P �c����b�� ��F ���b�g

f��P �x����b�� ��F ���b�g
res

f���	x�P �x���� ��F ���b�g
res�

f����	x�P �x���� ��F ���d�g

f��F ���b�g
res

�
res

For the resolution step 	res�
 to work� either �	a
 � b� or �	b
 � a� The former
case is expressly forbidden� in the latter case the restricted variable would appear
in the resulting clause�

Theorem 	�	� The resolution calculus for TB is sound
 If � is derivable from
Cl	F 
� then j� F �

��



Proof� We show how a resolution derivation � not using the goal clause f���F ��g
can be translated to an LB�derivation� Associate to each clause C in � the
substitution �C � ��� where � is the original renaming of the bound vari�
ables and constants in subsemiformulas of F whose code occurs in C� and � is
the cumulative substitution of the subderivation in � ending in C� In e�ect� if
��A	x
��	a
 is a literal in C� then A	x
�C is the formula A	a
� If � ends in a clause
C� f���A���	 a�
� � � � ����An��	 an
� ��B���	 b�
� � � � � ��Bm��	 bm
g we obtain an LB�proof of
SC �A���C � � � � � A

�
n�C � B�

��C � � � � � B
�
m�C � If C carries a variable restriction� the

restricted variable is bound by a weak quanti�er in SC � We argue by induction on
the length of ��

h � �� � consists of a clause C from Cl	F 
 n f���F ��g only� If C � Ax 	F 
� say�
C � f���P 	 	
��	 a
� ��P 	  �
��	 a
g� the sequent P 	 a
� P 	 a
 is the corresponding axiom�
If C � CF 	A
� where A � sub	F 
� then we construct an LB�proof of SC � We present
here only some cases�

	�
 C �
�
f���A������B��� ��A �B��g

�
� The corresponding proof is�

A� A B � B
A�B � A �B

��right

	�
 C �
�
f���A	x
��	a
� ��	�x
A	x
��ga

�
� The corresponding proof is�

	�x
A	x
� 	�x
A	x


	�
 C �
�
f��A	x
��	a
����	�x
A	x
��g

�
� The corresponding proof is�

A	a
� A	a


	�x
A	x
� A	a

��left

	�
 C � ff����A�������A��g� The corresponding proof is�

��A� ��A

�A� ��A
��left

h � �� We distinguish cases according to the last inference in �� Let N denote
the negative and P the positive set of literals in a clause� and �N and �P its
translations� respectively�

	�
 The last inference in � is a resolution where the premises do not carry a variable
restriction�

C��N � P � f��A��	 a
g C���N � � P � � f���A��	 b
g

�N� � �N �� � P� � P ��
res

By induction hypothesis� we have LB�proofs �� �� of �N � �P � A�C	 a
 and
A�C�	 b
��N � � �P � � The uni�er � does not substitute into eigenvariables of �
or ��� We obtain a proof�

���� ��

�N� � �P��A	 a
�

���� �
��

A	 b
���N �� � �P ��

�N���N �� � �P���N ��
cut

	�
 The last inference in � is a resolution where one premise contains the restricted
variable a�

�N �P � f��A��	a
ga �N � � P � � f���A��	b
g

�N� � �N �� � P� � P ��
res

By Proposition ���� a resolution involving restricted variables can only take this
form� By induction hypothesis� we have LB�proofs �� �� of �N � �P � A	a


��



and 	�x
A	x
��N � � �P � � The uni�er � does not substitute into restricted
variables 	i�e�� eigenvariables of �� ��
� Since a is restricted� we have �	a
 � a
and �	b
 � a� so b cannot occur in the resulting clause� Hence� it satis�es the
eigenvariable condition� We obtain a proof�

���� ��

�N� � �P��A	b
�

�N�� �P�� 	�x
A	x
�
��right

���� �
��

	�x
A	x
��N �� � �P ��

�N���N �� � �P���P ��
cut

	�
 The last inference in � is 	fact
�

�N � P � f	�
��A��	 a
� 	�
��A��	 b
g

�N� �N� � f	�
��A��	 a
�g
fact

By induction hypothesis� we have a proof � of �N � �P � A	 a
� A	 b
 	or
A	 a
� A	 b
��N � �P 
� Since there are no restrictions on variables� we can
rename  b via �	bi
 � ai in �� With contraction� we obtain a proof of �N� �
�P��A	 a
 	or A	 a
��N� � �N�
�

	�
 The last inference in � is 	necr 
� Add a 	nec
�inference to the LB�proof�
	�
 The last inference in � is 	nexr
� Add a 	nex
�inference to the LB�proof� �

If there were a resolution proof of � which does not use the goal clause f���F ��g� then
we could translate that into an LB�proof of the empty sequent �� Such a proof� of
course� is impossible� Hence� any resolution derivation of � must use the goal clause
f���F ��g� By the degree restriction� the last inference in such a derivation must be
a resolution between f��F ��g and f���F ��g� A resolution derivation of f��F ��g can� as
above� be translated into an LB�proof of � F �

Remark 
��� Observe that the degree restriction on the resolution rule is necessary
for soundness� Otherwise� e�g�� P � �P would have the following proof�

f���P � �P ��g f��P ��� ��P � �P ��g

f��P ��g
res

f���P ��g
nec

f���P � �P ��g f����P ��� ��P � �P ��g

f����P ��g
res

�
res

In fact� a formula �F has a refutation without degree restriction i� j� �F � but
j� �F is not equivalent to j� F 	in contrast to � and �
 cf� Lemma ���
�

Theorem 	��� The resolution calculus for TB is complete
 If j� F � then � is deriv�
able from Cl	F 
�

Proof� We give� for each LB�proof � of a sequent � F � a resolution proof of �
from Cl	F 
� By Theorem ���� we can assume that � is cut�free� analytic� that its
axioms are atomic� and by Proposition ��� that it contains no weakenings� Let
� � � be a sequent in �� As can easily be seen� a formula A occurs positively
	negatively
 in � � � i� it occurs positively 	negatively
 in F � Furthermore� every
formula A in � corresponds to exactly one sub�semi�formulaA� of F � which can be
determined by tracing the formula A downwards through �� We translate � to a
resolution proof � of f��F ��g by induction on its subproofs ��� If �� ends in � � ��
then �� ends in �N� � P	� where the semi�formulas whose codes occur in �� � ��

are those sub�semi�formulas of F corresponding to the formulas in � � �� There
is no variable restriction on the last clause in ��� We present here some cases�

��



	�
 �� is an axiom�
Translate P 	 a
� P 	 a
 to a clause f���P 	 	
��	 a
� ��P 	  �
��	 a
g� where P 	 	
 	P 	  �


is the sub�semi�formula of F corresponding to the left 	right
 P 	 a
� 	This clause
is in Ax 	F 
�


	�
 �� ends in a contraction on a formula A�
By induction hypothesis� we have a resolution proof of �N� � P	 �
f��A���	 a
� ��A���	 b
g without restriction of variables� 	A� is the sub�semi�formula
of F corresponding to A�
 Apply 	fact
�

	�
 �� ends in 	��right
�
By induction hypothesis� we have resolution proofs ending in �N��P	�f��A

���g
and �N�� �P	� � f��B���g� The clause f���A�������B���� ��A� �B���g is in Cl	F 
� We
obtain a resolution proof�

f���A�������B���� ��A� �B���g

����
�N� � P	 � f��A���g

�N� � P	 � f��A� �B�������B���g

����
�N�� � P	� � f��B���g

�N� � �N�� � P	 � P	� � f��A� �B���g

	�
 �� ends in 	��left
�
By induction hypothesis� we have a resolution proof ending in f���A�	x
��	a
g �
�N� � P	g� The clause f��A�	x
��	b
����	�x
A�	x
��g is in Cl	F 
� We obtain a
resolution proof�

����
f���A�	x
��	a
g � �N� � P	 f��A�	x
��	b
����	�x
A�	x
��g

f���	�x
A�	x
��g � �N� � P	

	�
 �� ends in 	��right
�
By induction hypothesis� we have a resolution proof of �� ��� f��A	x
��	a
gg�
The clause f���A	x
��	b
� ��	�x
A	x
��gb is in Cl	F 
� We obtain the resolution
proof�

����
�N� � P	 � f��A	x
��	a
g f���A	x
��	b
� ��	�x
A	x
��gb

�N� � P	 � f��	�x
A	x
��g

Note that the conditions on b in the right premise are met� since a satis�es the
eigenvariable condition�

	�
 �� ends in 	��left
�
By induction hypothesis� we have a resolution proof of f���A���������A���g �
�N� �P	� The clauses f��A��������A���g and f����A��������A���g are in Cl	F 
� We
obtain a resolution proof�

����
f���A���������A���g � �N� � P	 f��A��������A���g

f�����A��������A���g � �N� � P	 f����A��������A���g

f����A���g � �N� � P	

	�
 �� ends in 	nex
�
Append a 	nexr
inference to the resolution proof to obtain ���

	�
 �� ends in 	nec
�
Append a 	necr
 inference to the resolution proof to obtain ���

��



Note that in the translation to resolution� the restriction on the rules are all satis�ed�
The uni�ers can be chosen so that only the variables in the clauses from Cl	F 
 are
substituted into� Given a proof � of� F we thus have a resolution proof � of f��F ��g
from clauses in Cl	F 
� By resolving with f���F ��g � Cl	F 
� we obtain �� �

The translation above shows actually that a re�nement of resolution is complete�
namely where every resolution step has to involve at least one input clause� i�e�� a
clause form Cl	F 
� The resolution method developed here di�ers signi�cantly from
the resolution method of Robinson developed for classical clause logic� hence the
fact that �input resolution� is complete is not a contradiction to the well�known
fact that input resolution in the classical case is not complete�

� Conclusion

We have seen how the passage from a non�axiomatizable temporal semantics to
an axiomatizable one is paralleled by an extension of the completeness proof of
the propositional logic� The point where the proof fails for TL is where a true
formula starting with � is reduced� even in�nitely often� but no derivation can be
obtained� The extension of the semantics is prompted by this phenomenon� and
makes a complete reduction of the formula possible� The reduction discussed here is
very similar to Kr�oger�s completeness proof for propositional TL� This prompts the
question of how to extend similar propositional completeness proofs to the �rst�order
case by avoiding non�axiomatizability of the standard semantics by extension of the
semantics itself� A candidate for such investigations would be� e�g�� in�nite�valued
#Lukasiewicz logic� It also prompts the question for a characterization of classes of
formulas� where a sequent calculus is complete for the original semantics� say� as
those formulas where the reduction works�

It is quite natural to ask� whether the predicate logic of linear time with gaps
	the structures being sequences of ��segments
 is axiomatizable or not
 let us call
this logic TLG� Indeed even the pure ��part of TLG is not axiomatizable� This
result can be obtained by reducing the problem to the nonaxiomatizability of the
in�nite�valued G�odel logic with truth values from the set f �

n
jn � N � f�gg � f�g�

However the proof of this result is quite involved� placing it outside the scope of
this paper� It will be presented elsewhere�

Another problem which has not been addressed in depth so far is the corre�
spondence between temporal logics discussed here� and number theory� The proof
of non�axiomatizability of TL by reduction to arithmetic� and the �induction� rule
of propositional TL suggest that there is a close relation� This suggestion is sup�
ported by our result� the semantics of TB is a �non�standard� semantics� similar
to non�standard models of arithmetic� Viewed this way� it is not as surprising that
TB would have a complete axiomatization�
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