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Abstract

All first-order Godel logics G$ with globalization oper-
ator A\ based on truth value sets V C [0,1] where 0 and 1
lie in the perfect kernel of V are axiomatized by Ciabattoni’s
hypersequent calculus HGIF [10].

1. Introduction

Godel logics are one of the more interesting and popular
many-valued logics. With the renewed interest in founda-
tional research in fuzzy logic in the last 10-20 years, Godel
logics have come into their own. They play an important
role in the algebraic study of continuous t-norm logics, but
they are also interesting because of their close connection to
intuitionistic logic. Takeuti and Titani [17] based their “in-
tuitionistic fuzzy set theory” on the first-order Godel logic
with truth values from [0, 1], and Godel logics have found
many other applications.

Godel logics were originally introduced by Godel [12],
and first studied in detail by Dummett [11]. He showed
that propositional infinite-valued Godel logics are axioma-
tized by intuitionistic logic plus the linearity axiom (A —
B)V (B — A). More recent investigations have extended the
study of Godel logics to the first-order [6, 13, 17] and the
quantified propositional case [4, 8]. From a proof-theoretic
perspective, several versions of hyper-sequent calculi for
Godel logics have been proposed, including systems for
first-order logics [3, 5, 9], and their proof-theoretic prop-
erties investigated. Ciabattoni [10] has recently extended
these proof-theoretic results to include rules for the global-
ization, or projection, operator A [2].

Our aim in the present paper is to give a direct proof of
completeness for the hypersequent calculus HGIF of [10]
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which shows it to be complete not only for G[% e the Godel

logic with A on the truth-value set [0, 1], but for G$ for any
truth-value set V C [0, 1] the perfect kernel of which con-
tains 0 and 1. This shows that the system HGIF applies to a
broad class of truth-value sets. Moreover, we prove strong
completeness, and, as a consequence, compactness. In the
process we also give a direct and more elegant completeness

proof of HGIF for G[%’l].

2. Language and semantics

We work in a usual first-order language . with free (a,

b, ...) and bound (x, y, ...) variables, predicate and func-
tion symbols, logical connectives V, A, —, a propositional
constant |, quantifiers V, 3, and a unary operator A. Terms
and formulas are defined in the usual way. We use — as a
defined connective; "A=A — L.
Definition 1 (Semantics of Godel logic). Suppose V is lin-
early ordered set with maximal element 1, a minimal el-
ement 0, and all infs and sups. An interpretation J into V
consists of (1) a nonempty set |J|, the ‘universe’ of J; (2) for
each k-ary predicate symbol P, a function P”: |J| — V; (3)
for each k-ary function symbol f, a function f7 : |J| — |J|;
(4) for each free variable a, a value a” € V.

Let .7 be the language .# extended by constant sym-
bols for the elements of |J| (so that d” = d).

Given an interpretation J, we can naturally define a value
J(A) for any formula A of 7. For terms t = f(uy,...,u)
we define 3(¢t) = £7(3(u1),...,I(ux)), for atomic formulas
A=P(t1,...,t;), we define J(A) = P?(3(t1),...,3(ts)), and
for composite formulas A we define J(A) naturally by:

(1) =0 (1)
J(AAB) = min(3(A),3(B)) @)
J(AVB) =max(J(A),3(B)) (3)

R 1 if3A) <3(B)

IA—B)= {3(3) if 3(A) > 3(B) @)



1oty =1
i {0 if 3(A) < 1 ©)
J(VxA(x)) =inf{JI(A(u)) : u € |J|} (6)
J(3xA(x)) = sup{J(A(u)) :u € |3} (7

We will mostly be interested in interpretations into Godel
sets:

Definition 2. A Gddel set V is a closed subset V C [0, 1]
with0,1 € V.

In the case of Gddel sets, we can interpret V and 3 as inf
and sup in R. Note that by the definition of —A, we have
J(-A)=0if J(A) >0and = 1if J(A) = 0.

Definition 3. For a Godel set V we define the first order
Godel logic G$ as the set of all closed formulas of . such
that J(A) = 1 for all Jinto V.

Definition 4. If I, A are sets of formulas (possibly infinite),
we say that I 1-entails A for V, ' IFy A, iff for all J into V,
whenever J(A) = 1 for all A € T, then J(B) = 1 for at least
one B € A.

If V. C W are Godel sets, then if I Iy A also I' Iy A.
For any J into V which is such that J(A) =1 forall A € T’
and J(B) < 1 for all B € A also is an interpretation into W.

This can be generalized to embeddings between truth-
value sets other than inclusion. First, note that for any
map h: V — W, an interpretation J into V induces an in-
terpretation J, into W by defining |J,| = |J| and P%"(it) =
h(P? (ii)).

Definition 5. A G-embedding h: V — W is a strictly mono-
tone mapping which preserves all existing sups and infs as
well as 0 and 1. More specifically, & satisfies:

1. h(0)=0,h(1) =1,

2. ifa < b, then h(a) < h(b) (a,b € V), and

3. h(sup{a:a€V})=sup{h(a) :a €V}, h(inf{a:a €

V}) =inf{h(a):a € V}.

Lemma 6. Suppose h: V — W is a G-embedding. (a) IfJ is
a V-interpretation, and J), is the interpretation induced by
T and h, then J,(A) = h(3(A)). (b) If T lkbyw A then T IFy A
(in particular G@ - G‘%).

Proof. (a) By induction on complexity of formulas. (b)
Suppose for some J into V, J(A) =1 for all A € " and
J(B) < 1 for all B€ A. T, is an interpretation into W.
Jn(A) = h(3(A)) =1 for all A € T". By strict monotonic-
ity of h and since J(B) < 1, h(J(B)) < 1, and so J,(B) < 1
forall B € A. O

Fact 7 (downward Lowenheim-Skolem). For any interpre-
tation J (with |J| infinite) there is an elementary subinter-
pretation 3" < 3, with countable universe |J'| C |J| and
I'(A) = 3(A) for all L7 formulas A.

Definition 8. The only sub-formula of an atomic formula
Pin .#7 is P itself. The sub-formulas of A x B for x € {—
, A\, V} are the subformulas of A and of B, together with AxB

itself. The sub-formulas of VxA(x) and 3xA(x) with respect
to a universe |J| are all subformulas of all A(u) for u € |7,
together with VxA(x) (or, AxA(x), respectively) itself.

The set of interpretations of sub-formulas of A under a
given interpretation J is denoted by

Val(J,A) = {J(B) : B sub-formula of A w.r.t. |J|}.
3. The Hypersequent Calculus HGIF

The method of hypersequents for the axiomatization of

non-classical logics was pioneered by Avron [1]. Hyper-
sequent calculi are especially suitable for logics that are
characterized semantically by linearly ordered structures,
among them Godel logics. Hypersequent calculi for first-
order Godel logics can be found in [5, 9]. Ciabattoni ex-
tended hypersequent calculi for first-order Godel logic by
rules for A in [10] and studied their proof-theoretic proper-
ties.
Definition 9. If I" and A are finite multisets of formulas, and
|A| <1, then '=-A is an (LJ-) sequent. A finite multiset of
sequents is a hypersequent, written I'j = A | ... | Ty =A,.
Definition 10. The hypersequent calculus HGIF [10] is de-
fined as follows:

Axioms: A=A and L =.

Internal structural rules:

G|T=A G|Il= G|AAT=A
GlAT=A "7  Gir=a 7™ Glar=a 7
External structural rules:
G G|T=A|T=A

SR < S il Sl e

G|T=A G|I'=A
Logical rules:

G|I'=A G|AT=

_— =
G|F=>ﬁA
G|I'=A G|I'=B

_ A=
G|-AT'=
G|AT=A G|BI=A

G|AVB,I'=A G|I'=AAB
G|T=A G|AT=A
G|T=AVB G|ANBT=A
G|T=B G|B,T=A
G|T=AVB GIANBT=A = *
G|T1=A G|BT,=A G|AT=B
—_n= = =
G|A— BT, [h=A G|T=A—B
G|A(t),T=A G|T=A(a)
G| (Wx)A(x),[=A G | T'=(Vx)A(x)
G|A(a),I'=A G|T=A(t)
o d= - =3
G| (IA(x),'=A G |I'=(3x)A(x)
Rules for A:
G| AT=A G|AT= A
- =
G| AAT=A G| AT=AA
G| AT =A

—— Acl
G|AT=|T'=A



Cut:
G|T=A G|ATII=A

G|T,II=A

cut

Communication:
G | I'In=A G | FI,F2:>A/
G| =A|T=AN

The rules (= V) and (=) are subject to eigenvariable con-
ditions: the free variable a must not occur in the lower hy-
persequent.

Definition 11. If J is an interpretation into V and I'=A
a sequent, define J == A iff J(A) < 1 forall A € T, or
J(B) =1 for at least one B € A. If H is a hypersequent,
define J = H if J |=T'=-A for at leastone '=A € H.

A hypersequent H is valid in V if J |= H for all Jinto V.
Proposition 12. Let H = (I';= A;) be a hypersequent, and
letT'=TI;, A=A Then H is validin V if T Iy A.
Theorem 13 (Soundness of HGIF). If G is provable in
HGIF, then J |= G for all 3.

Proof. We shows that for every provable G we have: (*)
for every J, there is aI'= B € G is so that min{J(C) : C €
I'} <3(B). If (*), then also J = G. Axioms obviously
satisfy the property. Otherwise, G results from a hyperse-
quent G’ by one of the rules of inference. We give only
some cases: (=—) If min{J(A),3(C) : C € '} < J(B),
then either J(A) < J(B), in which case J(A — B) =1, or
min{J(C) : C €T} <J(B) < J(A — B). (A=) Obvious,
since J(AA) < TJ(A). (=A) If min{J(AC):CeT} <
J(A), then either J(AC) = 0 for some C, or J(A) = 1, in
which case J(AA) = 1 as well. O

Definition 14. We write I" - A if there are By, ..., B, € A
and some finite subset I'g of I' (g C ¢ I') so that Ay = B |
...| ATy= B, is provable in HGIF.
Corollary 15. IfT F A, then T Iy A.

Proof. Follows from Definition 14, Proposition 12 and The-
orem 13, together with the fact that if 7 = AI'= A, then
JET=A O

Completeness proofs for G\% have usually been given for
Hilbert-style systems, which consist of intuitionistic predi-
cate logic extended by additional axioms, such as

Qs Vx(CVA(x)) — (CVVxA(x))
(x not free in C)
LIN (A—B)V(B—A)
1509 Vx——A(x) — =—VxA(x)
1S0] Vx— AA(x) — = ATxA(x)
FIN(n) (T —p1)V(p1 = p2)V...V(pn—2 — pn-1)V
V(pn—t — L)

LIN, of course, is the most fundamental additional schema
in this context. Dummett [11] showed that LIN suffices for

the axiomatization of propositional infinite-valued Godel
logic. Horn [13] showed that IPL + LIN + QS is complete
for first-order intuitionistic logic on linearly-ordered Heyt-
ing algebras, which is easily seen to coincide with Gy )
(without A). The authors show elsewhere [14, 7] that this
system axiomatizes not only Gy 1) but any Gy where V' is
an uncountable Godel set in which 0 is not isolated, and that
the addition of ISOq results in an axiomatization of Gy for
any uncountable Gddel set in which 0 is isolated.

Takeuti and Titani [18] have used and axiomatized the
A\ operator (there denoted by [J) in the context of their in-
tuitionistic fuzzy logic, which coincides with G[%Al]. The A
operator for [0, 1]-valued Godel logics was also introduced
in [2], and was given an axiomatization there using the fol-
lowing axioms:

Al AAV-AA

A2 A(AVB)— (AAVAB)
A3 NA—A

N ANA— ANA

A5 NA(A—B)— (AA— AB)
AR AFAA

The hypersequent axiomatization for A above was intro-
duced and shown complete for the propositional case in [5].

It is an easy exercise to show that the various axioms
listed above (with the exception of FIN(n), 1SOg, 1SO;) are
indeed derivable in HGIF. Conversely, using the trans-
lation of hypersequents G = (I';=A;); into the formulas
G* = V,;(AT; — B;), where B; = L if A; =0, and = B; if
A; = {B;}, one can show that G is provable in HGIF iff G*
is provable in the corresponding Hilbert-type system. This
latter fact has been used in completeness arguments for HIF
[3] and related systems hitherto.

4. Topology of Godel Sets

All the following notations, lemmas, theorems are car-

ried out within the framework of Polish spaces, which are
separable, completely metrizable topological spaces. For
our discussion it is only necessary to know that R is such a
Polish space.
Definition 16 (limit point, perfect space, perfect set). A limit
point of a topological space is a point that is not isolated, i.e.
for every open neighborhood U of x there is a point y € U
with y # x. A space is perfect if all its points are limit points.
A set P C R is perfect if it is closed and together with the
topology induced from R is a perfect space.

It is obvious that all (non-trivial) closed intervals are per-
fect sets, also all countable unions of (non-trivial) intervals.
But all these sets generated from closed intervals have the
property that they are ‘everywhere dense’, i.e., contained in
the closure of their inner component. There is an example



of a set which is perfect but is nowhere dense, the Cantor
set:

Example (Cantor Set). The set of all numbers in the unit
interval which can be expressed in triadic notation only by
digits 0 and 2 is called Cantor set D.

Fact 17. The Cantor set is perfect.

It is possible to embed the Cauchy space into any perfect
space, yielding the following proposition:

Proposition 18. If X is a nonempty perfect Polish space,
then the cardinality of X is 2% and therefore, all nonempty
perfect subsets, too, have cardinality of the continuum.

Every Polish space can be partitioned into a perfect ker-

nel and a countable rest. This is the well known Cantor-
Bendixon Theorem:
Theorem 19 (Cantor-Bendixon). Let X be a Polish space.
Then X can be uniquely written as X = PUC, with P a
perfect subset of X and C countable and open. The subset P
is called the perfect kernel of X (denoted with X*).

As a corollary we obtain that any uncountable Polish

space contains a perfect set, and therefore, has cardinal-
ity 20,
Lemma 20. Suppose that M C [0, 1] is countable and P C
[0,1] is perfect. Then there is a strictly monotone continu-
ous map h: M — P. Furthermore, if both M and P contain 0
or 1, then h preserves 0 and 1.

Proof. Let w be an injective monotone continuous map
from M into 2%, i.e. w(m) is a fixed binary representation
of m. For dyadic rational numbers (i.e. those with different
binary representations) we fix one possible.

Let i be the natural bijection from 2® (the set of infi-
nite {0, 1}-sequences, ordered lexicographically) onto D,
the Cantor set. i is an order preserving homeomorphism.

Since P is perfect, we can find a continuous strictly
monotone map ¢ from the Cantor set D C [0, 1] into P, and
if P> 0,1, ¢ can be chosen so that ¢(0) =0, ¢(1) = 1.

Now h = coiow is also a strictly monotone continuous
map from M into P, and #(0) =0, if 0 € M, and h(1) =1,
ifleM. O

Corollary 21. A Gddel set is uncountable iff it contains a
non-trivial dense linear subordering.

Proof. 1f: Every countable non-trivial dense linear order
has order type m, 1+m, n+1, or 14+1n+1 [15, Corol-
lary 2.9], where 1 is the order type of Q. The completion
of any ordering of order type M has order type A, the order
type of R [15, Theorem 2.30], thus the truth value set must
be uncountable.

Only if: By Theorem 19, V* is nonempty. Take M = Q
in Lemma 20, and P = V*. The image of M under the G-
embedding from M into the perfect kernel of V is a non-
trivial dense linear subordering. O

Theorem 22. Let V be a Godel set with non-empty perfect
kernel V=, and 0 and 1 € V=. Then I Iy B iff Il 1 B.

Proof. If: Lemma 6.

Only if: Suppose I"¥(o 1) B, i.e., for some J into [0, 1],
J(A)=1forall A €I" and J(B) < 1. By Fact 7, there is an
J' < 7T such that |J| is countable. Then M = [J{Val(T",A) :
A € TU{B}} has cardinality at most Xy, thus there exists a
b € (0,1) such that b ¢ M, 3'(B) < b < 1. Furthermore,
there are values ¢ and u, ¢ < u, and such that [0,/]NV
and [u,1]NV are perfect. By Lemma 20, there are con-
tinuous strictly monotone A¢: [0,b]N (M U{b}) — [0,4]NV
with ,(0) =0, and A, : [b,1]N(MU{b}) — [u,1]NV with
h,(1) = 1. Define J into V by

for all atomic A. By induction one shows that the above
property extends to all formulas. Since J'(A) = 1 for all
A €T and J'(B) < b, we have that J(A) =1 forall A € T,
and J(B) < £ < 1, and thus T ¥y B. O

5. Completeness of HGIF

The main result of this paper is a direct proof of strong
completeness for HGIF for any Godel set V which is un-
countable and 0, 1 contained in the perfect kernel of V.
Due to Theorem 22 we only have to show completeness for
V =[0,1]. We use the method of Takano [16].

Theorem 23. [fT"lFjg 1) A, then ' A.

The proof proceeds in several steps. We show that if

I' ¥ A, then there is an interpretation J into [0, 1] so that
JI)=1butJ(A) < L.
Lemma 24. Suppose I' ¥ A. Let ay, ay, ... be a sequence
of free variables which do not occur in TU{A}, let T be
the set of all terms in the language of T U{A} together with
the new variables a, ay, ..., and let F = {F1,F,...} be
an enumeration of the formulas in this language in which
a; does not appear in Fi, ..., F; and in which each formula
appears infinitely often.

Let To =T and Ag = {A}. (a) If Ty - A U{F,}, then
L1 =T, U{F,} and Ayy1 = A, (D) IFT, ¥ A U{F,}, then
Ihr1 =Ty and A1 = A U{F,,B(ay)} if F, =VxB(x), and
Ani1 = A, U{F,} otherwise.

Then ', ¥ A, for all n.

Proof. By the assumption of the lemma, I'g ¥ Ay.

Suppose that I';, ¥ A, we show that this is also the case
forn+1.

(a) Suppose that I', U{F, } F A,. Then for some I C /T,
and By, ..., By € Ay, AT, AF, =B | ...| AT, AF, = By
is provable. But by the assumption of case (a), also
AI'=B; | ...| AT'=By | AI'=F, is provable. From



the latter we get AI" =By | ... | AI"= By | AT = AF, by
(Acl), and then k applications of cut result in AT” = By |
... | AT = By. But by induction hypothesis, I, ¥ A,,.

(b) In this case, it is obvious that I,y ¥ Ayqq if
F, # VxB(x). Now suppose F;, = VxB(x), and T, - A, U
{F,,B(a,)}. Then for some I C; I’ and By, ..., By € Ay,
HGIF proves AI'=B; | ... | A= By | A" =VxB(x) |
A" = B(ay,). Since a, does not appear in F;, or Iy, Ay, ay,
satisfies the eigenvariable condition. By (= V) and exter-
nal contraction, we’d have I', - A, U{F,} contrary to the
assumption. O

Let I'™ = U2 I'; and A* = |2y A; as defined in the pre-
ceding lemma. We have:
Lemma 25. (1) " F A" (2)T" = F\A* 3)IfT*+
{Bi1,...,By}, then B; € T* for some i. In particular, if
I+ B, then BeT* (4)If B(t) € T for every t € T,
then VxB(x) € T*.

Proof. (1) Otherwise there would be a k so that I, - Ay,
contrary to Lemma 24. (2) Each F;, is eitherin ', 11 or A,41,
and if for some n, F, € I'™* N A*, there would be a k so that
F, € T, NAy, which is impossible since ['; ¥ Ag. (3) Suppose
not, thenfori=1, ..., n, B; ¢ I'*, and hence, by (2), B; € A*.
But then I'™* - A*, contradicting (1). (4) Otherwise, by (2),
VxB(x) € A* and so there is some n so that VxB(x) = F,
and A, contains VxB(x) and B(a,). But, again by (2),
then B(a,) ¢ T O

We will make use of (3) often in what follows, in particu-
lar the case where i = 1 (i.e., I'* is closed under provability).
Note in particular that if I'™* = B is provable, then AI'* = B
is also provable by (A =), and hence I'* - B.

Define relations < and = on ¥ by
BXC&sB—Cel* and B=C&B=<CAC=B.
Then < is reflexive and transitive, since for every B, - B —
BandsoB—BeIl*, andif B—Ce€Il*andC—DeTI™*
then B— D € I'*, since B— C,C — D+ B — D. Hence,
= is an equivalence relation on ¥. For every B in ¥ we
let |B| be the equivalence class under = to which B belongs,
and F /= the set of all equivalence classes. Next we define

the relation < on ¥ /= by

B|<|C|&BC&B—Cel™.

Obviously, < is independent of the choice of representatives
B,C.

Lemma 26. (¥ /=,<) is a countably linearly ordered
structure with distinct maximal element | T| and minimal el-
ement | L|.

Proof. Since ¥ is countably infinite, F /= is countable.
For every Band C, - {B — C,C — B} by

B=B|C=C
B.C=B|B,C=C

B=C|C=B
=B—C|=C—B

and so either B— C €I or C — B € I'* by (3), hence <
is linear. For every B, FB — T and - L — B, and
so B— T €I and L — Be&TI™ hence |T| and |L]| are
the maximal and minimal elements, respectively. Pick any
Ain A*. Since T — LFA, and A¢T*, T — L ¢TI™
so | T|# L] O

We abbreviate | T| by 1 and | L| by 0.
Lemma 27. The following properties hold in (F |=,<):
1. |B|=1&Ber"

|BAC| =min{|B|,|C|}.
|BV C| = max{|B|,|C|}.
|B—C|=1if|B|<|C
|-~B| =1if |B| = 0; |-~B| = 0 otherwise.

|AB| =1if |B| =1; |AB| = 0 otherwise.
|3xB(x)| = sup{|B(t)| : 1 € T}.

|VxB(x)| = inf{|B(t)| : t € T}.

B — C| = |C| otherwise.

’

o N & ok WD

Proof. (1)If |B| =1, then T — B € T'*, and hence B € T"*.
And if BeT™ then T — Be€I* since BT — B. So
| T| < |B|. It follows that | T| = |B| as also |[B| < |T]|.

(2) From+BAC — B,-FBANC —Cand D — B,D —C}+
D — BAC forevery D, it follows that |[BAC| =inf{|B|,|C|},
from which (2) follows since < is linear. (3) is proved anal-
ogously.

(4) If |B| < |C|, then B— C €T, and since T € T'™* as
well, |[B — C| =1. Now suppose that |B| € |C|. From +
BA (B — C) — C it follows that min{|B|,|B — C|} < |C|.
Because |B| £ |C|, min{|B|,|B — C|} # |B|, hence |B —
C| <|C|. On the other hand, F C — (B —C), so |C| < |B—
C|.

(5) Immediate by (4).

(6) Suppose |B| =1, i.e., B€ " and hence I'* I B, i.e.,
for some I" C; I'™*, A" = B. Then, by (= A), AT* = AB
is also provable, hence I'* = AB, hence AB € I'™*.

Now suppose |B| # 1, i.e., B¢ I'*. Then AB ¢ I'*, since
+ AB — B. Using the derivation

AB=AB
AB=|=AB N
=-AB|=AB

Acl

one sees that either AB€I™ or ~ABeT™. Since AB¢T™,
- ABeTl* ie., |AB|=0.



(7) Since + B(t) — 3xB(x), |B(t)| < |3xB(x)| for ev-
ery t € 7. On the other hand, for every D without x free,

(3]

|B(t)| < |D| foreveryt € T
& B(t)—DeI” foreveryr € T
= Vx(B(x) = D)er” by property (5) of I™* [4]
= dxB(x)—>DeT" since Vx(B(x) — D) - 3xB(x) — D
& B <DL,
(8) is proved analogously. O [5]

Proof of Completeness Theorem. Suppose I' ¥ A. Then, by
the preceding lemmas, J defined by |J| = 7 and P (ii) =
|P(i)| is an interpretation into (¥ /=, <) with J(A) < 1 and
J(B)=1forall BeT. (¥ /=,<) is countable, let 0 = ay,
1=ay, ay, ... be an enumeration. Define 2(0) =0, h(1) =
1, and for n > 1, let h(ay,) = (h(ar) + h(ay))/2 where a; =
max{a; :i <n,a; < a,}, and a, = min{a; : i < n,a; > a,}.
Then i : (F /=,<) — [0,1]NQ s clearly strictly monotone
and preserves infs and sups.

By Lemma 20 there exists a G-embedding A’ : [0,1] N
Q — [0,1]. Then J = Jy., is an interpretation into [0, 1]
with J(A) < 1and J(B) =1forall BET. O

Theorem 28. Suppose 0, 1 € V. Then ' = A iff T IFy A.

Proof. By Theorems 22, 13 and 23. O

6. Conclusion and Open Problems

The contributions of the present paper are mainly the di-
rect method of the completeness proof used for HGIF. It
combines ideas of Takano’s with the work of Baaz, Ciabat-
toni, and others on hypersequent formulations of first-order
infinite valued logics. The main remaining open problem
is the formulation of hypersequent rules corresponding to
ISOg and 1SO;, which would result in an axiomatization of
G‘% for V uncountable and with 0 or 1 isolated. The diffi-
culty in this respect is that the rules must be formulated so
that cut-elimination holds for HIF [3] and HGIF [10] can
also be adapted.
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