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Abstract

A general class of labeled sequent calculi is investigated, and necessary
and sufficient conditions are given for when such a calculus is sound and
complete for a finite-valued logic if the labels are interpreted as sets of
truth values (sets-as-signs). Furthermore, it is shown that any finite-
valued logic can be given an axiomatization by such a labeled calculus
using arbitrary “systems of signs,” i.e., of sets of truth values, as labels.
The number of labels needed is logarithmic in the number of truth values,
and it is shown that this bound is tight.
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1 Introduction

Looking at the definition of Gentzen’s sequent calculus LK for classical logic,
one is struck by the obvious connection between the introduction rules and
the truth-table semantics. This connection can be exploited: the rules can be
used to extract models; this is the essential idea of Schiitte’s completeness proof
for LK. A similar connection can also be established for LJ. A construction
similar to Schiitte’s provides a completeness proof relative to Kripke models for
intuitionistic logic [17].

These are examples for two contrary aims in logic. The first is to find
calculi that characterize a given semantics, the second is to find semantics for a
logic that is only given as a calculus. Intuitionistic logic and modal logics were
originally investigated in pursuit of the second aim, and currently, e.g., linear
logic is so investigated. For classical logic and many-valued logics one has been
in the position of the first aim: one had the matrix semantics and was looking
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for axiomatizations. The results for many-valued logic have often been similar
to the classical case, using many-placed sequent calculi or tableaux systems with
truth values as signs (cf. [2, 4, 6, 11, 13, 16]). In a way, the first aim has been
reached, at least for all finite-valued logics, although there are further questions,
e.g., of finding calculi with specific properties (see, e.g., [1]).

The connection between syntax and semantics in general is rather opaque
and little understood. In the present paper we investigate this connection for
the class of labeled calculi* A labeled calculus works on multisets of labeled
propositional formulas (in LK, we would have two labels, expressed by the left
and right sides of the sequent).

We give necessary and sufficient conditions for a labeled sequent calculus
to be considered as a finite-valued logic in the sense that the labels can be
interpreted as sets-as-signs with respect to which the calculus is sound and
complete. It turns out that the central question is: Which cut rules can be
eliminated in the style of Gentzen?

In the reverse direction, we show that for any finite-valued logic and any
suitable system of sets-as-signs (i.e., sets of truth-values) it is possible to con-
struct a sequent calculus (which satisfies the above conditions). We also obtain
bounds on the number of truth values of a logic extracted from a labeled cal-
culus by means of Sperner’s Lemma. These bounds imply that roughly log, m
signs suffice for an m-valued logic.

The paper is structured as follows. Section 2 provides basic concepts con-
cerning labeled sequent calculi. Section 3 reviews definitions concerning finite-
valued logics. Section 4 deals with cut elimination; it describes an algorithm for
checking whether cuts are eliminable in the style of Gentzen. Section 5 defines
the notion of a rich calculus and shows how to construct a finite-valued logic for
a given rich sequent calculus. Section 6 deals with the opposite direction: given
a finite-valued logic it shows how to obtain a corresponding labeled sequent cal-
culus. Section 7 establishes the exponential relationship between the number of
truth values and the number of labels.

2 Labeled Sequent Calculi

A propositional language consists of an enumerable set of propositional variables
A, B, ..., and a fixed finite supply of propositional connectives Oy, Oy, .... The
arity of a connective O is denoted by ar(0). Formulas are defined as usual by
induction, i.e., propositional variables are formulas, and if O is a connective and
Ay, ..., Aar(ny are formulas then O(Ay, ..., Ay(ny) is a formula. Furthermore,
let L be a finite set of objects called labels. A labeled formula is an expression

of the form I: A, where [ € L, and A is a propositional formula.

4A remark concerning the relationship between the labeled calculi studied here and Gab-
bay’s labeled deductive systems (LDS) seems in order. Both frameworks employ a system of
labels to mark formulas in a derivation. Methodologically, the two frameworks have different
aims: Gabbay constructs LDS for given logics, we construct logics for given labeled calculi.
LDS are mainly used to deal with substructural logics; in our labeled calculi, all structural
rules are present and there is no label algebra involved.



Labels may be thought of as syntactic markers by which to keep track of the
status of formulas in the course of a derivation. Classical examples of the use of
labeled formulas in deductive systems are the signed variants of Beth tableaux
for classical [14] and many-valued logics [5, 8], where truth values or sets of
truth values function as labels. Calculi using labeled formulas are called labeled
calculi.

A labeled sequent is a finite multiset of labeled formulas. We denote labeled
sequents by uppercase Greek letters, and write I A for ' U A and I,1: A for
I'u {l: A}. An atomic sequent is a sequent consisting only of formulas I: A,
where A is a propositional variable.

Remark 2.1 To follow Gentzen’s original notion of sequents more closely we
could have defined sequents as finite sequences of labeled formulas. Then a
Gentzen sequent I' — A would correspond to a sequent with two labels marking
the formulas on the left hand and right hand side of the arrow, respectively. For
our purpose the order of formulas within a sequent is irrelevant, therefore we
use multisets instead of sequences.

A labeled sequent calculus consists of a finite set of rules. In this paper, we
concentrate on a particular kind of labeled sequent calculi, which might be
called strictly analytic. Since no other sequent calculi are going to be considered,
the qualifier will be omitted. In the following, A, A;, As,... denote formula
variables.

WEAKENING. For every | € L,
ﬁ weak: [

CONTRACTION. For every I € L,

A LA

Tl A cntr: ]

Weakening and contraction are called structural rules.

PROPOSITIONAL RULES. An introduction rule for a propositional connective O
at position [ € L is of the form
A, - T,A
I:0(A,..., Aar(g))

O:1

where the formulasin A;, 1 < < ¢, are of the form I': A; for some 1 < j < ar(0)
and I’ € L.

The labeled formula I:O(Ay, ..., Ay(oy) is called main formula, the formulas
in A; are called auxiliary formulas, and the formulas in I" are the side formulas
of a rule.



Remark 2.2 The rules as stated above are called multiplicative: the side for-
mulas of all premises and of the conclusion are identical. In additive rules each
premise may have side formulas different from the other premises; the conclu-
sion contains all these side formulas. In our case the choice is just a matter of
taste since the calculi contain unrestricted weakening and contraction rules.

Calculi may be complemented by axioms and cuts.

AXx10MS. An axiom schema is of the form I: A4, ...,l;: A for some {l1,...,l;} C
L, £ > 1. Every instance of an axiom schema is called axiom. In an atomic
axiom, A has to be an atomic formula.

An axiom schema can be identified with the set {l;,...,l;} of involved labels.
The set of all axiom schemas in a given sequent calculus is denoted by Az; it
can be regarded as a subset of 2. An axiom is called proper if £ > 2 and none
of its proper subsets is an axiom.

Without loss of generality we assume that all supersets of an axiom are again
axioms; the supersets of an axiom could be derived by the weakening rule any-
way. In particular, the set L of all labels is an axiom, provided there is at least
one axiom.

CuT RULES. A cut (rule) is of the form

riig:A - i A
r

for some {ly,...,l;} CL, £> 1.

A cut rule can be identified with the set {ly,...,l;} of involved labels. The
set of all cut rules in a given sequent calculus is denoted by Cuts; it can be
regarded as a subset of 2L, A cut is called proper if £ > 2 and none of its proper
subsets is a cut.

Without loss of generality we assume that all supersets of a cut rule are again
cut rules; applications of cut rules based on supersets can always be replaced by
the smaller cut rule, discarding the parts of the proof concerning the superfluous
labels. In particular, the set L of all labels is a cut, provided there is at least
one cut.

Remark 2.3 It would of course be possible to allow cuts with more than one
occurrence of the cut formula in a premise. However, such an extended cut rule
(together with weakenings) implies the soundness of several simple cut rules of
the above form, namely those obtained by deleting all but one occurrence of the
cut formula in each premise. On the other hand, given the latter cut rules the
original cut can be simulated.

A derivation of a labeled sequent A from labeled sequents I7,...,I, is an

upward rooted finite tree of sequents, where each leaf node is an instance of an
axiom or one of the I, each internal sequent follows from the ones immediately



above it by applying one of the rules, and the root sequent is A. A proof of Aisa
derivation from axioms alone. A refutation of sequents I,..., I, is a derivation

of the empty sequent from these sequents. To express that a formula F' has a
proof in a particular calculus C we write C - F'.

3 Finite-valued Propositional Logics

Definition 3.1 A matriz M for a propositional language consists of a finite
set, V, of at least two truth values and a total truth function 8: V2" (®) - V for
every connective 0. A matrix (together with the corresponding propositional
language) is called a |V|-valued propositional logic.

Unless stated otherwise we assume in the following that a fixed matrix M is
given.

Definition 3.2 An interpretation I is a function mapping propositional vari-
ables to truth values. It is extended to a valuation function valy on
formulas, defined inductively by vali(4) = I(A) for variables A, and
valp (d(Aq,..., Aar(g))) = ﬁ(vall(Al), ... ,Vah(Aar(g))).

Definition 3.3 A subset of V is called sign. A set of signs, S, over V is called
system of signs if for every v € V there is a subset S,, C S such that [ S, = {v}.

Note that |S| > 2 since |V| > 2. Furthermore, each system of signs contains a
set of non-empty signs, whose intersection is empty.

Proposition 3.4 Suppose S is a system of signs over V.. Then, for allv € V
there is T, C S such that V' \ {v} = |JT,.

Proof By definition, for each v € V there is S,, C S such that {u} =) Sy. So

we can write
viivi= U Ns.=NUs

ueV\{v} i
for some S! C S by distributivity. Obviously, for each i, V'\ {v} C |JS; and so
for at least one i, V' \ {v} = S!. O

Definition 3.5 A labeled formula expression is a formula built up from labeled
formulas using A, V, and =. Semantically, a sequent {ly: Ay,...,l,: A} can
be identified with the labeled formula expression l;: A1 V -V [,,: A,,. A label
assignment la is a function mapping labels to signs, la: L — 2V,

A labeled formula I: A is intended to mean that A takes (under a given inter-
pretation I) a truth value in la(l). So we write I |=, I: A iff valy(A4) € la(l) and
extend this in the obvious way to signed formula expressions. More precisely:



Definition 3.6 Let I be an interpretation. The valuation function for labeled
formula expressions, lvaly, is defined as

(a) lvalp(l: A) = T if vali(A) € la(l), and = L otherwise.

(b) lvaly(=F) =T if lvaly(F) = L, and = L otherwise.

(c) valy(Fy A Fp) = T if lvalg(Fy) = lvali(F2) = T, and = L otherwise.
(d) vali(Fy vV Fy) = L if lvaly(Fy) = lvali(Fy) = L, and = T otherwise.

We write I =), F if lvalj(F') = T and I %, F otherwise. F is called satisfiable
(valid) if I =, F holds for some (all) I. To express that a formula F is valid in
a particular logic M we write M =, F.

In other words, labeled formula expressions are nothing but formulas in classical
two-valued logic based on a particular kind of atomic formulas, namely labeled
formulas.

4 Cut Elimination

The central proof-theoretic property of an analytic calculus is the eliminability of
all applications of given cut rules (Gentzen’s Hauptsatz). In this paper, however,
we use the calculation of eliminable cut rules for a given cut-free calculus to
determine the truth values of the many-valued logic hidden in the calculus. The
correspondence between reduction of cuts and resolution has been used in [3] to
establish a cut-elimination theorem for certain first-order finite-valued calculi.

Definition 4.1 (Reducibility) A cut rule C given by the labels {l;,...,I,}
is reducible with respect to cut rules Ci,...,C,, and introduction rules
O:ly,...,0:1, for some operator O if there is a refutation of the set {Aé
1<j<¥,1<i<n} of sequents using only structural rules and the cut rules
Ci,...,Cp. The Al are the auxiliary formulas of the introduction rule O:1;
(see section 2); furthermore, the formula variables Ay,..., Aoy are regarded
as propositional variables. To distinguish this kind of refutation from others we
call it reducing refutation.

The refutation should be regarded as a schematic derivation. Obviously we may
add arbitrary sequents I" as side formulas and substitute arbitrary propositional
formulas for the A; and still obtain a valid derivation in the calculus.

Definition 4.2 (Local Admissibility) A set C of cut rules is locally admis-
sible if each cut rule in C is reducible with respect to C and all introduction
rules.

Note that in general there may be several introduction rules for an operator and
a label. In this case local admissibility means that one has to check reducibility
with respect to each of these rules.



Definition 4.3 (Global Admissibility) A set C of cut rules is globally ad-
missible if it is locally admissible and for each derivation from atomic sequents
using arbitrary cut formulas there is a derivation of the same end-sequent using
only atomic cuts.

Proposition 4.4 Reducibility is decidable.

This follows immediately from the following lemma. The basic idea is to use
propositional hyperresolution in classical (two-valued logic) for the construction
of the refutations. Here we only review the basic definitions of hyperresolution;
for a comprehensive treatment as well as for the proof of its completeness and
correctness we refer the reader to [7, 10].

Definition 4.5 (Hyperresolution) A literalis a negated or unnegated propo-
sitional variable. A clause is a finite multiset of literals. It is called negative
(positive) if it contains only negated (unnegated) literals. The clause C U D is
called (binary) resolvent of the two clauses {A} U C and {-A} U D, where A
is a propositional variable. A clause C is a called factor of D if C = D, or if
C is a factor of a factor of D, or if C = {A}UFE and D = {A, A} U E for some
literal A and some clause E.

A clash sequence (C;Dy,...,D,) is a tuple of clauses where the D; are
positive clauses called satellites and C' is a non-positive clause called nucleus of
the clash sequence. Let Cy = C, and let C; be a binary resolvent of D; and
C;_q for 0 < i <n. If D, is a positive clause, then the factors of D,, are called
hyperresolvents of (C; Dy, ..., D,).

A hyperresolution deduction of some clause D from some input clauses
Ci,...,Cyis an ordered tree of clauses with root D, where the leaf nodes are in-
put clauses and each internal clause is the hyperresolvent of the clash sequences
formed by its immediate predecessor clauses.

Definition 4.6 The clause corresponding to a sequent I' = {l1: Ay,..., 1, Ap}
is given by

CIS(F) == {-Zjll:A17"'3‘ZDln:An}

where the P;. 4, are propositional variables uniquely associated with the labeled
formulas I;: A;.

The clause corresponding to a cut rule C = {ly,...,l,,} and a formula A is
given by

CIS(CaA) = {_'-Pll:A:-":_']Dln:A}

where the P,.4 are propositional variables uniquely associated with the labeled
formulas 1;: A.

Lemma 4.7 A cut rule C = {ly,...,l,} is reducible with respect to cut rules
Ci,...,Ch and introduction rules O: 1y, ..., 0:1, for some operator O iff clause

3

set D is unsatisfiable, where D consists of the following clauses:



1. For each set Al of auziliary formulas occurring in the premise of an
introduction rule for 1;: O(Ay, ..., Aar(m)), D contains the clause cls(Ak),
where Ay, ..., Ayn) are regarded as propositional variables.

2. For each cut rule C;, 1 < i < m, and each propositional variable Aj;,
1 < j <mn, D contains the clause cls(C;, A;).

Proof If: We use the completeness of hyperresolution, i.e., the fact that for
any unsatisfiable set of input clauses there exists a hyperresolution deduction
of the empty clause. We claim that any such hyperrefutation p of the input
clauses as defined in the proposition can be translated into a reducing refutation,
i.e., into a sequent calculus refutation of the premises of O:1y,...,0:1, using
only structural rules and the cut rules C4,...,Cy,. Let C',Dy,..., D, be the
sequence of clauses that form the predecessor nodes of an internal clause E
in p. By definition, E is a hyperresolvent corresponding to the clash sequence
(C';Dy,...,Dy). The satellite clauses D; as well as E has to be positive, and
C' has to be a non-positive input clause. The only such clauses are the ones
corresponding to the cut rules. Let A; and X be the labeled sequents obtained
from the clauses D; and E, respectively, by replacing the literal P.4 by the
labeled formula I: A. We translate each hyperresolution step

¢’ D, ... D,
E

of p into a sequent calculus inference

A oA,
¢
Furthermore, each factoring step corresponds to one or more contractions.
Only if: Suppose the cut is reducible. Then, by definition 4.1, there is
a reducing refutation of the sequents containing the auxiliary formulas of the
introduction rules. Inverting the above translation we associate a clause with
each sequent and a clash sequence with each application of a cut rule in the
refutation. This way we obtain a hyperresolution derivation of the empty clause
from the set of clauses corresponding to the used cut rules and the premises of
the introduction rules. By the correctness of hyperresolution we conclude that
this set of clauses is unsatisfiable. O

Lemma 4.8 Any locally admissible set of cuts is globally admissible.

Proof Similar to the usual proof (see e.g. [17]) we move some non-atomic cut
highest in the proof tree upwards until it is immediately below the direct in-
ferences of the cut formula. Then we use the reducibility of the cut rule with
respect to the outermost connective of the cut formula and the occurring infer-
ence rules. This process is continued until all cuts are atomic. O



Theorem 4.9 If a set of cuts is locally admissible and the set Az of axioms is
closed under application of the cut rules, then any sequent derivable is cut-free
derivable.

Proof By lemma 4.8, any locally admissible set, of cuts is globally admissible.
If Az is closed under cuts the atomic cuts may be eliminated as well. O

This variant of Gentzen’s proof of the cut-elimination theorem warrants the
following

Definition 4.10 A set of cuts is Gentzen eliminable if it is locally admissible
and the axioms are closed under cuts.

Example 4.11 Note that not all sets of redundant cuts are Gentzen eliminable.
For instance, consider the following simple labeled calculus on L = {a,b, ¢, d},
with Az = {L CL | {a,b} C L}, Cuts = {L CL|{c,d} C L}, and introduction
rules:

a: A b: A

D. — .
a:OA L b:0A4 H:b
c: A . c A O d

c:OA e d:0A

The derivable sequents are exactly those containing {a: 0% A4, b: O' A} as subse-
quents. So clearly anything derivable using cuts can be derived without such a
cut, but the cut {c¢,d} is not reducible.

5 From Labeled Calculi to Finite-valued logics

In the following we assume a labeled calculus with at least one proper axiom
and one proper cut; furthermore, the axioms are assumed to be closed under
cuts.

For our main theorems we need the notions of pre-azioms and pre-cuts of a
given calculus. A pre-axiom (pre-cut) is a set of labels which itself is not yet
an axiom (a cut) but which becomes one no matter which label is added. More
formally, the sets of pre-axioms and pre-cuts are defined as

preAr = {LCL|L¢ Az, LU{l} € Az foralll e L}
preCuts = {L CL|L¢Cuts, LU{l} € Cuts for all | € L°}

where L¢ denotes the complement of L with respect to L, L =L\ L.

Example 5.1 Gentzen’s sequent calculus for two-valued logic can be viewed
as a labeled calculus with two labels, say ¢t and f. The formulas on the left
hand side of a sequent are implicitly marked by f, those on the right hand
side by ¢t. The only axiom as well as the only cut is {¢, f}. Therefore we have

preAz = preCuts = {{t},{f}}.



The following two properties are the key for characterizing those labeled sequent
calculi which represent many-valued logics.

(P1) Eliminability of compound azioms. Compound axioms are derivable from
atomic axioms.

(P2) Refutability of pre-azioms. The set {{l:A |l € L} | L € preAz} of
sequents, where A is some arbitrary propositional variable, is refutable
using cuts only.

We start by stating some basic facts.

Proposition 5.2
(a) The set L of all labels is an axiom as well as a cut.
(b) Each set of labels not containing a cut can be extended to a pre-cut.
(c) Each set of labels not containing an aziom can be extended to a pre-axiom.

Next we show that pre-axioms and pre-cuts are dual to each other.

Lemma 5.3 (Duality of pre-axioms and pre-cuts) Suppose a calculus
satisfies property P2. Then the following holds:

(a) If L is a pre-axiom then L° is a pre-cut.

(b) If L is a pre-cut then L is a pre-aziom.

Proof Remember that L¢ is an abbreviation for L \ L.

(a) We first show by an indirect argument that no subset of L¢ is a cut.
Suppose K C L€ is a cut. Since L is a pre-axiom, adding any label from
its complement leads to an axiom. In particular, LU{l} is an axiom for all
l € K. From these axioms we may again derive L using cut rule K. Since
axioms are closed under cut rules, L has to be an axiom, which contradicts
the assumption that it is a pre-axiom. Hence no subset of L¢ can be a
cut, and no proper subset can be a pre-cut. If there is a pre-cut in L€, it
has to be equal to L°.

It remains to show that L° is indeed a pre-cut. Suppose it is not. No
subset of L€ is a cut, therefore it can be extended to a pre-cut K. Now
observe that K N L' is non-empty for all pre-axioms L': for L' = L this
follows from the fact that L¢, the complement of L, is a proper subset of K,
whereas the other pre-axioms have to contain some label not occurring in L
which therefore has to be in K. This means that from the set of sequents
{{l: A} | I € K} we may derive by weakenings all sequents {l: A |l € L'}
corresponding to pre-axioms L'. By condition P2, the set of pre-axioms is
refutable, i.e., from the set {{l: A} | | € K} we derive the empty sequent.

10



In other words, K is a cut, contradicting the assumption that it is a pre-
cut.

Summarizing, no proper subset of L¢ is a pre-cut, therefore it can be
extended to one. As we showed in the last paragraph, no proper superset
of L€ is a pre-cut hence L has to be a pre-cut itself.

(b) Similar to above we first show that no proper subset of L¢ is a pre-axiom.
Suppose K C L€ is a pre-axiom. By the first part of the lemma its
complement K¢ has to be a pre-cut. But K¢ is a proper superset of pre-
cut L, and by definition all extensions of a pre-cut are cuts, including K°.
Contradiction.

It remains to show that no proper superset of L¢ is a pre-axiom. This will
imply the assertion of the lemma since any set which is not an axiom can
be extended to a pre-axiom. Now suppose K 2 L° is a pre-axiom. By
the first part of the lemma its complement, K¢, is a pre-cut, and it is a
proper subset of L. This contradicts the assumption that L is a pre-cut,
since by definition any extension of a pre-cut is a cut. O

Definition 5.4 A labeled sequent calculus is called rich if it has a non-empty
set of axioms Az with at least one proper axiom, a non-empty set Cuts of
Gentzen eliminable cuts with at least one proper cut, and satisfies properties
P1 and P2.

Proposition 5.5 It is decidable if a labeled calculus can be extended to a rich
calculus by adding cuts.

Theorem 5.6 Let C be a rich labeled sequent calculus. Then there is a finite-
valued propositional logic M, a system S of signs, and a label assignment

lo:L 'S S such that
CHFA <= Mk, A

for all labeled sequents A. Furthermore, the rules are sound for M and la.

We construct a new calculus, C*, whose rules can be regarded as macro-rules
abbreviating derivations in C. The new calculus has the property that it does
not just transform labeled literals but sets of labeled literals of the form {I: A |
I € L} (abbreviated as L: A), where L is a pre-axiom. From C* one obtains
directly the truth tables of a finite-valued logic corresponding to C.

C* contains one introduction rule per connective O and pre-axiom L €

preAz. This rule is constructed in several steps by combining rules.

Definition 5.7 The combination of two rules

LA, - F’Amr raAy, - I,AL
r,A and r,A

T'I

11



is defined to be the rule

F:Al:All FaAlaAln F:Am:All FaAmaAln
T A A

!

rXxr

Obviously, the combination of rules is commutative and associative. The iter-
. . . ‘
ated combination r; X --- x 7, is also written as Hi:l .

Lemma 5.8 Fach application of v x r' can be replaced by applications of
r and r'.

Let preAz = {Ly,..., Ly} be the set of pre-axioms. We define the new rule

A - T A,
T

AL

where A; = {I: A | | € L;}; it expresses the refutability of pre-axioms (prop-
erty P2).°

We first define an intermediary calculus Ct by combining all rules of C
for the same label and connective into one rule and extending the premises to
pre-axioms.

STEP 1. If for some connective O and some label [ the calculus C contains no

rule, add the rule
r

I:0(A,.. .,Aar(g))

a: !
which is an instance of the weakening rule.

STEP 2. If for some connective O and some label [ there are several introduction
rules (O:1)q, ..., (O:1),, replace them by the single rule Hle(D: 0);.

STEP 3. For each rule O:1 containing the variables Ay, ..., Ay.(o), construct a
rule (0:1)' = O:1 x [T (4;: 1).

Observe that all premises of a rule (3:1)" of C* either contain an axiom or are
of form {l: Ay ... Agr(ny | | € L} where L € preAz.
To obtain the macro-rules of C* we combine the corresponding rules of CT.

STEP 4. For each pre-axiom L construct the rule (0: L)" = [, (O:1)".

STEP 5. The final rules O: L are obtained from (O: L)" by removing all premises
containing an axiom and by removing duplicate formulas in sequents.

Note that in the last step we may obtain rules without any premises at all.

Proposition 5.9

5A: 1 should be regarded as a schema with parameter A rather than as a single rule.

12



(a) Every cut-free derivation in calculus C can be transformed into a cut-free
derivation in Ct, and vice versa.

(b) Every derivation in CT can be transformed into a derivation in C*, and
vice versa.

Proof

(a) C = CT: By adding weakenings to extend the premises to pre-axioms.
CT = C: By iterated application of lemma 5.8.

(b) C* = C*: By induction on derivations. Suppose a sequent is derived in
C* using an introduction rule, the main formula is I: A. By the definition
of the rules of C*, the premises of the introduction rules for each pre-
axiom containing [ are derivable from the premises of the C* rule, and so
L: A is derivable in C* for any pre-axiom L such that [ € L. Furthermore,
if L is a pre-axiom such that I ¢ L, then L: AU {I: A} is an axiom and so
derivable as well. Since the set of all pre-axioms is refutable, we have the
required derivation in C*.

C* = C*: By iterated application of lemma 5.8. O

The logic corresponding to C can now be constructed as follows. As set of truth
values we choose the set of pre-cuts: V = preCuts. The label assignment is
defined as

la(l) = {L¢€ preCuts |l e L}

i.e., the set of truth values corresponding to label [ are all pre-cuts containing [.
For each connective O we define a truth relation O in the following way: for
each rule O: L and each premise L;: Ay, ..., Lay(0): Aar(n), the relation contains
the (ar(0)41)-tuple

(LS, ..., L;r(m), Le) .

Note that each component of the tuple is a truth value: all L;’s are pre-axioms,
therefore their complements are pre-cuts.

It remains to show that the relations O are total functions and that calcu-
lus C is correct and complete with respect to this semantics.

Proposition 5.10 Suppose the sequent II = {l:O(Ay,..., Ay(my) | 1 € M} is

cut-free derivable in C*, and M = M' U M" where M' N\ M" = 0. Then there
is a cut-free derivation of the form

Ay TY o ALT A TP .. A, TR

A U{ED(AL . Agoy) [ 1€ M"Y 0 Ay U{L0(Ar, .., Agey) | 1 € M}
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where A;, Fij is an axiom, A; is a union of pre-axioms for the A;, and Aiﬂfij =
(). The M" component uses only formulas from the I'’s and the M' component

only formulas from the A’s, i.e., there are derivations
A .A, ry .. I
{:0(AL, . Ary) L€ M} {ED(Ar. ., Ago)) |1 € M"Y
Proof Analogous to the proof of Gentzen’s midsequent theorem; see [17]. O

Lemma 5.11 Let Li: Ay, ..., Layn): Aar(ny be any premise of a rule O: L in C*.
Then for all I' € L¢, I":0(Ay, ..., Aam)) is derivable from the set of unit se-
quents I: A;, where l € (L§) and 1 <i < ar(0O).

Proof Let I' € L. Then LU({l'}:0O(Ay,..., Ay(oy) is an axiom, and so by
P1 is cut-free derivable in Ct from atomic axioms. We may assume the A;
to be propositional variables. Taking M' = L and M" = {l'} we know that
I':0(A1, ..., Asr(ny) is derivable from certain Fj by proposition 5.10. By defini-
tion of C*, each premise of the C*-rule O: L occurs among the premises of the
CT-rule O:1 for any ! € L. Thus, the premise in question must be contained in
some Ay, and in fact, be equal to some Ay since these are all pre-axioms. con-
sequently Fj’“ must be non-empty. If I: A; € Fj’“ then [ € L¢ (by proposition 5.10,
ij N A =0), and ij is derivable from the unit sequent [: A;. O

Proposition 5.12 The truth relations O are functional and total with respect
to their last component.

Proof O is functional. Suppose O is not functional. Then some premise occurs
twice in two rules, O: Ly and O: Ly. By lemma 5.11, I':0O(A;, ..., Ayyn)) is
derivable from the set of the units sequents I;: A; for all I' € L{ and I' € Ls.
Since L is a pre-cut and Ly contains at least one additional label I, we may apply
cut rule Ly U {l} and derive the empty sequent from the unit sequents I;: A;.
But for every i, the set of all [; forms only a pre-cut, which cannot derive the
empty sequent. Contradiction.

8 s total Suppose O is not total. Then some sequent A =
Ly: Ay, ..., Lar(ny: Aar(oy does not occur among the premises of O: L for any
pre-axiom L. Consider its complement, the set of unit sequents [;: A;, where
l; € L{ and 1 < ¢ < ar(O). Each premise of a rule O: L for all pre-axioms L
has to contain a signed formula /;: A; also occurring in this set of unit sequents;
otherwise it would be identical to A. But then every premise is derivable from
the unit sequents, and therefore also all conclusions, i.e., L:O(Ay, ..., Aa (o))
is derivable for all pre-axioms L. By property P2, we can derive the empty
sequent from these conclusions and thus from the unit sequents /;: A;. But for
every ¢, the set of all [; forms only a pre-cut, which can not derive the empty
sequent. Contradiction. O
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Lemma 5.13 Let L: A be a labeled sequent such that L € preAz. Then
lvaly(L: A) = L iff valj(A) = L°.

Proof The expression L: A is an abbreviation for \,.; I: A. Therefore L: A is
false in T iff vali(A) ¢ ;e la(l). By definition, la(l) is the set of all pre-cuts
containing [, i.e., |, la(l) is the set of all pre-cuts containing any label of L.
This means that valy(A) has to be a subset of the complement of pre-axiom L.
Since truth values are pre-cuts by construction of the logic and L¢ but none
of its proper subsets is a pre-cut (cf. proof of lemma 5.3(a)), we conclude that
vali(4) = L°. O

Proof (of theorem 5.6)
Soundness.

1. The azioms are valid. Let A be an axiom. We have to show that
Uiea la(l) = preCuts. Assume the contrary, i.e., for some pre-cut I,
I' ¢ U,c 4 la(l). By the construction of the label assignment this implies
I'Nn' A = (. In other words, it is possible to derive the empty sequent from
the axiom A and the pre-cut I'. Contradiction.

2. The structural rules are sound. Trivial.
3. The cut rules are sound. Obviously true since [, la(l) = @ for L € Cuts.

4. The propositional introduction rules are sound. We show the soundness of
the macro-rules in C*. By proposition 5.9 this implies the soundness of
the rules in C.

Consider the introduction rule for L:0(Ai,...,Au o)), where L is
a pre-axiom, and let I be an interpretation falsifying this expres-
sion. By lemma 5.13 this is the case iff valy(O(Ay,..., Asy)) =
O(valr(Ay),...,vali(Aamy)) = L Let Lj be the value of A; in L

3

each sequent L;: A;, and therefore it falsifies the whole premise.

Completeness. We first show the completeness of C* with respect to sequents
consisting entirely of expressions L: A where L is a pre-axiom. C* is complete in
the sense that for every expression L:O(Ay, ..., Aym)) there is a rule decom-
posing O(Ay,..., Aao)) into simpler expressions. Therefore every maximal
derivation tree is finite, with each branch ending in an atomic sequent. There

are two possibilities:

1. The atomic sequent contains two expressions L: A and L': A with L # L/,
i.e., some ! € L' does not occur in L. Since L is a pre-axiom, LU {l} is an
axiom, making the sequent true in every interpretation.

2. For all propositional variables A, the atomic sequent contains at most one
expression L: A (regarding the sequent as set). We construct an interpre-
tation I by defining valj(A) = L¢ for variables occurring in the sequent,
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and choosing an arbitrary truth value for all other variables. I falsifies the
atomic sequent, and by construction of the truth tables, it also falsifies
every sequent on the branch down to the root.

As a consequence, every valid sequent labeled with pre-axioms has a derivation
ending with axioms.

Now consider a sequent A = Lq: Ay, ..., Ly: Ay, where the L; are arbitrary
sets of labels. If A is valid, then every extension of A by further labeled formulas
is valid, in particular those sequents obtained by extending the L; to pre-axioms.
Each of the latter sequents has a proof in C*. Using the fact that the set of
pre-axioms is refutable these proofs can be combined to a proof of A.

S ={la(l) |l € L} is a system of signs. We have to show that every truth
value v € V can be obtained as the intersection of some signs. (Note that by
construction V' = preCuts.) Without loss of generality we may consider the
intersection of all signs containing v, i.e., we show that ({la(l) |l € L, v €
la(l)} is exactly the set {v}. Assume the contrary, namely that the intersection
contains a second truth value v'. This means that whenever v € la(l) for some
label 1, we also have v’ € la(l). But by construction of la this is equivalent
to v C o', which is a contradiction: both truth values are pre-cuts, and one
pre-cut cannot be a proper subset of another one. O

Example 5.14 Let C be the labeled sequent calculus with L = {a, b, c}, Az =
{L}, and the introduction rules

b:A,c:A,a:B a:A,c:A,b:B a:Ab:A e B O: g

a:0(A, B)
b:A,c:A,b:B a:A,c:A,a:B,c:B a:A,b:Ab: B
b:0(A, B) b:b
b:A,c:A,e:B a:A,c:cA a:Ab:A a:B O e
¢:0O(A, B)

As a matter of convenience we write be: A instead of b: A, c: A etc. throughout
this example. For the set of pre-axioms, pre-cuts, and cuts we obtain

pre Az {{a,b}, {a,c}, {b,c}}
preCuts {{e}, {b}, {a}}
Cuts = {{a,b}, {a,c}, {b.c}, L}

The pre-cuts are obtained as the dual of the pre-axioms, and Cuts is the set of
all extensions of pre-cuts. Of course, the elements of Cuts need not really be
cuts; this is only the case if C satisfies P1 and P2.

P1 requires that all compound axioms can be reduced to atomic ones. Since
we only have one operator and one axiom, we just have to check that each
premise of the combined rule O:a x O:b x O: ¢

be: A,abc: B abe: A,ab:B -+ abc: A,bc: B ab: A, abc: B
abc: O(A, B)

O: abe
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contains an axiom.
P2 requires that the pre-axioms are refutable:
ab:A ac:A cut: be ac:A be:A cut: ab
a: A :
T cut: ac

(contractions are done implicitly).

To check that the cuts are globally admissible, we have to prove that each
cut is reducible with respect to all introduction and cut rules. As an example
we show that cut: be is reducible with respect to Cuts and the rules O: b and O: ¢
by giving a reducing derivation of the premises of 0:b and O: c. We first derive
the pre-axioms be: A and ab: A:

ab: A,a: B ab: A, b: B - ab be: A,b: B be: A,c: B "
ab A cut:a ber A cut: be

The third pre-axiom, ac: A, is directly given as a premise of O: ¢. The refutation
of the pre-axioms (see above) completes the reducing derivation.

In the construction of C*, the first two steps are vacuous for this particular
calculus. Step 3 requires that each introduction rule is combined with A: L
and B: L. For (O0:b)) = O:b x A: L x B: 1 we obtain

be: A,ab: B be: A,be: B ac: A,ac: B ab:A,ab: B ab: A, bc: B
b: (A, B)

(0: )"

(duplicate labeled formulas and premises containing axioms have been re-
moved). Similarly we obtain the rules for (O:a)’ (six premises) and (O:c¢)’
(seven premises). Computing the combined rules for each pre-axiom according
to step 4 and deleting premises containing axioms we end up with the rules

ab: A,bc: B bc: A, ab: B

ab:0(A, B) Hia
ab: A,ac: B ac:A,ab: B ac: A,bc: B be: A, ac: B
Lac
ac:0(A, B)
ab: A,ab: B ac:A,ac: B be: A, be: B _
be:O(A, B) e

Finally we are in the position to describe the logic M corresponding to C. The
set of truth values is given by the set of pre-cuts: V = {{a}, {b}, {¢}}. The
label assignment is particularly simple: la(l) = {i} for all I € L. The truth
table for & can be read off the macro rules by looking at the complements of
the respective labels:

o o) ) {9
(o} | {a) {3 {&
oy | 0 o} )
(¢} | {¢ 0 {a
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Example 5.15 Let C be the labeled sequent calculus with L = {a,b,c,d},
Az = {{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, L}, and the introduction rules

ac:A ad:A be:A L., ac:A bd:A cd:A

a:0A b:OA b
ab:A ad: A bd: A ab: A be: A edi A
O: .
c:OA ¢ d:0A 0:d

We again write ab: A instead of a: A, b: A etc. For the set of pre-axioms, pre-cuts,
and cuts we obtain

preAr. = {{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}}
preCuts = preAx
Cuts = Az

C has property P1: the compound axioms l;l5l3: OA for Iy # ls # I3 as well as
abed: OA can be reduced to atomic axioms. Note that no premise occurs in more
than two rules, and each premise contains two labels. Therefore each premise
of O:1; x O:1y x O:[3 contains at least three different labels and therefore is an
axiom.

C has property P2: for every [ € L, it is possible to derive the unit sequent
l: A using a cut, e.g.,

ad: A bd:A cd: A
d: A

cut:a, b, c

These unit sequents derive the empty sequent by one more application of a cut
rule. To see that all cuts are admissible, observe that any three introduction
rules together contain all pre-axioms as premises, which are refutable.

For the construction of C* we only have to perform steps 4 and 5, since
all premises are already pre-axioms. The rules of C* are obtained from the
combinations O:] x O:1' for all I # I'. Since any two rules share exactly one
premise, and every premise with three labels is already an axiom, we obtain the
following macro rules:

ac: A ad: A be: A bd: A cd: A ab: A
ab:0A ac:OA ad:0OA be:OA bd:0OA ced:0OA

Thus, M is a six-valued logic since there are six pre-cuts. The label assignment
is given by

la(a) = {{a,b},{a,c}, {a,d}}
la(b) {{a. b}, {b,c}, {b,d}}
la(c) = {{a,c}, {b.c}, {c,d}}
la(d) = {{a.d}, {b,d}, {c,d}}
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Finally, the truth table for & is given by

0| 0|

{a, b} {a,c} {b,c} {b,d}
{a,c} | {a,d} {b,d} | {c,d}
{a,d} {b,c} {¢,d} | {a,b}

The next two examples show that P1 and P2 are necessary conditions indepen-
dent of each other.

Example 5.16 Consider a labeled sequent calculus C with L = {a,b}, Az =
{{a,b}} and four introduction rules

a A a: A b: A b: A
a:0A4 b:04 a:04 b:04

C trivially satisfies P1 requiring the reducibility of compound axioms to atomic
ones:

a:A,b: A
a:A,b:0A
a:0A,b:0A

However, C does not fulfill P2: C has no cuts, since the only possibility {a, b}
would allow to derive the empty sequent from axioms:

a:A,b: A a:A,b: A
a:A,a:04  a:Ab:OA
a:0A,a:0A b:0A4,0:0A4
a:0A b:0A
1

cut:a,b

Therefore the set {{a},{b}} of pre-axioms cannot be refuted.
It not hard to see that there is no finite-valued logic corresponding to C. All
four possible truth tables for O make some introduction rule unsound.

Example 5.17 Consider a labeled sequent calculus C with L = {a, b}, Az =
{{a,b}} and a connective O in the language, but without introduction rules
for O. Clearly, C does not satisfy P1, since there are no rules to decompose
the compound axiom a: OA, b: OA. On the other hand, P2 holds since the pre-
axioms can be refuted using the cut {a,b}.

It not hard to see that there is no finite-valued logic corresponding to C.
All four possible truth tables for O makes C incomplete. As an example, let
8(a) = G(b) = a. The labeled sequent A: Oa is valid for this matrix, but it is
neither an axiom nor derivable.
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6 From Finite-valued Logics to Labeled Calculi

Theorem 6.1 Let M be a finite-valued propositional logic with a set V of truth
values, and let S C 2V be a system of signs. Then there is a rich labeled sequent

calculus C with labels L, as well as a label assignment la: L '51'S such that
ME,A << CFA

for all labeled sequents A and all rules of C are sound with respect to M. The
cuts are the sets {la™" (ay),...,la" " (ap)} such that N{a1,...,a,} = 0.

Corollary 6.2 Let C be a sequent calculus without cut rules such that there is a
finite-valued propositional logic M, a system S of signs, and a label assignment

lo:L 'S S such that
CFA <= Mg, A

for all labeled sequents A and such that all rules of C are sound with respect
to M, then C can be extended to a rich sequent calculus by adding cuts.

Since la is a 1-1 mapping we will use la(l) instead of [ to label formulas, this
way avoiding to define L and la explicitly.

Systems of signs allow a unified treatment of different formalisms. In the
positive calculi of Rousseau [11] and Takahashi [16], the signs are just the sin-
gleton sets. In the negative calculi of Schréter [13] and Carnielli [6], the signs
are all sets containing all but one truth value.® Other examples for systems of
signs are up- and downsets with respect to totally ordered truth values [8] or
distributive lattices [9], or signs forming the supremum or infimum with respect
to semi-lattices [12, 18].

Definition 6.3 A partial normal form for a connective O and a sign « is a
conjunction of disjunctions of labeled formulas

A V ﬂij3AkiJ‘ )
i g

1 < ki; < ar(0), which is true in an interpretation I'iff valy(O(A4y, ..., Aar(o))) €

Proposition 6.4 For any connective O and sign a € S, there is a partial
normal form for O and a.

Proof Let T be the set {(v1,...,vap(m)) | O(v1, ..., varo)) € a}. If the sets {v;}
were among the labels, each tuple (vi, ..., v (o)) could be characterized by the
signed expression J\; {v;}: A;, which is only true in an interpretation satisfying
vali(4;) = v;. However, since S forms a system of signs, each truth value
can be obtained as the intersection of signs, i.e., each pseudo-formula {v;}: 4;

6The duality of positive and negative calculi was analyzed in [2] and [18].
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can be replaced by the proper labeled formula expression A\ﬁesv. B: A; where

) Sy; = {v;}. Forming the disjunction of these expressions for every tuple in T,
we obtain the labeled formula expression

VA A s

teT i=1 BESyu

which is true in T iff valy(O(A4y,..., Aam))) € a. Using distributivity, the
formula can be rewritten as conjunction of disjunctions, as required by the
proposition. O

There is a close connection between the conjuncts in a partial normal form and
the premises of introduction rules in sequent calculi.

Definition 6.5 Let Ale A; be a partial normal form for O and a. The intro-
duction rule for O and « is the rule

A - A

O a
I'a:0O(Ay,.. .,Aar(g))

where we identify disjunctions of labeled formulas with labeled sequents.

Axiom sequents are sequents which are always true. Cut rules remove contra-
dictory formulas. The structural rules are given by definition. In summary we
have the following;:

Definition 6.6 A sequent calculus C for a logic M with respect to a system of
signs S is given by the following rules:

1. for every sign a € S, a weakening rule weak:a and a contraction
rule cntr: a,

2. for every connective O and every sign a € S an introduction rule O: a,

3. for all signs ay,...,ap € S such that Ule a; = V, an axiom schema
ap: A, .. ap A, and

4. for all signs ag,...,a¢ € S such that ﬂle a; = 0, a cut rule
cut:ay, ..., Q.

Proof (of theorem 6.1) Soundness. The proof of the soundness of C with
respect to M is an easy induction on the length of the proof.

Completeness. We have to show that whenever M |= A, we also have C F A.
Suppose we have a valid sequent A. C is complete in the sense that for every
connective O and every label [ there is an introduction rule O:1 decomposing
the conclusion into simpler sequents in the premises. Constructing the proof
tree backwards we obtain a finite tree with atomic sequents as leafs. It remains
to show that all leafs contain axioms.
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Assume the contrary, i.e., some atomic sequent I" has the property that for
every propositional variable A the set Ly = {a | a: A € I'} forms no axiom. By
definition this means that |JL4 # V. Let v4 be any truth value in V' \ |J L4,
and let T be an interpretation defined by I(A) = v4 for all propositional vari-
ables A. Clearly, I falsifies I'. By construction of the introduction rules, every
interpretation falsifying any premise also falsifies the conclusion. Therefore I
also falsifies the sequent A at the root, contradicting the validity of A.

Property P1. We have now to argue that compound axioms are derivable
from atomic ones. This follows from the fact that in the above completeness
argument only atomic axioms are used.

Property P2. To establish that C satisfies property P2 we use proposition 3.4.
We get that V' \ {v} is represented by a pre-axiom for all v € V. Consequently,
the set of clauses corresponding to pre-axioms in the sense of definition 4.6 is
unsatisfiable. By completeness of hyperresolution, there is a hyperresolution
derivation of the empty clause from this set of clauses. Like in the proof of
lemma 4.7 we can translate this derivation into a refutation within C.

Gentzen-eliminability of cuts. For a set of labels {l1,...,1,} let D consist of
the following clauses:

1. For each set Ali of auxiliary formulas occurring in the premise of an in-
troduction rule for ;: O(Ay, ..., Aaym)), D contains the clause cls(AL)
where Ay, ..., Ay (o) are regarded as propositional variables.

2. For each cut rule C;, 1 < ¢ < m, and each propositional variable A4;,
1 < j <n, D contains the clause cls(C;, 4;).

Suppose that D 1is satisfiable. Then the functionality of O implies
that there is also an Me-interpretation satisfying the set of sequents
{04y, Aae@) b - {ln: B(As, -+ Aar(oy) } )+ By contraposition, it fol-
lows from lemma 4.7 that the set of cut rules is locally admissible. Obviously, the
set of axioms is closed under application of cuts. Thus we obtain the Gentzen-
eliminability of the cut rules.

Finally, note that there is a least one proper axiom and one proper cut as
required by definition 5.4 since there are at least two truth values and therefore
at least two signs. O

Proof (of corollary 6.2) Add the cuts {la *(a1),...,la '(a,)} such that
M{ai,...,an} =0 to C. The resulting calculus can be shown to be rich by the
same arguments as in the proof above using the propositional rules to obtain
partial normal forms. O

Summarizing we may now state our main result as follows.

Theorem 6.7 Let C be a labeled sequent calculus without cut rules. There is a
finite-valued propositional logic M, a system S of signs, and a label assignment

lo:L 'S S such that
CHA <= Mk, A
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for all labeled sequents A and such that all rules of C are sound with respect
to M iff C can be extended to a rich sequent calculus by adding cuts. Moreover,
this property is decidable.

7 The Size of Many-valued Logics Contained in
Labeled Calculi

Using Sperner’s lemma we now estimate the number of truth values of many-
valued logics represented by labeled calculi.

Definition 7.1 A Sperner set over a set L is a set of subsets of L such that no
subset contains another.

Lemma 7.2 (Sperner [15]) Let V be a Sperner set over a set with m ele-
ments. Then |V| < ([m’%}).

Note that ([m“}2]) is a tight upper bound, which can be obtained by choosing all
subsets of cardinality [m/2] as the elements of the Sperner set.

Theorem 7.3 Let V be the truth values of a many-valued logic represented by
a sequent calculus with label set L. Then |V| < (HI“I‘J/‘Q]) ~ 2/ /3/(2x|L]).

Proof If a sequent calculus with labels L represents a many valued logic with
truth values V', then by theorems 5.6 and 6.1, the number of truth values equals
the number of pre-cuts, where the pre-cuts are obtained from the eliminable
cuts. By lemma 5.3, the number of pre-cuts equals the number of pre-axioms.
The set of pre-axioms forms a Sperner set over L. O

Corollary 7.4 A many-valued logic with n truth values can be represented by
a sequent calculus with at most m labels where n < ([m”}ﬂ); i.e., m = O(logy n).

Proof Let L be a set of m elements. Construct a Sperner set V over L by
choosing all v € V' such that [v] = [m/2]; obviously there are exactly ((,",) of
them. V is the intended set of truth values. For [ € L, let oy = {v € V | | € v}.
Then S = {a; |l € L} is a set of signs. The rest follows from theorem 6.1. O

Summarizing, many-valued logics may be represented by sequent calculi with a
logarithmic number of labels.
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