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Abstract

The paper studies in detail a precise formal construction of spacetime
from matter suggested by the logician John Burgess. We presuppose a
continuous and perdurantistic matter ontology. The result is a systematic
method to translate claims about the geometry of a flat relativistic, or
classical, spacetime into claims about geometrical relations between mat-
ter points. The approach is extended to electric and magnetic fields by
treating them as multifields defined on matter, rather than as fields in the
vacuum. A few tentative suggestions are made to adapt the method to
general relativity and to quantum theories.

1 Introduction

In his article “Synthetic Mechanics Revisited”, John Burgess [1991] considers
the question of whether our best physical theories can dispense with spacetime.
He suggests a way to reduce facts about space to facts about matter, if certain
existence assumptions about matter are made. The assumption he uses is that
there exists what we may call a plenum of matter. A plenum of matter is a
mereological aggregate of matter points that is apt to fill an open region of
space, or that contains a part that is apt to fill an open region of space.

Let TS be a substantival theory of space, such as the axiomatization of
Euclidean geometry in [Tarski 1959]. The theory adopts as primitives two pred-
icates of congruence and betweenness. Let TR be a relational theory of matter
with similar primitives as its substantivalist counterpart, except that they hold
between matter points. For example, a matter point p1 can be between matter
points p2 and p3. The postulates of the theory will be discussed later. Burgess
gives a very rough sketch of the following claim. There is a Morita extension T+
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of TR in which points of space, or unoccupied locations, are logically constructed
from matter by abstraction. The idea is to code facts about unoccupied points
within the plenum. An unoccupied point will be simulated by triples of matter
points. In other words, points will be identified to equivalence classes of triples
under a certain relationistically definable equivalence relation.

This claim can be made more precise as follows. Take a model M of classical
continuum mechanics in absolute Newtonian space, such that the matter fills
up an open ball. Let M′ be its relationist reduct: a set of material points with
the relations of betweenness and proportionality inherited from their spatial
locations. We can extend M′ to form an intended model of T+

R , with classes
of triples and defined relations of congruence and betweenness on such classes,
that contains an isomorphic copy of substantival space. Thus there is a clear
sense in which space can be recovered from matter.

1.1 The philosophical significance of the construction

What is the philosophical significance of the construction? We should begin by
distinguishing two positions we might have with respect to entities of some sort,
eliminativism and reductionism. Eliminativism is the view that the entity in
question does not exist at all. For example, scientists are eliminativist about
caloric, phlogiston, and the aether. Reductionism is the view that the entity in
question exists but is nonfundamental or ontologically derivative. Reductionism
seems plausible in the case of life, tables, chairs and possibly consciousness.

Correspondingly, there are two sorts of relationism. Eliminativist relationism
claims that there is no such thing as space or spacetime at all. Reductionist
relationism claims that space or spacetime is ontologically derivative of matter.
In his classic paper “Can we dispense with spacetime ?”, Hartry Field [1984]
begins by defining relationism as eliminativist relationism:

It is tempting to put this doctrine by saying that there are no space-
time regions, but only aggregates of matter. [...]

but then pivots to a form including reductive relationism.

[...] This formulation might be faulted, for a relationist might want
to ‘logically construct’ regions out of aggregates of matter, and given
such a ‘logical construction’ the relationist will assert that regions
do exist. [Field 1984, 123] (reprinted in [Field 1989, 171])

The relationism to be explored in this paper is a relationism of the second
variety. To telescope the two formulations, relationism is the view that there
does not exist a spacetime over and above aggregates of matter and their in-
terrelations. The reductive relationism we are interested in says that there is a
spacetime, although it does not exist over and above matter (see [Field 1989,
171]). Both eliminativism and reductionism are present in the literature, with-
out being sharply distinguished. As Caspar Jacobs [2024] points out in a recent
reply to Teitel [2019], “Teitel defines substantivalism as the thesis that space-
time exists, rather than (as is more common in the contemporary literature) the
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claim that spacetime exists independently from matter” (see [Jacobs 2024, 1]).
As the partisans of the dynamical interpretation put it, one debate is not about
the geometrical facts, but about ontological priority or the direction of explana-
tion (see [Read 2020, 3]). Minkowski spacetime need not be a glorious nonentity.
Minkowski spacetime could be a glorious construction. As Brown [2005] puts it,
spacetime may be a ‘codification’ of facts about particles or matter fields (see
[Brown 2005, 25] [Brown and Read, 2021]).

1.2 The Method

The method of reduction, or of construction, we employ is the method of para-
phrasing. The method of systematic paraphrase was originally introduced as a
technique for avoiding having to admit the existence of some suspect entity or
entities [Quine 1953, 65] [White 1948, 34] [Jackson 1980]. However, as William
Alston [1958] and others have pointed out, the move makes little conceptual
sense: if the sentence ‘goblins exist’ is synonymous with some harmless sen-
tence, a speaker has to accept or deny them both.

A better interpretation of paraphrase is that it sweetens the pill, showing
that the existence of the initially suspect entities is in fact unproblematic. We
also understand it as a means to prove metaphysical priority. With the excep-
tion of eliminativists (see Churchland [1984]), materialists do not claim that a
sentence like ‘Joe is hungry’ is false. They will claim that it is made true by facts
about Joe’s brain state, or its functional organization. Similarly, the reductive
relationist does not deny that sentences like ‘spacetime is eleven dimensional’,
‘spacetime is continuous’, ‘there is a point p midway between the Earth and the
Moon’ are false. The contention is that they are true or false in virtue of the
arrangement of material bodies.

Gordon Belot [2011, 33] defines the task of the relationist as the quest to state
truth conditions for geometrical statements. For a general conception of ground
in terms of translation, see the discussion in [Sider forth., 5-7]. It is misleading to
append adjectives like ‘relationist’ and ‘substantivalist’ to theories, and say that
general relativity is a substantivalist theory. The theory posits the existence of
regions, but a reductive relationist can literally believe it. Relationists need not
be alienated from our best scientific theories. Reductionists do not want a rival
theory, such as shape dynamics and the like.

1.3 Enriched Relationism

The approach of Burgess [1991] is a version of an approach known in the lit-
erature as ‘enriched relationism’ (see [Earman 1989], [Maudlin 1993], [Pooley
2013]). Traditional or empoverished relationists admit only metric relations be-
tween matter points at an instant of time. The enriched relationist maintains
the light ontology but adopts a heavier ideology. A theory is relationist, in this
enriched sense, if it adopts the same primitive relations as spacetime geometry,
except that these hold between matter points or material bodies.

3



This paper answers the question of how much more ideology an enriched
relationist has to adopt to obtain a physically adequate theory. The answer
is that, if we assume a continuous matter, we can do with two predicates: a
ternary predicate of betweenness and an octonary predicate of proportionality.
Betweenness applies to three points on a line, including inertial trajectories.
Proportionality replaces the more usual quaternary predicate of congruence.
These notions allow the enriched relationist to define the difference between
inertial and accelerated motions and respond to the famous bucket argument
that Newton [1729] gives against relationism, and to which we shall return
(see also [Earman 1989, chapt. 4] for a discussion of the bucket argument).
However, Earman [1989] and Maudlin [1993] proceed by postulating that facts
about material bodies determine an embedding of the geometry of matter into
a spacetime structure. The spacetime in question can be considered purely
mathematical [Huggett 2006], or otherwise ‘fictional’ [Maudlin 1993].

The physical laws are then formulated by referring to this fictional spacetime
structure. This approach seems to us to be unsatisfactory, for various reasons.
The theory one obtains is definitionally equivalent with special relativity, as
usually presented, but the paraphrase turns geometrical statements into mixed
mathematical statements referring to matter and ‘platoplasm’. This raises the
suspicion that we are trading spacetime substantivalism for pythagoreanism, or
heavy duty platonism (see [Field 1989, 186-188]. The method of Burgess [1991]
has the advantages of honest toil over theft. It provides us with an embedding
by construction, rather than by fiat. That is, section (8) explains how to formu-
late a theory of matter, without quantifying over spacetime regions or abstract
mathematical objects, and from which it is possible to recover spacetime ge-
ometry and classical gravitation theory. Moreover, Maudlin [1993] and Earman
[1989] give up when it comes to general relativity. The methods of Burgess
[1991] may allow us to go further. Our new proposal, to be presented in this
paper, builds on Burgess [1991]. It proposes to construe fields as a distribution
of properties to triples of matter points. This opens the way to an integration of
gravity into the picture. However, this requires us to abandon the equivalence
principle and view gravity as a spin two-field.

Burgess [1991] claims that his approach works just as well for classical and
flat relativistic spacetime as it does for space. When it comes to the curved
spacetimes of general relativity, he does not feign any hypothesis. His proof
sketch, even for the case he discusses, is short and cryptic. His whole discussion
is a paragraph long and we will see that it hides several technical difficulties.
The first aim of this paper is to give a correct and intelligible reconstruction of
his approach and fill in the details of a sophisticated enriched relationism. The
second aim is to add a treatment of force fields.

1.4 Modal Implications

One concern of relationists has been shifts, such as the genuine but unrealized
possibility that the world had been displaced of three meters in some direction
in absolute space. It should be noted that these possibilities disappear.
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Fundamentally, there is no space or spacetime in which to displace matter
points. Another way to see it is that, given our definition of ‘point’, ‘collinearity’
and ‘congruence’, it is analytic that a point is at a certain distance and direction
from the matter points out of which it is constructed. If we try to ‘move’ or
‘rotate’ the three matter points around an axis, then we end up ‘rotating’ the
spacetime point as well, so that we end up on exactly the same possibility.

2 The primitives of TCM

In this paper, we will describe the method by constructing a relationist version
of classical mechanics. We will start from a theory TCM of continuum mechan-
ics in Galilean spacetime. We assume that its ontology consists of spacetime
regions and aggregates of instantaneous matter points. Assume that the theory
is formalized as a two sorted first order theory. It has two sorts of variables, for
example ξi and pj , for parts of spacetime and matter respectively.

We will construct a relationist theory TR and recover TCM = T+
R as a Morita

extension of TR. We will later explain how to do the same for a relativistic
spacetime, and how to construct force fields defined in spacetime.

First of all, the theory TCM contains:

• A binary predicate of parthood that applies to regions, Part ξ1ξ2, that
holds between two regions of spacetime when one is a part of the other.

A point of spacetime can be defined in terms of parthood as a region that
is mereologically simple. Galilean spacetime consists of a series of Euclidean
spaces stacked on top of each other. Simultaneous points stand in relations
of spatial congruence. Points at different times stand in relations of temporal
congruence. There is also a global affine or inertial structure. The geometrical
predicates of TCM are the following three:

• A binary predicate of simultaneity Sim ξ1ξ2 which applies to two space-
time points ξ1 and ξ2 when they both lie in the same surface of simultane-
ity.

• A ternary predicate of betweenness Between ξ1ξ2ξ3 that applies to three
spacetime points, ξ1, ξ2 and ξ3 when ξ2 is between ξ1 and ξ3. This primitive
captures the affine structure of Galilean spacetime.

• A quaternary predicate CongruentS ξ1ξ2ξ3ξ4 of spatial distance that ap-
plies to four points ξ1, ξ2, ξ3 and ξ4 when ξ1 and ξ2 are simultaneous, ξ3
and ξ4 are simultaneous and the spatial distance between ξ1 and ξ2 is the
same as the spatial distance between ξ3 and ξ4.

From the relation of spatial congruence and the relation of simultaneity, we
can define the notion of temporal congruence (see [Field 2016, 53 n. 32]).

The main ontological assumption of the theory is that matter is continuous,
and that it perdures through time. Familiar material objects like chairs and
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neutrinos are spacetime worms. They are the fusion or mereological sum of
instantaneous and inextended matter points. The physical theory TCM will
also contain the following predicates:

• A binary predicate of location, Location p1ξ1, that holds between a matter
point and the point of spacetime at which it is located.

• A binary predicate of parthood that applies to matter, Part p1p2, that
holds between two aggregates of matter (or between a matter point and
an aggregate of matter) when the former is a part of the latter.

• A binary predicate of genidentity that applies to matter points, Geniden-
tical p1p2, that holds of two matter points when they are both temporal
parts of the same perduring particle.

The predicate of location can also be assumed to hold between a mereological
sum or fusion of matter points and a region of spacetime. We will informally
use the words ‘is occupied by’ as the converse of ‘is located at’. Therefore, a
point of spacetime ξ is occupied by a matter point p if and only if the matter
point p is located at point ξ. The point ξ will also be referred to as the location
of p. We can then define a location predicate for aggregates of matter points.
An aggregate p is located at region ξ if all its pointlike parts are located at a
point of ξ and all points of ξ are occupied by mass points in p.

There will also be purely physical predicates for fields, or for forces, that
we will leave unspecified. They can be assumed to be along the lines of the
comparative predicates for fields axiomatized in Burgess [1984]. His examples
concern only scalar fields. However, it is obvious how to extend them to vector
and even tensor fields. Just break down these fields into components.

Galilean spacetime has recently been axiomatized in [Ketland, forthcoming].
To give axioms for classical continuum mechanics would take too much space.

We assume that it can be done. The theory TCM , or better, a theory closely
related to it, should admit of representation theorems in the style of [Tarski
1959] and [Field 1980]. Since the theories are first-order theories, they admit
many nonstandard models of many cardinalities. But the ‘intended’ or ‘stan-
dard’ models of the theory, which can be defined as the models that satisfy, as an
additional constraint, a second order continuity axiom C, ought to be coordina-
tizable by models of classical continuum mechanics in the ordinary mathematical
sense. The axioms C states, roughly, that any bounded set of points in a line
has a least upper bound (see [Tarski and Givant 1999, 185]).

Moreover, the class of reference frames ought to be related by, and closed
under, galilean transformations. The theory TCM of continuum mechanics we
shall describe is thus a first order theory, but, if we add to it the apparatus of
second order variables and an axiom of continuity C, the models of the theory
TCM + C must be representable by the mathematical structures in classical
continuum mechanics (à la Tarski [1953]). This second order extension is used
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only as a way to single out the intended models of the theory.1

The ontology of the substantivalist theory TCM is dualistic: it contains both
spacetime and matter. The ontology of TR will contain only matter. Every
object will be assumed to be a fusion of instantaneous mass points.

Using the predicate of location, we can extend geometrical predicates from
points to matter points. We will use the adverb ‘material’ or a subscript ‘M’
to indicate that the predicate holds between mass points when their locations
satisfy the original. For example, a triple of points stands in the relation of
material betweenness if and only if their locations are between each other:

Definition 1. Material Between p1p2p3 ↔df ∃ξ1∃ξ2∃ξ3 (Location p1ξ1 ∧ Loca-
tion p2ξ2 ∧ Location p3ξ3 ∧ Between ξ1ξ2ξ3)

We will refer to the predicate ‘BetweenM ’ as the material counterpart of
the predicate ‘Between’. In general, if P (ξ1, ..., ξn) is a predicate of LCM , then
we introduce a material counterpart as follows. If the extension of P (ξ1, ...ξn)
in a model M is the relation R, then the intended extension of the material
counterpart PM (p1, ...pn) is the following relation:

RM = {⟨p1, ..., pn⟩ | there are ξ1...ξn ∈ M, such that M

|= Location p1ξ1, ...,M |= Location pnξn, and⟨ξ1, ..., ξn⟩ ∈ R}

The relationist language LR takes predicates like these as primitives.
We define a relationist definable reduct of a model of mechanics as follows:

Definition 2. A relationist definable reduct N of M is a structure ⟨P,R1
M , ..., R

n
M ⟩

with P = {p | M |= ∃ξ1 Located pξ1 ∧ ∀ξ2(Part ξ2ξ1 → ξ1 = ξ2)} is the set of
matter points in M and the Ri

M are definable relations in the structure M.

The primitive ontology of TR is monistic: it initially only quantifies over
fusions of matter points. We will now see how to logically construct geometrical
points, and in particular all the unoccupied points of spacetime.

For the construction to succeed, we need to take as primitive a relation of
proportionality rather than a relation of congruence. Burgess [1991] assumes
that a relation of proportionality is available. But it is easy to see that known
definitions of proportionality in terms of congruence break down when unoccu-
pied points are rejected, and that in fact no such definition can be given.

This is a manifestation of a curse that Field [1984] calls ‘the problem of
quantities’. In Euclidean geometry, the notion of proportionality can be defined
in terms of similar triangles (see also [Burgess and Rosen 1997, 109-110]). In
school, we learned that corresponding sides in two similar triangles are propor-
tional: the ratios between the lengths of the corresponding sides are the same.
Consider a simple case of similar triangles, as illustrated in fig.1. Take a triangle
△xyz, and extend both xy and xz to form a new triangle △xy1z1.

The side xy stands in the same proportion to xy1 as xz stands to xz1. The
longer triangle may be uniformly doubled, or tripled, or stretched by any fixed

1One may also single out the intended models of TCM without second order logic, as those
in which every set of individuals in the universe of discourse has a fusion in the universe.
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Figure 1: Triangle similarity

factor k. Four arbitrary segments l1, l2, l3 and l4 in substantival space are going
to be proportional if and only if there exists a triangle of the form exhibited
in fig. 1, and the segments l1 and l2 are congruent to respectively xy and xy1,
while l3 and l3 are congruent respectively to xz and xz1. This gives a simple
definition of proportionality in a metric substantivalist setting.

In a relationist theory like TR we cannot presuppose that there is a triangle
whose sides match any possible length. Only the substantivalist can assume
that any segment of space can be infinitely extended. We cannot, of course,
suppose that a tree, rigid rock or any material segment extends indefinitely. As
a matter of fact, we can prove something stronger. We cannot define the notion
of material proportionality from material betweenness and congruence.

Theorem 1. There exists a model M = ⟨M,Betweenness,Sim,Congruence⟩ of
TCM and a relationist definable reduct of M, M′ = ⟨M′, Material Between-
ness, Material Sim, Material Congruence ⟩, such that the relation of material
proportionality is not a definable relation of the relationist structure M′.

Proof. We follow Padoa’s method (see [Hodges 1993, 65-66]). Consider a model
M in which there is exactly one plenum r and exactly one isolated matter point
x which is not a part of r. Place the matter point at a distance d from the
plenum that is greater than the distance between any two matter points in r.
For example, place it at a distance d that is two times the diameter of the
plenum. Consider a model N just like M, except that x is at a distance d′

greater than d, say three times the diameter of the plenum.
The relations of material congruence and material betweenness are the same

in M as in N. The two relationist reducts ⟨M′, Material Betweenness, Ma-
terial Sim, Material Congruence⟩ and ⟨N ′, Material Betweenness, Material
Sim, Material Congruence⟩ are therefore two isomorphic structures. However,
the two relationist reducts ⟨M′, Material Proportionality⟩ and ⟨N ′, Material
Proportionality⟩ are clearly not isomorphic. Therefore, material proportionality
cannot be defined in terms of material congruence, simultaneity and between-
ness holding between matter points.

We will assume material spatial proportionality as a primitive. Another
notion that cannot be defined in terms of material simultaneity and betweenness
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holding between matter points is the temporal order‘<T ’.
The binary predicate ‘<T ’ holds between two matter points when the first

exists at an earlier time than the time at which the second exists. If you con-
sider a model with only two nonsimultaneous matter points that are not on
the same inertial trajectory, it should be obvious that betweenness and simul-
taneity by themselves do not fix which one precedes the other. If we call N a
relationist reduct without further specifications, we are referring to the structure
⟨P,BetwM , <T , P roportionalityM , PartM , Genidentity⟩.

2.1 The language and ontology of TR

The ontology of TR is monistic: a perdurantistic ontology of aggregates of in-
stantaneous matter points. The primitive notions of the language of LR will
be the material analogs for material bodies, that is, of matter points or aggre-
gates thereof, of certain definable predicates of LCM .2 They are the predicates
corresponding to the relations that feature in the relational reduct. Let us
briefly review them in more detail. Intuitively speaking, matter points inherit
a geometrical structure from the geometrical structure of their locations. For
example, we may say that three matter points are collinear if their relations
are materially collinear in spacetime, or, in symbols:

∃ξ1∃ξ2∃ξ3 (Located p1ξ1 ∧ Located p2ξ2 ∧ Located p3ξ3 ∧ Collinear ξ1ξ2ξ3)

The primitive predicates of LR will be analogs of all the primitive predicates
of TCM , except that we do away with the location predicate and replace spatial
and temporal congruence with proportionality. For example, the theory TR
speaks of absolute material temporal precedence between matter points:

1. The binary relation of temporal precedence ‘p1 <T p2’ holds of two matter
points p1 and p2 if and only if p1 temporally precedes p2.

To capture the affine structure of configurations of matter, we assume a
ternary predicate of material betweenness.

2. The ternary predicate ‘Between p1p2p3’ applies to three matter points,
p1, p2 and p3 when p2 is between p1 and p3 on a straight line in spacetime.

However, we do not take as primitive a predicate of spatial and temporal con-
gruence between points. We need to assume as primitive notions the predicates
spatial and temporal proportionality as applied to matter points:

3. The octonary predicate ‘ProportionalS p1p2p3p4p5p6p7p8’ applies to eight
matter points, when p1 to p4 are simultaneous, p5 to p8 are simultaneous,

2We should note that a material analog is not the same as the restriction of a predicate to
matter points. The geometrical primitives of TCM apply to spacetime and do not have matter
points in their extension. But in a supersubstantival presentation of classical mechanics, in
which matter points are identified with occupied matter points, this subtlety evaporates.
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and, in mathematical terms, the following proportion holds:

d(p1p2)

d(p3p4)
=
d(p5p6)

d(p7p8)

where d is the Euclidean distance.

4. The octonary predicate ‘ProportionalT p1p2p3p4p5p6p7p8’ applies to eight
matter points, when the ratio of the time elapsed between p1 and p2 to
that elapsed between p3 and p4 is the same as that of the time elapsed
between p5 and p6 to that elapsed between p7 and p8:

dt(p1p2)

dt(p3p4)
=
dt(p5p6)

dt(p7p8)

(where dt is the temporal distance).

We can define a predicate of proportionality to state the disjunction of spatial
and temporal proportionality:

D0. Proportional p1p2p3p4p5p6p7p8 ↔df ProportionalS p1p2p3p4p5p6p7p8 ∨
ProportionalT p1p2p3p4p5p6p7p8

It is important to note that the preceding notions apply only to matter
points (and not to bodies, or aggregates of matter points). We also need a
binary predicate of parthood that relates matter points to bodies:

5. The predicate ‘Part p1p2’, applies to a matter point, or an aggregate of
matter points, when it is part of an aggregate of matter points.

Finally we take as primitive the binary predicate of genidentity.

6. The predicate ‘Genidentical p1p2’, applies to two matter points, when they
are temporal parts of the same perduring particle.

In favorable circumstances, it may be possible to define genidentity from other
physical primitives. If matter is discrete, two points are genidentical if there
exists a material timelike curve connecting them. If matter is continuous, but
charge or mass density are nowhere constant, the particle emanating from a
point p could be defined as the only curve of constant mass density or charge.

If these quantities are constant in a neighborhood of p, or are not conserved,
we may still employ features on the quantum state, at least in a quantum me-
chanical theory. But if all of this fails, the bucket argument transforms into the
rotating disk argument against perdurantism (see [Armstrong 1980]). To solve
the rotating bucket argument in a perdurantist theory, we will have to take the
notion of genidentity as a primitive of our physical theory.

We can define the notion of a matter point in terms of proper parthood:
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D1. Matter point p1 ↔df ∀p2 (Part p2p1 → p2 = p1)

The notion of temporal precedence allows us to define a notion of absolute
simultaneity between matter points ‘SimM p1p2’ , which applies to matter points
p1 and p2 if and only if they lie in the same hyperplane of simultaneity.

D2. Sim p1p2 ↔df ¬p1 <T p2 ∧ ¬p2 <T p1

Our primitive of spatial material proportionality can be used to define the
notion of spatial and temporal congruence holding of matter points. The dis-
tance between two matter points p1 and p2 is the same as the distance between
two other matter points p3 and p4 if and only if it is the unit ratio: the two
segments are proportional to the ratio of a segment to itself. Similarly, we as-
sume as primitive the notion of temporal material proportionality. We define
the notion of temporal material congruence in exactly the same fashion.

D3. CongruenceS p1p2p3p4 ↔df ProportionalS p1p2p3p4p3p4p3p4

D4. CongruenceT p1p2p3p4 ↔df ProportionalT p1p2p3p4p3p4p3p4

Using these primitives, the enriched relationist can distinguish between inertial
and accelerated motion, and therefore avoid the famous ‘bucket argument’ (see
[Maudlin 1993, 186-7] for a discussion). Consider a pointlike particle in the
bucket. The theory construes such objects as spacetime worms.

The spacetime worm to which an instantaneous matter point belongs is the
aggregate of all the points genidentical to it. The particle is moving inertially
if and only if, if we pick three temporal parts, they stand in the relation of
betweenness. But as soon as the bucket starts to rotate, and we pick three mass
points, they cease to stand in the relation of betweenness.

3 The notion of a plenum

The existence of a plenum is a condition for the success of the construction in
[Burgess 1991], and also a key ingredient in the construction itself. We clarify
the notion and give an informal definition of it in the metalanguage.3

Definition 3. An aggregate a of matter points in a model M of TCM is a ball
of matter if and only if there is an open ball b in space, not confined to any three
dimensional hyperplane embedded in our four dimensional Galilean spacetime4,
such that every point of b is exactly occupied by a matter point in a and every
matter point in a exactly occupies a point in b.

Definition 4. An aggregate a of matter points in a model M of TCM is plenum
if and only if there in open connected region U of spacetime such that every
point of U is exactly occupied by a matter point in a and every matter point in
a exactly occupies a point in U .

3The formal definition of the first order predicate ‘Plenum x’ can be found in [Babic, 2023].
4In the analogous construction of Euclidean space, the condition should read that the ball

of matter is not confined to a plane.

11



The definitions above are stated in an ordinary mathematical language, and
not in a formal language. The definition of the predicate ‘Plenum x’ in the
formal language LR is also straightforward, but extremely long and tedious.

4 The plenum-dependent construction

We are finally ready to explain the construction in the classical spacetime set-
ting. The construction will be relative to a plenum r. This means that there will
exist as many emergent spacetimes as there are plena r. We will discuss later
the problem of amalgamating these disparate plenum-dependent spaces into a
unique spacetime that does not depend on the choice of a plenum.

The key to the entire construction is the definition of indicating a matter
point. This notion already foreshadows the coding of spacetime points by triples
of matter points. We will say that a matter point p4 is indicated by a triple
⟨p1, p2, p3⟩. The matter point p2 must be materially between p1 and p3. The ori-
ented segment −−→p1p2 will point in a specific direction. The direction in spacetime
is the same as the oriented segment −−→p1p3. This is the same notion of indication
as if one of us were to point a finger at an object in space.

We are supposed to look at an object in the continuation of the segment
occupied by the finger. But finger pointing does not determine exactly the
position of the objection on this line. How far are we supposed to look?

We are often tempted to stop at the first solid object that intersects the
path, but such may not be the intention of the indicator. The matter is formally
resolved by specifying the distance as a function of the triple ⟨p1, p2, p3⟩. We will
stipulate that, if a matter point is indicated at all, it is the point that satisfies a
certain equation. Three matter points p1, p2 and p3 inside a plenum r indicate
a fourth matter point p4, which may or may not lie inside the plenum, just in
case the following proportionality hold:

dS(p1, p2)

dS(p1, p3)
=
dS(p1, p3)

dS(p1, p4)
(See fig. 2)

Formally, this gives the following definition of spatial indication:

D5. IndicateS p1p2p3p4 ↔df Between p1p2p3 ∧ Between p2p3p4 ∧
ProportionalS p1p2p1p3p1p3p1p4

In spacetime, we can also point to a matter point in a temporal way. For
example, we may launch a rocket straight from the Earth at some initial constant
speed. We may click or light up a bulb to fix three matter points ⟨p1, p2, p3⟩
on this trajectory at the three different instants of time. A fourth point on the
trajectory will be indicated once we decide how long the rocket has travel. The
point p4 will be stipulated to be the unique matter point on the line from p1 to
p2 that satisfies the following temporal equation:

dt(p1, p2)

dt(p1, p3)
=
dt(p1, p3)

dt(p1, p4)
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D6. IndicateT p1p2p3p4 ↔df Between p1p2p3 ∧ Between p2p3p4 ∧
ProportionalT p1p2p1p3p1p3p1p4

We define indication as the disjunction of temporal and spatial indication.

D7. Indicate p1p2p3p4 ↔df IndicateT p1p2p3p4 ∨ IndicateS p1p2p3p4

Matter point

Plenum of matter

Figure 2: The relation of indication.

The relation of indication is functional. Given three matter points, if there
is a fourth indicated by the first three, it is unique. Most of the time, there is
no such matter point. Most triples of matter points will point to nothing.

This is the basis for the construction of spacetime from triples. We will use
the triple as a substitute for the spacetime location that it indicates. We will
see that triples can realize all the functional roles of points. However, the same
point can be indicated by more than one triple. In the same way, a fictitious
unoccupied point can be realized by more than one triple. We will identify
points to a certain equivalence class of triples. The task of the next subsection
is to define the appropriate equivalence relation in the language of TR.

4.1 Equivalent Triples

Since we have at our disposal the predicate of indication, we can define an
unoccupied point of spacetime ξ relative to a plenum r as an equivalence class,
or a quotient sort (using the terminology of Morita equivalence) of triples of
matter points belonging to a plenum r. The move is the familiar method of
abstraction. It is analogous to the common method of constructing directions as
equivalence classes of parallel lines, the natural numbers as equivalence classes
of equinumerous classes and meanings as equivalence classes of synonymous
expressions. We will write p⃗ in place of the three variables p1, p2 and p3. For
example, we define a quaternary predicate of parthood:

D8. Part p1p2p3r ↔df Part p1r ∧ Part p2r ∧ Part p3r

13



In order to introduce the sort ξ, we need to define the relation of indicating
the same unoccupied point without referring to points. Of course, if the two
triples happen to indicate a real matter point, then they ought to stand in the
equivalence relation if and only if they indicate the same matter point p4. The
idea of the definition is precisely to piggyback on the case in which there is a
genuine matter point that is indicated. Two triples of matter points inside the
same plenum r indicate the same point if it is possible to construct a tiny model
in scale of the two triples that indicate the same point (see [Burgess 1991, 129]).

To construct a model in scale of ⟨p1, p2, p3⟩ and ⟨q1, q2, q3⟩, we need to find
two other triples ⟨p′1, p′2, p′3⟩ and ⟨q′1, q′2, q′3⟩ that point to a single matter point
p4, and such that the two angles at the base of the triangle △p′1q′1p4 are equal
to the angles p̂1q1q2 and q̂1p1p2. The condition is illustrated in the next picture.

p1 q1

p2 q2

p′1 q′1

p4

Figure 3: The base angles of △p′1q′1p4 are equal to p̂1q1q2 and q̂1p1p2

We can do so by picking two matter points p′1 and q′1 on the segment p1q1
and ‘sliding’ the two triples with a square. If p′1 and q′1 are between p1 and
q1, and if the half lines pointed at by the triples ⟨p′1, p′2, p′3⟩ and ⟨q′1, q′2, q′3⟩ is
parallel to those indicated by ⟨p1, p2, p3⟩ and ⟨q1, q2, q3⟩, then the condition will
be satisfied (see fig.4 below for an illustration of this construction).

p1 q1
p′1 q′1

p2 q2

p3 q3

Figure 4: The points p′1 and q′1 are between p1 and q1.
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The notion of material parallelism that is employed here poses no problem
since it can be defined in terms of congruence. Two segments xy and zw are
parallel if and only if there are two congruent segments x′y′ and z′w′ on the
lines passing through xy and zw (that is, such that x′ and y′ are collinear to
x and y, z′ and w′ are collinear to z and w) such that x′, y′, z′ and w′ form a
rectangle. The last condition, rectangularity, means that the segments x′z′ and
y′w′ and the segments x′w′ and y′z′ are spatially congruent.

D9. Parallel p1p2p3p4 ↔df ∃p5∃p6∃p7∃p8(Between p1p2p5 ∧ Between p2p5p6 ∧
Between p3p4p7 ∧ Between p4p7p8 ∧ CongruentS p5p6p7p8
∧ CongruentS p5p7p6p8 ∧ CongruentS p5p8p6p7 )

The second condition that a model in scale must satisfy is that all the dis-
tances must be shrunk by a fixed factor k. Let k be the ratio of the distance
from p1 to q1 to the distance from the slid matter point p′1 to matter point q′1:

dS(p1, q1)

dS(p′1, q
′
1)

= k (1)

We want all other proportions between matter points in the new triples to be
equal to k. This comes down to four claims of proportionality:

dS(p1, p2)

dS(p′1, p
′
2)

= k (2)

dS(p1, p3)

dS(p′1, p
′
3)

= k (3)

dS(q1, q2)

dS(q′1, q
′
2)

= k (4)

dS(q1, q3)

dS(q′1, q
′
3)

= k (5)

The equivalence relation of indicating the same unoccupied point of space-
time will be called ‘equi-indication’ and noted as ∼r. It can be formally as
follows. Note that the equi-indication predicate has seven arguments: six vari-
ables for the matter points and a variable r for a particular choice of a plenum.

D10. p1p2p3 ∼r q1q2q3 ↔df Plenum of matter r∧ Part p⃗r ∧ Part q⃗r ∧

∃p⃗′∃q⃗′∃p4
(
Part p⃗′r ∧ Part q⃗′r ∧ Part p4r ∧

Parallel p1p2p
′
1p

′
2 ∧ Parallel p2p3p

′
2p

′
3 ∧ Parallel q1q2q

′
1q

′
2 ∧

Parallel q2q3q
′
2q

′
3 ∧ Between p1p

′
1q1 ∧ Between p′1q

′
1q1 ∧

Proportional p1p2p
′
1p

′
2p1q1p

′
1q

′
1 ∧ Proportional p2p3p

′
2p

′
3p1q1p

′
1q

′
1 ∧
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Proportional q1q2q
′
1q

′
2p1q1p

′
1q

′
1 ∧ Proportional q2q3q

′
2q

′
3p1q1p

′
1q

′
1 ∧

Indicate p′1p
′
2p

′
3p4 ∧ Indicate q′1q

′
2q

′
3p4

)

p1

p3

p2

q1

q3

q2

p′1

p′2

p′3

q′1

q′2

q′3

ξ

p4

Figure 5: Two triples indicate the same unoccupied point ξ.

We can prove that the definition is adequate in the following way. We can
first define an analogous notion of indication in the substantivalist theory. If
spacetime exists, then every triple of spacetime points indicates a point. Every
point is indicated by some triple of points. Moreover, a triple of matter points
indicates a fourth matter point p if and only if their locations indicate the
location of p. This holds in every model M of classical mechanics TCM .

Consider the matter points that in a model M and the relationist reduct N
consisting of these matter points and the relations of material betweenness and
congruence. We can show that they are equivalent in the relationist reduct if
and only their spacetime time locations indicate the same point of spacetime in
the original spacetime structure. In other words, we can say that two triples
are equivalent in a relationally definable sense if and only if, in a possible world
in which spacetime existed, they would in fact indicate the same point.

Theorem 2. Let M be a model of TCM and N a relationist definable reduct of
M. Let p1, ...p3, q1, ..., q3 be six matter points in the domain of N and x1, ..., x3, y1, ...y3
their locations in M. Then, we have that N |= p1p2p3 ∼r q1q2q3 if and only if
M |= ∃z Indicate x1x2x3z ∧ Indicate y1y2y3z.

Proof. An exercise in similar triangles.

4.2 The emergence of spacetime

Once we have the equivalence relation, we can then extend TR to a theory T+
R

where a quotient sort or abstraction is introduced. We follow the treatment in
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[Halvorson 2019, ch.5]. The variables ξr, ξ
′
r, ... will range over the equivalence

classes, or the spacetime points relative to a plenum r. We will call these ‘r-
points’. The language of the extension T+

R includes a function symbol

Ind(p1, p2, p3, r)

which takes as arguments triples of matter points in a plenum r together and
returns the r-point coded by the triple in the plenum r. We can read Ind(p⃗, r) as
‘the point of spacetime coded by p⃗ in r’. T+

R then contains all the axioms of TR
plus an abstraction principle, which says that two points ξ and ξ′ are identical
if and only if their corresponding triples satisfy the equivalence relation above,
and an axiom which says that for any point, there is a triple which codes it:

ξr = ξ′r ↔ p1p2p3 ∼r p4p5p6 (6)

∀ξr ∃ p⃗ Ind(p⃗, r) = ξr (7)

ξr

p1

p2

p3

Empty point (logical construction)

Plenum matter r

Figure 6: An r-point ξ coded by a triple of matter points p⃗ inside a plenum r

We can expand canonically a relationist reduct N to include r−points.

Definition 5. Let M be a model of TCM and N = ⟨N , SimM , BetweenM , P roportionalityM ⟩
a relationist definable reduct of M. Then the canonical extension N+ of N is
the structure

⟨U ,N , SimM , BetweenM , P roportionalityM , Ind, π1, π2, π3⟩

where U = N 3/Equi−indication is the partition of triples under equi-indication,
Ind is the mapping of triples onto their equivalence class, and the πi are projec-
tion functions from triple onto their ith components.

We can show that, if there is a plenum r, then there is a one-to-one corre-
spondence between r−points and points of substantival spacetime:

Theorem 3. Let M be a model of TCM and N be a relationist definable reduct
of M. Let P ⊂ M be {x | M |= Point x}. Let U = N 3/Equi − indication be
again the partition of triples under equi-indication. If there is an r in M such
that M |= Plenum of matter r, there is a one-to-one correspondence between P
and U .
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Proof. We define a function f : U 7→ P as follows. Let ξ be an r−point. Pick a
triple ⟨p1, p2, p3⟩ in ξ and let their locations in M be ⟨x1, x2, x3⟩. Consider the
spatiotemporal predicate of indication between spacetime points

Indicate xyzw

From standard geometrical reasoning, it follows that there is a unique point
x4 ∈ N such that M |= Indicate x1x2x3x4. We set f(ξ) = x4. Injectivity and
the fact that f is a function follow both from Theorem 2. Surjectivity requires
the condition that r be a plenum. Let x4 ∈ N be an arbitrary point. Let p be a
point in the interior of r and x its location. From the fact that r is a plenum, it
follows that the segment xx4 intersects the plenum. There is then a subsegment
xy of xx4 that is entirely occupied by matter. Let us suppose that x, y and
x4 are on an inertial trajectory. If they are simultaneous, the proof is similar,
except that we replace the temporal distance with spatial distance. Let z be a
point collinear to x and y that is at the following distance from x:

dt(x, z) =
dt(x, y)

2

dt(x, x4)

The point z is between x and y, since dt(x, y) < dt(x, x4), implies dt(x, z) <
dt(x, y). Let ⟨x, y, z⟩ be the matter points located at ⟨x, y, z⟩ and let ⟨p1, p2, p3⟩ ∈
ξ be their equivalence class. It follows that f(ξ) = x4.

Definition 6. We call the function f : U → P defined in the proof of Theorem
3 the canonical function from r−points to points.

5 Geometrical Relations

At this point, we have shown how to define the identity between r−points, and
we have given an argument for the adequacy of the definition. We will now
define geometrical notions of betweenness, congruence and simultaneity holding
between r−points. We will also prove metatheorems to show their adequacy.

We will prefix the geometrical notions to be defined with an r in order to
differentiate them from the materials notions, which apply to matter points,
and the substantivalist notions, that apply to points rather than r−points. The
key to the definitions is the same strategy of constructing a scale model. We
will begin with the definition of simultaneity holding between two r−points.

We will first need a lemma that says that we can point to any r−point from
any material point. If ξ is an r−point and p is a material point, then there exist
two material points p1 and p2 such that the triple ⟨p, p1, p2⟩ indicates ξ. This
implies that, if ξ1 and ξ2 are two r−points and p is a material point, then there
exist two matter points p1 and p2, and two matter points q1 and q2 in r, such
that the triple ⟨p, p1, p2⟩ indicates ξ1 and the triple ⟨p, q1, q2⟩ indicates ξ2.

Lemma 1. Let M be a model of TCM that contains a plenum r and N a relation-
ist definable reduct of M. Then N+ |= ∀ξ1∀p1∀r ∃p2∃p3 Ind(p1, p2, p3, r) = ξ1
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Proof. As in the proof of Theorem 3.

Corollary 1. Let M be a model of TCM that contains a plenum r and N
a relationist definable reduct of M. Then N+ |= ∀ξ1∀ξ2∀p∀r ∃p1∃p2∃q1∃q2
(Ind(p, p1, p2, r) = ξ1 ∧ Ind(xp, q1, q2, r) = ξ2)

ξ2ξ1

p

q1

q2

p1

p2

Figure 7: Corollary 1

Consider two r−points ξ1 and ξ2 indicated by two triples ⟨p, p1, p2⟩ and
⟨p, q1, q2⟩. We are using the lemma to reduce the general case to a case in which
the two triples have a single origin p. We want to find out whether ξ1 and ξ2
should be counted as simultaneous or not. The first scenario is when one of ξ1
and ξ2 is located in the simultaneity slice as the matter points that indicate it.
If p is simultaneous to p2, then the point ξ1 is located in the same simultaneity
slice as p and p1. Therefore, ξ2 is simultaneous to ξ1 iff p is simultaneous also
to q2. A symmetric condition holds if p is simultaneous to q2.

The second scenario is when both ⟨p, p1, p2⟩ and ⟨p, q1, q2⟩ are arranged on
inertial trajectories. In such a case, the strategy is once again to construct a
tiny scale model inside the plenum. Consider the triangle △pξ1ξ2. We want
to rescale it by a factor k, so as to find a similar triangle within the region of
spacetime occupied by matter. We want four points p′1, p

′
2, q

′
1, and q′2 on the

same sides, that indicate material points, and such that the time elapsed is
shrinked by some uniform factor. For example, let

k =
dt(p, p

′
1)

dt(p, p1)
(8)

We want all the other proportion to be k as well. In other words, we want a
selection of matter points that satisfies the following equations:
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dt(p, q
′
1)

dt(p, q1)
= k (9)

dt(p, p
′
2)

dt(p, p2)
= k (10)

dt(p, q
′
2)

dt(p, q2)
= k (11)

D11. r-Sim ξ1ξ2r ↔df ∃p∃p1∃q1∃p2∃q2
(

Ind(p, p1, p2, r) = ξ1 ∧

Ind(p, q1, q2, r) = ξ2 ∧ SimM pp2 ∧ SimM pq2

)
∨(

¬SimM pp2 ∧ ¬SimM pq2 ∧ ∃p′1∃p′2∃q′1∃q′2∃p3∃q3
(
BetweenM p1p

′
2p

∧ BetweenM p′2p
′
1p ∧ BetweenM q1q

′
2q ∧ BetweenM q′2q

′
1q ∧ Proportional

pp′1pp1pp
′
2pp2 ∧ Proportional pp′1pp1pq

′
1pq1 ∧ Proportional pp′1pp1pq

′
2pq

′
1 ∧

Indicate pp′1p
′
2p3 ∧ Indicate pq′1q

′
2q3 ∧ Part p3r ∧ Part q3r ∧ SimMp3q3

))

ξ2ξ1

p

q1

q2

p1

p2

p3 q3

q′2q′1
p′2p′1

Figure 8: The matter point p3 is simultaneous to q3 iff ξ1 is simultaneous to ξ2.

Theorem 4. Let M be a model of TCM containing a plenum and N be a rela-
tionist definable reduct of M. Let N+ be the canonical extension of N and f the
canonical function relative to certain plenum of matter r. Then for all ξ1, ξ2

N+ |= r-Sim ξ1ξ2r iff M |= Sim f(ξ1)f(ξ2)

Proof. Another exercise in similar triangles.
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Let us turn to congruence. Consider four r-points ξ1, ξ2, ξ3 and ξ4 that
determine two segments. We want to lay down the conditions that need to be
satisfied in order for them to be of equal length. The spatial and temporal cases
are analogous. We can suppose that we are in the case of the lemma. There are
two points p and q that play the role of the two vertices. The triple ⟨p, p1, p2⟩
indicates ξ1. The triple ⟨p, q1, q2⟩ indicates ξ2. The triple ⟨q, p3, p4⟩ indicates
ξ3. The triple ⟨q, q3, q4⟩ indicates ξ4. They form two triangles (fig. 9). We want
to know when the opposing sides, in red, should count as equal.

ξ2ξ1

p

q1

q2

p1

p2

ξ4ξ3

q

q3

q4

p3

p4

Figure 9: The triples indicating ξ1, ξ2, ξ3 and ξ4.

The strategy is once again to rescale the two triangles by a factor k, so as
to find a similar triangle within the region of spacetime occupied by matter.
We want to find eight points p′1, p

′
2, q

′
1, q

′
2, p

′
3, p

′
4, q

′
3, and q′4 on the same sides,

that indicate material points, and such that the distances are shrinked by some
uniform factor. Let us suppose that they are on inertial trajectories and let

k =
dt(p, p

′
1)

dt(p, p1)
(12)

We want all the other proportions to be k as well. In other words, we want a
choice of matter points that satisfy the following equations:

dt(p, q
′
1)

dt(p, q1)
= k (13)

dt(p, p
′
2)

dt(p, p2)
= k (14)

dt(p, q
′
2)

dt(p, q2)
= k (15)
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dt(q, p
′
3)

dt(q, p3)
= k (16)

dt(q, p
′
4)

dt(q, p4)
= k (17)

dt(q, q
′
3)

dt(q, q3)
= k (18)

dt(q, q
′
4)

dt(q, q4)
= k (19)

We can find shrinked triples that indicate four matter points p5, p
′
5 and

q5, q
′
5. The two opposing sides of the two small material triangles are going to

be shrinked by the same factor of k. The segments p5p′5 and q5q′5 are therefore
going to be congruent if and only if the two r−segments ξ1ξ2 and ξ3ξ4 are
congruent. Note that just like the identity, this notion of congruence is relative
to the choice of a plenum r. The definition can be formalized as follows:

D12. r-CongruentS ξ1ξ2ξ3ξ4r ↔df ∀p∀p1∀p2∀q1∀q2∀q∀p3∀p4∀q3∀q4(
Ind(p, p1, p2, r) = ξ1 ∧ Ind(p, q1, q2, r) = ξ2 ∧ Ind(q, p3, p4, r) = ξ3 ∧

Ind(q, q3, q4, r) = ξ4 ∧ r-Sim ξ1ξ2 ∧ r-Sim ξ3ξ4 →
∃p′1∃p′2∃q′1∃q′2∃p′3∃p′4∃q′3∃q′4∃p5∃p′5∃q5∃q′5

(
BetweenM p1p

′
2p ∧ BetweenM

p′2p
′
1p ∧ BetweenM q1q

′
2p ∧ BetweenM q′2q

′
1p ∧ BetweenM p3p

′
4q ∧ BetweenM

p′4p
′
3q ∧ BetweenM q3q

′
4q ∧ BetweenM q′4q

′
3q ∧ Proportional pp′1pp1pq

′
1pq1

∧ Proportional pp′1pp1pp
′
2pp2 ∧ Proportional pp′1pp1pq

′
2pq

′
2 ∧ Proportional

pp′1pp1qp
′
3qp3 ∧ Proportional pp′1pp1qp

′
4qp4 ∧ Proportional pp′1pp1qq

′
3qq3

∧

Proportional pp′1pp1qq
′
4qq4 ∧ Indicate pp′1p

′
2p5 ∧ Indicate pq′1q

′
2p

′
5 ∧ Indi-

cate qp′3p
′
4q5 ∧ Indicate qq′3q

′
4q

′
5 ∧ Part p5r ∧ Part p′5r ∧ Part q5r ∧ Part

q′5r ∧ CongruentMS p5p
′
5q5q

′
5

))
In order to show the adequacy of the definition of spatial congruence of

r−points, we prove another metatheorem.

Theorem 5. Let M be a model of TCM that contains a plenum and N be a
relationist definable reduct of M. Let N+ be the canonical extension of N and f
the canonical function relative to certain plenum of matter r. Then for all ξ1,
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ξ2ξ1 ξ4ξ3

p

q1

q2

p1

p2

q

q3

q4

p3

p4

p5 p′5 q′5q5

q′2q′1
p′2p′1

p′4p′3
q′4q′3

Figure 10: ξ1ξ2 is congruent to ξ3ξ4 if and only if p5p′5 is congruent to q5q′5.

ξ2, ξ3, ξ4

N+ |= r-CongruentS ξ1ξ2ξ3ξ4r iff M |= CongruentS f(ξ1)f(ξ2)f(ξ3)f(ξ4)

Proof. Another exercise in similar triangles.

A similar definition can be given of temporal congruence. Suppose that ξ1
and ξ2 are not simultaneous and that neither are r−points ξ3 and ξ4. We want
to find out whether the time elapsed between the two pairs of material events is
the same. We can find in both cases a point of the plenum, respectively p and
q, that is simultaneous to neither. This leaves us once again with two triangles.
The sides of such a triangle are all inertial trajectories. The strategy is to give
truth conditions for the claim of temporal congruence in terms of the existence
of a small similar triangle within the plenum, such that the opposing sides are
temporally congruent. Details are omitted.

Alfred Tarski [1999, 202-3] has shown that betweenness can be defined from
spatial congruence and logical notions, in Euclidean geometry, if the dimension
of space is greater than or equal to two and we assume the Circle Axiom (see
also [Tarski 1999, fn. 4] for a discussion of the Circle Axiom). We can give
an analogous definition of spatiotemporal betweenness in terms of spatial and
temporal congruence. We first need to define the spatial and temporal shorter-
or-equal relation. The relation ‘ξ1ξ2 ≤S ξ3ξ4’ holds of two pairs of simultaneous
points, each of which determines a segment, if the first segment is shorter or
congruent to the second.

D13. ξ1ξ2 r− ≤S ξ3ξ4r ↔df r-Sim ξ1ξ2 ∧ r-Sim ξ3ξ4 ∧
∀ξ5(r-CongruentS ξ3ξ5ξ4ξ5r → ∃ξ6(r-CongruentS ξ6ξ1ξ6ξ2r ∧ r-CongruentS ξ6ξ2ξ3ξ5r)

D14. ξ1ξ2 r− ≤T ξ3ξ4r↔df ∀ξ5(r-CongruentT ξ3ξ5ξ4ξ5r → ∃ξ6(r-CongruentT ξ6ξ1ξ6ξ2r∧
r-CongruentT ξ6ξ2ξ3ξ5r)

D15. ξ1ξ2 r− ≤ ξ3ξ4r ↔df ξ1ξ2 r− ≤S ξ3ξ4r ∨ ξ1ξ2 r− ≤T ξ3ξ4r

Then we define the notion of betweenness. An r-point ξ2 is between ξ1 and
ξ3 when for all ξ4 if ξ1ξ2 ≤ ξ4ξ1 and ξ4ξ3 ≤ ξ2ξ3, then ξ4 is identical to ξ2:
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D16. r-Between ξ1ξ2ξ3r ↔ ∀ξ4 (ξ4ξ1 r− ≤ ξ1ξ2 ∧ ξ4ξ3 r− ≤ ξ2ξ3 → ξ4 = ξ2)

The last predicate we need to construct spacetime is the predicate of location
between matter points and r-points. A matter point is located at an r-point ξ
if and only if it is indicated by the same triples of matter points that indicate ξ:

D17. r-Located pξr ↔ ∃p1∃p2∃p3 (Indicate p1p2p3p ∧ Ind(p1, p2, p3, r) = ξ)

Theorem 6. Let M be a model of TCM containing a plenum and N be a re-
lationist definable reduct of M. Let N+ be the canonical extension of N and f
the canonical function relative to a certain plenum of matter r. Then for all ξ1
and for all matter points p:

N+ |= r-Located pξr iff M |= Located pf(ξ)

Proof. By definition.

We can put together the three metatheorems of this section into a single
metatheorem that buttresses the claim that we have logically constructed space-
time.

Theorem 7. Let M be a model of TCM containing a plenum and N be a re-
lationist definable reduct of M. Let N+ be the canonical extension of N and
r ∈M such that

M |= Plenum of matter r.

Then, the canonical function fr is an isomorphism between M and N+.

Proof. An immediate consequence of Theorems 2-6.

6 The plenum-independent construction

In the previous section, we have constructed a spacetime relative to the choice of
a plenum r. There are, therefore, as many distinct spacetimes as there are plena.
There is nothing that deserves to be called ‘spacetime’ without qualification.
The problem arises of giving a construction that does not require an r.

We do not want to suppose that there is a privileged plenum, or a ‘marvellous
ball ’. Therefore, the strategy is to aggregate together all these spacetimes.
We will identify spacetime points to equivalence classes of r−points. For the
purposes of this section, an r−point could be treated as an equivalence class
of four tuples ⟨p1, p2, p3, r⟩. Actually, we will manage to define an equivalence
relation ∼ between triples. As long as ⟨p1, p2, p3⟩ is part of some plenum, then
it does not matter which one, to determine whether ⟨p1, p2, p3⟩ ∼ ⟨q1, q2, q3⟩.
We want to define, in the relationistic language, an equivalence relation of six
arguments that can hold also between triples that are part of different plena.

The strategy we adopt is inspired by the construction of the intersubjective
world in Der Logische Aufbau der Welt (see [Carnap 1968, §147]). To check
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whether p1p2p3 ∼ q1q2q3, we want first to construct the r-locations of q1, q2 and
q3 relative to a plenum r that contains p1, p2 and p3. These are the locations of
q1, q2 and q3 from the point of view of the matter points p1, p2 and p3. These
r-locations are equivalence classes of triples from r. We can fix three triples of
matter points in the plenum r that materially indicate q1, q2 and q3 (see fig.
11).

p1 p3p2

q1

q3

q2

z1

z′1

z′′1

z3

z′3

z′′3

z2

z′2

z′′2

r

r′

Figure 11: The triples z⃗, z⃗′, z⃗′′ indicate respectively q1, q2, and q3.

The second step in the program is to define a notion of indication between
r−points relative to the plenum r. The definition merely swaps the notions of
material betweenness and congruence with their r−relative counterparts:

D18. r-IndicateS ξ1ξ2ξ3ξ4r ↔df r-Between ξ1ξ2ξ3r ∧ r-Between ξ2ξ3ξ4r ∧
r-ProportionalS ξ1ξ2ξ1ξ3ξ1ξ3ξ1ξ4r

D19. r-IndicateT ξ1ξ2ξ3ξ4r ↔df r-Between ξ1ξ2ξ3r ∧ r-Between ξ2ξ3ξ4r ∧
r-ProportionalT ξ1ξ2ξ1ξ3ξ1ξ3ξ1ξ4r

D20. r-Indicate ξ1ξ2ξ3ξ4r ↔df r-IndicateT ξ1ξ2ξ3ξ4r ∨ r-IndicateS ξ1ξ2ξ3ξ4r

The triples that materially indicate the matter points q1, q2 and q3 belong
to three r−points ξ1, ξ2 and ξ3. These are the r−locations of q1, q2 and q3. The
three matter points p1, p2 and p3 will be counted as equivalent to q1, q2 and q3
if and only if the r−point ξ such that ⟨p1, p2, p3⟩ ∈ ξ is r−indicated by ξ1, ξ2
and ξ3.

D21. p1p2p3 ∼ p4p5p6 ↔df ∃r∃r′∃ξ∃ξ1∃ξ2∃ξ3∃q⃗∃q⃗′∃q⃗′′ (Plenum of Matter r ∧
Part p4r ∧ Part p5r ∧ Part p6r ∧ Ind(p⃗, r) = ξ ∧ IndicateM q⃗p4 ∧
IndicateM q⃗′p5 ∧ IndicateM q⃗′′p6 ∧ Ind(q⃗, r) = ξ1 ∧ Ind(q⃗′, r) =

ξ2 ∧ Ind(q⃗′′, r) = ξ3 ∧ r − Indicate ξ1ξ2ξ3ξ)
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Figure 12: The equivalence relation ∼

We can prove that ∼ is an equivalence relation on any relationist definable
reduct of a model of classical mechanics. The result follows from:

Theorem 8. Let M be a model of TCM that contains a plenum and N be a
relationist definable reduct of M. Let p1, p2, p3, q1, q2, q3 be six matter points and
ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 be their locations in M. Then, we have that N |= p1p2p3 ∼
q1q2q3 if and only if
M |= ∃ξ7 (Indicate ξ1ξ2ξ3ξ7 ∧ Indicate ξ4ξ5ξ6ξ7).

Proof. An easy consequence of Theorem 7.

The equivalence relation ∼ can be used to introduce by abstraction an ul-
terior sort of entities α, α′, .... These are the constructed entities that will play
the official role of spacetime points. The definitions of the emergent predicates
of congruence, simultaneity, and betweenness that apply to the entities of sort
α, α′, ..., can be easily recovered from the r−notions that apply to r-points. The
construction depends on the following lemma:

Lemma 2. Let M be a model of TCM containing a plenum and N be a relationist
definable reduct of M. Let r be a plenum such that M |= Plenum of Matter r.
Let p1, p2, p3, p4, p5, p5, p6 be six matter points that are part of the plenum r.
Then, we have that
N |= p1p2p3 ∼r q1q2q3 if and only if N |= p1p2p3 ∼ q1q2q3.

Proof. Immediate from Theorem 2 and Theorem 8.

This lemma implies that every r−point ξ is included in a point. For every
ξ, there is an α such that ξ ⊂ α. The lemma also implies that the α is unique.
For suppose that ξ1 ⊂ α and ξ2 ⊂ α. Let ⟨p1, p2, p3⟩ ∈ ξ1 and ⟨q1, q2, q3⟩ ∈ ξ2.
It follows that ⟨p1, p2, p3⟩ ∈ α1 and ⟨q1, q2, q3⟩ ∈ α by inclusion. Therefore,
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q1q2q3 ∼ p1p2p3. It follows that q1q2q3 ∼r p1p2p3 and, therefore, ξ1 = ξ2. Fi-
nally, we can show that every α contains at least one r−point. This follows from
the isomorphism theorem between r−spacetime and substantival spacetime. It
is easy to see how to define geometric relations between the α. A tuple of points
will stand in a geometric relation if and only if the r−points that they contain
stand in the appropriate r−relation. For example:

D22. Between α1α2α3 ↔df ∃r∃ξ1∃ξ2∃ξ3 (ξ1 ⊂ α1 ∧ ξ2 ⊂ α2 ξ3 ⊂ α3 ∧ r-
Between ξ1ξ2ξ3r)

Let M be a model of classical continuum mechanics containing a plenum.
Let A = P 3/ ∼ be the partition of the set of triples of matter points in M under
the plenum-independent equivalence relation of this section. We will call N++

the structure

⟨A,P, Sim,Between,Congruent, Location⟩.

The remarks should have made obvious the following theorem:

Theorem 9. The structures M and N++ are isomorphic.

7 Minkowski spacetime

Minkowski spacetime can be constructed from continuous matter in exactly the
same way as a classical spacetime. We only need to verify that every pair
of points can be connected to a point within a plenum by either spacelike or
timelike segments. We also need to verify that the theorems about similar
triangles that we have used extend to triangles in a flat relativistic spacetime,
as long as the sides are not lightlike. If two triangles △xyz and △pqw have
equal the angles x̂ and p̂, and the two sides xy and xz are proportional to pq
and pw with a factor of k, then also the opposite sides yz and qw are multiples
of a factor k. Proportionality claims refer to the relativistic interval.

The simplest case is when x = p and one triangle is the continuation of each
other. In this scenario, we can set up a coordinate system with origin o = x = p.
If the sides of the first triangle are the four-vectors v⃗1 and v⃗2, then the sides of
the second triangle are the vectors λ · v⃗1 and λ · v⃗2. Since the relativistic interval
is linear, the length of the opposite side is:

||λ · v⃗1 − λ · v⃗2|| = λ · ||v⃗1 − v⃗2||

The general case about the norm derived from a multilinear form in an affine
space is left to the reader. The proof is only slightly less obvious.

The special case above is the one that is needed to define geometrical pred-
icates of r−points and then points. In the spacetime of special relativity, there
is only one predicate of points to be defined: the binary predicate of causal con-
nectibility. All others, including congruence and betweenness, can be defined
from causal connectibility (see [Goldblatt 1987] and [Pambuccian 2007]).
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The same strategy is used as in the definition of congruence in a classical
spacetime. Consider two r−points, or equivalence classes of triples, ξ1 and ξ2
and suppose that we want to figure out whether they are causally connectible:
whether the interval between them is lightlike or timelike. The answer is positive
if and only if it is possible to construct a similar triangle within the plenum such
that the opposing side of this material triangle is lightlike or timelike.

ξ2

ξ1

p

q1

q2

p1

p2

p3
p′3

q′2q′1
p′2p′1

Figure 13: The r-point ξ1 is causally connectible to ξ2

The relativistic construction is in all other respects analogous to the classical
spacetime construction. Further details will be omitted.

8 Postulates

Until now all of the results have been semantical. We have not specified an
alternative relational theory to replace the substantival formulation of classical
continuum mechanics TCM . However, specifying such a theory is not difficult.
Such a theory will also be first order, just like the first order substantivalist
theory TCM (see sec.2). We can show its existence as follows.

The constructions that we have employed are in [Halvorson and Barrett
2016][Halvorson 2019]. Morita equivalent theories are theories that can be ex-
tend into an identical theory using these sorts of procedures. Morita equivalence
can also be equivalently formulated in terms of translations, or generalized re-
construals (see [Halvorson 2019, §5.4 and §7.5]). This means that there is a
translation f from the language of TCM to the relationist language LR. We can
therefore, take the postulates of TR to be the translation of those of TCM :

TR = {f(ϕ) | ϕ ∈ TCM} (20)

8.1 Morals

Let us consider a last time the philosophical morals of the construction. Should
we say, for instance, that spacetime points have been shown to be ‘surplus
structure’ or ‘descriptive fluff’? It seems to us that the answer is negative.
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These terms designate parts of the mathematics that are gauge, that is, that
do not represent features of the world. However, the construction in this paper
is thoroughly nominalistic. Spacetime regions are physical objects, and their
arrangement is definable from that of matter; they are thus, in our book, onto-
logically derivative, but not unreal, or gauge, or surplus in that sense.

Moreover, since the theories TCM and TR are equivalent, does it not follow
that the debate between the enriched relationist and the substantivalist has been
shown to be a verbal dispute? Our answer is that the debate about existence has
been dissolved5, but not that about priority of matter over spacetime. There
is one theory and not two, since TR and TCM are theoretically equivalent. But
the relationist presentation TR is a perspicuous presentation of the fundamental
ontology of TCM , in the sense that it singles out a minimal base, from which
the unoccupied points in TCM can be recovered.

9 Further physics

In this final section, let us briefly discuss how the scheme may be extended
further, to deal with force fields and more contemporary physics.

9.1 Fields

Burgess [1991] deals with one of the main problems for relationism: the problem
of grounding the distinction between inertial and accelerated motion. This prob-
lem seems to us to have been solved, at least for classical field theories. However,
Burgess [1991] entirely ignores another problem for relationism: that of incor-
porating fields (see [Field 1984, 40-42]). For example, substantival spacetime
seems to be needed as the repository of electromagnetic radiation, propagating
in the vacuum, where there is no charge and mass.

There have been two standard solutions to the problem of fields. The first is
to abandon field theories in favour of action-at-a-distance theories. Field [1984,
40] presents this as the only viable option for the relationist. Theories positing
direct interparticle forces have some defenders (see [Mundy 1989; Lazarovici
2018]). The second common approach is to reify fields as some sort of gelatinous
substance in their own right (see for example [Pooley 2013, 37]).

The difficulty with the first is that constructing such action-at-a-distance
models to replace all of our best classical and quantum field theories is an
ambitious project. It is a project that may fail, even in the most promising
case, that of electrodynamics (see [Wald 2022, 9/f] for a critique of action at a
distance). The main difficulty with the reification strategy is that the difference
between positing fields and positing spacetime, and therefore the motivation for
relationism, become unclear (see [Field 1984, 41-42] and [Maudlin 1993, 200]).
The parsimony of relationism seems lost, as soon as queer entities are admitted.

5Dissolved, that is, in classical mechanics and special relativity, under the assumption of a
continuous matter distribution. A brief discussion of how the matter stands with contempo-
rary physics, and some ideas for further research, are in the next section.
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Such controversies cannot be decided in the present paper. But we think that
it is prudent for the relationist to have an alternative approach to fields.

Such controversies cannot be decided in the present paper. But we think
that it is prudent for the relationist to have an alternative approach to fields.

We would like to propose a third option based on the constructions in this
paper. We believe that it suffers from none of these drawbacks. The idea is to
treat electromagnetic fields as multifields defined on matter.

9.2 The multi-field approach

Multifields have been discussed in the recent literature on the ontology of the
wave function (see [Romano & Hubert 2018], [Chen 2019] and [Romano 2020]).
Consider the wave function ψ of a system of spinless particles in a classical
spacetime. In the position basis, the wave function can be modelled as an
assignment of complex numbers to points of configuration space.

The idea of the multifield is to treat it instead as an assignment of com-
plex numbers to fusions of points [Chen 2019], or as a relation between points
of spacetime and complex numbers [Romano & Hubert 2018]. We will treat
similarly the electromagnetic field as a multifield defined on continuous matter.
The field will be represented by an assignment Fαβ of a tensor to each triple of
matter points. The derivative field on the r−spaces, and then on spacetime can
be constructed in the obvious fashion. For example, if ξ is an r−point:

Fαβ(ξ) = F (p1, p2, p3) where Ind(p1, p2, p3) = ξ

This is a mathematical, or ‘platonistic’ function, but it is not too difficult to
convert it into a comparative predicate (à la Burgess [1984]).

9.3 Gravitation

The techniques that have been used to deal with flat spacetimes won’t generalize
to the curved spacetimes of general relativity. The facts about a bounded por-
tion of spacetime do not determine the geometrical facts about points far away.
For example, it is impossible to detect, in a flat region of spacetime occupied
by matter, the presence or absence of a crease far away.

Even if we fix a specific spacetime background ab initio, its geometry may
be inhospitable to the sort of constructions we want to do. For example, there
is no concept of similar triangles in spherical geometry. The only way we see at
present to integrate general relativity into the approach is to abandon the equiv-
alence principle, and therefore distinguish inertial and gravitational structure.
The gravitational field ought to be treated as a force field evolving in a fixed
flat background. Minkowski spacetime is the natural arena for such a theory.
This is the approach of Weinberg [1972].

The suggestion on behalf of the relationist is to integrate the gravitational
field into the picture by treating it as a tensorial multifield defined on some
charged matter dust. However, this may be repugnant to many relativists.
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Figure 14: The balls of matter are on flat regions

A way to sweeten the pill may be to distinguish some sort of fundamental
flat spacetime from an emergent curved spacetime. This distinction seems to be
suggested by the framework of string theory (see [Huggett 2017] and [Huggett
& Vistarini 2015]). String theorists distinguish fundamental space from ‘target
space’. Although the equivalence principle is rejected at the fundamental level,
it is recovered in some limit for the emergent spacetime. In this sense, [Huggett
& Vistarini 2015, 7] claim that string theory is ‘background independent’.

The reference to string theory raises the question of how the approach can
be extended to quantum theories. A detailed discussion of this problem is be-
yond the scope of the paper. Clearly, supersubstantivalist formulations dealing
only with operators defined on regions of spacetime (see [Wallace and Timp-
son 2010]) and theories with discrete pointlike particles are inhospitable to the
present framework. This excludes the simplest form of the pilot wave theory
and objective collapse models with flashes. The most promising bet is an ob-
jective collapse model with a mass density, or a descendant of the pilot wave
theory that posits a continuous beable. In any theory that posits a continuous
field - maybe a charge density or a fermion-number density - that is continuous,
but not defined on the totality of spacetime, we can treat the points at which
it is defined as material pointlike particles. The wavefunction will then be a
multifield on the beables. Just triplicate the arity of the usual multifield.
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