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The aim of this paper is to emphasize the fact that for all finitely-many-valued log-
ics there is a completely systematic relation between sequent calculi and tableau
systems. More importantly, we show that for both of these systems there are
always two dual proof systems (not just only two ways to interpret the calculi).
This phenomenon may easily escape one’s attention since in the classical (two-
valued) case the two systems coincide. (In two-valued logic the assignment of
a truth value and the exclusion of the opposite truth value describe the same
situation.)

We employ the usual definitions of first order languages, many-valued inter-
pretations and induced valuation functions (valM) (see e.g. Carnielli [1987]).
In the following V = {v1, . . . , vm} always denotes the set of truth values of a
logic.

To stress the duality of the two types of calculi we shall define them simul-
tanously:

1. Definition An (m-valued) sequent is an m-tuple of finite sets Γi of formulas,
denoted as Γ1 | Γ2 | . . . | Γm. (As usual we abbreviate Γ ∪∆ by Γ,∆ and Γ ∪{A}
by Γ,A.)

2. Definition An interpretation M is said to p(n)-satisfy a sequent Γ1 | . . . |
Γm, if there is an i (1 ≤ i ≤ m) and a formula F ∈ Γi, s.t. valM(F ) = ( 6=)vi.

A sequent is called p(n)-valid, if it is p(n)-satisfied by every interpretation.

The concept of p-satisfiability was used by Rousseau [1967] in his formulation
of many-valued sequents, whereas n-satisfiablity is used in Carnielli’s [1991]
calculus (compare also Schröter [1955] and Borowik [1985]).

∗This paper was read at the Second Workshop on Theorem Proving with Analytic Tableaux,
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3. Definition An introduction rule for a connective 2 at place i in the logic L
is a schema of the form: 〈

Γ j
1 , ∆

j
1 | . . . | Γ j

m, ∆
j
m

〉
j∈I

Γ1 | . . . | Γi,2(A1, . . . , An) | . . . | Γm
2:i

where the arity of 2 is n, I is a finite set, Γl =
⋃

j∈I Γ
j
l , ∆j

l ⊆ {A1, . . . , An}
It is called p(n)-admissible, if for every interpretation M the following are

equivalent:

(1) 2(A1, . . . , An) takes (does not take) the truth value vi.

(2) For all j ∈ I, M p(n)-satisfies the sequents ∆j
1 | . . . | ∆j

m.

4. Example We state rules for the implication of the three-valued Gödel logic
G3 with V = {f, u, t}.

Let the expression Av (A6=v) denote the statement “A takes (does not take)
the truth value v”. Since (A ⊃ B)t iff (Af ∨ Au ∨ Bt) ∧ (Af ∨ Bu ∨ Bt) we get
the following p-admissible introduction rule for position t:

Γ,A | ∆,A | Π,B Γ ′, A | ∆′, B | Π ′, B
Γ, Γ ′ | ∆,∆′ | Π,Π ′, A ⊃ B

⊃:t

Because of (A ⊃ B)t iff Af ∨ (Au ∧ Bu) ∨ Bt we get by negating both sides of
the equivalence the following n-admissible introduction rule for the implication
at position t:

Γ,A | ∆ | Π Γ ′ | ∆′, A,B | Π ′ Γ ′′ | ∆′′ | Π ′′, B
Γ, Γ ′, Γ ′′ | ∆,∆′, ∆′′ | Π,Π ′, Π ′′A ⊃ B

⊃:t

It should be stressed that admissible introduction rules for a connective at a
given place are far from being unique: Every p(n)-admissible introduction rule for
2(A1, . . . , An) at place i corresponds to a conjunction of disjunctions of some Avl

(A6=vl) which is true iff 2(A1, . . . , An) takes (does not take) the truth value vi.
Any such conjunctive normal form for 2(A1, . . . , An)vi will do. In particular,
the truth table 2̃ for a connective 2 immediately yields a complete conjunctive
normal form. For p-sequents the corresponding rule is as in Definition 3, with:
I ⊆ V n is the set of all n-tuples j = (w1, . . . , wn) of truth values such that
2̃(w1, . . . , wn) 6= vi; and ∆j

l = {Ak | 1 ≤ k ≤ n, vl 6= wk}. For n-sequents we
get: I ⊆ V n consists of all n-tuples j = (w1, . . . , wn) of truth values such that
2̃(w1, . . . , wn) = vi; and ∆j

l = {Ak | 1 ≤ k ≤ n, vl = wk}.
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5. Definition An introduction rule for a quantifier Q at place i in the logic L
is a schema of the form: 〈

Γ j
1 , ∆

j
1 | . . . | Γ j

m, ∆
j
m

〉
j∈I

Γ1 | . . . | Γi, (Qx)A(x) | . . . | Γm
Q:i

where I is a finite set, Γl =
⋃

j∈I Γ
j
l , ∆j

l ⊆ {A(a1), . . . , A(ap)}∪{A(t1), . . . , A(tq)}.
The al are metavariables for free variables (the eigenvariables of the rule) sat-
isfying the condition that they do not occur in the lower sequent; the tk are
metavariables for arbitrary terms.

Q:i is called p(n)-admissible, if for every interpretation M the following are
equivalent:

(1) (Qx)A(x) takes (does not take) the truth value vi under M.

(2) For all d1, . . . , dp ∈ D, there are e1, . . . , eq ∈ D s.t. for all j ∈ I, M
p(n)-satisfies ∆′j1 | . . . | ∆′

j
m where ∆′jl is obtained from ∆j

l by instantiating
the eigenvariable ak (term variable tk) with dk (ek).

The truth function Q̃ for a (distribution) quantifier Q immediately yields
admissible introduction rules for place i in a way similar to the method described
above for connectives: For p-sequents let I = {j ⊆ V | Q̃(j) 6= vi}. Then the rule
is given as in Definition 5, with∆j

l = {A(ajw) | w ∈ j, w 6= vl}∪{A(tj) | vl ∈ V \j}.
In contrast, for n-sequents we take I = {〈j, i〉 | j ⊆ V ∧ i ∈ j ∧ Q̃(j) = vi} and

∆
〈j,i〉
l = {A(ajl ) | l ∈ j} ∪ {A(tj) | i = l}.

Again, it should be stressed that in general these are not the only possible
rules.

6. Definition A p-sequent calculus for a logic L is given by:

(1) Axioms of the form: A | A | . . . | A, where A is any formula,

(2) For every connective 2 and every truth value vi a p-admissible introduction
rule 2:i,

(3) For every quantifier Q and every truth value vi a p-admissible introduction
rule Q:i,

(4) Weakening rules for every place i:

Γ1 | . . . | Γi | . . . | Γm

Γ1 | . . . | Γi, A | . . . | Γm
w:i

194



(5) Cut rules for every pair of truth values (vi, vj) s.t. vi 6= vj:

Γ1 | . . . | Γi, A | . . . | Γm ∆1 | . . . | ∆j, A | . . . | ∆m

Γ1, ∆1 | . . . | Γm, ∆m

cut:ij

A n-sequent calculus for a logic L is given by:

(1) Axioms of the form: ∆1 | . . . | ∆m, where ∆i = ∆j = {A} for some i, j s.t.
i 6= j and ∆k = ∅ otherwise (A is any formula),

(2) For every connective 2 and every truth value vi an n-admissible introduc-
tion rule 2:i,

(3) For every quantifier Q and every truth value vi an n-admissible introduction
rule Q:i,

(4) Weakening rules (identical to the ones tor p-sequent calculi)

(5) The cut rule:
〈Γ i

1 | . . . | Γ i
i , A | . . . | Γ i

m〉
m
i=1

Γ1 | . . . | Γm
cut:

where Γl =
⋃

1≤j≤m Γ
j
l .

7. Theorem (Soundness and cut-free Completeness) For every p(n)-sequent
calculus the following holds: A sequent is p(n)-provable without cut rule(s) iff it
is p(n)-valid.

Analytic tableaux for many-valued logics have been investigated by
Surma [1977] and Carnielli [1987]. Hähnle [1991], based on the aforemen-
tioned work, studied the applicability of these systems for automated theorem
proving. Hähnle introduced the notation of sets-of-signs which allows a more
efficient representation of tableaux and presented streamlined calculi for certain
classes of logics. Here, we want to stress the striking similarity between tableaux
systems and sequent calculi: In fact, there is an immediate correspondence be-
tween cut-free sequent calculus proofs and closed tableaux. Again, there are two
dual systems for any logic.

8. Definition A signed formula is an expression of the form {w}A,
where w ∈ V .
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9. Definition A tableau is a downward tree of sets of signed formulas where
every set is obtained from a set preceding it in the tree by application of one of
the rules of the tableau system:

Let R:i be a p(n)-admissible introduction rule for a connective or a quanti-
fier as given in Definitions 3 and 5, where at least one of the ∆j is nonempty.
Moreover, let F be the formula being introduced (i.e., F ≡ 2(A1, . . . , An) or
F ≡ (Qx)A(x)).

The p(n)-tableau rule corresponding to R:i is:

Γ, {vi}F〈
Γ,

⋃m
k=1∆k

〉
j∈I

where ∆k is obtained from ∆k by replacing every formula A ∈ ∆k by {vk}A. A
p(n)-analytic tableau is called closed, if every leaf contains formulas {vk}A for
all k ∈ {1, . . . ,m} (for k ∈ {i, j}, i 6= j).

10. Theorem Every closed p(n)-tableau with the root
⋃
Γ k corresponds to a

cut-free p(n)-sequent calculus proof of Γ1 | . . . | Γm.

We finally remark that also resolution calculi can be derived from sequent
calculi: The introduction rules for sequents convert into reduction rules that
translate finite sets of assignments of truth values to formulas into clause
forms. (Clauses are finite sets of assignments of truth values to atomic formu-
las; cf. Baaz and Fermüller [1992]). P-sequent calculi have been used in
the definition of natural deduction systems for many-valued logics in Baaz et
al. [1993b]. See Zach [1993] for a detailed discussion of the connections, and
proofs of soundness, completeness, and cut-elimination for both p- and n-sequent
calculi.
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